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Preface

This book provides a fundamental introduction to numerical analysis suitable for ur
dergraduate smdents in mathematics, computer science, physical sciences, and eng.-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material fined modularly for either a
single-term course or a year sequence. In short, the book contains enough material so
instructors will be able 1o select topics appropriate to their needs.

Students of various backgrounds should fird numerical methods quite imeresting
and useful, and this is kept in mind throughout the book. Thus. there is a wide vari-
ety of examples and problems that help ta sharpen one’s skill in bath the theary and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximauons are
easier wo visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms.

Emphasis 1s placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between theory, error analysis,
and readability. An error analysis for cach method is presented in a fashion that is
appropriate for the method 21 hand. yet does not tarn off the reader. A mathematical
derivation for each method is given that uses elementary results and builds the student’s
understanding of calculus. Computer assignments using MATLARB give students an
opporanity to practice their skills at scientific programming.

Sherter numerica! exercises can be carried out with a pocket calculator/computer.
and the longer ones can be done using MATLAB subroutines. It is left for the instruc-
tor 1o guide the students regarding the pedagogical use of numerical computatiors
Each instructor can make assignimeris that are appropriate to the available comput
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ing resources. Experimentation with the MATLAB subroutine [ibraries is encouraged.
These. materials can be used to assist students in the completion of the numerical anal-
ysis cormponent of computer Jaboratory exercises.

This Third Edition grows out of much polishing of the narrative for the Second
Edition. For example. the &R method has been added to the chapter on Eigenvalues
and Eigenvectors. New 1o this edition is the explicit use of the software MATLAB.
An appendix gives an introduction to MATLAB syntax. Examples have been added
throughout the text with MATLAB and complete MATLAB programs are given in
each section. An instructor's disk is available upon request from the publisher.

Previously we took the attitude that any software program that students mastered
would work fine. However, many students entering this course have yet to master a
programming language (computer science students excepted). MATLAB has become
the 100l of nearly all engineers and applied mathematicians, and its newest versions
have improved the programming aspects. So we think that studenis will have an easier
and more productive 1ime in this MATLAB version of our text.

1

Preliminaries
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Consider the function fix) = cos(x). 1ts derivative f'{(x) = —sin(x). and its an-
liderivative F(x) = sin(x) + C. These formulas were studied in calculus. The former
is used to determine the slopem = f'(x9) of the curve y = f(x)atapoint (x. f(xp)).
and the latter is used 1o compute the area under the curve fora < x < b.

The slope at the point {x/2,0)ism = f'{m/2} = — 1 and can te used to find the
tangent line at this point (see Figure 1.1(a)):

.)'ran=m(1—%) +O=_f’(r-2r)(x—%)=—x+%.

v

T X
05 i g Figure 1.1 (a) The tangent hine to
the curve ¥ = cos(x) at the poini
{m/2.0).
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1.0 —\.\
v = Cos(X)
0.5
0.0 > X
ns 1.0) 1 .5&.0
05 - Figure 1.1 (b) The area under the
’ curve y — cos{x) over the interval
0. 7t /2).

The area under the curve for 0 < 1 < 7/2 is compuied using an integral (see Fig-

Sec. 1.1 REVIEW OF CALCULLS 3

Definition 1.2, Assume that f(x) is defined on a set § of real numbers and legxg € S.
Then f is said 1o be continueus af x = xp it

(3) lim

£y — Fro v
\Cep) J WA= Juap).
=

X=

The function f is said t be continuous on § if it is continuous at each point x € S.
The notation C"(S) stands for the set of all functions f such that f and its first n
derivatives are continzous on §. When § is an interval, say [a, b]. then the nowation
C"la. b} is used. As an example, consider the function f(x) = x%3 on the inter-
val {1, 1). Clearly, fix} and f {x} = {4/"3)4] /3 are continuous on {~1. 1], while

FY(x) = (4/9)x 723 s not continuous at x = 0, A

Definition 1.3.  Supposc that {x,};2 | is an infinite sequence. Then the sequence is
said to have the limit L. and we write

{4) lim x, — I

wre L H(b)):

2

7/ T
area _f cos(x)dx = F (—
0

2) —F(O)—sm(

These are some of the results that we will need to use from caleulus,

Review of Calculus

It is assumed that the reader is tamiliar with the notation and subject matter covered in
the undergraduate calculus sequence, This should have included the topics of limits,
continuity, differentiation, integration, sequences, and series. Throughout the book we
refer 1o the following results.

Limits and Continuity

Definition 1.1. Assume that f(x) is defined on a set § of real numbers, Then f is
said to have the fimif L at x = xq, and we write

(1) lim flx)="I.
if. given any € > 0, there exists a § > ) such that, wheneverx € S,0 < lx —xg| < §

implies that | f(x) — L] < ¢. When the h-increment notation x — xg + k& is used,
equation (1) becomes

(@) lim f(xg+h)=L. A
b-f]

-y OC

if, given any € > 0, there exists a positive integer ¥ = V(e ) such that s > A implies
that |x, — L] < €. A

When a sequence has a limit, we say that it {s a convergent sequence. Another

commonly uscd notationis “x, > Lasn — :x:u" Eqguation (4) is equivalent to

n=o0
Thus we can view the sequence ie,. = {x, — L}7°, as an error sequence. The

following theorem relates the crmceprs of continuity and cotvergent sequence.

Theorem 1.1.  Assume that f(x) is defined on the set § and xg € S. The following
statements are equivalent;

(a) The function f is continuous at xg.
(6) (bYIf Hm x, — xg, then lim fixn) = f(xp).
00 R 0G

Theorem 1.2 (Intermediate Value Theerent), Assume that f € Cla, &] and £ is
any number between f(a) and f(b). Then there exists a number ¢, with ¢ € (g, ),
suchthat f(e) = L.

Example 1.1.  The function f{(x) = cos(x — 1) 1s continuous over [0, 1), and the constant
L — 0.8 € (cos(0), cos(})). The solution to f(x) = 0.8 aver [0. 1]is c1 = 0.356499.

Similarly, f(x} is continuous over {1, 2.5]. and L = 0.8 € {cos(2.5}, cos(1}}. The solution

to f(x) = 0.8 over [1,2.5] is c2 — 1.643502. These two cases are shown in Figure 1.2. m
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exists. When this limit exists, it is denoted by f'(xq) and is called the derivative of f
y Y= f) at xp. An equivalent way i¢ express this limit is 10 use the A-increment notation:
= flx
1.0 ey
(1o Lim M = f'lag).
0.8 —#~ . h>0 h
0.6 / ' A function that has a derivative at each point in a set § is said to be differentiable
) ' : on 5. Note that, the number m = f/(x) is the slope of the targent ine 10 the graph of
0.4 ' H the function y = f{x) at the point (xqy, f(xq)). A
0.2 i | Figure 1.2 The intermediat Theorem 1.4. If f(x) is differentiable at x = xp, then f(x) is continuous at x = xp.
1 1
i i theorem appiied 1o the function " . o .
0.0 ' 1 X f(x) = cos(x — 1) over [0, 1] and It follows from Theorem 1.3 that, if a function f is differentiable on a closed
€05 1.0 1.5¢, 20 2.5 over the interval [1, 2.5]. interval |a, &), then its extreme values occur at the end points of the interval or at the
critical points (solutions of f'(x) = 0) in the open interval {a, b).
¥ . PO Fwvammnle 12  Tha function Firl = {8 2 _EE §v2..§_'<0 Sv 1.28 i diffarantinahla ~n [ 1]
Y i Example 1.2, The function f (0} = 153" —66.55*+59.5x +35 is differentiable on [0, 3]
60 The solutions 1o f'{x) = 45x° — 123x + 59.5 = O are x| = 0.54955 and x2 = 2 40601.
/ The maximum and nunimum values of 7 on [0, 3] are:
50
i (3), ) = i .2~50104 S, . =2. {
a0 § @ s i min{ £ (0), f{3), f(x1}, f(x2)} = min{3S, 20 38, 2.11850) 11850
- and
30 (b, f(b))
" ? max{ £ (0), f{3), f{x1). Fix2)} = max(35.20. 50.10438, 2.11850} = 50.10438. m
10 - (e f ()} Figure 1.3 The extreme v Theorem 1.5 {Rolle’s Thearem). Assumethat f/ € Cla, b} and that (x} exists for
theorem applied to the funct allx € (a, b). If fia) = f(b) = 0, then there exists 2 number ¢, with ¢ € (g, ), such

. - — . — X f(x) =35+ 59.5x — 66.5z% -
0.0 0.5 1.0 1.5 2.0 25 3.0 over the interval [0, 3].

Theorem 1.3 (Extreme Value Theorem for a Continuous Function). Assume that
f & Cla, b]. Then there exists a lower bound M, an upper bound M, and two
numbers x|, x2 € {a, b] such that

(N My = f{x)) = f(x) £ fx2) = M2  whenever x € [a, b]

We sometimes express this by writing

) My = flx) =ar<rligb{f(x)} and Mz = f(x2) = max {f(x)}.

a<x<bh

Differentiable Functions
Definition 1.4. Assume that f(x) is defined on an open interval containing xp. Then
£ is said to be differentiable at xg if
© i @ = 00
sk X — X

that '(c) = 0,

Theorem 1.6 tMean Value Theorem). Assume that f € Cla, #] and that f'(x)
exists for all x € (a. b). Then there exists a number ¢, with ¢ € (a. b), such that

(1n flic) = M.
b—a

Geometrically. the Mean Value Theorem says that there is at least one number
c € {a. b) such that the slope of the tangent line 10 the graph of y = f(x) at the point
(¢, f(c)} equals the siope of the secant line through the points (a. f(a)) and (b, J(b)).

Example 1.3. The function f{x) = sin{x) is continuous on the closed interval [00.1, 2.1)
and differentiable on the open interval (0.1, 2.1). Thus, by the Mean Value Thegrem, there
is a number ¢ such that

F(2.1) - £I0.1) 03863209 - 0.099833

foy=—q=57 = 3T=0.1 = 0.381688.
The solution to f'{c) = costc) = (.381688 in the interval (0.1, 2.1) s ¢ = 1.179174.
“he graphs of f{x). the secant line y = 0.381688x + 0.099833, and the tangent line
»=0.381688x + 0.474215 arc shown in Figure 1.4. u
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m=f'{c)
1.0 1 (c,f(C)K
f(b) o
e (b f(BY)
0.5
f(a)
- X

T T [ T T

a 0.5 1.0 ¢ 1.5 2.0p
Figure 1.4 The mean value theorem applied to f{x) =
sin(x ) over the interval {0.1, 2.1].

fi(x). f”(x), f(")(.r) exist over (a, b) and xp, x1, ..., Xz € [a, b]. If f(x,) = 0
for j = 0, 1, ..., n, then there exists a number ¢, with ¢ € (a b), such that £ (c) =

Tn_r Is

Theorem 1.8 (First Fundamental Theorem). If f is continuous over [a, #] and F
is any antiderivative of fon [a, b], then

b
(12) [ f(xX)dx = F(b) — F(a) where F'(x) = F(x).
Ja

Theorem 1.9 (Second Fundamental Theorem). If f is continuous over [a, b] and
x € {a, b}, then

(13) a,if frde = f(x).
X Ja

Exampie 1.4. The function f(x) = cos(x} satisfies the hypotheses of Theorem 1.9 over
the interval [0, /2], thus by the chain rule

X
;-‘- f cos(?) dt = cos(x2)(x%)’ = 2x cos(x?). =
x Jo

Theorem 1.1¢ (Mean Value Theorem for Integrals). Assume that f € Cla, b].
Then there exists a number ¢, with ¢ € (a, b), such that

= f(c).

The value f(c) is the average value of f over the interval {a, &].

Sec. 1.1 REVIEW OF CALCULUS 7

wl X N

0.6
0.4
0.2 Figure 1.5 The mean value
theorem for integrals applied to
e.0 e L L SU— X f{x) = sin{x) + }sin(3x) over the
0.0 0.5 1.0 L5 2.0 25 interval {0, 2.5}

Example 1.5. The function f(x} = sin(x) + 3 ! sin(3x) satisfies the hypotheses of The-
orem 1.10 over the interval [0 2. 5] An antiderivative of f {x) is Fix) = —cos(x) —
L cos avers , ) erval [0, 2.5] is:

1 25 F(2.5)— F(O) 0.762629 — (~1.111111)
f fx}dx 25 = 25

2.5

There are three solutions to the equation f(c) = 0.749496 over the interval {0, 2.5]:
¢1 = 0.440566,¢; = 1.268010, and c3 = 1.873583. The area of the rectangle with
base b —a = 2.5 and height f(c;) = 0.749496 is f(c;)(b — a) = 1.873740. The area
of the rectangle has the same numerical value as the integral of f(x) taken over the inter-
val [0, 2.5]. A comparison of the area under the curve y = f(x) and that of the rectangle
can be seen in Figure 1.5. u

Theorem 1.11 (Weighted Integral Mean Value Theorem). Assume that f, g <
Cla, b] and g(x) = 0 for x € [a, b]. Then there exists a number ¢, with ¢ € (a, &),
such that

b b
(14) f f(x)g(x)dx =f(c)f gx)dx,

E_xa_m_p!e 1.6. The functions f(x) = sin(x) and glx) = y2 satiefy the hypotheses of

Theorem 1.11 over the interval [0, 7r/2]. Thus there exists a number ¢ such tha

S x%sin(x)dx _ 1.14159
Paay | 129193

sin(c) = = 0.883631

or ¢ = sin~!(0.883631) = 1.08356. »
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3
Series

Definition 1.5, Let [a, )2 he a sequence. Then y o0 | ay is an infinite series. The
nth partial sum is §, = 3}, 4. The infinitc scries converges if and only if the
sequence {S,)2° | converges to a limit S, that is,

n=l

(15 im S. = li =
(15) n}g;rzgo S nl_xf:gg z_:ai S.
If a series does not converge, we say that it diverges. A

Example 1.7. Consider the infinite sequence {a,]22., ={ ( ’+ _
n(n + 1)

L

o
l . Then the snth

partial sum is

SEC. 1.1 REVIEW OF CALCULUS g
y
1.0
PN y=Px |
0.5

0.0 : T v T 1 x
1 2 3\ 4 /s 7
Al \/

Figure 1.6 The graph of f(x) = sin(x) and the Taylos
polynomial P(x) — x — x3/3t + x3/5' - X7/ +x%/9!,

5= g = (- ) =1
I - AV T VAR

Therefore, the sum of the infinite series is

$= lim Sn=1im(l L )=1. =
n->C n - 0C ntl

Theorem 1.12 (Taylor’s Theorem). Assume that f € C"*t'[a, b] and let x5 €

[a.b]. Then, for every x € (a.b), there exists a number ¢ = c(x) (the value of ¢
depends on the value of x) that lies between xg and x such that

(16) f(x) = Py(x) + Rpix).

where

(17) Patx) = Z L20)
=~

and

(18 Ryix) = {:—:)1-(-)-?& ~x)™t

Example 1.8. The function f(x) = sin(x) satisfies the hypotheses of Theorem 1.12. 1%
Taylor polynomial P (x) of degree n = 9 expanded about xo = 0 is obtained by evaluati;- -

the following derivatives at x = @ and substituting the numerical values into formula (171

fx) =sin{x), Ji =0,
S(xy = cos(x), So=1,
fr(x)y = —sin(x). =0,

) — —costx),  FP0) - -1,

f‘g)(x) = cos(x), f(9)(0) =1

A graph of both f and Py over the interval [0. 2] is shown in Figure 1.6, ]

Corollary L.1. If P,(x) is the Taylor polynomial of degree A given in Theorem 1,12,
then

(1% P (xg) — fPxg) for k—0, 1, ..., n

I a1 tha nealunamial Pir) of dagraa 1 hava the form
Let the polynomial 7(x) ot degree n have the form

n—1 2
(20) P(x) — anx" + ap—)x + o+ aax® +apx 4 ap.
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Horner’s method or synthetic division is a technique for evaluating polynomials, It
can be thought of as nested multiplication. For example, a fifth-degree polynomial can
be written :n the nested multiplication form

Ps(x) = ({{(asx + ag)x + a3)x + a)x — a))x + ay,.

Theorem 1.13 (Horner’s Method for Polynomial Evaluation). Assume that P(x)
is the polynomial given in equation (20) and x = ¢ is a number for which (¢} is to be
evaluated.

Set b = a, and compute

20 by=w+cbp.y Tork=n—i,n-2, ..., 1 0

then by = P(c). Moreover, if

SEC. 1.1 REVIEW OF CALCULLS

Table 1.1 Coefficients b for Homer's Method

x* Comparing (20} and (24) Solving for &;
x" an = by bn =an

=1 An_) =by—3—Cbn by_| =Gy_y+chy
o : :

* ag = b~ by by =ap+cbpy
x° ag =6y — cby by =ag + ch|

n—| n—2 2
(22) Qote) = bnx™" v b1 4o 7 byk — box + by Table 1.2 Homer's Table for the Synthetic Division Process
then i
Input [ P | An-3 aj fe a3 ay ag
(23) P(x)—(J_r ¢}Qolx) + Ro, . I xby  Xbpoy -+ xbis1 - xby xby by
where Qo(x) is the quotient polynomial of degree n — 1 and Ry = by = P(c)is the by  bal By .- by R b by = P(x)
remainder. DA
Output

Proof.  Substimting the right side of equation (22) for Qg(x) and g for Rp in equa-
tion (23) yields

Px)=(x —cWbpx" 1w by X" P bax? byx 4+ br) + By
(24) = bux" = (bye1 ~ cBa)x"" - & (B — ca)x?

+ (b —ch)x + (by — ¢cby).

+

The numbers b, are detennined by comparing the coefficients of £* in equations (20)
and (24), as shown in Table 1.1.

The value P(c} = by is easily obtained by substituting x = c into equation (22)
and using the fact that Ry = by:

25) P(c) = (¢ — e)Qglc) - Ry = by. .

The recursive formula for by given in (21) is easy to implement with a computer,
A simple algorithm is

b(n) = ain):
fork=n—-1:-1:0

blk) = alk) + ¢ *blk ~ 1);
end

When Homer's method is performed by hand, it is easier to write the coefficieats of
£{x) on a linc and perform the calculation &z = ai + chy+ below a; m a columa.
The format for this procedure is itlustrated in Table 1.2,

Example 1.9. Use synthetic division (Homer’s method) to find P(3) for the polyaomiz|

P(x)=x5-6x4+8x3—812+4x-40.

as a4 as a2 a1 ao
Input 1 -6 8 8 4 —40
x=3 3 —9 -3 15 57
< 1 -3 -1 5 19 17 = P(3) = &g
by by b3 b b Output N
Thercfore, £(3) = 17 .
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Exercises for Review of Calculus

1.

(a) Find L =1imy, .« (dn + 13/{2n -~ 1). Then deterimine {e, } = {L x,}and find
My sno €4-

(b) Find L = LMo oo (2n2+6n- 1)/(4n2+2n+1). Then determine {e,} = {L—xz}
and finé limp oo €1

SEC. 1.2 BINARY NUMBERS 1

o )] o [

a . l

2 n=0 3 a=|
) 24&2’_1

© ; nin -~ 1)
12. Find the Taylor polynomial of degree n =. 4 for each function expanded about 2!
given value of xg.
@ fly=.xx=1

2. Let {x;}X | be a sequence such that limp—00 Xn = 2.
b 2 —
(&) Find limn .0 SiN(X,). (b) Find hmy.. x In(x?). M) fixy=x+4x"+3x+1Lx=0
. . . = N = 0
3, Finc the number(s) ¢ referred 10 in the intermediate value theorem for each function (@) flx}=cos(x). xo o . L . e )
over the indicated interva? and for the given value of 1. 13. Gi:en that f(’.‘r) =sin(x) and F(x) =x —x7/3+ x7/00 =X/ 11+ x7 /9L Show 1k
(@ fixr=—x242x+3over[-1,0]usingl =2 PR@E) = fOQ fork=1,2,....9
(b} fix)= vaI—3x--2over[6, 8 using L =3 14. Use synthetic division (Horner's method) to find P(c).
' 3_ 2_ . _ -
4. Find the upper and lower bounds referred to in the extreme value theorem for each @ Plx)=x 7+ x . 13: x4 12,¢ :3 _
funiction over the indicated interval. M Pix)y=2x"+x"4+x" - " ~x+23,c=—1
(@) flx) =%~ 30+ Lover|—1 2] 15, Eindthe average area of all circles centered at the origin with radit between 1 and

6

o
h

14.

11

by fix) = cos*(x) — sin{x) over [0, 271}

. Find the number(s; ¢ referred to in Rolle’s theorem for each function over the indi-

cated interval,
(@) firy=x?—daover|-2 2]
(k) f(x} =sin{x) + sin(2x) over |0, 2]
Find the number(s) ¢ referred 1o in the mean value theorem for each function over the
indicated interval.
(@  flx)= J/x over(0,4]
2
b) fux)=

: over [0, 1]

X -

. Apply the generalized Rolle’s theorem to f{x} = x(x — 1)(x — 3) over [0, 3].

Apply the first fundamental theorem of calculus to each function over the indicated
interval,
(a} fix)=uxe' overiQ 2]

3x
thy fux)y= J~— overi—-1.1}
+1

x2

. Apply the second fundamentat theorem of calculus to each function.

3
thi d X a'zdr
By 400 ¢ @

Find the number(s} ¢ referred 1o in the mean value theorem for integrals for each
function, over the indicated interval.
ia) f(x)=6x"over|-3.4

b fix) = xeosd

IFind the sum of each sequence or series.

1.2

16. Assume that a polynomial, P(x), has n real roots in the interval [a, b]. Show tha
P51 (x) has al least one real root in the interval [a, b].

17. Assume that f, f', and f” are defined on the interval [2. b}; f(a) = f(b) = 0; anc
f(2) > Oforc € {a, b). Show that there is 2 number d € (a. b) such that f"(d) <0}

Binary Numbers

Human beings do arithmetic using the decimal (base 10) number system. Mast com
puters do atithmetic using the binary (base 2) number sysiem, It may seem otherwise
since commun:cation with the computer (input/outpat) is in base 10 numbers. Thi:
transparency ¢oes not mean that the computer uses base 10. In fact, it converts input.
ta base 2 (or perhaps base 16), then performs base 2 arithmetic, and finally translate
the answer into base 10 before it displays a result. Some experimentation is require
to verify this. One computer with nine decimal digits of accuracy gave the answer

100,000
) Y7 0.1 =9999.99447

k-1

Here the intent was to add the number 1—'5 repeatedly 100, 000 times. The mathematica
answer is exactly 10, 000. One goal is to understand the reason for the computer’s ap
parently flawed calculation. At the end of this section, it will be shown how somethin;

is iost when the computer translates the decimal fraction '1']h mto a binary number.
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Binary Numbers

Base 10 numbers are used for most mathematical purposes. For illustration, the number
1563 is expressible in expanded form as

1563 = (1 x 10%) ~ (5 x 102 + (6 x 10') + (3 x 10%).

In general. let & denote a positive integer; then the digits ag, aj. ..., e exist so that
N has the base 10 expansion

N = (ap x 108 = (2o % 1057 4 oo (ag x 10") + (ag x 10%),

where the digits «; are chesen from [0, 1,..., 8, 9}. Thus N is expressed in decimal
notation as
(2} N =axax-1- - ara1ag,, (decimatl)

i it is understood that 10 is the base, then (2) is written as

SEc. 1.2 BINARY NUMBERS i5

It is usually the case that the binary representation for N will require more digits
than the decimal representation. This is due 10 the fact that powers of 2 grow much
more slowly than do powers of 10,

An efficient algorithm for finding the base 2 represeniation of the integer N can be

______ - LI st o TN ERE A

derived from equation {4). Dividing both sides of (4) by 2 yields
(© g = x 2 by x 20 by x 20+ %
Hence the remainder, upon dividing N by 2, is the digit by. Now determire &y I{ (6
is written as N /2 = (g + by/2, then
(M Qo= x27 N+ b x 2+ 4 b x 2N 4 by % 20,
Now divide both sides of (7) by 2 to get
Qo 1

b
5 =y % 2 sy <27y x 2N -

Hence the remainder, upon dividing Qg by 2, is the digit ;. This process is continued

N =agay_1 - -ara149.

For example, we understand that 1563 = 1563,¢,.
Using powers of 2, the number 1563 can be written

1563 = (1 x 29 + (1 x 2%} + (0% 28) + (0 x 27) + (0 x 2%)
(3 S OXx )+ IxH+AxP)+Ox 2D +(1x2Y)
+ ¢l x20).

This can be verified by performing the caiculation
1563 =1024 4+ 512+ 16 +8+2+ 1.

in generzl. let N denote a positive integer; the digits b, by, ..., by exist so that N
has the base 2 expansion

(4) N=(by x 2+ br 2277+ 4+ (b1 x 24 + (bp x 20,
where each digit &, is cither a O or 1. Thus N is expressed in binary notation as
(5) N=byhj_i- bbby,  (vinary).
Using the notatior: (5) and the result in (3) yields

1563 = 1100001101 L we.

Remarks. The word “two™ wili always be used as a subscript at the end of a binary
number. This will enable the reader to distinguish binary numbers from the ordinary
Dase 10 usage. Thus 111 means one hundred eleven, whereas 111y, stands for seven,

and generates sequences {Jy; and {b; | of quatients and remainders, respectively. The
process is terminated wher an integer J is found such that Q; = 0. The sequences
ohey the followirg formulas:

N=200~b
Yo=42th) ~ 0y
&
Qr2=20;1+b;
Qi1=2Q;+b; (Q,=0)

Example 1.10. Show how to obtain 1563 = 1100001101 I,
Start with N = 1563 and construct the quotients and remainders according to the
equations in (8):
1563=2x7814+1, by=1
Ml=2x3904+1, b =1
0=2x195+0, £2=0
195=2x 97+1,. b=
97=2x 48+, ba=1
48 =2 x 240 b 0
24=2x 12+0, bs=90
12=2x 6+90, #H =0
6=2x 340, bg=0
!

1 =7 Tt b

3= X LTy

l=2x 0+1, bp=..
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Thus the binary representation for 1563 is

1563 = biobaby - - - bbby = 1100001101 |y, .

Sequences and Series

When rational numbers are expressed ir. decimal form, it is often the case that infinitely
marny digits are regeired. A familiar example is

Here the symbol 3 means that the digit 3 is repeated forever to form an infinite repeating
decimal. It is understood that 10 is the base in (). Mareover, it is the mathematical
intent that {9} is the shorthand notation for the infinite series

SEC. 1.2 BINARY NUMBERS 17

Theorem 1.14 (Geometric Series). Tne geomerric series has the following proper-
ties:

s 4]
a2 Iflr; < 1.then > ¢r" = i .
;':6 I —r
(13) If |7| > 1, then the series diverges.

Proof. 'The summation formula for a finite geometric series is

) - 1_ ne
(1) S,,=c+cr-‘-cr“+---+cr"=f{l—r-2 for r # 1.
—-r
To establish (12), observe that
{15) lr. <1  implies that lim +"*! = Q.
=0

Taking the timit as a1 — oc, use (14) and {15) to get

c - | Y =2 a 11—
I =1D0X10 X110 sl ul TR LV JT -
’ > Em S, = (1= tim ) = <
(10} _Zq(ln)_k_ . o 1—r H—CO P —r
oy - 3’ By equation {15) of Section 1.1, the limit above establishes (12).

If only a finite number of digits is displayed, then an approximaiion io i /3 is obiained.
For example, 1/3 &~ 0.333 = 333/1000. The error in this approximation is /3000,
Using (10), the reader can verify that 1/3 = 0.333 — 1/3000.

It is important to understand the expansion in {10). A paive approach is to multiply

both sides by 10 and then subtract.

10S=34+3x10 H+Gx107H+.--+3x 100 +...
—§= —(3x 10_')—(3_x_‘]0_2)—---——(3x 10" —...

98 =3+ (0x 10" )+ (O x 102 -4 (Ox 10 ")+ ---

Therefore, § = 3/9 = 1/3. The theorems necessary to justify taking the difference
between two infinite series can be found 1n most calculus books. A review of a few of
the concepts follows. and the reader may wart to refer to a standard text on calculus 10
fill 1 all the details.

Definition 1.6 (Geometric Series). The infinite series

o
(1) Zcr"=<.'-+cr+cr7'-------cr"+---
n=0

where ¢ # 0 and r # 0, is called a geometric series with rauo r. A

When r| = I, the sequence {#"~!} does not converge. Hence the sequence {S,}
in (i4) does nol tend to a limit. Therefore, (13) is established. .

Equation (12) in Theorem 1.14 represents an efficient way to convert an infinite
repeating decimal into a fraction.

_ OC oc
03=3 200 * = -3~ 3010
k=1 k= -
01
=34+ == - ]

] .
b= 16 3 3

=-3+

Binary Fractions

Binary (base 2) fractions can be expressed as sums involving negative powers of 2. If
R is a real number that lies in the range 0 < R < 1, there exist digits 4y, 4z, .. .,
dn, ... sothat

(16) R=(d x2 )~ (dax2 Nt +idgx2 ™5,

where d; € {0, 1}). We usually express the quantity on the right side of (16) in the
binary fraction notation

(17) R=0d1dr-- dy o
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There are many real numbets whose binary representation requires infinitely many
digits. The fraction 7/10 can be expressed as 0.7 in base 10, yet its base 2 representa-
tion requires infinitely many digits:

(18) = 0.101 10k,

10
The binary fraction in (18) is a repeating fraction where the group of four digits 0110
is repeated forever.

An efficient algorithm for finding base 2 representations can now be developed. If

both sides of (16 are muitiptied by 2, the resuit is

{10} 2R=dy+itdr x2" 1y ... qd
2R =dy - ({ 277) + (d

L7 X

v =+l
X4 e e P

The quantity in parentheses on the right side of (19) is a positive number and is less
than 1. Therefore d; is the integer part of 2R, denoted d) = in1 (2R). To continte the
process, take the fractional part of (19) and write

(20) Fl=frac2Rm =(d; x 24+ @y x 27" H 4. .. |

.SEc. 1.2 BINARY NUMBERS 19

Note that 2F; = 1.6 = 2Fg. The patterns dy = di—g and Fy = Fy,4 will accurfork = 2,
3.4, .. Thus 7/10 = 0.101 101y. ]

Geometric series can be used to find the base 10 rational number that a binary
number represents.

Example 1.13. Find the base !0 rational number that the binary number 0.0lrwo repre-

sents. In expanded form,
~n—i

00Twe=0x2" )+ x2H~Ox 24U x27% -

o0 o
— Z(Z—Z k 1+ 2{2_2)’(
k=1

=0

e

l 1

= =1

+
(RIS
Ry

1
-z

Binary Shifting

where frac(ZR) is the fractional part of the real number ZR. Mulfiplication of both
sides of (20) by 2 results in

2n i=dy+ Uz x 2+ (dy x 272 4.0,

Now take the integer part of (21) and obtain d2 = int(2 Fy).
The process is continued, possibly ad infinitum (if R has an infinite nonrepeating
base 2 representation), and iwo sequences {di] and { £y} are recursively generated:

dp = int(2F_. ).
Fyp = frac(2F,_4),

where d| = int(2R) and F| = frac{2R). The binary decimal representation of R is
then given by the convergent geometric series

e s
R=3 dj2/
j=1

Example 1.12. The binary decimal representation of 7/10 given in (18) was found using
the formulas in (22). Let R = 7/10 = 0.7; then

IR =14 di=int(l4)=1 F) =frac(l.4) =04
2R = 0.8 dy=in{0.8) =0 Fr =1raci0.8) = 0.8
2Fr=1.6 dy=mt(l1.6)=1 £y = fracil.6) ~ 0.6
2Fr=12 ds =int{1.2) = 1 Fq = frac(l.2) = 0.2
=04 ds = int(0.4) = 0 5 =frac(04) =04
IF; =08 ds = int{0.8) =0 Fo o frac{C8)= 08

=106 dy=inul.6) =1 F7 = fraci1.6) = (16

[T a rational number that 1S equivalent 1o an mhnite repeating binary eXpansion is 1o be
found, then a shift in the digits can be helpful. For example, let § be given by

{23 S = 0.000001 1000w 5.

Muitiplying both sides of (23) by 2° will shift the binary point five places to the right.
and 325 has the form

(24} 328 = 0.11000um0.

Simitarly. multiplying both sides of (23) by 2'C will shift the binary poini ten places to
H Fonraen

[ TP T 1 Vs 2.7 [
LI TIXTIL dld 18 &2 114D LD

(2%) 102485 = 11000.11 000w,

The result of naively taking the differences between the lefi- and right-hand sides of
(24 and (25) 15 99285 = 11000k, or 9925 = 24, since 11000y, = 24. Therefore.
S - 8,".;?‘.

&

Scientific Notation
A standard way to present a real number, called scientific notation, is obtained by
shiling tie decimal point and supplying an appropriate power of 10. For example,

A e g - P
UUU/4/ = 4/ X 1u 7,
1

31.4159265 = 3.14159265 x 10.
9,700,000,000 = 9.7 x 10°.

In chemistry, an important constant is Avogadro’s number, whick is 6.02252 x 102, I
is the number of atoms in the gram atomic weight of an element. In computer science,

PE . 1.024 % 103,
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Table 1.3  Decimal Equivalents for a Set of Binary Numbers with 4-Bit Mantissa and
Exponentof n = ~3,-2,...,3,4

Exponent
Mantissa n=-3 n=-~2 n=-—1 n=0|n= n=2|n=3|n=4
0.1000mo | 0.0625 0.125 0.25 0.5 1 2 4 8
0.100wo | 0.0703125 | 0.140625 | 0.28125 | 0.5625 | 1.125 | 2.25 4.5 9
0.1010wo | 0.078125 | 0.15625 | 0.3125 0.625 1.25 25 5 10
0.1011pwo | 0.0859375 | 0.171875 | 0.34375 | 0.6875 | 1.375 | 2.75 5.5 11
0.1100wo | 0.09375 0.1875 0.375 0.75 1.5 3 6 12
0.110%wo | 0.1015625 | 0.203125 | 0.40625 | 0.8125 | 1.625 | 3.25 6.5 13
0.1110wo | 0.109375 | 0.21875 | 0.4375 0.875 1.75 35 7 14
G111 lgwo | 0.1171875 | 0.234375 | 0.46875 | 0.9375| 1.875 | 3.75 1.5 15

Machine Numbers
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2 0,110l x 272 0.1101yy x 2°2
5 0.0011 1w % 272

2%

%~ 0.1101n, x 27° 0.0110] 10 x 272
$
3

The computer must decide how to store the number 0.0011 1,0 x 272, Assume that 11
is rounded to 0.1010yy x 2~ 1. The next step is

5 % 01010wo x 27 = 0.1010p, x 27
(30) b o~ 01011 x 272 = 0.010111o x 27!
7 0.1111 1y x 271

The computer must decide how to store the number 0.11113,, e X 27 1 Since rounding
is assumed to take place, it stores 0.10000y,, x 20, Therefore, the computer’s solution

Computers use a normalized floating-point binary representation for real numbers.
This means that the mathematical quantity x is not actually stored in the computer,
Instead, the computer stores a binary approximation to x:

(26) x & g x 2",

The number g is the mantissa and it is a finite binary expression satisfying the inequal-
ity 1/2 < g < 1. The integer n is called the exponent.

In a computer, only a small subset of the real number system is used. Typically, this
subset contains only a portion of the binary numbers suggested by (26). The number
of binary digits is restricted in both the numbers ¢ and n. For example, consider the
set of all positive real numbers of the form

27 0.d\dad3dag x 27,

where d; = 1 and d2, d3, and d4 are either Qor 1, andn € {-3, -2, —-1,0,1, 2, 3, 4).

There are eight choices for the mantissa and eight choices for the exponent in (27), and
this produces a set of 64 numbers;

(28)  {0.1000mw0 X 272,0.1001 o x 272, ..., 0.1110mo x 2%, 0.11 1 11y x 2%,

The decimal forms of these 64 numbers are given in Table 1.3. It is important to learn

that when the mantissa and exponent in (27) are restricted the comiputer has a limited

number of values it chooses from to store as an approximation to the real number x.
What would happen if a computer had only a 4-bit mantissa and was restricted

to perform the computation ( G+ ;) l" Assume that the computer rounds all real

numbers to the closest binary number in Tahle- . At each step the reader can look at
the table to see that the best approximation is bemg used.

to the addition problentis

7 ) 0
(31) Ezo.loooo,woxz .
The error in the computer’s calculation is

.
(32) G- 0.100000,0 == 0.466667 — 0.500000 ~ 0.033333.

Expressed as a percentage of 7/15, this amounts to 7.14%.

Computer Accuracy

To store numbers accurately, computers must have floating-point binary numbers with
at least 24 binary bits used for the mantissa; this translates to about seven decimal
places. If a 32-bit mantissa is used, numbers with nine decimal places can be stored.
Now, again, consider the difficulty encountered in (1) at the beginning of the section,
when a computer added 1/10 repeatedly.

Suppose that the mantissa ¢ in (26) contains 32 binary bits. The condition 1/2 < ¢
implies that the first digit is ) = 1. Hence g has the form

s dnn

1) O Vdnda ..
) U.ae gyt “.ﬂ.“.‘l‘twt)

.‘;.':

When fractions are represented in binary form, it is often the case that infinitely
many digits are required. An example is

s e 1 P ovoen
34 — = 1 .
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When the 32-bit mantissa is used, truncation occurs and the computer uses the ifiternal
approximation

(35) T16 2 (,11001100110011001100110011001100, x 27°.

The error in the approximation in (35), the difference between (34) and (35) is
(36) 0.1100,, x 2777 = 2.328306437 x 10711,

Because of (36), the computer must be in error when it sums the 100,000 addends
of 1710 in (1}. The etror must be greater than (100,000)(2.328306437 x 10~11) =
2.328306437 x 1079, Indeed, there is a much larger error. Occasionally, the partial
sum could be rounded up or down. Also, as the sum grows, the latter addends of 1/10
are small compared to the current size of the sum, and their contribution is truncated
more severely. The compounding effect of these errors actually produced the error
10,000 — 9999,99447 = 5.53 x 1073,
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Exercises for Binary Numbers

1. Use a computer to accurnulate the following sums. The intent is to have the computer
do repeated subtractions. Do not use the multiplication shortcut.

(@) 10,000 — ¥;000q (b) 10,000 — T{%0.125
Use equations {4) and (5) to convert the following binary numbers to decimal
(base 10) form.
(a) 101014wo (b) 1110000
(c} lllll]lotwo (d) lOOOOOOlthD
3. Use equations (16) and (17) to convert the following binary fractions to decimal
(base 10) form.
(@) 0.1101 1o (b) 0.101014wo
(c) 0.1010101lwo (d) 0.110110110,

4. Convert the following binary numbers to decimal (base 10) form.

2

b

1-O011 b} 11001

_ Computer Floating-point Numbers

Computers have both an integer mode and a floating-point mode for representing num-
bers. The integer mode is used for performing calculations that are known to be integer
valued and has limited usage for numerical analysis. Floating-point numbers are used
for scientific and engineering applications. It must be understood that any computer
implementation of equation (26) places restrictions on the number of digits used in the
mantissa ¢, and that the range of possible exponents n must be limited.

Computers that use 32 bits to represent single-precision real numbers use 8 bits
for the exponent and 24 bits for the mantissa, They can represent real numbers with
magnitudes in the range

2938736E -39 to 1.701412E+38

(i-e., 27128 10 2127y with six decimal digits of numerical precision (e.g., 2™2 = 1.2 x
1077).

Computers that use 43 bits to represent single-precision real numbers might use
8 bits for the exponent and 40 bits for the mantissa. They can represent real numbers
in the range

2.9387358771E -39 o 1.7014118346E + 38

('1,e.,22ng to 2!27) with 11 decimal digits of numerical precision (e.g., 2% = 1.8 x
10712).

If the computer has 64-bit double-precision real numbers, it might use 11 bits for
the exponent and 53 bits for the mantissa. They can represent real numbers in the range

5.562684646268003E — 309 to  8.988465674311580E + 307

Ge,2” 1024 to 71023\ with ahout 16 decimal di 1 of numerical prggisi

PN FaTat
{a)y—1-0110101ms o—11 UU1UU1UWltwo

5. The numbers in Exercise 4 are approximately +2 and #. Find the error in thesc
approximations, that is, find

@ vZ- 10110101y, (Use +/2 = 1.41421356237309 - - -)
(b) 7 — 11.0010010001,, {(Usemm = 3.1415926535807% .. -}
6. Follow Example 1.10 and convert the following to binary numbers.
(a) 23 by 87 (c) 378 (d) 2388
7. Follow Example 1.12 and convert the following to a binary fraction of the form
O.didz - - ‘dmwo-
(@ 7/16 (b) 13/16 (c) 23732 (d) 75/128
8. Follow Example 1.12 and convert the following to an infinite repeating binary frac-
tion.
@ 1/10 {b) 1/3 © 177

9. For the following seven-digit binary approximations, find the error in the approxima-
tion R ~ 0.dydz2dsdadsdedy .-
(@) 1/10 = 0.0001100, (b) 1/7 =2 0.0010010wo
10. Show that the binary expansion t /7 = 0001, is equivalent to .l, = % + 312' + 512 +
-.. Use Theorem 1.14 to establish this expansion.
11. Show that the binary expansion 1/5 = 0.001 L is equivalentto 1 = & + 5% +
a5z + - - - Use Theorem 1.14 to establish this expansion.

12

H

Prove that any number 2%, where N is a positive mteger, can be represented as a
decimal number that has N digits, that is, 2-N — 0.d1dady - ~dy. Hint, 1/2 = 0.5,

GoCina] NUILUCE Gaas 3 DAy madt V2142483

1/4=025,.
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i3. Use Table 1.3 to determine what happens when a computer with a 4-bit mantissa
performs the following calculations.

@ (§+1)+1 ® (f+3)+1
© (F+4)+4 @ (%

14. Show that when 2 is replaced by 3 in all the formulas in (8) the result is a method for
finding the base 3 expansion of a positive integer. Express the following integers in

base 3.
(@ 10 M) 23 (©) 421 ) 1784
15. Show that when 2 is replaced by 3 in (22) the result is a method for ﬁndingthebase3

expansion of a positive pumber R that lies in the interval 0 < R < 1. Express the

following numbers in base 3.
(a) 1/3 M) 172

© 1/10 ) 11/27

16. Show that when 2 js replaced by 5 in all the formulas in (8) the result is a method for
finding the base 5 expansion of a pasitive integer. Express the following integers in
base 5.

17. Show that when 2 is replaced by 5 in (22) the result is a method for finding the base 5
expansion of a positive number R that lies in the interval 0 < R < 1. Express the
following numbers in base 5.

(ay 173 m) 172 () 1710 (d) 154/625

Error Analysis

nartant 10 he awara thot anmentad aaliatiame
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are not exact mathematical soluuons The precision of a numerical solution can be
diminished in several subtle ways. Understanding these difficulties can often guide the

practitioner in the proper implementation and/or development of numerical algorithms.
Definition 1.7. Suppose that P is an approximation to p. The absolute error is
Ep = {p — Pl. and the relaive error is B, = {p — PY/|p), provided that p 0. A

The error is simply the difference between the true value and the approximate
value, whereas the relative error is a portion of the true value.

Example 1.14. Find the error and relative error in the following three cases, Let x =

TEO nuwd D 2 TA: st ala oo ois
3.1410’1- aia x = 3, l“?, iticn ae Croi is

(1a) E; = Ix — X1 = |3.141592 — 3.14] = 0.001592,

and the relative error is

fx| 3 141592
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Let y = 1,000,000 and ¥ = 999,996 then the error is
(1b) Ey = |y — ¥] = 1,000,000 — 999, 996| =

and the relative error is

[y =31 4
R, = = = (.000004,
Y 1,000,000

Let z = 0.000012 and Z = 0.000009; then the error is
(1c) E; = |z — 2} = [0.000012 — 0.000009| = 0.000003,
and the relative error is

|z =71 _ 0.000003

R, = T = 0.000012 =0.25 n

be uscd to determ.mc the accuracy of ¥ Incase (i b) the value of yis of magmtude 108,
the error Ey is large, and the relative error R, is small. In this case, ¥ would probably
be considered a good approximation to ¥. In case (1¢), z is of magnitude 107° and
the error E; is the smallest of all three cases, but the relative error R, is the largest.
In terms of percentage, it amounts to 25%, and thus 7 is a bad approximation to z.
Observe that as | p| moves away from 1 (greater than or less than) the relative error R,
is a better indicator of the accuracy of the approximation than E,. Relative emor is
preferred for floating-point representations since it deals directly with the mantissa.

Definition 1.8. The number 7 is said to approximate p to d significant digits if 4 is
the largest positive integer for which

lp—pl 1079
@ R 4

Example 1,15, Determine the number of significant digits for the approximations in
Example 1.14.

(3a) If x = 3.141592 and ¥ = 3.14, then |x — Xj/|x] = 0.000507 < 10~2/2. Therefore,
X approximates x io iwo significant digiis.

(3b) I y = 1,000,000 and § = 999,996, then |y — F1/iy} = 0.000004 < 10752,
Therefore, ¥ approximates y to five significant digits.

(3¢) If z = 0.000012 and 7 = 0.000009, then |z - 7]/)z] = 0.25 < 10~0/2. Therefore, T
approximates z to no significant digits. ]
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¥y=fla
8 | /
b -
y=Pg(z)
&
2+
P Figure 1.7 The graphs of y =
g T —— X fix) ) =% . ¥ = Pg{x), and the ares

0.0 0.5 1.0 1.5

underthccwforﬂﬁxsé.

Truncation Error

The nution of truncation error nsnally refers to errors mtroduced whea a more com
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Round-Off Error

A computer's representation of real numbers is limited to the lixed precision of the
mantissa. True values are sometimes not stored exactly by a computer’s represen-
taton This is called round-off error. In the preceding section the real number
210 - 0.000] Lywo was truncated when 1t was stored in a computer. The actual num-
ver that is stored in the compiter may undergo chopping or rounding of the last digir,
Therefore, since the compurter hardware works with only a limited number of digits in
machise Lumbers, rounding errors are introduced and propagated in successive com.
putaons.

Chopping off Versus Rounding Off

Consuder any real number p that is expressed in a avrmalized decimal form:
i+ p=x0didyds. . dpdpp... x 10"

wh

plicated mathemancal expression is “replaced” with a more elememary formula, This
terminology originares from the technique of replacing a complicated function with a
truncated Taylor serics. For example, the infinite Taylor series

N x4 t’ﬁ ‘S x.2!1

R RV T T A A ST S T
+2' ‘|'4| +h"+

might be replaced with just the first five terms 1 + o+ F + 3 + 3r. This might be
done when approximating an integral numerically.

Example 1.16. Given that /% "' dx = 0.544987104184 = p, determine the accuracy
of the approximation obtamcd by replacmg tbc integrand f(x) = &* ? with the truncated
Taylor series Pg{x) — 1 ~x2 +-§- + 3 1'r + 4 &

Term-by-term integration produces

1,2

152 , xt 18 x x! 2N
et oy i S
f (' et 3 sa2'1+7(3!)+9(4!) .
i
2
'3

) 1 1
T2 W) 5376 © 110,592

=0.544986720817 = p.

§
4
:2

Since 107372 > |p—pl/ip| = 7.03442x 10~/ > 1075/2, the approxiation ng.ecswizh
the frue answer p = 0.544987104184 to five significant digits. The graphs of f(x) — ¢*
and ¥y = Fr{x) and the area under the curve ford < x < i/2 are shownin T igure 1.7 [ ]

«7 decimal digits carried in the floating-point computations of a2 computer. then the real
number p is represented by flinep (7). which is given by

i) Hlopop(P) = £0.dyeads . dy > 10",
where ' <y < 9and 0 = d; = 9for I « j < k. The number fig,,(p) is called
tne chopped floasing-point represeniation of p. In this case the kth digit of flg,,(p)

agrees with the &th digit of p. An altemnative k-digit represcnzation is the rounded
Sfvating-point represemation [1.,,.4(p). which s given by

HO Flomatp) — £ldidady L1 % 0.

where 1 < d) < 9and 0 < d, < 9for 1 < j < & and the last digit. ry, is obtained
bv rounding the number d;\d“ 12 - - o the nearest mteger. For example, the real
numher

22
p=" = 314285714285 1142857
has the followirg six digit representations:

£ {m) —
Jichop\#: =
Fleounatp) = 0.314286 = 10"
lur comman piwposes the chopping and rounding would be written as 3.14285 and

3.14286. respectively. The reader should note that essentially all computers use some
form of the rounded floating point representation: method.
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Loss of Significance

Consider the two numbers p = 3.1415926536 and ¢ = 3.1415957341, which are
nearly equal and both carry 11 decimal digits of precision. Suppose that their differ-
ence is formed: p — g = —0.0000030805. Since the first six digits of p and ¢ are
the same, their difference p — g contains only five decimal digits of precision. This
phenomenon is called loss of significance or subtractive cancellation. This reduction
in the precision of the final computed answer can creep in when it is not suspected.

Example 1.17. Compare the results of calculating £(500) and g(500) using six digits
and rounding. The functions are f(x) = x (vx +1— Vx) and g(x) = m For the
first function,,

£(500) = 500 (+/501 — +/500)
= 500(22.3830 — 22.3607) = 500(0.0223) = 11.1500

For g(x),
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The function P(x) is the Taylor polynomial of degree n = 2 for f(x) expanded about
x =0
For the first function

00 1001 1.010050-1—0.01

F0on oz 0.001 =y
For the second function
I 001 0001
P = - —
001 = 5 + ——+

= 0.5 + 0.001667 + 0.000004 = 0.501671.

The answer P{0.01) == 0.501671 contains less error and is the same as that obtained by
rounding the true answer 0.50167084168057542 . . . to six digits. =

For polynomial evaluation, the rearrangement of terms into nested multiplication form
will sometimes produce a better result.

500
+/301 + /500
B 500 500
T 2238304+ 22.3607 447437

2(500) =

= 11.1748.

The second function, g(x), is algebraically equivalent to f(x), as shown by the computa-
tion

* (VAT = ) (VAT T+ J3)

fla= 1 . /T
VET LT X

(VA1) - ()

S+ T+
x
IV ES
The answer, g(500) = 11.1748, involves less error and is the same as that obtained by
rounding the true answer 11.174755300747198 . .. to six digits. =

The reader is encouraged to study Exercise 12 on how to avoid loss of significance
in the quadratic formula. The next example shows that a truncated Taylor series will
sometimes help avoid the loss of significance error.

Example 1.18. Compare the resulis of calculating f(0.01) and P(0.01) using six digits
and rounding, where

X 1 o
£ — 11— X

f(x)=—72-—— and P(x)=5+—

—
t
~

| =
NI&-
'h-

Example 1.19, Let P(x} = x> — 3x2 +3x — [ and Q(x) = ({x — 3)x + 3)x — 1.
Use three-digit rounding arithmetic to compute approximations to P(2.19) and Q(2.19).
Compare them with the true values, P(2.19) = 0(2.19) = 1.685159.

P(2.19) & (2.19)° — 3(2.19)% + 3(2.19) — 1

=105 144+ 6.57 — 1 = L.67.
0(2.19) ~ ({(2.19— 3)2.19 + 3)2.19 — 1 = 1,69.

The errors are 0.015159 and —0.004841, respectively. Thus the approximation £(2.19) =~
1.69 has less error. Exercise 6 expiores the situation near the root of this poiynomiai. ®

0 (1") Order of Approximation

o0
Clearly the sequences [ e ] and { } are both converging to zero. In addition, it
n= n=]

should be observed that the ﬁrst sequence Is converging to zero more rapidly than the
second sequence. In the coming chapters some special terminology and notation will
be used to describe how rapidly a sequence is converging.

Definition 1.9. The function f(k) is said to be big Oh of gth), denoted fih) =
(g(h)), if there exist constants C and ¢ such that

o [f(h)| < Clg(h)]  whenever h <c, "

Example 1.20. Consider the functions f(x) = x2 +1 and g(x) = x>. Since x* < x> and
1 < x3 for x = 1, it follows that x2 + 1 < 2x> for x > 1. Therefore, f(x) = O(g(x)). =
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The big Oh notation provides a useful way of describing the rate of growth of a function
in terms of well known elementary functions (x". x'/. a*, log, x, etc.).

The rate of convergence of sequences can be described in a similar manner,
Definition 1.10. Let {x.}7°; and {y»])72, be two sequences. The sequence (x,) is
said to be of order big Oh "of {¥n} denozed Xn — i!)(y,1 if there exist constants €
and ¥ such that

8 |xn] < Clyel whenever n = N. i
2z 2__ 2
Example 1.21. "3 = 0 (;—) smee "L < & — ] whenevern > 1. .

(ften a funiction f(h) is approximated by a functior p(4) and the error bound is
known to be M (h"). This leads to the following definition.

Definition 1.11.  Assume that f (h) ] appronmatcd by the function p(h) and that

there exisi a real consiant M > { and a positive uucgﬂ # 50 ihat
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for wufficiently small A. Hence the notation Q(#"~') stands in place of the quantity
MR t' where M is a constant or “behaves like a constant.”

Theorem 1.16 (Taylor’s Thenrem). Assume that f € C"*lja, b. If both xp and
x . xg+ Ithie n [a, b]. then

(k)
(s flxp+-h) = Z ! k(m) + OGN,
k=0 :

‘The following example illustrates the above theorems. The computations use the
addition properties (i) O(h?) + O(RP) = O(hP), (ii)) OhP) + OhY) = O™,
where 1 — min{p, g}, and the multiplicative property (iii) @(RPYQ(h7) = O(h*).
wheres = p 1 gq.

Example 1.22. Consider the Taylor polynomial expansions

2 X he W
e —14+h+ — by —+ 0% and  cost)=1— =+ — + OHY
203 21 " 4

) lhnl” <M for sufficiently small A.
We say that p(#) approximates f (%} with order of approximation £ (k") and write
(10) FhY = p(h) + O(R"). A

When relation (9) is rewntten in the form | f(h) — p(h)i < M|A"|, we see that the
netation O (k") stands in place of the ertor bound MA%|. The following results show
how to apply the definition to simple combinations of two functions.

Theorem 1.15.  Assume that f(h) = p(h) + O"). g(h) = g(h) + OA™), and
+ = min{m, n}. Then
{1 f) +gth) = pthy t qlh)y + OA"),
(2 fthygth) = pihg(h) + O").
and
fih)y  pb) ,

13 —_— r h

(13) PP b O(h")  provided that g(h) # 0 and g(h) £ 0.

It is instructive to consider p(x) to be the nth Taylor polynumial approximauon
of f(x); then the remainder term is simply designated O(h™*!), which stands for the
presence of omitted terms starting with the power 3"+ 1. The remainder term converges
10 zero with the same rapidity that 2" ' converges to zero as k approaches zero, as
expressed in the relationship

L)

{14 Oh"") = MA™H = h
n+1)

Y - ' n £ bl : :
Petcrminc the orderof approximation-for their sumand prodaet——m

For the sum we have

h'-_’ h3 k? 4
Harcosthy=1+h+ --‘-3—+O(h)4~l—?+—-0(h°
B3 ;. h )
=2 "h+§+0(h)+a—!+0(h }.

Since O{h™) + %:r = @h%) and O™ + QR = O (™), this reduces to
2
osth) = 2+ h+ "— L OY,

I'4
Co

et +

and the order of approximation is O(h*).
The product is treated similarly.

I X EE
e cos(h) = (1+h+ =+ 35 F ORY) ) (1 TR + 0%

EE & EE
= I+h+j!+“3—! l—'?:!-+4_!
' P SR TR
+(l+h+—,—),+——)0(h")+(1——+ﬁ ot
AN = i \ : 7

+ O(KHYO(HS)
. B 5Kt B h6+ by
=irhTE T BB m

3
%) + 0" + O OKR®).

“k
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Since O ONR® = 0%'°) and

K L 0t + 00k + O = 0
@ % m M ¢ )= 0u,
the preceding equation is simplified to yield

’13
ecosth) =1+ h — T au).

and the order of approximationis O (#*). n

QOrder of Convergence of a Sequence

Numerical approximations are often arrived at by computing a sequence of approxi-
mations that get closer and closer to the desired answer. The definition of big Oh for
sequences was given in Definition 1.10, and the definition of order of convergence for

$8C. 1.3 ERROR ANALYSIS 3
The propagation of error in multiplicatior: is mare complicated. The produc: is

(n P@ =P+ €)iP + €g) = PG + Peg + Gep + € pey.

Hence. if P and 7 are larger than 1 in absolute vaiue, terms pe, and ge, show that there

is & possibifity of magnification of the original errors €, and ¢, . Insights arc gained if
we loek at the relative error. Rearrange the terms in (17) to get

- e
(18 Pq = pg = peg +gep + €peq.

L immnn s J oY sl aire e dioiiAda 710 L e pm mbst slia
WWE “idl p -l— U d[iu L{ 7= W, ulcll WK Call GIYide (10j uYy pf w0 ooldlll uic ALY G

error in the procuct pg:

{19) Ry = 1= PT_ e tdcrtepes P + % | frfa
rq Pq pPg  Pq  pq

a seguence is analogous o that given for functions in Definition 1,11,

Definition 1.12. Suppose that limp_. oo xx = x and {r,J22, is a sequence with
limywoorn = 0. We say that {x,]57, converges to x Wlth the order of conve:-
gence (J(ry}, if there exists a constant K > 0 such that

1%y ~ x|

ey < K  for n sufficiently large.
o

This is indicated by writing x, = x 4+ O(ry), or x, — x with order of conver-

aanrs v Y L
gence O(ry). s
Example 1.23, Letx, = cos(n)/n? and r, = 1/n?; then lim, o %, = 0 with a ratc of

convergence O (1/n?Y. This follows immediately from the relation
2
LC%%%'L[ =tcoslnyl <1 for all n. ¥

Propagation of Error

Let us investigate how error might be propagated in successive computations, Con- :der

the addition of rwo numhbers p and g (the tme values) with the anmraximate values 7
the agiion of (wo num DerS p and g {tne wue vauesy wil he uyynu.xulmlc Vaies g

and g, which contain errors €, and &, respectively. Starting with p = 5 + ¢ and
g = + ¢, the suimn is

{16} PHg=Frep)+ @)=+ ++ ek

Hence, for addition, the error in the sum is the sum of the errors in the addends.

p{p X 1 q/q 1, and R,,Rq = (ep/p)(eq/q) 0 (Rp and Ry are the relat:vc errors
in the approximations 7 and g). Then making these subsmu[mns into (19} yields thw
simplified relaticnship

(20) R :M:&i fﬁ+0 R, + R
pe Pq g p ¢«

This shows that the relative error in the product pq is approximately the sum of the
relative errors in the approximations p and §.

Olten an ininial error will be propagated in a sequence of calculations. A quality
that is desiranle tor any numerical process is that a small error in the initial conditions
will produce sonull changes in the final result. An algorithm with this feature is called
stable; otherwise. it is called unstable. Whenever possible we shall choose methods
that are stable. The following definition is used 1o describe the propagation of error.

Definition 1.13.  Suppose that € represents an initial error and &(n) represents the
growth of the enior after z1 steps. If le(n)] =2 ne, the growth of arror is said 1o be linear.
If {¢‘n)! = K"e. the growth of error is called exponential. If K > |, the exponential
ercor grows without bound as n — oc, and if 0 < K < 1, the exponential error
dirminishes to roro as n — OC. A

“he next two examples show how an initial error can propagaie in eithier a stable
or an unstable fashion. In the first example, threc algorithms are introduced. Each
algorithm recursively generates the same sequence. Then, in the second example, small
changes will be made to the initial conditions and the propagation of error will be

analyzod,
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Table 1.4  The Sequence {x,} = {1/3"} and the Approximations {r,}. {p«} and {gn}

SeC. 1.3 ERROR ANALYSIS 3s

Table 1.5 The Error Sequences {x, — #n}, (¥n — pu}, and {x, —

n Xn tn Pn 4n H Xn —TIn Xn — Pn Xn — gn
0 1 == 10000000000 0.9999600000 1.0000000000 1.0000000000 0 0.0000400000 0.0000000000 0.0000000000
] 0.0000133333 0.0000133333 0.0000013333
1 1 =03333333333 0.3333200000 0.3333200000 00,3333200000 5 0.0000044444 0.0000177778 0.0000444444
2 ,5—_-0 111111111 0.1111066667 0.1110933330 0.1110666667 3 0.0000014815 0.0000192593 0.0001348148
4 0.0000004938 0.0000197531 0.0004049383
3 217 0.0370370370 0.0370355556 0.0370177778 0.0369022222 5 0.0000001646 0.0000199177 0.0012149794
1 00123456790 0.0123451852 0.0123259259 00119407407 6 0.0000000549 0.0000199726 0.0036449931
4] E=00iae 7 00000000133 00000199909 00109349977
5 73y =0.0041152263 00041350617 0.0040953086 0.0029002469 8 0.0000000061 0.0000199970 0.0328049992
L &7 001351769 00022732510 9 0.0000000020 0.0000199990 0.0984149998
6 735 = 0.0013717421 0.0013716872 0.0013517695 002 1 0 o 00000199997 0295344
T| gy =0.0004572474 0.0004572291 0.0004372565 | —0.0104777503
8| gy =0.0001524158 0.0001524097 0.0001324188 | —0.0326525834
9 -1-9-—’@-3 =0.0000508053 0.0000508032 0.0000308063 —0.0983641945 gquation has the general solution g, = A(1/3") + B3". This too is verified by substitution:
10 | b =0.0000169351 0.0000169344 | —0.0000030646 | —0.2952280648 10 10/ A A
F-1 — 2= (3,,_1 + B3"“') - (3,,_2 + 33"—2)

Example 1.24, Show that the following thres schemes can be used with infinite-precision
arithmetic to recursively generate the terms in the sequence {1/3"}7°,.

1
21a) ro=1 and rp,= §r,,_1 forn=1,2,...,
1 4 1
(21b) p(,:l,plzg, and p,.—3p,, 1= 3Pn2 forn=2,3,...,
1 10
2le) qo=1,q1 = 3 and gp = —3—q,,_1 — gn-2 forn=23,....

Formula (21a) is obvious. In (2ib) the difference equation has the general solution p. =
A(1/3") 4+ B. This can be verified by direct substitution:

spei=3pa = (54 8) -3 (724 5)

4 3 4 1 1
C(E-2)a(3-Y)a-akenmn

3 3 3n
Setting A = 1 and B = 0 will generate the desired sequence. In (21¢) the difference

= (E - 3) A—(10-1)3""%8

3n 3
1
= A37 + 33" =Gn.
Satting A = 1 and B = 0 generates the required sequence. n

Example 1.25. Generate approximations to the sequence {x,} = {1/3"} using the
schiemes

i
122a) ro=0.9999 and ry, = ;-1

f =12, ...,
3 or n
4 1
22by po=1,p =033332, and p,= Ep,,q ~ 3Pr-2 forn=2,3, ...,
10
22¢) go=1,41=033332, and g, = ?qn_; — Gn-2 for n =2, 3,

fn (22a) the initial _error in rg is 0.00004, and in (22b) and (22c¢) the initial errors in py
and g are 0.000013. Investigate the propagation of error for each scheme.

Tahle 1 4 nnrpn the first ten numernical annroximations for each seauence, and Tahle 1.5

ae LA gives U arst ien 1enCal approxamanons 101 £ach seQUEnce, ang 1anie 1.

zivesthe error in each formula, The error for {r, } is stable and decreases in an exponential
mannger. The error for {py} is stable. The error for {g,} is unstable and grows at an expo-
nential rate, Although the error for {p,] is stable, the terms p, — 0 asn — ©0, so that
lhe error eventually dominates and the terms past pg have no significant digits. Figures 1.8,

1q and 1 1N chaw tha arvarg in -1 a1l and . 1 racnes. ~tivaly -
.7, 8N 1. v SO0W U3 SITOTS in \Wp j, 1 Pars 804 \§n 1, TESPECTIVEDY. -
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x" - rﬂ
0.000015 .
0.000010
0.000005 hd
— : t——s -— n
2 4 6 8 10

Figure 1.8 A stable decreasing error sequence {x, — r,}.
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you should not report conclusions from noisy data that have more significant digits
than the original data. The proper answer in this situation is p) + py = 4.231.

. Find the error E; and relative error Ry. Also determine the number of significant

digits in the approximation.

(@) x=271828182,x =2.7182
(b) y =98 350, 5 =98, 000

(¢} z =0.000068,7 = 0.00006

Complete the following computation

1/4 1/4 2 &
[ e*’dxz[ (l+x2+x—,+f—)dx=3
A b\ 2 31

vy

Xp =Py
2.
0.000020 « *+ v e+ =0
L]
0.000015 R
0.000010
o.ooooos}
| - Sta
2 4 6 8 10 tru

Figure 1.9 A stable ervor sequenice {x, — p,}.

Uncertainty in Data

Data from real-world problems contain uncertainty or error. This type of error is re-
ferred to as noise. It will affect the accuracy of any numerical computation that is based
on the data. An improvement of precision is not accomplished by performing succes-
sive computations using noisy data. Hence, if you start with data with d significant
digits of accuracy, then the result of a computation should be reported in o sigaificant
digits of accuracy. For example, suppose that the data p; = 4.152 and p2 = 0.07931
both have four significant digits of accuracy. Then it is tempting to report all the digits
that appear on your calculator (i.e., p; + p2 = 4.23131). This is an oversight, because

Xy Gy
0.3 .
0.2

0.1 r *
. .
'y L 2 — i

' 2 4 6 8 10

Figure 1.10  An unstable increasing error sequence {x, — gn}.

4,

¥

6.

e value p = 0.2553074606.

. (a) Consider the data p; = 1.414 and p> = 0.09125, which have four significant

digits of accuracy. Determine the proper answer for the sum p; + p; and the
product pj pa.

{b) Consider the data p; = 31.415 and p; = 0.027182, which have five significant
digits of accuracy. Determine the proper answer for the sum p; + p» and the
product p pa.

Complete the following computation and state what type of error is present in this

gituation.

sin{§ +0.00001) —sin (§) _ 0.70711385222 — 0.70710678119 _

@) 0.00001 0.00001
) 'M2H000005) ~In) _ 069317218025 — 0.69314718056 _
0.00005 - 0.00005 -

. Sometimes the loss of significance error can be-avoided by rearranging terms in the

function using a known identity from trigonometry or algebra. Find an equivalent
formula for the following functions that avoids a loss of significance.

(a}) In(x + 1) — In(x) for large x

b Vx2+1-x for large x

(®) cos?(x) ~ sin®(x) for x = /4

(d) ‘/—l—ﬂy forx ~

Polynomial Evauation. Let P(x) = x> —3x243x—1, Q(x) = ((x —3)x+3)x ~ 1,
and R(x) = (x — 1)*.
(a) Use four-digit rounding arithmetic and compute P(2.72), 0(2.72), and R(2.72).

In the computation of P(x), assume that (2.72)° = 20.12 and (2.72)% = 7.398.



38 (HaP. 1 PRELIMINARIES

{b) Use four-digit rounding arithmetic and compute P(0.975), 0(0.975), and
R{0.975), In the computation of P(x), assume that (0.975)3 = 0.9268 and
(0.975)% = 0.9506.

7. Use three-digit rounding aritl ute the fo
order):
6 6 1
(@ 2o }lx ) 3 g

8. Discuss the propagation of error for the following:
{a) The sum of three numbers:

pra+r=F+e)+@+e) +F+e)

p+ep

b) The quotient of two numbers
® 1 7 Gte

(¢) The product of three numbers:

par =P+ €)@ +€)T+¢).
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12. Improving the Quadratic Formula. Assume thata # 0 and b2 —4ac > 0 and consider
the equation ax2+bx+¢ = 0. The roots can be computed with the quadratic formulas

@ oo bV —dac b /b —dac
S Al = 22 ang Xz = » iy

Show that these roots can be calculated with the equivalent formulas

(ii) o= — =2 and "k
1 = X2 = .
b+ /b2 - dac : b — b — dac

Hint. Rationalize the numerators in (i). Remark. In the cases when |b| & +/b% — 4ac,
one must proceed with caution to avoid loss of precision due to a catastrophic can-
cellation. If b > 0, then x; should be computed with formula (ii) and x2 should be
computed using (i). However, if & < 0, then x| should be computed using (i) and x,
should be computed using (ii).

13. Use the appropriate formula for x| and x> mentioned in Exercise 12 to find the roots

. . dea: .
of the-follow mg-quadratic-equations:

9. Given the Taylor polynomial éxpan&ons

l—l—h=l+h+h2+h3+0(h4)
and
2 h4
cos(h) = 1 — "— +or+ Oh5).

Determine the order of approximation for their sum and product.

10. Given the Taylor polynomial expansions
n? nt 5
e~—l+h+§7+ +Z‘T+0(h

and
h3
sin(h) = h — t oF).

Determine the order of approximation for their sum and product.

11. Given the Taylor polynomial expansions

coelbY 1 h2 N _,Zi 7716y
Casirij = 1 2 -+ ar T owvwn)
and
B K ’
sm(h)—h—“a—'-!-?*'()(h)

Determine the order of approximation for their sum and product.

(a) x2—1,00000lx+1=0

(b) x2—-10,000.0001x +1=0
(©) x?—100,000.00001x+1=0
(d) x? —1,000,000.000001x +1 =10

Algorithms and Programs

1. Use the results of Exercises 12 and 13 to construct an algorithm and MATLAB pro-
gram that will accurately compute the roots of a quadratic equation in all situations,
including the troublesome ones when |b| =.+/ 4ac

2. Follow Example 1.25 and generate the first ten numerical approximations for each
of the following three difference equations. In each case a small initial error is in-
troduced. If there were no initial error, then each of the difference equations would
generate the sequence {1/2"}7° .. Produce output analogous to Tables 1.4 and 1.5 and
Figures 1.8, 1.9, and 1.10.

(a) rp=0.9%and r, = %r,..q, forn=1,2,...

() po=1,p;=0497,and pp = 3pu_i — pp—2. forn=2,3,...

e g=1!4q —"A°7,a.':dq,.=§.,

— . s for 2 A
dn—2, jivig Ly Ty .
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Figure 2.2 The cubic y = 2552 — 3042 + &°.

In our case (with r = 10 and p = 0.638) this equation becomes

Consider the physical problem that involves a spherical ball of radius 7 that is sub-
merged to a depth d in water (see Figure 2.1). Assume that the ball is constructed from
a variety of longleaf pire that has a density of p = 0.638 and that its radius measures
r = 10 cm. How much of the ball wiil be submerged when it is placed in water?

The mass M,, of water displaced when a sphere is submerged to a depth d is

d 203, _
My = [ Jr(r2~(x—r)2)dx—.: M_(?:r___f_il,
Jo 3

and the mass of the ball is M, = 4xr30/3. Applying Archimedes’ law M, = M,
produces the following equation that must be solved:

n(d® - 3d% + 4r3p)

=0

3

2.1

Figure 2.1 The portion of a
sphere of radius r that is to be sub-

maraad tn o Aamil
MCTECG O & GEPuUl a.

40

(2552 — 3042 +
3

V&) _

The graph of the cubic polynomial y = 2552 — 30d2 + 4° is shown in Figure 2.
from it one can see that the solution lies near the value d = 12.

The goal of this chapter is to develop a variety of methods for finding nume
approximations for the roots of an equation. For example, the bisection method ¢
be applied to obtain the three Toots d; = —8.17607212, d; = 11.86150151

A — 26 21ASTNET Tha Gect rant A4: 12 not 3 fasaikle snlntinn for this neahlans ha.
43 = £0.5143 /U0 1. IinC Grst IC0L & 18 fiCL 4 I€asioa€ 5GiUtion 10T (IS Providm, odk

d cannot be negative. The third root d5 is larger than the diameter of the sphere :
is not the desired solution. The root d> = 11.86150151 lies in the interval {0, 20
is the proper solution. Its magnitude is reasonable because a little more than on¢
of the sphere must be submerged.

Iteration for Solving x = g(x)

A fundamental principle in computer science is iteranion. As the name sugge
process is repeated until an answer is achieved. Iterative techniques are used t
roots of equations, solutions of linear and nonlinear systems of equations, and soh
of differential equations. In this section we study the process of iteration using reg
substitution.

A rule or function g(x) for computing successive terms is needed, together
starting value pg. Then a sequence of values {p,} is obtained vsing the iterativ
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Pi+1 = g(px). The sequence has the pattern

Po (starting value)
p1 = g(po}
p2=g(p1}

i :
Pk = g{pi—:)
Pr-1 = g(pe)

What can we learn from an unending sequence of numbers? 1f the numbers terd
1o a limit, we feel that something has been achieved. But what if the numbers diverge
or are periodic? The next example addresses this situation.

Example 2.1. The iterative rule pyp = 1 and pyy1 = 1 001 pg fork = 0, 1. ... produces

8EC. 2.1 [TERATION FOR SOLVING x = g(x) 43

Theorem 2.1.  Assume that g is a continuous function and that { Pr}i o is a sequence
generated by fixed-point iteration. If lim, o, p, = P, thea P is a fixed poin of gix).

Frogf. i lim,_ o p, = P, then imu_, o pyyy = FP. 1t follows from this result, the

centinuity of g, and the relation pai1 = g (p,) that
@ s =g(im )= lim gr) = i por = P
Thetefore, P i a fixed point of g(x). ¢

Example 2.2, Ccensider the convergent iteration
po=05 and piy=e P fork=0.1. .,

ined by the caloulations
ned oy the calc ulations

a divergent sequence. The first 100 terms Took as follows:

p1=1.001pp = {1.001)(1.000000) = 1,001000,
p2=1.001p; = (1.001)(1.001000) = 1.002001,
p3 = 1.001p2 = (1.001)(1.002001) = 1.003003,

proo = 1.001 pgg = (1.001){1.104012} = 1.105 16.

The process can be continued indefin:tely, and it is easily shown that limy .o, py = -,
In Chapter 9 we will see that the sequence { p;} is a numerical solution 10 the differential
equaton ¥’ = 0.001y. The soluton is known to be v(x) = ¢°%0* Indeed, if we compare
the 100th term :n the sequence with y (100}, we see that piog = 1.105116 =~ 1195171 =
& = y(100). -

In this section we are concerned with the types of functions g{x) that produce
convergent sequences { ).

Finding Fixed Points

Definition 2.1 (Fixed Point). A fixed point of a function g(x) is a real number #
suchthat £ = D(.D)v N

such = g(/ A
Geometrically, the fixed points of a funciior. y = g(x} are the points of intersection:
of v = g{x}and y = x.

Definition 2.2 (Fixed-point Iteration). The reration p,p1 = g(p,) forn = 0,
l.... is called fixed-point iteration. i

pr = ¢ 30000 =1y 606531
pr = e V852 _ 545235
p3 = e”035239 0 579703

po = e~ 038649 _ (3 567560
pro = e~ 05873680 _ 0 566007

M pa = 0567143 . ..
A— 00

Thus we have found an approximation for the fixed poiat of the function y = ¢~*. n

The followir.g two theorems establish conditions for the existence of a fixed point
and the convergence of the fixed-point iteration process to a fixed paint.

Theorem22. Assume that g € Cla, b,

{3) I the range of the mapping y = g(xj satisfies y € {a. #] forall x ¢ {a. &), then
§ has a fixed poiatin {a, b].

(4) Furthérmore, suppose that g'(x) is defined over (a, b) and that a positive constant
K < 1exists with |g'(x)t < K < 1 forall x € (a, b), then g has a urique fixed
point P in ja. &].
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Proof of (3). If g(a) = a or g(b) = b, the assertion is true. Otherwise, the values
of g(a} and g({b) must satisfy g(a) € (a, b] and g(b) € [a, &). The function f(x) =
x — g{x) has the property that

]

(=5
S
—
o

(@) =a-gla) <

Now apply Theorem 1.2, the Intermediate Value Theorem, to f(x), with the constant
L = 0, and conclude that there exists a number P with P € (a, b) so that f(P) = 0,
Therefore, P = g(P) and P is the desired fixed point of g(x).

Proof of (4). Now we must show that this solution is unique. By way of contradic-
tion, let us make the additional assumption that there exist two fixed points P, and P».
Now appiy Thecrem 1.6, the Mean Value Theorem, and conclude that there exists a
number d € (a, b) so that

g(Py) — g(P1)
P-P

Next, use the facts that g(Py) = Py and g(P2)} = P» to simplify the right side of

(5) g =
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[~ 1P~ p)—] 1P~ pol——{

P Py b

a 13

Figure 2.3 The refationship among P, po, p1, |P — pyl,
and |P — p1.

Remark 1. Tt is assumed that py # P in statement (7).
Remark 2. Because g is continuous on an interval containing P, it is permissible to use
the simpler criterion [g'(P)! < K < 1and |g'(P)} > 1 in (6) and (7), respectively.

Progf. We first show that the points | p, 12, all lie in (a, &). Starting with po, we

apply Theorem 1.6, the Mean Value Theotem. There exists a value ¢ € (a, &) so that

I[P — pil = |g(P) — g(po)| = |g'(co}(P — pp)!

D_ nl o« EID
3 PO = sy

&)

— la'frall
)

= g (ol = pol <{P — pei.

equation (5) and obtain
P2 - Pl
P - P

g =

< fic wn
&5 + 15 1h

But thi icte the hvnathacic in ( )I < 1 gver {w, b)

u s contradicts the hypothesis in (4)
possible for two fixed points to exist, Therefore, g
in [a, b] under the conditions given in (4).

»

x) has a unique fixed point

~

e UE

Example 2.3. Apply Theorem 2.2 to rigorously show that g(x) = cos(x) has a unique
fixed poini in [0, 1].

Clearly, g € C[0, 1]. Secondiy, g(x) = cos(x) is a decreasing function on [0, 11, thus
its range on [0, 1] is [cos(1), 1] € [0, 1]. Thus condition (3) of Theorem 2.2 is satisfied and

g has a fixed point in [0, 1]. Finally, if x € (0, 1), then [g'(x)| = | — sin(x)] = sin(x) <
sin(l} < 0.8415 < 1. Thus K = sin(l) < 1, condition (4) of Thecrem 2.2 is satisfied, and
g has a unique fixed point in [0, 11. ]

We can now state a theorem that can be used to determine whether the fixed-point
iteration process given in (1) will produce a convergent or divergent sequence.

Theorem 2.3 (Fixed-point Theorem). Assume that (i) g, g’ € Cla, b), (i) K is a
positive constant, (i} po € {a. b), and (iv) g(x) € [a, b] for all x € [a, b].

(6) If |g'(x)} < K < 1 forall x € [a,b], then the iteration p, = g{py—1} will
converge to the unique fixed point P € [a, b]. In this case, P is said to be an
attractive fixed point.

(7) If 1g'(x}t > 1 for all x € [a,b], then the iteration p, = g(pp-1) will not
converge to P. In this case, P is said to be a repelling fixed point and the iteration
exhibits local divergence.

Therefore, pr1is o further from P than py was, and it follows tiat D1 € (@, b) (see
Figure 2.3). In general, suppose that p,_| € (a, b); then

IP ~ pal = [g(P} — g(pn-1)| = |g'(cn=1)(P ~ pa—i)|

€ ’
=g (cn-DIIP = pn_1| = K|P ~ pu_i]| < |P = pp-1.

Therefore, p, € (a. b) and hence, by induction, all the points {p, 152, lie in (a. b).
To complete the proof of (6), we will show that

(10) Jim 1P - p,| = 0.

First, a proof by induction will establish the inequality

(i1 [P — pul = K*|P — pol.

The case n = | fallows from the details in relation (8). Using the induction hypothesis
[P — pa_1} < K" [P — py| and the ideas in ¢9), we obtain

IP—pul <KIP — pyy| SKK"'|P ~ po|l = K"|P — pyl.

Thus, by induction, inequality (11) holds for all n. Since 0 < K < 1, the term K*
goes to zero as n goes to infinity. Hence

12) 0= lim [P ~pyl < lim K"|P— pol=0.

The limit of [P — p,| is squeezed between zero on the left and zero on the right, so we
can conclude that limy— oo | P — py| = 0. Thus lim,— oo py = P and, by Theorem 2.1,
the iteration p, = g(p,—1) converges to the fixed point P. Therefore, statement (6) of
Theorem 2.3 is proved. We leave statement (7} for the reader to investigate. .
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/l [§ P pyp Py Figure 2.5 (a) Monotone dive:-
Figure 2.4 (a) Monotone convergence when 0 < g'(P) < 1. gence when 1 < g'(P).
¥
y
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. -
AN s
x PPy P15 N Figure 2,5 (b) Divergent oscilla-
Py 7P op tion when g’(P) < 1.

Figure 2.4 (b) Oscillating convergence when —1 < g’(P) < 0,
Graphical Interpretation of Fixed-point Iteration

Since we seck a fixed point P 1o g(x), it is necessary that the graph of the curve

Corollary 2.1. Assume that g satisfies the hypothesis given in (6) of Theorem 2.3. y = g{(x) and the line y = x intersect at the point (P, P). Two simple types of
Bounds for the error invelved when using p, to approximate P are given by convergent iteration, monotone and oscillating, are illustrated in Figure 2.4(a) and (b),
respectively.
(13) |P — pul < K"|P — pol for all n>1, To visualize the process, start at py on the x-axis and move vertically to the point
(po, 1) = (po, g(po)) on the curve y = g(x). Then move horizontally from (pg, p1)
and . . . .
to the point (p), p1) on the line y = x. Finally, move vertically downward to p1 on
K™ py — nal tha »_avic Tha racrurcinn of » Y ig ngad ta conatrist tha naint
14 _ < ELI F .24 FUil f r a“ - 1' i€ X-axl1s, 10e 1eCursion yn+] = 1 Pn/; 15 USEA W CONSTUCT Ule point (V’h Pﬂ+l) Ol
(14) 1P —pal = 1-K N = the graph, then a horizental motion locates (p41, Prt1) on the line y = x, and then a

vertical movement ends up at p,1 on the x-axis. The situation is shown in Figure 2.4,
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If |g'(P)| > 1, then the iteration p,,1 = g(pn) produces a sequence that diverges
away from P. The two simple types of divergent iteration, monotone and oscillating,
are illustrated in Figure 2.5(a) and (b), respectively.

Example 2.4. Consider the iteration p,; = g(p,) when the function g(x) = 14+x—x2/4
is used. The fixed points can be found by solving the equation x = g(x). The two solutions
(fixed points of g) are x = —2 and x = 2. The derivative of the functionis g’(x) = 1-x/2,
and there are only two cases to consider.
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Absolute and Relative Error Considerations
In Example 2.5, case (ii), the sequence converges slowly, and after 1000 iterations the
three consecutive terms are

Proon = 2.00398714, pool = 2.00398317, and  pioee = 2.00397921.
This should not be disturbing; after ail, we could compute a few thousand more terms
and find a better approximation! But what about a criterion for stopping the iteration?
Notice that if we use the difference between consecutive terms,

[P1oo1 — Proca] = |2.00398317 — 2.00397921| = 0.00000396.

et the absolute error in the approximation pio00 is known to be

[P — piooo| = |2.00000000 ~ 2.00398714| = 0.00398714.

This is about 1000 times larger than |pipo1 — p1oo2| and it shows that closeness of
consecutive terms does not guarantee that accuracy has been achieved. But itis usually

#on Foaemn e

s mmler melbntece meonilnlbhla ned dn ofios 11oad nta art oeotives —memoadion
uic Ul.l.ly LIV avaliauUle Aaklu D UL UWDCAU W WCLEtUiaiv all ilclauive PI\J\-W“‘.C;

Case (i): =-2 Case (ii): P=2
Start with po= —2.05 Start with po=16
then get pr = — 2.100625 then get =196

P2 = — 220378135 P2 =1.9996

py= — 2.41794441 p3 = 1.99999996

A, pn = —o0. i, pn =2

Since {g’(x}| > 3 on [~3, —1], by The- Since |g'(x)] < % on [1,3], by Theo-
orem 2.3, the sequence will not converge rem 2.3, the sequence will converge to
o P =-2 P=2

Theorem 2.3 does not state what will happen when g’(P) = 1. The next example
has been specially constructed so that the sequence {p,} converges whenever pg > P
and it diverges if we choose pg < P.

Example 2.5. Consider the iteration p,,; = g(p,) when the function g(x) = 2(x - 1)!/2
forx = 1is used. Only one fixed point P = 2 exists. The derivative is g'(x) = 1/(x —1}1/2
and g’(2) = 1, so Theorem 2.3 does not apply. There are two cases to consider when the

starting value lies to the left or right of P =2, N
Case (i}: Start with pg = 1.5, Case {if): Start with pp =125,
then get P1= 141421356 then get pr = 2.44948974
P2 =1.28718851 p2 =2.40789513
P35 =1.07179943 p3=2.37309514
p4 =0.53590832 pa =2.34358284
Ps = 2(—0.46409168)/2. lim py =2
=00
Since py lies outside the domain of This sequence is converging too slowly
g(x), the term ps cannot be computed. to the value P = 2; indeed, Pjgop =
2.00398714.

Program 2.1 (Fixed-Point Iteration). To approximate a solution to the equation
x = g{(x) starting with the initial guess pp and iterating pp41 = g(p,).

function [k,p,err,P]=fixpt(g,p0,tol,max1)
% Input - g is the iteration function input as a string ’g’

% - p0 is the initial gueas for the fixed point

% - tol is the tolerance

% - maxl is the maximum number of iterations

%Output - k is the number of iterations that were carried out
Y - n ig tha annmroximation ta tha fivad wnoint

% p is the approximation to the fixed point

% - err is the error in the approximation

* - P contains the sequence {pn}

P(1)= p0;

for k=2:maxl
P(x)=feval(g,P(k-1));
err=abs (P(k)-P(k-1));
relerr=err/(abs(P(k))+eps);
p=P(k};
if (err<tol) | (relerr<tol),break;end
end
if k == max]
disp(’maximum number of iterations exceeded’)
end
P=p?;
Remark. When using the user-defined function fixpt, it is necessary to inpat the
M-file g.m as a string: 'g’ (see MATLAB Appendix).
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Exercises for Iteration for Solving x = g{(x)

L

Determine rigorously if each function has a unique fixed point on the given interval
(follow Example 2.3).

fa) glx)=1-x%/40n[0,1]

(b) g(x)=2"on[01]

(¢} glx)=1/xon[0.552]

. Investigate the nature of the fixed-point iteration when

[ PR B
gix) = —4+4x — -x~,

2

(a) Solve g(x) = x and show that P = 2 and P = 4 are fixed points.
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(c) Since the sequence {px} is decreasing and bounded below, it has a limit. What
is the limit?
9. Let g(x} == 0.5x + 1.5 and py = 4, and consider fixed-point iteration.
(a} Show that the fixed pointis P = 3.
(b) Showthat |P — py| = |P — pp—sl/2forn=1,2,3,...
(€} Showthat|P — py|=|P — poi/2"forn=1,2,3,....
Let g(x) = x/2, and consider fixed-point iteration.
(8) Find the quantity | pe+1 — pel/|pe+il.
(b) Discuss what will happen if only the relative error stopping criterion were used
in Program 2.i,

10.

11. For fixed-point iteration, discuss why it is an advantage to have g'(P) ~ 0.

4

-

(b) Use the starting value pg = 1.9 and compute p;, p2, and p3.

{c) Use the starting value pg = 3.8 and compute py, p2, and p3. Algorithms and Programs

(d) TFind the errors Ey and relative errors Ry for the values py in parts (b) and (c).

{e) What conclusions can be drawn from Theorem 2.3? 1. Use Program 2.1 to approximate the fixed points (if any) of each function. Answers

. Graph g(x), the line y = x, and the given fixed point £ on the same coordinate

system. Using the given starting value pg, compute p| and p;. Construct figures
similar to Figures 2.4 and 2.5. Based on your graph, determine geometrically if fixed-

et el

poiﬁt Hnerauon UUHVCIgeS.

(@ gx)=06+x"Y%P=3and po=7

(b glx)=1+2/x,P=2,and pp =4

() gx)=x%3, P=3and py=35

@ glx)=—-x+2x+2,P=2andpy =25

2.2

Let g(x) = x> +x —4. Can fixed-point iteration be used to find the solution(s) to the
equation x = g{x)? Why?

+ Let g{x) = xcos(x). Solve x = g(x}) and find all the fixed points of g (there are in-

finitely many). Can fixed-point iteration be used to find the solution(s) to the equation
x = g(x)? Why?

. Suppose that g (x) and g’(x) are defined and continuous on (a, b); pg, p1, p2 € (a, b);

and p; = g(po) and pp = g(p1). Also, assume that there exists a constant X such
that |g'(x)| < K. Show that |p; — p1| < K|p; — pol. Hint. Use the Mean Value
Theorem.

Suppose that g{x) and g'(x) are continuocus on {a, &) and that |g’(x)|
interval. If the fixed point P and the initial approximations pg and p) lie in the interval
(a, b), then show that p) = g(pg) implies that |E(| = |P — pt| > |P — py| = | Ey|.
Hence statement (7) of Theorem 2.3 is established (local divergence).

> 1 on ihis

. Let g(x) = —0.0001x% 4 x and pp = 1, and consider fixed-point iteration.

(a) Showthatpy > p1 > -+ > py > Pnyt > -+ -.
(b) Show that p, > Oforall n.

should be accurate to 12 decimal places. Produce a graph of each function and the
line y = x that clearly shows any fixed points.

(8) gx)=x3-3x3—-2x2+2
{b) g(x) = cos(sin(x))

(© g(x)=x?—sin(x +0.15)
(d) glx) = x* o0

Bracketing Methods for Locating a Root

Consider a familiar topic of interest. Suppose that you save money by making regular
monthly deposits £ and the annual interest rate is /; then the total amount A after N
deposits is

1 I 2 I N-1
= - 1+ — - .
A P+P(1+12)+P(+12)+ +P(1+12)

The first term on the right side of equation (1) is the last payment. Then the next-to-last
payment, which has earned one period of interest, contributes £ (1 + é) The second-

from-last payment has earned two periods of interest and contributes P (1 + ﬁ)z and
so on. Finally, the last payment, which has earned interest for ¥ —1 periods, contributes

(1

P(l+ ‘LI)N’_I toward the total. Recall that the formula for the sum of the N terms of
a geormetric series is

2, .3 o1 L=V
2) l+r+r4+r'+- +r =T
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We can write (1) in the form

I ] 2 I N-1
A P(l+(1+12)+(1+12)+ +(+12) )

and use the substitution » = (1 + 7/12) in (2) to obtain
1— 1+
1—(+5)

This can be simplified to obtain the annuity-due equation,

p ; 7 N N

The following example uses the annuity-due equation and requires a sequence of
repeated calculations to find an answer.
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(a. f(a) (@ fta)
{c. fe)
y=fi) Y=
. 0)
+ F - l
a b a 4

(r 0)\ b
€ fle)p Te— H
(& flbn (b, fb)
(a) If f(a) and f(c) have

, opposite signs then
squeeze from the right.

(b) If f(c) and f(b) have
opposite signs then
squeeze from the left.

M that tha tatal 1 £
SO UL UG 0la valutc ur

r.Adl wUs
all payments and interest is $250, 000 at the end of the 20 years. What interest rate [ is
needed to achieve your goal? If we hold N = 240 fixed, then A is a function of 7 alone;
that is A = A(J). We will start with two guesses, fp = 0.12 and [} = 0.13, and perform a
sequence of calcuiations to narrow down the final answer. Starting with /o = 0.12 yields

250 0.12\*®
12y = 220) —1) = 247,314,
AQ.12) 0.12/12 ((1 t 12 )

Since this value is a little short of the goal, we nexttry I; = 0.13:

250 0.13*%
- v =2} -1} =282 311
A(0.13) NENE: ((1+ 12) ) 3

This is a little high, 50 we try the value in the middle [ = 0.125:

250 0.1253\#0
= ) — 1] =264, 623.
A4(0.125) 0.125/12((1+ 12) )

This is again high and we conclude that the desired rate lies in the interval [0.12, 0.125].
The next guess is the midpoint 73 = 0.1225:

240
250 ((HOJ];ﬁ) _;\ = 255, 803.

1(0.1275) =
A(0.1225) 01225/
This is high and the interval is now narrowed to {0.12, 0.1225]. Our last caiculation uses
the midpoint approximation [y = 0.12125:

4 5

250 ’ 0.12125)2*‘"’
‘ - ~1) =251,518.
AQ12129) = 55 ((1 12 )

Figure 2.6 The decision process for the bisection process.

Further iterations can be done to obtain as many significant digits as required. The
purpose of this example was to find the value of / that produced a specified level L of the
function value, that is to find a solution to A(J) = L. It is standard practice to place the
constant L on the left and solve the equation A(J) — L = 0. n

Definition 2.3 (Root of an Equation, Zero of 2 Function). Assume that f(x) is a
continuous function. Any number r for which f () = 0is called a root of the equation
f(x) = 0. Also, we say  is a zero of the function f(x). A

For example, the equation 2x% 4+ 5x — 3 = 0 has two real roots r; = 0.5 and
r2 = —3, whereas the corresponding function f(x) = 2x2 4 5x -3 = (2x — 1)(x +3)
has two real zeros, ) = 0.5and r» = —3.

The Bisection Method of Bolzano

In this section we develop our firsi bracketing method for finding a zero of a continuous
function. We must start with an initial interval [a, b], where f(a) and f(b) have
opposite signs. Since the graph y = f(x) of a continuous function is unbroken, it will
cross the x-axis at a zero x = r that lies somewhere in the interval (see Figure 2.6). The
bisection method systematically moves the end points of the interval closer and closer
together until we obtain an interval of arbitrarily small width that brackets the zero.
The decision step for this process of interval halving is first to choose the midpoint
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¢ = {a + #)/2 and then to anaiyze the three possibilitics that might arise:

(4} If f(ajand f{c} have opposite signs. & Zero lies in [a. c].
{3) If f{c)and f(b) have opposite s1gns, a zero lies in [c, &].
{6) iIf f(e) =0, then the zero is c.

If either case (4) or (5) occurs, we have fotnd an interval half as wide as the original
interval that contains the root. and we are “squeezing down on it” (see Figure 2.6). To
continue the process, relabel the new smaller interval {a. b] and repeat the process until
the interval is as small as desired. Since the bisection process involves sequences of
nested intervals and their midpoints. we will use the following notation to keep track

of the detai S PR & mErimmec e

a1 tne UCL:IJ.IB i I.IIC l)[k)LCSb

{ag, bp) is the starting interval and ¢ = ﬂﬂ—gﬂ! is the midpount.

', b1]is the second interval, which brackets the zero r, ané ¢ is its mudpoint;
(7 -he interval [aj. &] is half as wide as [ap. bp).
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*n fo—Ir—c, —f b,
¥
H

Cq

b, —a,l
) 1

Figure 2.7 The root » and midpoint ¢, of [ax, b,] for the
bisection method.

Observe that the successive interval widths form the pattern

—g
b1—01=b021 0,
by—a1  bp—ag
h—a=—=——.

22

It is left as an exercise for the reader 1o use mathematical induction and show that

Atter arriv.ng al the rnth interval {a,. bnj, WhiICh brackets 7 and .1as midpotnt
¢y the interval [@n+1. buyi] is constructed, which also brackets r and is half

as wide as [ap, bn).

It is left as an exercise for the reader to show that the sequence of left end points is
increasing and the sequence of right end points 1s decreasing; that is,

(8} @<ay < Sa@p S Sr S Shy 2.0 S by £ by

where ¢, = 51’"’—"’1 and if f(ap—1}f(bn+1) < 0, then

9) [2ns1, Bost]l = [a@n.cn]  OF  {@ne1, Brol] = (. Bal  for ali n
Theorem 2.4 (Bisection Theorem). Assume tha: f € C[a, b] and that there exists
anumber r € [a, #] such that f(r) = 0. If f(a) and ftb) have opposite signs, and

ieg]22 represents the sequence of midpomnts generated by the bisection process of (8)
and (9}, then

-a
(10) "_("‘"“"z_n«T forn=20,1, ...,
and therefore the sequence {¢q])5, converges to the zero x = r; that 1s,
1) lim ¢, =r.

n—od

Proaf.  Since both the zero r and the midpoint ¢, lie in the interval {a,. 4], the dis-
lance between ¢, and r cannot be greater than half the width of this interval (see Fig-
ure 2.7). Thus

F

i12) Ir—eal < = for all n

by — g
(13 by —a, = O,M 0
Combining (12) and (13) results in
b ~
(i4) lr —cp: < ;M;h for all ».

New an argument similar to the one given in Theorem 2.3 can be used 1o show that
{14] lmp]]CS that the sequence !t_‘_., }" — converges to 7 and the nrnnf' of the theorem is

tEe 10 00T

complete. .

Example 2.7. The function #{x) = xsinix) occurs in the study of undamped forced
oscillations. Find the value of x that lies in the interval [Q, 2], where the function takes on
the value #(x} = { (the function sin(x) (s evaluated in radians).

We use the bisection method 10 find a zero of the function f(x) = x sin(x) - 1. Startirg
with ag = 0 and b3 = 2, we compie

f(0y=-1.000000 and f{2) =0.818595,

soaroot of f(x) = () lies in the interval [(0. 2], At the mldWH‘-{ =1, we
f({1) = —0.158529. Hence the function changes sign on [co. bo] = (1. 2].

To continue, we squeeze from the left and set ay = ¢p and by = by. The midpoint
isc1 = 1.5and f(c1) = 0.456242. Now, f(1) = —0.158529 and f(1.5) = 0.496242
1mp!)’ that the root lies in the imterval [a1. ¢;] = | 1.0, 1.5]. The next decision is to squeeze

from the I.JBQI.IL and set @2 = @] and U'] = C]. in tus manner we obtain & sequence (("k] that
convergestor = 1.114157141. A sample caleulation is given in Table 2.1. n

A that
i

anNd aaelt



Tabie 2.1  Biseciion Meihod Soluiion of xsin{x) — 1 =0
Lefi Right Function value,

k end point, a Midpoint, cg end point, by Jlcr)
0 0 1. 2. —0.158529
1 1.0 1.5 2.0 0.496242
2 1.00 1.25 1.50 0.186231
3 1.000 1.125 1.250 0.015051
4 1.0000 1.0625 1.1250 —0.071827
5 1.06250 1.09375 1.12500 —0.028362
6 1.093750 1.109375 1.125000 —0.006643
7 1.109375¢ 1.1171875 1.1250000 0.004208
B 10937500 1.11323125 1.11718750 —0.001216

A virtue of the bisection method is that formula {10} provides a predetermined

{a. flay) (a fla)

\\\ ‘\\ (c, fle))
N A)] R
I 1 N S
T . } _._rk
a . b N
el a .0y ~~_

(. flen
y=f(x

{b. fiby b Jibs)

(a) if f(a) and f{c) have
opposite signs then
squeeze from the right.

(b) If fic) and f{b) have
opposite signs then
squeeze from the left.

Yigure 2.3 The decision process for the false positior: method,

estimate for the accuracy of the computed solution. In Example 2.7 the width of the
starting interval was by — ap = 2. Suppose that Table 2.1 were continued to the
thirty-first iterate; then, by (10), the error bound would be :E31 < (2 —0) ff’z B
4.656613 x 19717, Hence ¢3) would be an approximation 1o » with nine decimal places
of accuracy. The number ¥ of repeated bisections fleeded to guaraniee that the Nth
midpoint ¢y is an approximation (o a zere and has an error less than the preassigned

value d is

(ln(b a) — ]n(&)‘

(15
in{2)

The proof of this formula is left as an exercise.

Anather popular algorithm is the method of false position or the regula falsi
method. 11 was developed because the bisection method converges at a fairly slow
speed. As before, we assume that f(a) and f(b} have opposite signs. The bisection
method used the midpoint of the interval {a, b as the next itzraie. A better approxi-
mation is obtained if we tind the point {c, 0) where the secant line L joining the points
(a, f{a)) and (b, f(b)) crosses the x-axis (see Figure 2.8). To (ind the value ¢, we
write down two versions of the slope m of the line L.

fb)— fla)
(16 =T Ta

where the points (a, f{a}) and (b, f(})) are used, and

\ I e 2]
! mE T

where the points (¢, 0) and (&, f (b)) are used.
Ezuating the slopes in (16) and (17), we have

fB)— flay 0— f(b)

L -
o= a (& "‘D

which is easily soived for ¢ to get

fb)b—a)

(18) C=b_ £l Y
fioy— jlaj

The three possibilities are the same as before:

19) If f{a) and f(c) have apposite signs, a zero lies in [e, ¢].
{20y ¥ fic)and f(b) have opposite signs, a zero lies in jc, b1
zn If f(c) =0, then the zerois r.

Convergence of the False Position Method

The decision process implied by (19} and (20} along with (18) is use

L= Lo Le OLES =2 DY and (U7) ain £ Wi (28,15 4

a sequence ofmterva.ls {ldn, b,;]] each of which brackets the zero. At es
approximation of the zero r is

f(bn)(bn — ap}

(22) Cp = by — —— ="
JWn) — Jlag)
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and it can be proved that the sequcncc {cnt will converge to r. But beware; althougl"

the interval width ‘u", —an is 55‘““5 aumu\.l, itis Puamb}t. that it may not gO o zeio. If

the graph of y = f(x) is concave near (r, 0), one of the end points becomes fixed and

SEC. 2.2 BRACKETING METHODS I'OR LOCATING A ROOT £9

Table 2.2 False Position Method Solution of x sin{x) — 1 =0

Left Right Function value,
| endpoint a Midpoint, ¢ end point, by Flen)
0 0.GO0GH000 1.095975017 2.00000000 -0.02001521
1 1.09975017 - 1.12124074 2.00000000 0.00983461
2 1.09975017 1.11416120 1.12124074 0,00000563
3 109975017 i.11415714 1.11416120 0.00000000

Program 2.2 (Bisection Method). To approximate a root of the equation f(x} =0 |
in the interval [a, 5). Proceed with the method only if f(x) is continuous and f(a) !
| and f(b) have opposite signs.

function [¢,err.ycl=bisect(f,a,b,delta)
%Input - f is the function input as a string ’f’

the other one marches into the solution (see Figure 2.9).

Now we rework the solution o x sin{x) — | = 0 using the method of faise posi-
tion and observe that it converges faster than the bisection method. Also, notice that
1B ~ an )52, does not go 1o zero.

Example 2.8. Use the false position method to find the root of x sin(x) — | = O that is
located in the interval [0, 2] {the function sin(x) is evaluated in radians).

Surting with ap = 0 and bg = 2, we have f{0) = —1.00000000 and f(2) =
0.81859485, so a root ties in the interval [0, 2), Using formula (22), we get

0.81859485(2 — 0)
T 0.81859485 (-1
The function changes sign on the interval [cg, o] = [1.09975017, 2), so we squeeze from
the left and set a; = cp and by = by. Formula (22) produces the next approximation:

0.81859485(2 — 1.05975017)
0.81859485 — (—0.02001921)

o = = 109975017 and  f(co} = —0.02001921.

L‘l=2-

= 1.12124074

and
fler) = 0.00983461.

Next f(x} changes sign on {a;, c1] = [1.09975017, 1.12124074]. and the next decision is
10 squeeze from the right and set a2 = aj and b; = ¢1. A summary of the calculations is
given in Table 2.2. =

The termination criterion used in the bisection method is not useful for the false
position method and may result in an infinite loop. The closenass of consecutive iter-

aies and ihe size of | f (c,)" are both used in the termination criterion for P'Ogram 2.3,
In section 2.3 we discuss Lhe reasons for this choice.

% - a and b are the left and right end points
% ~ delta is the tolerance

%Cutput - ¢ is the zZero

A - ye=f(c}

A - err is the error estimate for «

ya=feval(f,a);
yb=feval(f,b);
if ya*yb>0,break,end
maxi=i+round((log(b-a)-log(delta))/log(2));
for k=1:maxit

c=(a+b)/2;

ye=feval(f,c);

if ye==0

elseif yb*yc>0

b=c;
yb=yc;
else
as¢;
ya=yc;
end
if b-a < delta, break,end
end
c=(a+b)/2;
err=abs(b-a);
yc=feval(f,c),
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| Program 2.3 (Faise Position or Regula Falsi Method). To approximate a root of
the equation f(x) = 0 in the interval {a, b]. Proceed with the method only if f(x} -
is continuous and f(a} and f (b} have apposite signs. |

function [¢,err,ycl=regula(f,a,b,delta,epsilon,maxl)

%Input - f is the function input as a string *f°

% - a and b are the left and right end points

% - delta is the tolerance for the zero

% - epsilon is the tolerance for the value of f at the zero
% - maxl is the maximum number of iterations

%0utput - ¢ is the zero

% = ye=£(c)

% - err is the error estimate for ¢

va=feval(f,a);
yb=feval(f,b);
if yaxyb>0

disp(’Note: f(a)*f(b)>0’),
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r Bracketing Methods

In Exercises 1 and 2, find an approximation for the interest rate / that will yield the total
annuity value A if 240 monthly payments P are made. Use the two starting values for /
and compute the next three approximations using the bisection method.

DD LIOTS USIT

1. P =$275, A =$250,000, Iy =0.11, I; = 0.12
2, P =$325, A =%$400,000, I =0.13, I; =0.14
3. For each function, find an interval [a, b] so that f(a) and f(b) have opposite signs.
(@ fixy=e-2-x
b) f(x)=cos(x)+1—x
© fx)=Ih(x)-5+x
) fix)=x2—10x +23
In Exercises 4 through 7 start with [ao, by] and use the false position method to compute
co, €1, €2, and c3.
4. " —2—x =0, fag, byl = [-2.4, —1.6]

break,
end
for k=1:max1
x=yb*(b-a)/(yb-ya);
c=b-dx;
ac=c-a;
ye=feval (f,c);
if yc==0,break;
elseif yb*yc>0
b=c;
yb=yc;
else
a=c;
ya=yc;
end
dx=min(abs(dx),ac);
if abs{dx)<delta,break,end
if abs(yc)<epsilon,break,end
end
cs
err=abs(b-a)/2;
yc=feval(f,c);

5. cos(x) + 1 — x = 0, [ag, bo] = [0.8, 1.6]

6. In(x) — 5+ x =0, [ag, bo] = {3.2,4.0]

7. x2 —10x + 23 = 0, [ag, ko] = [6.0, 6.8]

8. Denote the intervals that arise in the bisection method by [ag, bol, [ay, b1), ...,
[an, byl
(8) Showthatay <a; <.--<a,<---andthat-- - <bh, <-.- <
(b) Show that b, — @, = (bg — ap)/2".
(c) Let the midpoint of each interval be ¢, = (a, + by)/2. Show that

lim ay, I.me,,-.hmb,,

n—=o0

Hint. Review convergence of monotone sequences in your calculus book.
9. What will happen if the bisection method is used with the function f(x) = 1/(x —2)
and
(a) theinterval is [3, 7}7 (b) theintervalis[1,7]?
10. What will happen if the bisection method is used with the function f(x) = tan(x)
and
(a) theinterval is [3, 4]? (b) the interval is [1, 3]?
- Suppose that the bisection method ig used to find 2 zero of F{x) i
How many times must this interval be bisected to guarantee that the approximation
cw has an accuracy of § x 10797

interval [2, 7].

[
[k

in tha in
m n¢ miter

12. Show that formula (22) for the false position method is algebraically equivalent (o
Fiby} — b, flan)

ng \whns “RJ \en

S ba) — flan)

c,,:
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13. Establish formula (15) for determining the number of iterations required in the bisec-
tion method. Hint. Use |b — a|/2"+! < § and take logarithms.

14, The polynomial f(x) = (x— 1)3(x —2)(x — 3) has three zeros: x = 1 of multiplicity 3
and x = 2 and x = 3, each of multiplicity 1. If ag and by are any two real numbers
such that ag < I and &g > 3, then f{ay)f{bo} < 0. Thus, on the intervai {ag. &g]
the bisection method will converge to one of the three zeros. If ag < 1 and by > 3
are selected such that ¢, = ‘-‘ﬁl’j'l is not equal to 1, 2, or 3 for any n > 1, then the
bisection method will never converge to which zero(s)? Why?

15, If a polynomial, f(x), has an odd number of real zeros in the interval [ap, &), and
each of the zeros is of odd multiplicity, then f(ao)f(bo) < 0, and the bisection
method will converge 1o one of the zeros. If ap < 1 and bp > 3 are seiected such that
o= 2 ‘;b“ is not equal to any of the zeros of f(x) for any » > I, then the bisection
method will never converge to which zero(s)? Why?
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be given to guarantee convergence. Hence these methods are called Zocally convergenit.
They usually converge more rapidly than do global ones. Some hybrid algorithms start
with a globally convergent method and switch to a locally convergent method when
the iteration gets close to a root.

If the computation of reots is one part of a larger project, then a leisurely pace
is suggested and the first thing to do is graph the funcnon. We can view the graph
¥ = f(x) and make decisions based on what it looks like (concavity, slope, oscillatory
behavior, local extrema, inflection points, etc.). But more important, if the coordinates
of points on the graph are available, they can be analyzed and the approximate location
of roots determined. These approx1matlons can then be used as starting values in our
root-finding algorithms.

We must proceed carefully, Computer software packages use graphics software of
varying sophistication. Suppose that a computer is used to graph y = f(x) on [a, b].
Typically, the interval is partitioned into ¥ + | equally spaced points: a = xp <
X] < --- < xy = b and the function values yy = f (xx) computed. Then either a
line segmieni or a “fitted curve” are l.uuu.cu betweeit consecutive pOii‘ltS Xk, Ye—1)
and (xg, w) fork = 1, 2, ..., N. There must be enough points so that we do not

Algorithms and Programs

1. Find an approximation (accurate to 10 decimal places) for the interest rate / that will
yield a total annuity value of $500, 000 if 240 monthly payments of $300 are made.

2. Consider a spherical ball of radius r = 15 cm that is constructed from a variety
of white oak that has a density of p = 0.710. How much of the ball (accurate to
8 decimal places) will be submerged when it is placed in water?

3. Modify Programs 2.2 and 2.3 to output a matrix analogous to Tables 2.1 and 2.2,
respectively (i.e., the first row of the matrix would be [0 ay co by f (co)]).

4. Use your programs from Problem 3 to approximate the three smailest positive roots
of x = tan{x) {accurate tc 8 decimal places).

5. A unit sphere is cut into two segments by a plane. One segment has three times the
volume of the other. Determine the distance x of the plane from the center of the
sphere (accurate to 10 decimal places).

Initial Approximation and Convergence Criteria

The bracketing methods depend on finding an interval {2, b] so that f(a) and f (b) have
opposue SlgﬂS UnCE Ll'le ll'l[eI'le has Dééfl IOUIIU no Iﬂdﬁef now xarge, the iierations
will proceed until a root is found. Hence these methods are called globally convergent.
However, if f{x) = 0 has several roots in [a, b}, then a different starting interval must
be used to find each root. It is not easy to locate these smaller intervals on which f(x)
changes sign.

In Section 2.4 we develop the Newton-Raphson method and the secant method for
solving f(x) = 0. Both of these methods require that a close approximation to the root

miss a root in a portion of the curve where the function is changing rapidly. If f(x)
is continuous and two adjacent poinis (xg—r, yi—1) and (x¢, y) lie on opposite sides
of the x-axis, then the Intermediate Value Theorem implies that at least one root lies
in the interval [x¢—j, x;]. But if there is a root, or even several closely spaced roots,

in tha intarval [+, .1 and the two adiacent noints {(x; Y and (x. ) Ha Aan
e nlervas [ Xi—i. Xiy and e WO acjacent poilis ( Xy -1, Yi—i/) 4R0 (X, ¥ € on

the same side of the x-axis, then the computer-generated graph would not indicate a
situation where the Intermediate Value Theorem is applicable, The graph produced by
the computer will not be a true representation of the actual graph of the function f.
It is not unusual for functions to have “closely” spaced roots; that is, roots where the
graph touches but does not cross the x-axis, or roots “close” to a vertical asymptote.
Such characteristics of a function need to be considered when applying any numerical
root-finding algorithm.

Finally, near two closely spaced raots or near a double root, the computer-generated
curve between (xg-1, ¥i—1) and (xg, y;) may fail to cross or touch the x-axis. If
| f{xt)) is smaller than a preassigned value € (i.e., f(xx) = 0), then x; is a tentative
approximate root. But the graph may be close to zero over a wide range of values near
x;, and thus x; may not be close to an actual root. Hence we add the requirement that
the slope change sign near (xi, y); that is, m,_| = i:iﬁi:: and my; = i::::i: must
have opposite signs. Since x; — xx—j > 0 and x4 1 — x¢ > 0, it 1s not necessary to use
the difference quotients, and it will suffice to check to see if the differences yx — yx—1
and yi+1 — yx change sign. In this case, x; is the approximate root. Unfortunately,
we cannot guarantee that this starting value will produce a convergent sequence. If the
graph of y = f(x) has a local minimum (or maximum) that is extremely close to zero,
then it is possible that x; will be reported as an approximate root when f{xg) ~ 0,

R PUN T [ PR

‘uuluugu A IMay not UC Cl0ose to a 1oot,
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Table 2.3  Finding Approximate Locations for Roots

Function values Differences in y
Significant changes
Xk Ye—1 Vi Ve = ¥e-1 | Yeal — Yk in f{x)or f/(x)
-1.2 -3.125 —0.968 2.157 1.329
~0.9 | —0.968 0.361 1.329 0.663 J changes sign in [xg_1., xz]
—0.6 0.361 1.024 0.663 0.159
-0.3 1.024 1.183 0.159 -0.183 f' changes sign near x;
0.0 1.183 1.000 —0.183 —0.363
0.3 1.000 0.637 -0.363 —0.381
0.6 0.637 0.256 -(.381 -0.237
69 | 025 | 0019 —0.237 0.069 F' changes sign near x;
1.2 0.019 0.088 0.069 0.537
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Figure 2.11 (a) The horizontal convergence band for locating a solution to
fy=0.

...
in

Figure 2.10 The graph of the cu-
-10 bic polynomial y = x3 —x%2 — x + |

Example 2.9, Find the approximate location of the roots of x* — x2 — x + 1 = O on the
interval [—1.2, 1.2]. For illustration, chcose N = 8 and look at Table 2.3.

‘The three abscissas for consideration are —1.05, —(3.3, and 0.9. Because f{x} changes
sign on the interval [~1.2, —0.9], the value —1.05 is an approximate root; indeed,
f(~1.05) = -0.210.

Although the slope changes sign near —0.3, we find that f(—0.3) = 1.183; hence
—0.3 is not near a root, Finally, the slope changes sign near 0.9 and £ (0.9) = 0.019, s0 0.9

is an approximate root (see Figure 2.10) u

y
Py

x=€—8 x=:p+8 y=f0)

! ; T

! ]

]
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Figure 2.11 (b) The vertical convergence band for locating a solution to f(x) = 0.

Checking for Convergence

A graph can be used to see the approximate location of a root, but an algorithin must be
used to compute a value p, that is an acceptable computer solution. Hteration is often
used to produce a sequence {p;} that converges to a root p, and a termination criterion
or strategy must be designed ahead of time so that the computer will stop when an
accurate approximation is reached. Since the goal is to solve f(x) = 0, the final value
Pn should have the property that | f(ps)| < €.

The user can supply a tolerance value € for the size of | f(p,)| and then an iterative
process produces points P, = (px, f(pi)) until the last point P, lies in the horizonial
band bounded by the lines y = +€ and y = —¢, as shown in Figure 2.11{a). This
criterion is useful if the user is trying to solve A{x) = L by applying a root-finding
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algorithm to the function f(x) = h{x) — L

Another termination criterion involves the abscissas, and we can try to ¢
the sequence { pt} is converging. If we draw the vertical lines x = p+4§ an
on each side of x = p, we could decide to stop the iteration when the p
between these two vertical lines, as shown in Figure 2.11(b).

The latter criterion is often desired, but it is difficult to implement because it ;
volves the unknown solution p. We adapt this idea and terminate further calculatic
when the consecutive iterates p, | and p, are sufficiently close or if they agree wi

A cionificart Aol
e SIgTANCaii QIZiS.

Sometimes the user of an algorithm will be satisfied if p, ~ p,_| and other ti
when f(p,) =~ 0. Correct logical reasoning is required to understand the co
quences. If we require that jp, — p] < & and | f(ps)| < e, the point P, will !
located in the rectangular region about the solution (g, 0), as shown in Figure 2.12(;
If we SUpulate that Ip,, — pl < § or f(pn)l < €, the pmnt P, could be locat»

shown in Flgure 2. 12(b) The size of the tolerances & and € are cruc1al If the toi«

erances are chosen too small, iteration may continue forever. They should be choser:
about 100 times larger than 10~¥, where M is the number of decimal digits in the
computer’s floating-point numbers. The closeness of the abscissas is checkzd with one

of the criteria

{Prn — pn-1]l <&  (estimate for the absolute error)

or
2| prn — pn—1l <

{estimate for the relative error).
|Pn| + |Prl'-l|

The closeness of the ordinate is usually checked by | f (p)| < €.

Troublesome Functions

A computer solution to f(x) = 0 will almost always be in error due :
and/or instability in the calculations. If the graph y = f(x} is steep n«
(p, 0), then the root-finding problem is well conditioned (i.e., a solution with scvera
significant digits is easy to obtain). If the graph y = f(x) is shallow near (p, 0), ther:
the root-finding problem is ill conditioned (i.e., the computed root may ha
significant digits). This occurs when f(x) has a multiple root at p. This & ussed
further in the next section.
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Figure 2.12 (a) The rectangular region defined by |x — p| < § AND |y| < €.

Figure 2.12  (b) The unbounded region defined by |x — p| < § OR |y| < €.
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Program 2.4 (Approximate Location of Roots). Té roughly estimate the loca-
tions of the roots of the equation f(x) =  over the interval [a, b], by using the
equally spaced sample points (xg, f(x¢)) and the following criteria:

(i) (ye-1)(ye) <0, 0r

i) |yel < € and (yk — ye—1)Ok+1 — 26) < 0.
That is, either f(x;—1) and f(x;) have opposite signs or | f(xz)| is small and the
slope of the curve y = f(x) changes sign near (xz, f (xz)).

function R = approot (X,epsilon)

% Input - £ is the object function saved as an M-file named f.m
% - X is the vector of abscissas

% - epsilon iz the tolerance

% Dutput - R is the vector of approximate roots

Y=£(X)

yrange = max(Y)-min(¥);
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Comparing the results with the graph of f, we now have good initial approximations for
one of our root-finding algorithros. [ ]

Exercises for Initial Approximation

in Exercises 1 through 6 use a computer or graphics calculator to graphically determine
the approximate location of the roots of f(x) = 0 in the given interval. In each case,
determine an interval [a, #] over which Programs 2.2 and 2.3 could be used to determine

the roots (i.e., f(@)f(B) < 0),
L fx)=xt—for-2<x<2
2, fx)=x—cos(x)for 2<x=<2
3. f(x)=sin(x) — 2cos(x})for—2 <x <2
4. f(x) =cos(x) 4 (1 +x)lfor-2<x<2

epsilon2 = yrange¥epsilon;
n=length(X);

m=0;

X(n+1)=X(n);

Y(n+1)=Y(n);

for k=2:mn,
if Y(k-1)*Y(k)<=0,
m=m+1;
R{m)=(X(k-1)}+X(k))/2;
end
s=(Y(K)-Y(k-1))*(Y{(k+1D-Y(k));
if (abs(Y(k)) < epsilon2) & (s<=0),
m=m+1;
R(m)=X{X);
end
end

Example 2.10. Use approot to find approximate locations for the roots of f(x) =
sin(cos(x3)) in the interval [—2, 2]. First save f as an M-file named f.m. Since the results

311 Tas
will be used as initial approximations for a root-finding algorithm, we will construct X so

that the approximations will be accurate to 4 decimal places.
>>»X=-2:.001:2;

>>approot (X,0.00001)

ans=

-1.9875 -1.6765 -1.1625 1.1625 1.67656 1.9875

5 fF)=(x—-22—In(x) for0.5 <x <45
6. f(x)=2x—tan(x)for-14=<x <14

Algorithms and Programs

In Problems 1 and 2 use a computer or graphics calculator and Program 2.4 to approximate
the real roots, to 4 decimal places, of each function over the given interval. Then use
Program 2.2 or Program 2.3 to approximate each root to 12 decimal places.

1. f(x) = 1,000,000x* — 111,000x2 + 1110x ~ 1 for—2 € x <2

2. fx)y= 5500 — 38x% 4+ 21x% — Sax® — 3wxd —5x2 +8x —3for—15 < x <15,

3. A computer program that plots the graph of y = f(x) over the interval [a, b] using
the points (xg, ¥p), (x1, ¥1), ..., and (xy. yn) usually scales the vertical height of
the graph, and a procedure must be written to determine the minimum and maximum
values of f over the interval.

ia} Constrct an aloorithm that will find the valueg V... = max;

{a} Construct an algorithm that will find
ming {yz}.

(b) Write a MATLAB program that will find the approximate location and value of
the extreme vatues of f(x) on the interval {a, b].

(¢) Use your program from part (b} to find the approximate location and value of
the extreme values of the functions in Problems I and 2. Comparte your approx-
imations with the actual values.
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Slope Methods for Finding Roots

If fix), £'(x), and f”(x) are continuous near a root p, then this extra information
regarding the nahire of f{x) can be used 1o develop algorithms that will produce se-
quences | p, } that converge faster to p than either the bisection or faise position method.
The Newton-Raphson {or simply Newton's) method is one of the most useful and best
known algorithms that rehes on the continuity of f'{x) and f”(x). We shall intreduce
it graphically and then give a more rigarous treatment based on the Taylor polynomial.

Assume that the initial approximation pg is near the root p. Then the graph of
y = f(x) intersects the x-axis at the point ( p, 0). and the peint { po. f(po)) lies on the
curve near the point { p, 0) {see Figure 2.13). Define p; to be the point of intersection of
the x-axis and the fine tangent 10 the curve at the point (po, f(pg)). Then Figure 2.13
shows that p; will be closer to p than py in this case. An equatton relating p and po
can be found if we write down two versions for the slope of the tangent line L:

) AT
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We row make these ideas more precise.

Theorem 2.5 (Newton-Raphson Theorem). Assume that f = C%la. b] and here
exists a number p € |a, b], where f(p) = Q. [f f'(p) # 0, then there exists a § > (

such that the sequence {py 172, defined by the ticration
flp-)
Spe )
will converge to p for any initial approximaltion pg € [p — 8. p + §1.
Remark. The function g{x) defined by formuta

f{x)

flix)

is called the Newéon-Raphson iteration function. Since j(p) = 0, it is easy 1o see
that g(p) = p. Thus the Newlon-Raphson iteration for finding the root of the equation

(4) Pk =g(px-1) = px-1— for k=1,2, ..

(3) glx)y=x—

Il [4Y
which is the slope of the line through (p;. 0) and (pg, f'(po)), and
(2) = f’(PU)'

which is the slope at the point (pg. f(pp)). Equating the values of the slope m in
equations (1) and (2) and solving for p; results in

fipo).

33 1= - .
( pr=a f{po)

pa ST
1

(py. fip)))

2. fipgh)

Figure 2.13 The geomeyric construction of py and po for
the Newton-Raphson method.

ey 03¢ H

Fte)r="0isaccomplished by finding & fixed pointof the functiongtx—————————————
Proof. The geometric construction of p| shown in Figure 2.13 does not help ir un-

derstanding why pg needs to be close to p or why the continuity of f”(x) is essential.

Our analysis starts with the Taylor polynomial of degree n = 1 and its remainder term:

Fe)x = po)?

(6) Flxy= f(po) + f (po)ix - pp) + o7

where ¢ lies somewhere between pg and x. Substituting x = p into equation (6) and
using the fact that f{p) = 0 praduces

ALY B

, o Le)p — por?
7 0= flpo) + f (po)(p— po) + #.

Il po 15 close enough o p, the last term on the right side of (7) will be small com-
pared to the sum of the first two terms. Hence it can be neglected and we can use the
approximation

(8) 022 f(po) + f'{poHp — po).

Soiving for p in equation (8), we get p = po — f(po)/f'(pg). This is used to define

tho rast annravimatinn n. o tha raar
Gi¢ NeAL approximausi 2 W Wi rost

_ fpo)
Fipay

When pp ; is used in place of pg in equation (9). the general rule (4) is established. For

9 Pt = po

-most applications this is all that needs to be understood. However, to fully comprehend:
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what is happening, we need to consider the fixed-point iteration function and apply
Theorem 2.2 in our situation. The key is in the analysis of g'(x):
@)= Fe)f"x) _ fo)f"(x)

S,(x)zl'" Ty T s rrs a2t
U (x”" (WIRCY )

By hypothesis, f(p) = 0; thus g’(p) = 0. Since g’(p) = 0 and g(x) is continuous, jt
is possible to find a § > 0 so that the hypothesis |g'(x}| < 1 of Theorem 2.2 is satisfied
on (p — &8, p + 8). Therefore, a sufficient condition for pg to initialize a convergent
sequence { pe )22 o, which converges to a root of f(x) =0, is that po € (p — 8, p +6)
and that § be chosen so that

10
4o T

<1l foralxe(p—4&p+8 .

Corollary 2.2 (Newton’s Iteration for Finding Square Roots), Assumethat A > 0
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Example 2.11. Use Newton’s square-root algorithm to find /5.
Starting with pg = 2 and using formula (11}, we compute

1= =225

__ 2236111111 +5/2.236111111

2

» 2.36067978 + 5/2.236067978
4 = 5

“

24572
2

= 2.236067978

= 2.236067978.

Further iterations produce p; =~ 2.236067978 for k > 4, so we see that convergence
accurate to nine decimal places has been achieved. -

Now lei us turn 0 a familiar probiem froin elementary physics and see why de-
termining the location of a root is an important task. Suppose that a projectile is fired

_ isarealnumberandlet py > 0be an initial approximation to «/A. Define the sequence

{Pr1S2, using the recursive rule

A
Pi—1+——
—7,-—-25_—1 for k=1, 2, ....

&~

an Pk =

Then the sequence { Pk}ﬁg converges to \/Z; that is, limyoo pr = \[A_

Outline of Proof.  Start with the function f(x) = x% — A, and notice that the roots of
the equation x2 — A = O are £4/A. Now use f(x) and the derivative f'(x) in formula
(5) and write down the Newton-Raphson iteration formula

o fw x2-A
(12) S(I]—x—m_x— P
This formula can be simplified to obtain
LA
a13) e =24

When g(x) in (13) is used to define the recursive iteration in (4), the result is formula
(11). Tt can be proved that the sequence that is generaled in {11) will converge for any

atawting uals N Tha dataile nen 1aft Frc tha avar-loas -
STaMiiig vaiud pgg > U, 160 GSlans arc €1t 101 ind €Xercises. ®

An important point of Corollary 2.2 is the fact that the iteration function g{x)
involved only the arithmetic operations +, —, x, and /. If g{x) had involved the cal-
culation of a square root, we would be caught in the circular reasoning that being able

o calculate the sanare ot \nnuid nnrn‘nr von o r.nr'urnnn-l\t define a caquenca that unll

O LRICRIAIS L0 SHUART TLOL WORES IRy \Ju O ICCUISHYLLY CLaihnc a SCQUCid watl

converge to +/4. For this reason, f (x) = x? — A was chosen, because it involved only
the arithmetic operations.

from the prigin with an angle of elevation bg and initial velocity vp. In elementary
courses, air resistance is neglected and we learn that the height y = y(¢) and the dis-
tance traveled x = x (¢}, measured in feet, obey the rules

P

a . ¢ 2 3 .
(i4) y=uvy —i6° and x =y,

where the horizontal and vertical components of the initial velocity are v, = vy cos(bp)
and vy = vgsin(by), respectively. The mathematical mode!l expressed by the rules
in (14} is easy to work with, but tends to give too high an aliitude and too long a range
for the projectile’s path. If we make the additional assumption that the air resistance is
proportional to the velocity, the equations of motion become

(15) y=f()=(Coy+32¢H (1 - e/¢) - 32Ct
and
(16) x = ()= Cu, (1 - €Y,

where € = m/k and k is the coefficient of air resistance and m is the mass of the
projectile. A larger value of C will result in a higher maximum altitude and a longer
range for the projectile. The graph of a flight path of a projectile when air resistance is
considered is shown in Figure 2.14. This improved model js more realistic, but requires
the use of a root-finding algorithm for solving f(t) = 0 to determine the elapsed time
until the projectile hits the ground. The elementary model in (14) does not require a
saphisticated procedure to find the elapsed time.
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¥
x, y)=(r(1), f(r))

300 }
200
100
] x Figure 2.14 Path of a projectile

200 400 600 300 1000 with air resistance considered.

Table 2.4  Finding the Time When the Height £(r} Is Zero
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to check for this situation, but what use is the last calculated approximation pg—; in
this case? It is quite possible that f(pi_;) is sufficiently close to zero and that py_ |
is an acceptable approximation to the root. We now investigate this situation and will
uncover an interesting fact, that is, how fast the iteration converges.

Definition 2.4 (Order of a Root). Assume that f(x} and its derivatives f'(x),
voer F*)(x) are defined and continuous on an interval about x = p. We say that
f(x) = 0 has aroot of order M at x = p if and only if

(17)
fpy=0, f(pm=0, ..., ¥ Upy=0and FM(p)£o0.

A oot of order M = 1 is often called a simple root, and if M > I, itis called a
multiple root. A root of order M == 2 is sometimes called a double root, and so on.

The next result will illuminate these concepts. A
k Time, py Pryt ~ Pk Height, f(py) - ) ) )
P Y ; 079773101 3 230973 Lﬂﬂﬂlei—rfqumuUﬁ(ﬂ?OMs a root of order M at x = p, then there
1 8.79773101 —0.05530160 —2.6;2969733 exists a continuous function A(x) so that f(x) can be expressed as the product
2 8.74242941 —0.00025475 —0.03050700 M
3 8.74217467 ~0.00000001 —0.00000100 (18) flx}y=(x - pY"h(x), where h(p) #0.
4 B 8.74217466 0.00000000 0.00000000

Example 2.12. A projectile is fired with an angle of elevation by = 45°, vy, = v, =
160 ft/sec, and C = 10. Find the elapsed time until impact and find the range.

Using formulas (15) and (16), the equations of motion are y = f(r) = 4800(1 —
e™/1% — 320t and x = r(r) = 1600(1 — e~'/19)_ Since f(8) = 83.220972 and f(9) =
—31.534367, we will use the initial guess po = 8. The derivative is f/(t) = 48Q¢~4/10 —
320, and its value f'(pg) = f'(8) = —104.3220972 is used in formula (4) 10 get

_ 83.22097200
—104.3220972
A summary of the calculation is given in Tabile 2.4.

The value py has eight decimal places of accuracy, and the time until impact is ¢ ~
8.74217466 seconds. The range can now be computed using r(2), and we get

p1=8 = 8.797731010.

o At A s 3 S e e
ri{¥.742174bb) = 1600 kl e UVTTENIT U3 2.49863021L ]

'The Division-by-Zero Error

-

One obvious pitfall of the Newton-Raphson method is the possibility of divigion by

> pPItida LA 1 FUSSIDLUIT

zero in formula (4), which would occur if f'(pg—1) = 0. Program 2.5 has a procedure

[

Example 2.13. The function f(x) = x> —3x + 2 has asimple root at p = —2 and a
double root at p = 1. This can be verified by considering the derivatives f/(x) = 3x> — 3
and f"(x) = 6x. At the value p = -2, we have f(—2) = Oand f'(—2) = 9, so

M = 1 in Definition 2.4; hence p = —2 is a simple root. For the value p = 1, we have
F =0, /(1) =0, and f"(1) = 6, s0 M = 2 in Definition 2.4; hence p = 1 is a double
root. Also, notice that f (x) has the factorization f(x) = (x + 2){x — 12 [

Speed of Convergence

The distinguishing property we seek is the following. If p is a simple root of f(x) = 0.
Newton’s method will converge rapidly, and the number of accurate decimal places
(roughly) doubles with each iteration. On the other hand, if p is a multiple root, the
error in each successive approximation is a fraction of the previous error. To make
this precise, we define the order of convergence. This is a measure of how rapidly a
sequence converges.

Definition 2.5 (Order of Convergence). Assume that {p, 182, converges to p and
set E, = p — p, for n > 0. If two positive constants A 3 0 and R > 0 exist, and

2= pustl . |Eap] |
n—oo |p— p|R T a—oe |EylR T

(19)

L]
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Table 2.5 Newton's Method Converges Quadratically at a Simple Root

1Ep41l

k - =p—

Pk P+l — Pk Exr=p—p: [

0 —2,400000000 0.323800524 0.400000000 0.476190475
1 —2.076190476 0.072594465 0.076190476 0.619469086
2 ~2.003596011 0.003587422 0.003596011 0.664202613
3 —2.000008589 0.000008589 0.000008589

4 —2.000000000 0.000000000 0.000000000

then the sequence is said to converge to p with order of convergence R. The num-
ber A is called the asymptotic ertor constant. The cases R = 1,2 are given special

consideration.

20 If R = 1, the convergence of { Pn},?io is called linear.
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Table 2.6 Newton's Method Converges Linearly at a Double Roat

£ r Pi P+t — Pi _{ Ey=p-—m Enl
[£¢

0 1.200000000 —0.096969697 ~0.200000000 0.515151515
1 1.103030303 —0.050673883 ~0.103030303 0.508165253
2 1.052356420 —0.025955609 -0.052356420 0.496751115
3 1026400811 —0.013143081 —0.02640081 1 0.509753688
4 1.013257730 —0.006614311 ~0.013257730 0.501097775
5 1.006643419 —0.003318055 ~0.006643419 0.500350093

Example 2.15 (Linear Convergence at a Double Root). Start with pp = 1.2 and use
Newton-Raphson iteration to find the double root p = 1 of the polynomial f(x) = x* —
3x 42

20 If R = 2, the convergence of {p,},_ ts called quadrafic. A

If R is large, the sequence {p, } converges rapidly to p; that is, relation (19) implies
that for large values of n we have the approximation { E,+| & A|E,|®. For example,
suppose that R = 2 and |E,| = 10~2%; then we would expect that |E,4 1| = A x 1074,

Some sequences converge at a rate that is not an integer, and we will see that the
order of convergence of the secant method is R = (1 + \/5)/2 =z 1.618033989.

Example 2.14 (Quadratic Convergence at a Simple Root). Start with pg = 2.4
and use Newton-Raphson iteration to find the root p = —2 of the polynomial f(x) =
£ — 3x 4 2. The iteration formula for computing {px} is

2p3 -2
(22) pr=g(peoy) = ——1—.

Ipi g — 3

Using formula (21} to check for quadratic convergence, we get the values in Table 2.5. =

A detailed look at the rate of convergence in Example 2.14 will reveal that the error
in each successive iteration is proportional to the square of the error in the previous
iteration. That is,

|p = Pesil = Alp — pil?,
where A & 2/3. To check this, we use
Ip — p3] = 0.000008589 and |p— pol? = 0.003596011|% = 0.000012931

and it is easy to see that

5
|p = p3l = 0.000008589 ~ 0.000008621 = |p — 2

Using formula (20} to check for linear convergence, we get the values in Table 2.6. m

Notice that the Newton-Raphson method is converging to the double root, but at
a slow rate. The values of f{pi) in Example 2.15 go to zero faster than the values
of f'(p), so the quotient f(pi)/f’ (pr) in formula (4) is defined when pr # p.
The sequence is converging linearly, and the error is decreasing by a factor of approx-
imately 1/2 with each successive iteration. The following theoremn summarizes the
performance of Newton’s method on simple and double roots.

sume th

ata far Naowtnn.Ranhenn Itoepratianl a
i Na

Thenrem 2.6 (Convernonos " cn A
aaeorem .0 [Lonvergence Kate lor Newlon-Kaphsen lteration).  Assume

Newton-Raphson iteration produces a sequence {py}i that converges to the root p

of the function f(x). If p is a simple root, convergence is quadratic and

=1

o
(23) |Enia| = M[E,,JZ for n sufficiently large.
21 (o)l
If p is a multiple root of order M, convergence is linear and
M—1 .
24 JEnt1) % ——IEn|  for n sufficiently large.
Pitfalls

The division-by-zero error was easy to anticipate, but there are other difficulties that
are not so easy to spot. Suppose that the function is f(x) = x2 — 4x + 5; then the
sequence {pi} of real numbers generated by formula (4) will wander back and forth
from left to right and not converge. A simple analysis of the situation reveals that
f(x) > 0 and has no real roots.
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0.3

02

=
[

py=2 p=4 p, 6 py

Figure 2.15 (a) Newton-Raphson iteration for f(x) =
xe”* can produce a divergent sequence.
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Figure 2,15 (b) Newton-Raphson iteration for f(x) =
x% — x — 3 can produce a cyclic sequence.

Sometimes the initial approximation py is too far away from the desired root and
the sequence {p} converges to some other root. This usually happens when the stope
F'(po) is small and the tangent line to the curve y = f(x) is nearly horizontal. For
example, if f(x) = cos(x) and we seek the root p = 7/2 and start with po = 3,
calculation reveals that py = —4.01525255, p; = —~4.85265757, ..., and {p;} wil
converge to a different root —37/2 &= —4.71238898.

Suppose that f(x} is positive and monotone decreasing on the unbounded interval
[a, 00) and py > a; then the sequence {p;} might diverge to +o0. For example, if

f(x)=xe™* and pp = 2.0, then
p1 =40, p»=5333333333, Ce Pis = 19.723549434, RN

and {p;} diverges slowly to +oo (see Figure 2.15(a)). This particular function has
another surprising problem. The valve of f{x) goes to zero rapidly as x gets large, for
example, f(p1s) = 0.0000000536, and it is possible that pys could be mistaken for
a root. For this reason we designed stopping criterion in Program 2.5 to involve the
relative error 2| pg1 — pkl/(lpkf-f-lO""‘S), and when k = 15, this value is 0.106817, so
the tolerance § = 107 will help guard against reporting a false root.

Another phenomenon, cycling, occurs when the terms in the sequence {p;} tend to
repeal or 2lmost repeat. For example, if f(x) = x3—x—3 and the initial approximation
is po = 0, then the sequence is

p1=—3.000000, pr=—1961538, p3=~1147176, ps = —0.006579,
ps = —3.000389, ps=—1.961818, p; = —1.147430,

and we are stuck in a cycle where prygq = py fork = 0, 1, ... (see Figure 2.15(b)).
But if the starting value py is sufficiently close to the root p = 1.671699881, then {px}

y = arctan(x)

Figure 2.15 (c) Newton-Raphson iteration for f(x) =
arctan(x) can produce a divergent oscillating sequence.

converges. If pp = 2, the sequence converges: p) = 1.72727272, p» = 1.67369173.
p3 = 1.671702570, and py = 1.671699881.

When |g’(x)[ = 1 on an interval containing the root p, there is a chance of di-
vergent oscillation. Por example, let f{x} = arctan{x); then the Newton-Raphson

iteration function is g{x) = x — (1 + x2) arctan(x), and g'(x} = —2x arctan(x). If the
starting value pp = 1.45 is chosen, then

p1 = —1.550263297, p; = 1.845931751, p; = —2.889109054,

etc, (see Figure 2.15(c)). But if the starting value is sufficiently close to the root p = 0,
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Py Pj Po
e — : x
(. 0) B
enfey T
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Figure 2.16 The geometric construction of p for the se-
cant method.

a convergent sequence results. If pg = 0.5, then
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Table 2.7 Convergence of the Secant Method at a Simple Root

& Pi P+l — P Ex=p—m l jﬁ’fﬁ : IIB
0 ~—2.600000000 0.200000000 0.600000000 0.914152831
1 —2.400000000 0.293401015 0.400000000 0.469497765
2 —2.106598985 0.083957573 0.106598985 0.847290012
3 —2.022641412 0.021130314 0.022641412 0.693608922
4 —2,001511098 0.001488561 0.001511098 0.825841116
5 —2,000022537 0.000022515 0.000022537 0.727100987
6 —2.000000022 0.000000022 0.000000022

7 —2.,000000000 0.000000000 0.000000000

of the point of intersection of the line through these two peints and the x-axis; then
Figure 2.16 shows that p; will be closer to p than to either pp or p;. The equation

p1 = ~0.079559511,  p, =0.000335302,  p3 = 0.00000G000.

The situations above point to the fact that we must be honest in reporting an answer.
Sometimes the sequence does not converge. It is not always the case that after N
iterations a solution is found. The user of a root-finding aigorithm needs to be wamed
of the situation when a root is not found. If there is other information concerning
the context of the problem, then it s less likely that an erroneous root will be found.
Sometimes f{x) has a definite interval in which a root is meaningful. If knowledge
of the behavior of the function or an “accurate” graph is available, then it is easier to
choose po.

The Secant Method

The Newton-Raphson algorithm requires the evaluation of two functions per iteration,
S{pe—1)and f'{pr—1). Traditionally, the calculation of derivatives of elementary func-
tions could involve considerable effort. But, with modern computer algebra software
packages, this has become less of an issue. Still many functions have nonelementary
forms (integrals, sums, etc.), and it is desirable to have a method that converges almost
as fast as Newton’s method yet involves only evaluations of f(x) and not of f'(x).

carant mmath o d s i1l oo i iin el can avealiingioe A I T Sy

ThC SE€Cani meuioa win quullC UIU.JI vl CValuauon o1 J \A} PCI QI.CP aing ﬂl a Bllllplc
root has an order of convergence R = 1.618033989. It is almost as fast as Newton’s
method, which has order 2.

The formula involved in the secant method is the same one that was used in the
regula falsi method, except that the logical decisions regarding how to define each
succeeding term are different. Two initial points (pg, f (po)) and (p1, f(p1)) near
the point (p, 0) are needed, as shown in Figure 2.16. Define p> to be the abscissa

relating pz, pr,and py is found by considerimg theslope——————————————————————————————————
Py — Po P2— P

The values of m in (25) are the slope of the secant line through the first two approxi-
mations and the slope of the line through (p1, f(p1)) and (p2, ), respectively. Set the
right-hand sides equal in (25) and solve for p» = g(p1, po) and get

_ L@ = p)
fip1) ~ flpo)

The general term is given by the two-point iteration formula
F(p){px — pr—1)

(26) P2 =g(p1, pp) =

(27 1=gPk Pe—1) =pr — .
) Pert = 8Pk Pt = P o e
‘Example 2.16 (Secant Method at a Simpie Root). Start with pg = —2.6 und

Pt = —2.4 and use the secant method to find the root p = —2 of the polynomial function
Fl) =x3—3x+2

In this case the iteration formula (27) is
_ (P} — 3Pk + (P — pe—1)

o8 : '
~ Py — 3pr +3pr

ey

T
=

‘Thig can be algebraically manipulated to obtain
2 2
Pipe—1 + prpy —2
@) Pist = 8(Pk, Pro1) = —= e
Pi+ppPi-1+p_—3

The sequence of iterates is given in Table 2.7. n
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There is a relationship between the secant method and Newton’s method. For a
polynomial function f(x), the secant method two-point formula pe41 = g{(pk. Pe-1)
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Table 2.8  Acceleration of Convergence at a Double Root

will reduce to Newton's one-point formula pe+1 = g(p) if pr is replaced by pg_). & P Pesl — Pi Ev=p—p 1Ek+1]
Indeed, if we replace pg by pi—, in (29), then the right side becomes the same as the Ex 12
right side of (22) in Example 2.14. 0 1.200000000 —0.193939394 —0.200000000 0.151515150
Proofs about the rate of convergence of the secant method can be found in advanced 1 1.006060606 —0.006054519 —0.006060606 0.165718578
texts on numetical analysis. Let us state that the error terms satisfy the relationship 2 1.000006087 —0.000006087 —0.000006087
3 1.000000000 0.000000000 0.000000000
~ 1618 f”(P) 0.618
(30) |Ex41] = | Eg| ‘—_Zf’(p)
Table 29 Comparison of the Speed of Convergence
where the order of convergence is R = (1 + +/5)/2 2 1.618 and the relation in (30) is '
valid only at simple roots. Special Relation between
To check this, we make use of Example 2.16 and the specific values Method considerations successive eIror terms
o 1
|p — ps| = 0.000022537 Eff;:f:};si .fr’:j N 3',;‘5’;1
ip— p4[1.618 = 0.00151 10981.618 = 0.000027296, Secant method Mult‘iple root Epy = A|Ey|
Newton-Raphson Multiple root Epy1 = AlE;|
and Secant method Simpie root Epq = A|Ek|1-618
A =|f"(-2)/2f (-2)°"8 = (2/3)%58 = 0,778351205. Newton-Raphson Simple root Epo1 ~ A|E
Accelierated Multiple root Epri ™ A2
Combine hese and it is easy to see that Newton-Raphson

(p — psi = 0.000022537 ~ 0.000021246 = A|p — pa|' o8,

Accelerated Convergence

We could hope that there are root-finding techniques that converge faster than linearly
when p is a root of order M. Gur final result shows that 2 modification can be made to
Newton’s method so that convergence becomes quadratic at a multiple root.

Theorem 2.7 (Acceleration of Newton-Raphson Iteration). Suppose that the
Newton-Raphson algorithm produces a sequence that converges linearly to the root

v+ — mnofFardar A 1 Than tha Nawtnn Danhoan itaratinan formunla
A = §OiOraCr i > 1. Q00 i€ J<OWON-RAPASCH BETaudn 10IIhha

Mf (pr-1)

3 = pp_q —
(€3)) Pk = Pk—1 7 pen)

will produce a sequence {pi}72 , that converges quadratically to p.

Exampie 2.17 {Acceleration of Convergence at a Doubie Root). Start with pp = 1.2
and use accelerated Newton-Raphson iteration to find the double root p = 1 of f(x) =
©—3x+2

Since M = 2, the acceleration formufa (31) becomes

flpe-)) _ Pioy +3p1 -4
fipr-1) 3p;_, -3

Pk = Pr-1—2

and we obtain the values in Table 2.8. n

Table 2.9 compares the speed of convergence of the various root-finding methods
that we have studied so far. The value of the constant A is different for each method.
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Program 2.5 {(Newton-Raphson Iteration), To approximate a root of f{x) =0 |
given one initial approximation pg and using the iteration
|
Slp-1) for k=12

k= Pk—1— 57— or
| k F i (pe-1} l
function [p0,err,k,y]l=newton(f,df,p0,delta,epsilon,max1)
#Input -~ f is the object function imput as a2 string ’f’

A - ~ df is the derivative of f input as a string ’df’

% ~ p0 is the initial approximation to a zero of £

% - delta is the tolerance for pO

% - epsilon is the tolerance for the function values y
% ~ max! is the maximum number of iterations

%0utput ~ p0 is the Newton-Raphson approximation to the zerc
% - err is the error estimate for p0

% - k is the number of iterations

% - y is the fumction value f(p0)
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relerr=2+err/(abs(p2)+delta);

pO=p1;

pl=p2;

y=feval(f,pl};

if (err<delta)]|(relerr<delta)| (abs(y)<epsilon),break,end

end

Exercises for Newton-Raphson and Secant Methods

For problems involving calculations, you can use either a calculator or computer.

1. Let f(x) =x2—x42
(a) Find the Newton-Raphson formula py = g(pi-1).

for k=iTmaxi

pi=pO-feval (f,p0}/feval (df,p0);

err=abs(p1-p0);

relerr=2*err/(abs(pl)+delta);

po=pl;

y=feval (f,p0);

if (err<delta)({(relerr<delta)! (abs(y)<epsilon),break,end
end

Program 2.6 (Secant Method). To approximate a root of f(x) = 0 given twom‘
initial approximations po and p; and using the iteration ,

-

FP (P — be-1)
) — Flpe)

function [pl,err,k,y]=secant(f,pl,pl,delta,epsilon,mnaxl)
%Input - f is the object functicn input as a string ’f’

Pk+1 = Pk — for k=1, 2,

% - p0 and pl are the initial approximations to a Zero
% - delta is the tolerance for pi

%4 - epsilon i8 the tolerance for the function values y
4 - maxl is the maximum number of iterations

%0utput - pl is the secant method approximation to the zero
% - err is the error estimate for pi

3 - k is the number of iterations

% - y ia the function value f(pi)

for k=1:maxl

(b) Start with pg = —1.5 and find pi, p2, and p3.

2. Let f(x)=x2—x-3.
(a) Find the Newton-Raphson formula py = g(pr—i).
{b) Start with pp = 1.6 and find p;, p2, and p3.
{¢) Start with pgp = 0.0 and find p|, p2, p3, and ps. What do you conjecture about
this sequence?
3. Let f(x) = (x ~ 2)*.
(a) Find the Newton-Raphson formula py = g(pe—1)-
(b) Start with pp = 2.1 and find py, p2. p3, and pa.
(¢) Isthe sequence converging quadratically or linearly?

4, Let f(x) =x>—3x —2.
(a) Find the Newton-Raphson formula py = g(px—1).
{h) Start with pp = 2.1 and find p;, p», p3, and p4.
(¢} Is the sequence converging quadratically or linearly?

3. Consider the function f(x) = cos{x).
(a) Find the Newton-Raphson formula p; = g{pe-1).
(b) We want to find the root p = 37/2. Can we use pp = 37 Why?

& We wantto find theroot p = 3/2. Can we use pg = 57 Why?

6. Consider the function f(x) = arctan(x).
(a) Find the Newton-Raphson formula px = g(pr-1).
(b} If po = 1.0, then find p), p2, p3. and ps. What is lima 00 pi?

& If pg = 2.0, then find p1, p2. p3, and ps. What is limp 00 pi?
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T Oangidar the function Fiv) — va_x
7. Consider the unction JA\X) = X8

{a) Find the Newton-Raphson formula p; = g(px—1).
(b) If pg = 0.2, then find py, p2, p3, and ps. What is lim,_, o0 p?
(¢) If pp =20, then find p(, p2, p3, and ps. What is limy,— oo pi?
(d) What is the value of f(p4) in part (c)?
In Exercises 8 through 10, use the secant method and formula (27} and compute the next
two iterates p2 and p3.
8. Let f(x) = x% —2x — 1. Start with pp = 2.6 and p; = 2.5.
9, Let f(x) =2 — x — 3. Start with pg = 1.7 and p; = 1.67.

10, Let f(x) =x3 —x + 2, Start with pg = —~1.5and p; = —1.52

257 X e

11. Cube-root algorithm. Start with f(x) = x> — A, where A is any real number, and
derive the recursive formula

_ 2pk—1+ A/pﬁ_1

Pi f .
3
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Since p is a zero of f(x), we set x = p and obtain
l 4
0= flp)+ f(p)(p— po)+ ff (e (p — pu)*.
(a) Now assume that f’'(x) 5 0 for all x near the root p. Use the facts given above
and f'(pg) # O to show that

floey  ~f"(cw)
Filp) ~ 2f(pr)

(b) Assume that f'(x) and f”(x} do not change too rapidly so that we can use th.
approximations f'(pi) = f'(p)and f"(ck) = f"(p). Now use part (a) to got

P—pi+ o (p ~ pi)*.

Eou ~ S P)
2f'(p) ¢
19. Suppose that A is a positive real number.
(a}) Show that A has the representation A = g x 22", where 1/d < g < l and m 1s

an integer.

12. Consider f(x) = x¥ — A, where N is a positive integer.
(a) What real values are the solution to f(x) = 0 for the various choices of N and
A that can arise?
(b) Derive the recursive formula

(N=Dprt +A/p!

" for k=1, 2

P =

for finding the Nth root of A.

13. Can Newton-Raphson iteration be used to solve f(x) = 0 if f(x) = x% — 14x + 507
Why?

14. Can Newton-Raphson iteration be used to solve f(x) = 0 if f(x) = x'/37 Why?

15. Can Newton-Raphson iteration be used to solve f(x) = 0if f(x) = (x — 3)}!/? and
the starting value is pg = 47 Why?

16. Establish the limit of the sequence in (11).

17. Prove that the sequence {px} in equation (4) of Theorem 2.5 converges to p. Use the
following steps.
{a) Show thatif p is a fixed point of g(x} in equation (5) then p is a zero of f(x).

hY If nisazergof Fixyand £/ rn\ = 0 show that o/t nY = (0, 1lga nart b and
V3 A P AaZTC O JiX;and Py F VU EAN0W Wal g p; = U WSt pari (&) and

Theorem 2.3 to show that the sequence { px} in equation (4) converges to p.

18. Prove equation (23) of Theorem 2.6. Use the following steps. By Theorem 1.11, we
can expand f(x) about x = py to get

F@ = Fp+ F (e — po + %f”(Ck)(x — .

{(h) Use part (a) to show that the squarc ro0t i5s A172 = g!/¢ x 2. Remark. Let
po = (2¢ + 1}/3, where 1/4 < g < 1, and use Newton’'s formula {11). After
three iterations, p3 will be an approximation to ¢!/2 with a precision of 24
binary digits. This is the algorithm that is often used in the computer’s hardware
10 compute square roots.

20. (a) Show that formula (27) for the secant methed is algebraically equivalent to

Pi-1 f(pr) — Pe F(Pr—1)
fpe) — Flpe-1)

moe of ctoniBanias PUNPRPS. SRS § P N o

l:hpldi[! Wlly lUbb Ui blgluu&d.“bt lll b\..ID],[dLLlUI] Hakes s IOI‘ﬂlujd l Icnor fﬂf

computational purposes to the one given in formula (27).

21. Suppose that p is a root of order M = 2 for f(x) = 0. Prove that the accelerated
Newton-Raphson iteration

Pi+l =

)
cl
-

Pk = Pr-1— 2/ (pe)
B S(pe-1)
converges quadratically (see Exercise 18).

22. Halley’s method is another way to speed up convergence of Newton’s method. The
Halley iteration formula is

g0 = 22 (1 LI @)

S 2(f7(x))?

The term in brackets is the modification of the Newton-Raphson formula. Halley's

method will yield cubic convergence (R = 3) at simple zeros of f(x).

{a) Start with f(x) = x*> — A and find Haliey’s iteration formuia g(x) for find-
ing v/A. Use pg = 2 to approximate /5 and compute p;, pa, and ps.
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(b} Start with f(x) = x* — 3x + 2 and find Halley’s iteration formula g(x). Use
po = —2.4 and compute p;, p2, and ps.

23. A modified Newton-Raphson method for multiple roots. If p is a root of multiplic-
ity M, then f(x) = (x — p)Mq(x), where g(p) # 0.
(a) Show that #(x) = F{x)/f (x) has a simple root at p.
(b) Show that when the Newton-Raphson method is applied to finding the simple
root p of h{x) we get g(x) = x — h(x)/h’(x), which becomes

f&x)f'(x)
(f/ (x> — FX)F7(x)

glxy=x—

(c) The iteration using g(x) in part (b) converges quadratically to p. Explain why
this happens.

(d) Zero is a root of multiplicity 3 for the function f(x) = sin(x?). Start with
po = 1 and compute p|, pz, and p3 using the modified Newton-Raphson
method.

CONSECULive erTor terms (see Example 2 11) Ey = 0 400000 E| =0 043797 52 =
0.000062, and E; = .000000. Estimate the asymptotic error constant A and the
order of convergence R of the sequence generated by the iterative method.

Algorithms and Programs

[T

Mgodify Procrams 2.5 and 2.6 to
2.0 W

» MaOGLY rTOEIANMS .0 anaG

vision by zero occurs in (4) or (27), respectively, or (ii) the maximum number of
iterations, max1, is exceeded.

dienlav an annronriate arror mage
GISpuay an appropratt emoer mess

2. It is often instructive to display the terms in the sequences generated by (4) and (27)
{i.e., the second column of Tabie 2.4). Modify Programs 2.5 and 2.6 to display the
sequences generated by (4) and (27), respectively.

3. Modify Program 2.5 to use Newton’s square-root algorithm to approximate each of
the following square roots to 10 decimal places.

(@) Start with pp = 3 and approximate /8.
(b) Start with po = 10 and approximate JOT1.

()  Start with po = —3 and aporoximate _-/_
&) otan wilh pgp = —J5 and appioximaie

Modify Program 2.5 to use the cube-root algorithm in Exercise 11 to approximate
each of the following cube roots to 10 decimal places.

{a) Start with pp = 2 and approximate 71/3.

{h) Start with py = 6 and approximate 200173,

R 4nd 4Dt

(c) Start with pg = —2 and approximate (—7)

bl

13,
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5. Modify Program 2.5 to use the accelerated Newton-Raphson algorithm in Thea-
rem 2.7 to find the root p of order M of each of the following functions.

@ f)=x-2°M=5 p=2;start with pg = 1.
(b) f(x) =sin(x), M = 3, p = 0; start with py = 1.
€ f=ux-Dn{x}, M =2, p=1;statwith pp =2

6. Modify Program 2.5 to use Halley's method in Exercise 22 to find the simple zevo of
F&x) =x% — 3x 42, using pp = —2.4.

7. Suppose that the equations of motion for a projectile are

¥ = f(r) = 9600(1 — e~*/'%) — 480¢
X = r(t) = 2400(1 — e~1/15).

(h) TFind the range accurate to 10 decimal places.

8. (@) Find the point on the parabola y = x? that is closest to the point (3, 1) accurate
to 10 decimal places.

(b) Find the point on the graph of y = sin(x — sin(x)) that is closest to the point
(2.1,0.5) accurate to 10 decimal places.

(¢} Find the valuc of x at which the minimum vertical distance between the graphs
of fix) = ¥ +2and g(x) = (x/5) — sin(x) occurs accurate to 10 decimal
places,

Y. An open-top box is constructed from a reciangular piece of sheet metal measuring 10
by 16 inches. Squares of what size (accurate 10 0.000000001 inch) showld be cut from
the corners if the volume of the box is to be 100 cubic inches?

10. A catenary is the curve formed by a hanging cable. Assume that the lowest point is
(0, 0); then the formula for the catenary is y = C cosh(x/C) — C. To determine the
catenary that goes through (+a. b) we must solve the equation & = C cosh{a/C) —
for C.

(#) Show that the catenary through (£10,6) is y = 9.1889 cosh(x/9.1889) —

o 1an

9,1889.
(h) Find the catenary that passes through (+12, 5).
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2.5 Aitken’s Process and Steffensen’s and Muller’s

Methods (Optional)

In Section 2.4 we saw that Newton's method converged slowly at a multiple root and
the sequence of iterates { p;} exhibited linear convergence, Theorem 2.7 showed how
to speed up convergence, but it depends on knowing the order of the root in advance.

Aitken’s Process

A technique called Aitken’s A? process can be used to speed up convergence of any
sequence that is linearly convergent. In order to proceed, we will need a definition.

Definition 2.6, Given the sequence {p, }°° n—y+ define the forward difference Ap, by
(1) Apy = pnt1—pn for n = 0.

Higher powers A* p,, are defined recursively by
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Table 2.10  Linearly Convergent Sequence {py}

91

) A*p, = AN (Apy)  for k> 2. A

Theorem 2.8 (Aitken’s Acceleration). Assume that the sequence {pa)3°, con-
verges linearly to the limit p and that p — p, #£ Oforalln > 0. If [_hg[g exists a

jAt L LU alil lal

real number A with JA| < 1 such that

3) lim B Prrt _ 4,
n=00 " p— P

then the sequence {ga}5, defined by

(A Pn)z _ (Pn+1 — Pn)2
A2p, " sz —2pne1 + Pa

4) Gn = pn —
converges to p faster than {p,}52 . in the sense that

(5) lim |29 _o.

=X (P — Py

imit, we can w
xitiie, WE Lall wilio

Praof We will show how to derive formula (4) and will leave the proof of (5) as an
a t Tite

—

nea tha tarme

i in {2) ara annrnae
ince In€ leMmis m {3 ar

ino
& approaciing

(6) PPl a and 2222 04 when is large
P — Pn P = Pnsl

The relations in (6) imply that

(7 (P — Pns1)? (P — i) (P~ pn).

Ep
n Pn En=pn—p Ap =
En—l

1 0.606530660 0.039387369 -0.586616609
2 ! 0545239212 | —-0.021904079 | —0.556119357
3 | 0.579703095 0.012559805 | —0.573400269
4 | 0.560064628 | —0.007078663 | —0.563596551
5 0.571172149 0.004028859 | —0.569155345
6 | 0.564862947 | —0.002280343 | —0.566002341

Table 2.11 Derived Sequence {g,} Using

Aitken’s Process

n 4n gn—p

1 0.567298989 0.000155699

2 0.567193142 0.000049852

3 0.567159364 0.000016074

4 0.567148453 0.000005163

5 0.567144952 0.000001662

6 0.567143825 0.000000534

When both sides of (7) are expanded and the terms p? are canceled, the result is

iy Pni2Pn — P',ZH.]
Pnt2 — 2Pni1 + Pr
The formula in (8) is used to define the term g,. It can be rearranged algebraically to
obtain formula (4), which has less error propagation when computer calculations are
made. .

(8) =g, forn=0,1,

Example 2.18. Show that the sequence {p,} in Example 2.2 exhibits linear convergence,
and show that the sequence {g,} obtained by Aitken’s A2 process converges faster.

The sequence {p,} was obtained by fixed-point iteration using the function g(x)

~* and starting with pg = 0.5. After convergence has been achieved, the limit is P

€
ASET1IAINON T~ oy Mol Tlan Y 1 nand 2 11 o211
VIO 193470, 11IE anl.lcb Fﬂ auu t{ﬂ arc slVCll J.ll 1dUICH L. iv anu £.11. 101 N..lubl..ldllUll, I..l

&

H.

value of g,is given by the calculation

1= p1— (p2 - p1)?
—2p2+py
— 0.606530660 — (—VDO121HBY” _ ; 567298989, .
0.095755331
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Figure 2.}7 The starting approximations pg, p;, and p; for Muller’s method, and the
differences kg and 4.
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Each point is used to obtain an equation involving a, b, and c:
At 1 = hy: ah%+bho+c=fo,

(12) Att=hy  ah+bhyte=fi,
At 1 =0 al® +b0 +c= fr

From the third equation in (12), we see that

(13) c= fa

Substituting (13) into the first two equations in (12) and using the definition ep = f~c
and e; = f1 — ¢ results in the linear system

aﬁg+6ﬁ0=ﬁ)—c=eo,

(14}
ah%+bh1 = fi—c=ey.

Solving the linear system for a and ¥ results in

Although the sequence {g,} in Table 2.11 converges Iinearly, it converges faster
than {p,} in the sense of Theorem 2.8, and usuvally Aitken’s method gives a better
improvement than this, When Aitken’s process is combined with fixed-point iteration.
the result is called Steffensen’s acceleration. The details are given in Program 2.7 and
in the exercises.

Muller’s Method

Muller’s method is a generalization of the secant method, in the sense that it doe-
not require the derivative of the function. It is an iterative method that reaunires thre:
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starting points {po, f(po)), (1, f(p1)), and (pz2, f(p2)). A parabola is constructe.
that passes through the three points; then the quadratic formula is used to find a roct
of the quadratic for the next approximation. It has been proved that near a simpl.
root Muller’s method converges faster than the secant method and almost as fast a-
Newton’s method. The method can be used to find real or complex zeros of a function
and can be programmed to use complex arithmetic.

Without loss of generality, we assume that p» is the best approximation to th.
root and consider the parabola through the three starting values, shown in Figure 2,17
Make the change of variable

¢ t=x— pa,

and use the difference

(10) ho=po—p2 and hy=p—p2
Consider the quadratic polynomial involving the variable ¢:

(11) y=at’+bt+c.

_ eohy —erhy
hihd — hoh}
e;h2 - e0h1

1 !2.
nlrzo——ﬂonl

(15}
b=

The quadratic formula is used to find the roots ¢ = z;3, zz of (11):

-2¢
/i__—“-

u_\_'vu— b its

(16) 7=

Formula (16) is equivalent to the standard formula for the roots of a quadratic and is
better in this case because we know that c = f.

To ensure stability of the method, we choose the root in (16) that has the smallest
absolute value. If b > 0, use the positive sign with the square root, and if & < 0, use
the negative sign. Then p3 is shown in Figure 2.17 and is given by

(17 p=p+e

To update the iterates, choose po and p; to be the two values selected from among
{pa. p1, p3} that lie closest to p1 (i.e.. throw out the one that is farthest away) Thenre-
place pévwmx p3. Although a loi of auxiliary calculations are done in Muller’s method,
it only requites one function evaluation per iteration.

If Muller’s method is used to find the real roots of f(x) = 0, it is possible that
one may encounter complex approximations, because the roots of the quadratic in (16)
might be complex (nonzero imaginary components). In these cases the imaginary com-
ponents will have a small magnitude and can be set equal to zero so that the calculations

proceed with real numbers.
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Table 2.12 Comparison of Convergences near a Simple Root
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Table 2.13 Comparison of Convergence Near a Double Root

Secant Muller’s Newton's Steffensen
k method method method with Newton
0 1.400000000 1.400000000 1200000000 1.200000000
i 1.200000000 1.300000000 1.103030303 1103030303
2 1.138461538 1.200000000 1.052356417 1.052356417
3 1.083873738 1.003076923 1.026400814 0.996890433
4 1.053093854 1.003838922 1,013257734 0.998446023
5 1.032853156 1.000027140 1.006643418 0.999223213
6 1.020429426 0.999997914 1.003325375 0.999999193
T 1.012648627 0.999999747 1.001663607 0.999999597
8 1.007832124 1.000000000 1.000832034 0.999995793
L 1.004844757 1.000416075 0.999999999

95

Secant Muller’s Newton’s Steffensen

k method method method with Newton
0 —2.600000000 —2.600000000 =2.400000000 —2.400000000
| —2.400000000 —2.500000000 —2.076190476 —2.076190476
2 —2, 106598985 —2.,400000000 —2.003596011 —2.003596011
3. —2.022641412 —1.985275287 —2.000008589 —1.982618143
4 —-2.001511098 —2.000334062 —2.000000000 ~2.000204982
5 —2.000022537 —2.000000218 —2.000000028
6 —2.000000022 ~2.000000000 —2.000002389
7 —2.000000000 —2.000000000

Comparison of Methods

Steffe he ed tooethe ith the Newto R4 on hxed-poin 1C

tion g(x) = x = f(x)/f'(x). In the next two examples we look at the roots of
the polynomial f(x) = x? = 3x 4+ 2. The Newton-Raphson function is g(x) =
(2x3 — 2)/(3x2 ~ 3). When this function is used in Program 2.7, we get the calcula-
tions under the heading Steffensen with Newton in Tables 2.12 and 2.13. For example,
starting with pp = —2.4, we would compute

(18) p1 = g(po) = —2.076190476,
and
(19 p2 = g(p1) = —2.003596011.

Then Aitken’s improvement will give p3 = —1.982618143.

Example 2.19 (Convergence near a Simple Root). This is a comparison of methods
for the function f(x} = x> — 3x + 2 near the simple root p = —2.

Newton’s method and the secant method for this function were given in Examples 2.14
and 2.16, respectively. Table 2.12 provides a summary of calculations for the methods. =

Example 2.20 (Convergence near a Double Root). This is a comparison of the methods
for the function f(x) = x* — 3x + 2 near the double root p = 1. Table 2.13 provides u
summary of calculations. =

Newton’s method is the best choice for finding a simple root (see Table 2.12). AT ..
double root, either Muller’s method or Steffensen’s method with the Newton-Raphson
formula is a good choice (see Table 2.13). Note in the Aitken’s acceleration formula (4
that division by zero can occur as the sequence {p;} converges, In this case, the last
caiculated approximation to zero should be used as the approximation to the zero of .

In the following program the sequence {py}, generated by Steffensen’s method
with the Newton-Raphson formula, is stored in a matrix @ that has max1 rows and
three columns. The first column of @ contains the initial approximation to the root,
po, and the terms p3, ps. ..., pa, ... generated by Aitken’s acceleration method (4).
The second and third columns of ( contain the terms generated by Newton's method.
The stopping criteria in the program are based on the difference between consecutive

terms from the first column of Q.

' Program 2.7 (Steffensen’s Acceleration). To quickly find a solution of the fixed- |
point equation x = g(x) given an initial approximation pg; where it is assumed
that both g(x) and g'(x} are continuous, |g’(xJ} < |, and that ordinary fixed-point
iteration converges slowly (linearly) w p. 1

function [p,Q]=steff(f,df,p0,delta,epsilon,max1)
#loput - f is the object function input as a string ’f’

% - df is the derivative of f input as a string ’df’

% - p0 is the initial approximation to a zero of f

% - delta is the tolerapce for p¢

% - epsilon is the tolerance for the function values y
4 - maxl is the maximum number of iterationms

%Output - p is the Steffensen approximatijon to the zero

% - @ is the matrix containing the Steffensen saquence
%Initialize the matrix R

B=zeros(max1,3):

R(1,1)=p0;
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for kel:maxi ' Program 2.8 (Muller’s Method). To find a root of the equation f(x) = 0 given

for j=2:3
YDencminator in Newton-Raphson method is calculated
nrdenom=feval(df,R(k,j-1)};

ACalculate Newton-Raphson approximations
if nrdenom==0
’division by zero in Newton-Raphson method’

three distinct initial approximations pg. p), and pa.

fucction [p,y,err]=muller(f,p0,pl,p2,delta epsilon,raxi)

%fInput - £ im the object function input as 3 mtring '€’

9
%
Y
4
N
e

y

- p0, pl, and p2 are the initial approximations

- delta is the tolerance for p0, pi, and p2

- epsilon the the tolerance for the function values y
- maxl is the maximum number of itsrations

break e
else %0utput - p is the Muller approximation to the zero of f
R(k,j}=R(k,j-1)-feval(f,R{k,j~1))/nrdenomn; Z - ¥ is the. function valve y = f(p)
end % - err is the error in the approximation of p.

%Denominator in Aitken’s Acceleration process calculate
aadenon=R(k,3)-2*R(k,2)+R(k,1);

%Calculate Aitken’s Acceleration approximations

%Initialize the matrices P end Y
P={p0 p1 p2];
Y=feval (f,P);

#Calculate a and b in formula {(15)

if aadenom==0
’division by zero in Aitken’s Acceleration’

4 1 4 4
IO K=l maxXl

h0=P(1)-P(3);h1=P(2)-P(3) ;e0=Y(1)-Y(3) ;e1=Y(2)~Y(3);c=Y(3);
denom=h1#*h0~2-h0¥*h1°2;

break
else a={a0*hl-elxh() /denom;
R(k+1,1)=R(k,1)-(R(k,2)-R(k,1)) "2 /aadenom; b=(e1+h0"2-e0+h1"2)/denom;
end %Suppress any complex roots
if b 2-4%axc > {
end digcmsqrt (b"2-4%a*c);
NP ) elsae
%End program if division by zero occurred disc=0:
2f (nrdencm==0) | (aadenom==0) '
end
break .
ond %Find the smallest root of (17}
ifb<o
%Stopping criteria are evaluated disc=-disc;
err=abs(R{k,1)-R(k+1,1)); end
relerr=err/{abs(R(k+1,1))+delta), z=-2%c/ (btdisc) ;
y=feval (f ,R(k+.,1}; p=P(3)+z;

1f (err<delta)|(relerr<delta) i (y<epsilon}
% p and the matrix J are determined

%Sort the entries of P to find the two closest to p
if abs(p-P(2))<abs{p-P(1))

p=R{k+1,1); Q;L;u?(z) (1} P(3)1;
Q=R{.:k+1,:]; P=Q; ,
breax v=feval(f,P;

end end

if abs(p-P(3))<abs(p-P(2))
R=[P(1) P{3) P(2)];
P=R;
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Y=feval({i,P); 8. The sequence {p,} generated by fixed-point iteration, starting with py = 3.14, and
end using the function g(x) = In(x) + 2 converges linearly to p =~ 3.1419322. Use
%Replace the entry of P that was farthest from p with p Aitken’s formula (4) to find gy, g2, and g3, and hence speed up the convergence.
P(3)=p; 9. For the equation cos(x) — I = 0, the Newton-Raphson function is g(x) = x — (| —
Y(3) = faeval(f,P(3)); cos{x}))/ sin(x) = x — tan(x/2). Use Sieffensen’s algorithm with g(x) and start with
y=Y(3); Po=0.5, and find p1, py, and p3; then find p4, ps, and psg.

%Determine stopping criteria 10. Convergence of series. Aitken's method can be used to speed up the convergence of

err=abs(z);

a series. If the nth partial sum of the series is
relerr=err/(abs(p)+delta); :

if (err<delta)|(relerr<delta)|{abs(y)<epsilon) <
N Sn = Y Ak'
viean e
end
end show that the derived series using Aitken’s method is
2
=8+ —--—"—A’H-l .
An+l An+2
Exercises for Aitken’s, Steffensen’s, and Muller’s Methods In Exercises 11 through 14, apply Aitken’s method and the results of Exercise 10 to speed
up the convergence of the series.
1. Find Ap,, where 11, S, = Y"7_,(0.99)
(a} pp=35 ) pn=6n+2 © pa=na+l) 12. "
S =Y"0_ i
2. Let pp = 2n° + 1. Find A* p,,, where A e
13. Sy = by 57

(a) k=2 (b) £=3 (€ k=4

— I 1
3. Let p, = 1/2". Show that g, = O for all », where g, is given by formula (4). 14 S =it 75
15. Use Muller’s method to find the root of f(x) = x3 — x — 2. Start with pe = 1.0,
p1=12,and p; = 1.4 and find p3, ps, and ps.
16. Use Muller’s method to find the root of f(x) = 4x? — ¢*. Stawt with py = 4.0,

p1=4.1,and py = 4.2 and find p3, pa, and ps.

4 Tetn, =1/n Showthatg, = 1/(2n 4 ) for a1l n; hence there is little acceleration
e LU Pp A0 SA0W LAl gn jan <7 10T Qa1 K NenCe Wsre 18 U acleieraion

of convergence. Does { p,} converge to 0 linearly? Why?
5. Let pr = 1/(2" — 1). Show that g, = 1/ (4""" - 1) for all n.

6. The sequence p, = 1/(4” + 47"} converges linearly to . Use Aitken’s formula (4)

to find 1, g2,and g3, and hence speed up the convergence. 17. Let { ps} and {g,] be any two sequences of real numbers. Show that

(@ A(pa+gn) = Apn+ Agn

n P an (b)  A(pngn) = Pnt1AGn + guAAPn
0 0.5 026437542 18. Start with formula (8), add the terms pa42 and — p,.7 to the right side, and show that
1 0.23529412 an equivalent formula is
2 | 0.06225681
3 | 001562119 (Pat2 — pasi)?
M P % pn+2 — r '|' raT =
4 | 0.00390619 Prnit2 = 2Pp+1 + pu
5 | 0.00097656

19. Assume that the error in an iteration process satisfies the relation E,,; = K E, for

7. The sequence { p,} generated by fixed-point iteration starting with py = 2.5 and using some constant X and |K| < 1.

the function ai{x) = I‘ + r‘nllz convarase linearlutn p — 2 Ilea Aitlan’s fommula PR
— J. udu nil—'\ 13 lvlildia \ay I‘ulﬂ alr CJ\pll:bbluu lU[ ":’II Llldl- l"VUJVeb .an, A cll‘lﬂ n.

w00 JRDOUOL §WK) VUnYwigos dlnladny W g

(4 to find g1, g2, and g3, and hence speed up the convergence. (b) Find an expression for the smallest integer N so that [Ey| < 1078,
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Algorithms and Programs

1.

2

t

Use Steffensen’s method with the initial approximation pg = 0.5 to approximate the
zero of f(x) = x — sin{x) accurate to 10 decimal places.

Use Steffensen’s method with the initial approximation pg = 0.5 to approximate the
zero of f(x) = eim’r3) closest to 0.5 accurate to 10 decimal plages.

SN Y LIOSEA1 10 L0 accurale 10

Use Muller’s method with the initial approximations pg = 1.5, p; = 1.4, and
p2 = 1.3 tofind a zero of f(x) = 1 + 2x — tan(x) accurate to 12 decimal places.

In Program 2.8 (Muller’s method} a 1 x 3 matrix P is initiatized with pg, p1. and p;.
Then at the end of the loop, one of the values pp, p1, or p2 is replaced with the new
approximation to the zero. This process is continued until the stopping criteria are
saiisfied, say at &k = K. Modify Program 2.8 so that, in addition to p and err, a
(K + 1) x 3 matrix @ is produced such that the first row of @ contains the 1 x 3
matrix P with the initial approximations to the zero, and the kth row of @ contains
the kth set of three approximations to the zero.

Use this modification of Program 2.8 with the initial approximations pp = 2.4,
p1 = 2.3, and py = 2.2 to find a zero of f(x) = 3cos(x) + 2sin(x) accurate to

J

The Solution of Linear Systems
AX =B

8 decimal places

LA |

Three planes form the boundary of a solid in the first octant, which is shown in Fig-
ure 3.1. Suppose that the equations for these planes are

S5x+y+z=5
x4y +z=4
x+y+3z=3.

What are the coordinates of the point of intersection of the three planes? Gaussian
elimination can be used to find the solution of the linear system

x =076, y=068 and z=0.352.

In this chapter we develop numerical methods for solving systems of linear equations.

Introduction to Vectors and Matrices

A real N-dimensional vector X is an ordered set of N real numbers and is usually
written in the coordinate form
(4] X=(x1,x20....x5).

I_ier‘e the numbers x|, x2, ..., and xy are called the components of X. The set con-
sisting of all N-dimensional vectors is called N-dimensional space. When a vector is
used to denote a point or position in space, it is called a posifion vector, When it is

101
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Vectors in N-dimensional space obey the algebraic property
(6) Y- X=Y+(-X).

If ¢ is a real number (scalar), we define scalar multiplication c X as follows:
) ¢X ={cxy,cxz, ..., cxn).

If c and d are scalars, then the weighted sum c¢X + dY is called a linear combina-
tion of X and ¥, and we write

(8) cX +dY = (cxy +dy, cxa+dyy, ... exy + dyn).

Antorn ¥Vooaed
The dot product of the two vectors X and

defined by the equation

&) X -Y=xiyi+x2y:4---+xnyn.
The norm (or length) of the vector X is defined by

(10) XN = (xf +x5 + - +x}) 2.

et

is a scalar quantity (real number)

Figure 3.1 The intersection of three pianes

used to denote a movement between two points in space, it is called a displacement

vector,

Let another vectorbe ¥ = (¥1, y2, ..., yn). The two vectors X and ¥ are said to
be equal if and only if each corresponding coordinate is the same; that is,

(2} X=Y ifandonlyif x;=y; forj=1,2 ..., N

The sum of the vectors X and ¥ is computed component by component, using the
definition

3) X+Y=@+ynxa+y2...,xn+yn8).

The negative of the vector X is obtained by replacing each coordinate with its
negative:

4) =X = (—x), —Xx2. ..., —x§).
The difference ¥ — X is formed by taking the difference in each coordinate:

(5 Y —X=(y—x,y2—x%.....¥5 — xn).

Equation (10) is referred to as the Euclidean norm (or length) of the vector X.
Scalar multiplication cX stretches the vector X when el > 1 and shrinks the
vector when Je| < 1. This is shown by using equation (10):
leX || = (Pxf + 2l + - + 2312
= |ej(x? +xi 4. +xi)172 = el x).
An important relationship exists between the dot product and norm of a vector. If

both sides of equation (10) are squared and equation (9) is used, with ¥ being replaced
with X, we have

{an

(12) IXP=xt+xd+--+x% =X X.
If X and ¥ are position vectors that locate the two points (xy, xa,...,xy) and
(. y2,..., yn) in N-dimensional space, then the displacement vector from X to Y

is given by the difference
{13) Y- X  (displacement from position X to position ).

Notice that if a particle starts at the position X and moves through the displacement
¥ — X, its new position is ¥. This can be obtained by the following vector sum:

(14) 'Y Y=X+(¥-X).
Using equations (10) and (13), we can write down the formula for the distance
between two points in N-space.
1/2
a9 WY =Xl = (01 =50+ @2~ 4+ o — )

When the distance between points is computed using formula (15), we say that the
point§ lie in N-dimensional Euclidean space.
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Example 3.1. Let X = (2 3,5, —1)and Y = (6, 1, 2, —4). The concepts mentioned
above are now illustrated for vectors in 4-space.

Sum X+Y=(,-2,7-5

Difference X-Y=(-4-4373)

Scalar multiple 3X = (6, -9, 15,-3)

Length IXll=@+9+25+ 1'% =392
Dot product X Y=12-3+10+4=23

Y-X=(44,-3-3

Displacement from X to ¥
¥ - X =(16+16+9+912=50!2 u

Distance from X to ¥

It is sometimes useful to w

Xi Y1
X2 ¥z
(16} X=1. and ¥Y=|" 1.

Lew | Lyw

SEC. 3.1 INTRODUCTION TO VECTORS AND MATRICES 105

22y X-X=X+(-X)=0 additive inverse

23) X+N+Z=X+F+2) associative property

f24) (a+b)X =aX +bX distributive property for scalars
(25) a(X+Y)=aX +a¥ distributive property for vectors

(26) a(bX) = (ab)X associative property for scalars

Matrices and Two-dimensional Arrays

A matrix is a rectangular array of numbers that is arranged systematically in rows and
columns, A matrix having M rows and N columns is calledan M x N (read “M by N™)

matrix. The capital letter A denotes a matrix, and the lowercase subscripted letter a;

1QULA aL Lap il A LCHIRGS & Jaul RS LT SICAST SUDSCITPROE 0L Oy

denotes one of the numbers forming the matrix. We write
@7 A=lajluxny for I<i<M,1<j<NV,

where g;; is the number in location (7, j) (i.e., stored in the ith row and jth column
of the matrix). We refer to a;; as the element in location (i, ). In expanded form we

Then the linear combination cX +dY is

ex) +dy
cx2+dys
an cX +dY = )

cxn + dyNJ

By choosing ¢ and ¢ appropriately in equation (17), we have the sum 1X + 1Y,
the difference 1X — 1Y, and the scalar multiple ¢ X + 0Y. We use the superscript
for transpose to indicate that a row vector should be converted to a column vector, and
vice versa.

X x|
X2 X7

(18) (xx2, o, xn) =1 . and T = poxaa o xN).
XN XN

The set of vectors has a zero element 0, which is defined by
(19) 0=(0,0,...,0.

Theerem 3.1 (Vector Algebra). Suppose that X, ¥, and Z are N-dimensional vec-
tors and @ and b are scalars (real numbers). The following properties of vector addition
and scalar multiplication hold:

(200 Y+X=X+Y commutative property
21y 0+ X=X+0 additive identity

write

ajy 4y v aij o dIN
azy 4 e azj s 42N
(28) . ) ' ' ) =A.
rowiI — | a ajz - aij cer LGN
Lam1 am2 - am; Tt AMN |
1
column j

The rows of the M x N matrix A are N-dimensional vectors:
29 V:i=(a;i.ai2,....4in) fori=1,2, ..., M.

The row vectors in (29) can also be viewed as | x N matrices. Here we have sliced
the M x N matrix A into M pieces (submatrices) that are | x N matrices.

In this case we could express A as an M x 1 matrix consisting of the 1 x N row
matrices V;; that is,

v,
Va

(30) A= V, =[Vi Vi - Vi - Vul.

Vu



106 CHAP.3 THE SOLUTION OF LINEAR SYSTEMS AX = B

Similarly, the columns of the M x N matrix A are M x | matrices:

"““ P’U [ain ]

az] azj an
an o= L .. =] . cx=

ai1 / a;j ' v ain

LM | | aMj | _aMN_J

In this case we could express A asa } x N matrix consisting of the M x 1 column
matrices C;:

(32) A=[C: C2 - €; - Cy].

Example 3.2. identify the row and column matrices associated with the 4 x 3 matrix

[-2 4 9]
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The negative of the matrix A is obtained by replacing each element with its nega-
tive:”’
(35) —A={-ajly,,y forl<i<M l<j=<N.

The difference A — B is formed by taking the difference of corresponding coordi-
nates:

(36) A—B=l[a;—bijly,y forl<isM 1<j<N
If ¢ is a real number (scalar), we define scalar multiplication ¢ A as follows:
(37 cA=[ca;jlyy forl<isM 1<j<N

If p and g are scalars, the weighted sum pA + g B is called a linear combination
of the matrices A and B, and we write
(38) pA+qB ={paj+aqbjly,,y forlsisM 1<jsN

The zero matrix of order M x N consists of all zeros:

LR A AL e X iy CULSLS

(39) 0= [O)arxn

s 7
A=1 9 3 s
-4 6 -5

The four row matricesare V, = [-2 4 9_], Va=[5 -7 1],vi=[0 -3 8],

and V4 =[-4 6 —5]. The three column matrices are

-2 4 9
sz,rg‘(, C1=‘7:;-'. and C3=l’;-l.
L4 L ol L-s]

Notice how A can be represented with these matrices:

V)
vV,
V3
Va4

=[C1 €2 C3. ]

Let A = _[a,-j] pmxy 3d B = [b;] Mxn D€ two matrices of the same dimension.
The two matrices A and B are said to be equal if and only if each corresponding
element is the same; that is,

(33 A=B ifandonlyif a;=b;, forl<i<M 1<j<N.

The sum of the two M x N matrices A and B is computed element by element,
using the definition

(34} A+B=[aij+bij]MxN for 1l<i<M, I<j<N

Example 3.3. Find the scalar multiples 24 and 3 B and the linear combination 24 — 38

for the matrices
l' -1 2 -2 3'|

A= 7 5 and B = 1 —4q.
I_ 3 —4 | —9 7J
Using formula (37), we obtain
-2 4 [ —6 9'|
A= 14 10 and 38 = 3 =129,
6 fSJ -27 21J

The linear combination 24 — 3 B is now found:

—2+6 4-9 4 -5
24-3B=1|14-3 10+12|=|11 22].
6+27 —8-2I 33 29 .

Theorem 3.2 (Matrix Addition). Suppose that A, B, and C are M x N matrices
and p and g are scalars. The following properties of matrix addition and scalar multi-

plication hold:

40) B+A=A+B commutative property
(41) 0+A=A+0 additive identity
42) A—-A=A+(-A)y=0 additive inverse

43) (A+B)+C=A+(B+C) associative property

44) (p+q)A=pA+gA distributive property for scalars
45) p(A+B)=pA+pB distributive property for matrices
(46) pl{gA) = (pg)A associative property for scalars
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Exercises for Introduction to Vectors and Matrices

The reader is encouraged to carry out the following exercises by hand and with MATLAB.
1. Giventhe vectors X and ¥, find (@) X + ¥, (b) X - ¥, {¢) 3X. (d) )| X[, () 7V — 4 X,

4 A feh NTRT AL
ur_\;X N Y.mlu\s; Wik — ],

i} X¥=03-4and¥ =(-2,8)
(i) X¥=(-6,32)and? = (-8,5, 1)
i) X =4 -8, hand¥ =(1, ~12, - ID)
(iv) X=(1,-2.42)andY = (3, -5, 4.0
2. Using the law of cosines, it can be shown that the angle 6 between two vectors X and
Y is given by the relation

X-¥
cos(f) = ———-.
Nxyury
i€, in radians, between the following veciors:
)

all
() X=(-632)and¥ =(2,-21

3.2
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6. The square matrix A of dimension ¥ x N is said 10 be symumetric if A = A’ (see
Exercise 5 for the definition of A"). Determine whether the following square matrices

are symmetric.
[‘ 1 -7 4 {4 -7 |'|
w |7 ®d (0 2 —7
13 o 4]

74 0 3]
© A=[aej]~,~.whereai;=[‘.1 e
i—ij+j i#j
cos(if) i=j
i—ij—j i#J

i=j

(d}) A=l[aijluxn,wherea;; = {

7. Prove statements (20}, (24), and {25) in Theorem 3.1.

Properties of Vectors and Matrices

A lingar combination of the variables x|, x7, ..., Xy is 4 sum

(bY X =(4,~-8 Land¥ =(3,4,12)
3. Two vectors Xand ¥ are said to be orthogonal (perpendicuiar) if the angle between
them is /2.
(a) Prove that X aud ¥ are orthogoralifand only if X - ¥V = 0.
Use part (a) ro determine if the following vectors are ofthogonal.
(h) X=(-6.42)and¥ = (6,5,8)
(¢} X=(-4.83and¥ = (2.5, 16)
{d) X=(=-5.7,2Dand¥ =(4 1,6}
(e} Find two different vectots that are orthogonal to X = (1, 2, —-5).
4. Find(a) A + B, (b) A — B.and {¢) 34 — 2B for the matrices

l’—l 9 4] {--4 9 27
=i 2 -3 6|, B=| 3 -5 7).
‘_ o s 7J L8 1 -6]

5. The transpose of an M x N matrix A, denoted A', is the N x M marrix obtaned
from A by conventing the rows of A 0 columns of A”. That is,if A = lagly, .
A" = [byj],, 4 then the elements satisfy the relation

b for 1=

b= a e ML=

¥a,

S

1A
o
-

1A

Find the transpose of the following matrices,

\'-2 5 tz]
@ | L

-1
R 8

=2
-

(1) X +axxy+---~anxy

where 4;. is the coefficientof x, fork = 1,2, .... V.

A linear equation in x1, xz, ..., X is obtained by requiring the linear combination
in (1) to take on a prescribed value &; that is,
2) ayx) +axxz+ - +ayxy = b,

Systems of linear equations arise frequently, and it M equations in N unknowns
are given, we write
aux| TanRky +-t+ainxy = b
anx| +anx; +--+awiy =

(3)
8k1 Xy +Gkaxy + -+ divan = by

apm1X) +ampk2 + -t amyan = by
To keep track of the different coefficients in each equation, 1t is necessary 10 use the

two ggpscripts (&, j). The first subscript locaies equation k and the second subscript
locates the variable x ;.

A solution to (3) is a set of numnerical values x|, x2. ..., xn that satisfies all the
equations in {3) simultaneously. Hence a solution can be viewed as an ¥ -dimensional

vecior:

4) X =(x1.x2, ..., xx).
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Example 3.4. Concrete (used for sidewalks, etc.) is a mixture of portland cement, sand,
and gravel. A distributor has three batches available for contractors. Batch 1 contains ce-
ment, sand, and gravel mixed in the proportions 1/8, 3/8, 4/8; batch 2 has the proportions
2/10,5/10, 3/10; and batch 3 has the proportions 2/5, 3/5, 0/5.

Let x1, xz, and x3 denote the amount (in cubic yards) 10 be used from each baich to

form a mixture of 10 cubic yards. Also, suppose that the mixture is to contain b; = 2.3,
b2 = 4.8, and b3 = 2.9 cubic yards of portland cement, sand, and gravel, respectively.
Then the system of linear equations of the ingredients is

0.125x) + 0.200x2 + 0.400x3 = 2.3 {cement)
(5) 0.375x; + 0.500x3 + 0.600x3 = 4.8 (sand)
0.500x; 4 0.300x3 + 0.000x; = 2.9  (gravel)

The solution to the linear system (5) is xy = 4, x; = 3, and x3 = 3, which can be verified
by direct substitution into the equations:

(0.125)(4) + (0.200)(3) + (0.400)(3) = 2.3
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2 3175 -2 1
AB:[—I 4][3 8 —]
_[ 10+9 —a+24 2-18] F19 20 -16]
=-5+12 2432 —1-24]7[7 34 25|~ C

that

When an attempt is made to form the product B4, we discover that the dimensions are
not compatible in this order because the rows of B are three-dimensional vectors and the
columns of A are two-dimensional vectors. Hence the dot product of the jth row of B and
the kth column of A is not defined. ]

If it happens that AB = BA, we say that A and B commute. Most often, even
when AB and B A are both defined, the products are not necessarily the same,

We now discuss how to use matrices to represent a linear system of equations.
The linear equations in (3) can be written as a matrix product. The coefficients a; g
are stored in a matrix A (called the coefficient matrix) of dimension M x N, and the
unknowns x; are stored in a matrix X of dimension N x 1. The constants by, are stored

(0.375)(d) + (0.500)(3) + (0.600)(3) =
(Q.500)(4) + (0.300)(3) + (0.000)(3) = 2.9, [

trix Multiplication

Definition 3.1. If A = {g;z}pyxy and B = [Brjlvxp are two matrices with the
property that A has as many columns as B has rows, then the matrix product AB is
defined to be the matrix C of dimension M x P:

6) AB=C =lcyly,, »

where the element ¢;; of C is given by the dot product of the ith row of A and the jth
column of B:

N
(N cij = E Qb = anbij +aizb2; + - +ainbug

k=1
fori=1,2,...,.Mandj=1,2,..., P. »
Example 3.5, Find the product C = A B for the following matrices, and tell why BA is

not defined.

23 s =2
Aﬂ[_l 4], a_[3 2 _].

The matrix A has two columns and B has two rows, so the matrix product AB is
defined. The productofa2 x 2anda 2 x 3 matrix is a 2 x 3 matrix, Computation reveals

in a maftrix B of ditmension M x [. It is conventional to use column matrices for both
X and B and write

ay a1 - oay - an [ LA}
ay axn - ay - @y || x2 by
(8) AX = : ) : ) =1, | =B
a1 dkz e Gry e ok || x; by
lamy am2 - amj - amniixs | Lbm |

The matrix multiplication AX = B in (8) is reminiscent of the dot product for
ordinary vectors, because each element by in B is the result obtained by taking the dot
product of row & in matrix A with the column matrix X.

Exampie 3.6. Express the system of linear equations (5) in Example 3.4 as a matrix
product. Use matrix multiplication 1o verify that [4 3 3]’ is the solution of (5):

0.125 0.200 0.400| | x| 2.3
e} 0.375 03500 0600 [x;|=|48].
0.500 0.300 0.000) [ x3 2.9

To verify that [4 3 3]' is the solution of (5), we must show that A[4 3 31’ =
[23 48 29]:

(0125 0.200 0409]]'4“ |’05+06+12"| [23]

o~ o=

0.375 0.500 0.600 i5+1i5+1.8 4.8
115~ 29

0.500 0.300 0.000 20409400 n
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Some Special Matrices

The M x N matrix whose elements are all zero is called the zero matrix of dimen-
sion M x N and is denoted by

(10 0= [0]pxn.

When the dimension 15 clear, we use 0 1o denote the zero matrix.
The identity matrix of order N is the square matrix given by

I wheni— j,
(11) In =[18]pun where ‘Si.;:!.\ . . ,j.

mr |0 wheni £ .
1t is the multiplicative identity, as illustrated in the next example.

Example 3.7. Let A be a2 x 3 matrix. Then 124 = Ay = A. Multiplication of A on
the left by T, resulis in
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If no such matrix B can be found, A4 is said to be singular. When B can be found
and (17) holds, we usually write B = A ™! and use the familiar relation

(18) AA'=A4"'A4 if A is nonsingular.

It is easy to show that at most one matrix B can be found that satisfies relation (17).
Suppose that € is also an inverse of A (ie., AC = CA = I). Then properties (12)
and (13) can be used to abtain

C—IC=(BAC = B(AC)=8BI =B.

Determinants
The determinant of a square matrix A is a scalar quantity (real number) and is denoted

by det(4) or |Aj. If Aisa N x N matrix

ra” a12 LR N -I
1 0][an a2 ap|_|an+0 an+0 apn+0]_ . ay ax - @
0 1f[lan en ax a1 +0 an+0 a33+0 A= . . - |
Multiplication of A on the right by I3 results in ay| aNz -+ aNN
fan s s (1] {I) g fan+0-0 Otan+0 0+0=ap e then it is customary to write
az a an T laz +0-0 O0+ax+0 0+04axn ’ 1
- - 0 0 1 apl ajz -+ AN
g . . T L . an ap - AQn
Some properties of matrix multiplication are given in the following theorem. det(4d) = | | .
Theorem 3.3 (Matrix Multiplication). Suppose that ¢ is a scalar and that A. 8. ayiy ana - anw

and € are matrices such thar the indicated sums and products are defined: then

(12) (ABYC = A(BC) associativity of matrix multiplication

(13) FTA=AI— A identity matrix
(14) A(B+CY=AB+ AC left distributive property
(15) (A + BYC — AC + BC right distributive property

(16) (AR)=(cA'B = A(cB) scalar associative property

The Inverse of a Nonsinguiar Mairix
The concept of an inverse applies to matrices, but special attention must be given. .\
N x N matrix A is called nonsingular or invertible if there exists an N x ¥ watrix B

such that

(17N AB=BA=1.

Although the notation for a determinant may look like a matrix, its properties are com-
pletely diffcrent. For one, the determinant is a scalar quantity (real number). The
definition of det(A) found in most linear algebra textbooks is not tractable for compu-
tation when N > 3. We will review how to compute determinants using the cofactor
expansion method. Evaluation of higher-order determinants is done using Gaussian
elimination and is mentioned in the body of Program 3.3.

If A _ [a;]isal x | matrix, we definc det(A) = ai;. If A = [aj;] v« . where
N > 2 then let M;; be the determinantof the ¥ | x & — 1 submatrix of A obtained
by deleting the /th row and jth column of 4. The determinant M, is said to be the
minor of a;;. The cofactor A;; of a;, is defined as A;; = {(—1)'""/M,;. Then the
determinant of an N x NMmatrix A is given by

N
(19) det{4) = La,-,A,-‘. (ith row expansion)
7=l
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or
N

(20) det(4) = Za,-jA,- ;  (jth column expansion).
i=]

Applying forraula (19), with i = 1, to the 2 x 2 matrix

a a
A= 11 12 ,
a1 ax
we see that det A = a11a32 — dy2a»;. 'I‘hg fgug\lj!na sva‘vnple illustrates how

formulas (19) and (20} to recursively reduce the calculation of the lcrmmant of an
N x N matrix to the calculation of a number of 2 x 2 determinants.

e
usi

-
Ly

Example 3.8, Use formula (19) with i = 1 and formula (20) with j = 2 to calculate the
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Theorems 3.3 and 3.4 help relate matrix algebra to ordipary algebra. If state-

ment (21) is true, then statement (22) together with properties (12) and (13) give the
following line of reasoning:

25y AX =B implies A 'AX=A"'B, whichimplies X =A'B.
Example 3.9. Use the inverse matrix
17 4 -1
-1 .
A7 =3 [~7 3]

and the reasoning in (25) to solve the linear system AX = B:

13 Yhixg) 2y
ax=[; )= 5)=»
Using (25), we get

determinant of the matrix
F2—3—=%7
A=|—-4 5 —=1{.
7 —6 9

Using formula (19) with i = 1, we obtain

detA:(Z)'_g ;—(3)!“‘;‘ “;]+(8)“‘7’ _2]

= ({45 - 6) — (3)(—36 + 7) + (8)(24 — 35)
=71

Using formula (20) with j = 2, we obtain

det(4) = —(3) *‘f‘; +(5){ ‘ (—6)[ ‘

=77. |}

The following theorem gives sufficient conditions for the existence and uniqueness
of solutions of the linear system AX = B for square coefficient matrices.

Theorem 3.4. Assume that A is an N x N matrix. The following statements are
squivalent.

(21} Given any N x 1 matrix B, the linear system AX = B has a unique solution,
(22) The matrix 4 is nonsingular (i.e. LA exists).

{23) The system of equations AX = 0 has the unique solution X = @.
(24) det(A) #£ 0.

- 17 4 —1](2 113 0.6
X=A4 IB = = = - = . "

5(-7 3]s 51 0.2
Remark. In practice we never numerically calculate the inverse of a nonsingular
matrix or the determinant of a square matrix. Thess concepts are used as theoretical

“tools” to establish the existence and uniqueness of solutions or as a means to alge-
braically express the solution of a linear system (as in Example 3.9).

Plane Rotations

Suppose that A is a 3 x 3 matrix and U = [x y z]’ is a 3 1 matrix; then the product
V = AU is another 3 x 1 matrix. This is an example of a linear transformation, and
applications are found in the area of computer graphics. The matrix I/ is equivalent
to the positional vector U = (x, y, z), which represents the coordinates of a point in

three-dimensional space. Consider three special matrices:

B 0 0
(26) R.(x) =0 cos(e) —sin(e) |,
| 0 sin(e) cos(a)
" cos(B) 0 sin(B)
27 Ry(fY= 0 1 o i,
| —sin(B) 0 cos(B)

[cos(y) —sin(y) 0]
(28) R (y) = [ sin(y) cos(y) O
0 0 i
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Table 3.1 Coordinates of the Vertices of a Cube under Successive Rotations

U V=RA5)U W=R,(})R.(})U
(0,0,07 (0.000000, 0,000000, 0)' (0.000000, 0.000000, 0.000000)'
(1,0,0) (0.707107, 0.707107, 0) (0.612372, 0.707107, —0.353553)’
1,0 {(~0.707107, 0.707107, 0y {(~0.612372, 0.707107, 0.353553)’
0,1 (0.000000, 0.000000, 1) (0.500000, 0.000000, 0.866025)"
(1, 1,0/ (0.000000, 1.414214, 0 {0.000000, 1.414214. 0.000000)
(1,00 {0.707107, 0707107, 1) (1.112372, 0.707107, 0.512472)
01,1 (=0.707107, 0.707107, 1)’ (~0.112372, 0.707107, 1.219579Y
(1,1,1 (0.000000, 1.414214, 1)’ (0.500000, 1.414214, 0.866025)"

These matrices R, (), Ry(8), and R,()) are used to rotate points about the x-, y-,
and z-axes through the angles &, 5, and y, respectively. The inverses are R,(—a),
R,(—p), and R;(—y) and they rotate space about the x-, y-, and z-axes through the
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(@) O] ©

Figure 3.2 (a) The original starting cube. (b} V = R (s /). Rotation about
the z-axis. (c) W = R, (/6)V . Rotation about the y-axis,

Numerical computations for the coordinates of the vertices of the starting cube are given in
Table 3.1 (as positional vectors), and the images of these cubes are shown in Figure 3.2(a)
through (c). n

angles —a, —p, and —y, respectively. The next example illustrates the situation, and
further investigations ace left for the reader.

Example 3.10. A unit cube is situated in the first octant with one vertex at the origin.
First, rotate the cube through an angle /4 about the z-axis; then rotate this image through
an angle /6 about the y-axis. Find the images of all eight vertices of the cube.

The first rotation is given by the transformation

cos(§) —sin(}) 0][=
V=R, (%) U= l-Si“E%) c&zs(‘;') O.l l' .‘
' L v v Y1Led
0.707107 —-0.707107 0.000000 | | x
0.707107 0.707107 0.000000 | { ¥

0.060000  0G.00000¢ 1.000000 | z
Then the second rotation is given by

cos(z) O sin(g)

w=Rr(Z)v=| 0 1 o |v
6 —sin(3) 0 cos(%)
0.866025 0.000000 0.500000

—0.500000 0.000000 0.866025
The composition of the two rotations is

oy o gmy [ 0012372 ~06123720.5000001] I"‘T
=Ry (E)R Z)U =1 0.707107 0.7G7iG7 0.000000
—-0.353553  0.353553 0.866023

MATLAB
The MATLAB functions det (A) and inv(A) calculate the determinant and inverse

(if A is invertible), respectively, of a square mawix A.
Example 3.11. Use MATLAB to solve the linear system in Example 3.6. Use the inverse
matrix method described in (25).

First we verify that A is nonsingular by showing that det(A) # O (Theorem 3.4).
»>A=10.125 0.200 0.400;0.375 0.500 0.600;0.500 0.300 0.000];
>>det ()
ans=

=0.0175

Following the reasoning in (25), the solution of AX = Bis X = A~18.

>>X=inv(A)*[2.3 4.8 2.9]1°
x:

4,0000

2.0000

3.0000

We can check our solution by verifying that AX = B.

>>B=A%X
B=
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Exercises for Properties of Vectors and Matrices

The reader is encouraged to carry out the following exercises by hand and with MATLAB.
1. Find AB and B A for the following matrices:

-3 2] [s o]
A=[ ; 4J, BT[Z veJ'
2. Find AB and B A for the following matrices.
]
-1 59.
3

Lh w

[0 S

i
B3y e

3. Let A, B,and C be given by

B e[ )
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(b) Show that R, (B)R;(a) =

cos(f) sin(B)sin(e) cos(a)sin(8)
0 cos(cr) - sinfu)
—sin(er) cos(B) sin(e) cos(B)cos{a)

8. If A and B are nonsingular N x N matricesand C = AR, showthat C~! = B~14" '
Hint. Use the associative property of matrix multiplication.
9. Prove statements (13) and (16) of Theorem 3.3,
10. Let Abean M x N matrix and X an N x 1 matrix.
(a) How many multiplications are needed to calculate 4 X?
(b} How many additions are needed to calculate AX?

11. Let A be an M x N matrix, and let B and C be N x P matrices. Prove the left
distributive law for matrix multiplication: A(B + €)= AB + AC.

12. Let 4 and B be M x N matrices, and let C be a N x P matrix. Prove the right
distributive law for matrix multiplication: (4 + B)C = AC + BC.

(a) Find (AB)C and A(BC).
(b) Find A(B+ C)and AB + AC.
(¢) Find (A + B)C and AC + BC.
(d) Find (AB) and B'A’,
4. We use the notation A> = AA. Find A2 and B? for the following matrices:

2 o o
A:[_; _Z] B=|V—1 5 —4"
{3 =5 2]

5. Find the determinant of the following matrices, if it exists.

2 0o 6
(a) [“; _;] ®) [-1 5 -4
| 3 -5 2
1 2 3 4
1 2
0 2 4 6
() |3 4 (d)
P 0 0 5 4
00 0 7
6. Show that R, (¢)R, (—a) I by direct multiplication of the matrices R, () and

B {(—wa); (sec formula {26)).

7. (a) Show that Rx(e)Ry(8) =

cos(f) 0 sin(f)
sin(B)sin{fe) cos(a) — cos{B)sin(x)
[ —cos(e)sin{f) sinle)  cos(f)cos(w) |

(see formulas (26) and (27)).

I3, Find XX and X'X, where X = [I —1 2]. Note. X" is the ranspose of X.

14. Let Abea M x N matrix and B a N x P matrix. Prove that (AR) = B'A’. Hint. Let
C = AB and show, using the definition of matrix multiplication, that the (i, j)th entry
of €’ equals the (i, j)th entry of B'A’,

. Use the resuit of Exercise 14 and the associative property of matrix multiplication to
show that (ABCY = C'B’'A’.

i
wm

Algorithms and Programs

The first column of Table 3.1 contains the coordinates of the vertices of a unit cube situated
in the first octant with one vertex at the origin. Note that all eight vertices can be stored in
a matrix U of dimension 8 x 3, where each row represents the coordinates of one of the
vertices. It follows from Exercise 14 that the product of U and the transpose of R, (7 /4)
will produce a matrix of dimension 8 x 3 (representing the second column of Table 3.1,
where eech row represents the transformation of the corresponding row in U). Combining
this idea wiih Exercise 15, it follows that the coordinates of the vertices of a cube under
any number of successive rotations can be represented by a matrix product.

1. A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of 7/6 about the y-axis; then rotate this image through an
angle of /4 about the z-axis. Find the images of all eight vertices of the starting
cube. Compare this result with the result in Example 3.10
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(a) &) ()

Figure 3.3 (a) The original starting cube. (b) V = R, (sr/6)U. Rotation about
the y-axis. (¢} W = R, (7 /4)V . Rotation about the z-axis.

What ig different? Exnlain vour answer nsine the fact that in ceneral matrix mulo
widl 1s diferent?” EXplain your answer using ne fact (hat, 1n gengral, matrix mus

tiplication is not commutative. (See Figure 3.3(a) to (c)). Use the plot3 command to
plot each of the three cubes.

2. A unit cube is situated in the first octant with one vertex at the origin, First, rotate
the cube through an angle of 7 /12 about the x-axis; then rotate this image through
an angle of /6 about the z-axis. Find the images of all eight vertices of the starting
cube. Use the plot3 command to plot each of the three cubes,

3. The tetrahedron with vertices at (0,0, 0), (1,0, 0), (0, 1, 0), and (0, 0, 1) is first ro-
tated through an angle of 0.15 radian about the y-axis, then through an angle of
—1.5 radians about the z-axis, and finally through an angle of 2.7 radians about the
x-axis. Find the images of all four vertices. Use the plot3 command to plot each of
the four images.

Upper-triangular Linear Systems

We will now develop the back-substitution algorithm, which is useful for solving a lin-
ear system of equations that has an upper-triangular coefficient matrix, This algorithm
will be incorporated in the algorithm for solving a general linear system in Section 3.4

Definition 3.2. An N x N matrix A = [a;;] is called upper triangular provided that
the elements satisfy a;; = 0 wheneveri > j. The N x N matrix A = [qa;,] is called
lower triangular provided that a;; = 0 wheneveri < j.

We will develop a method for constructing the solution to upper-triangular linear
systems of equations and leave the investigation of lower-triangular systems to the
reader. If A is an upper-triangular matrix, then AX = B is said to be an upper-
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riangular system of linear equations and has the form

ajxpFapxzFapxy oo+ ain-ixN—t1+ ayvxy =b)
anxztanxi+t---+  ay-txn-1 +  aNxy = b

| apxz+ -+ @GN-1XN-1+ @NIn=b
(1)

AN-IN—-1XN-t t an— NI = by_y
ANNIN = by.

Theorem 3.5 (Back Substitution). Suppose that AX = B is an upper-triangular
system with the form given in (1). If

(2) ay #0 fork=1,2,..., N,
then thare axicte & unians caintian to 111
LOCN INSre exa5ls a UMGqUe SGIuuoh 10 (4.

e Proo

50 we solve 1t first:
by
(3) Xy = ——,
aNN

Now x is known and it can be used in the nexi-io-Iast equation:
by_1| —an-_|NxN
an-.1N-1

@ AN—1 =

Now xy and xp_1 are used to find xy_3:

BN_2 — AN_IN_1XN-1 — GN_INXN

(5 XN—2 =
aN-2N-2
Once the values xy, xy_1, . . ., Xz+1 are known, the general step is
by — N apiX;
(6) X = Lzt ¥ for k=N-—1, N-2, ..., 1.

Gk

The uniqueness of the solution is easy to see. The Nth equation implies that
by/awy is the only possible value of x». Then finite induction is used to establish
that xy—i, x¥y—2, ..., x| are unique. .

Example 3.12. Use back substitution to solve the linear system
dxy —x3 +2x3 + x4 = 20
~2x3 4+ Tx3 —4x4 = -7
6x3 4+ Sxa= 4
3x4= 6.
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Solving for x4 in the last equation yieids

ation, we obtain

4 - 5(2)
6

Now x3 = —1 and x4 = 2 are used to find x3 in the second equation:

=7-7(=1)+4@) _
-2 o

hird equ

=-1

1=

Xn = —-4'
A2 =

Finally, x is obtained using the first equation:
204+ 1(-4)-2(-1)-3(2)
= N =

3

3. n

X1
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Using the last equation in (9), we must have x4 = 2, which is substituted into the second
and third equations to get x3 = —1I, which checks out in both equations. But only two
values x3 and x4 have been obtained from the second through fourth equations, and when
they are substituted into the first equation of (9), the result is

(10) X2 =4x; - 16,

which has infinitely many solutions; hence (9} has infinitely many solutions, If we choose a
value of x; in (10), then the value of x> is uniquely determined. For example, if we include
the equation x| = 2 in the system (9), then from (10) we compute x; = —8. [ ]

Theorem 3.4 states that the linear system AX = B, where A isan N x N matrix,
has a unique solution if and only if det(4) # 0. The following theorem states that
if any entry on the main diagonal of an upper- or lower-triangular matrix is zero then
det(A) = 0. Thus, by inspecting the coefficient matrices in the previous three exam-
ples, it is clear that the system in Example 3.12 has a unique solution, and the systems
in Examples 3.13 and 3.14 do not have unique solutions. The proof of Theorem 3.6
can be found in most introductory linear algebra textbooks.

tial because equation (6) involves division
by ag. If this requirement is not fulfilled, either no solution exists or infinitely many
solutions exist.

Example 3.13. Show that there is no solution to the linear system

4x) —xz+2x3+3x4= 20
Oxy + 7x3 — 4xg = =7
) bxz+5x4= 4

Using the last equation in (7), we must have x4 = 2, which is substituted into the ~ceond
and third equations to obtain

Tx3 ~ 8=-7
® 6x3+10= 4.
The first equation in (8) implies that x3 = 1/7, and the second equation implic- that

x3 = —1. This contradiction leads to the conclusion that there is no solution to th. lin-

ear system (7). &

Exampie 3.14. Show that there are infinitely many soiutions to
dx) —x2+2x3+3x4= 20
Oxy 4 Tx3 +0xqg = =7

) 6x3+5xa= 4
3xs= 6.

Theorem 3.6. Ifthe N x N matrix 4 = [ai;] is either upper or lower triangular, then

N
(1 det(A) = ajjan - avy = Ha,-.-.
=1

The value of the determinant for the coefficient matrix in Example 3.12 is det A =
4(=2)(6)(3) = —144. The values of the determinants of the coefficient mairices in
Example 3.13 and 3.14 are both 4(0)(6)(3) = 0.

The following program will solve the upper-triangular system (1) by the method
of back substitution, provided ay; # Ofork =1,2,..., N.

Program 3.1 (Back Substitution). To solve the upper-triangular system AX = B
by the method of back substitution. Proceed with the method only if all the diagonal
elements are nonzero. First compute xy = by /any and then use the rule

N
bk — 3 jmk1 B %

Xp = fork=N—1,N—2,..., 1.
ek
functjon X=backsub(A,B)
LN}
#Input - A isannxa upper-triangular nonsingular matrix
% - B is an n x 1 matrix

A0utput - X is the solution to the linear system AX = B
%Find the dimension of B and initialize X

n=length(B);

X=zeros(n,1);
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X(n)=B(n)/A(n,n); 7. Show that back substitution requires N divisions, (N2 — N)/2 multiplications, and
for kx=n-1:-1:1 (N? — N);2 additions or subtractiors. Hint. You can use the formula

X{k)=(B(k)-A(k,k+1:n)*X(k+1:n)) /A(k,K); .
end 3 k= MM + 1)/

k=)
Exercises for Upper-triangular Linear Systems
Algorithms and Programs

in Exercises 1 through 3, solve the upper-triangular system and find the value of the dee: -
minant of the coefficient mawrix.

1. Use Program 3.1 to solve the system &/ X = B where,

1. 3z) ~2x2+ x3— x4= 8 2, Sx; —3x:—Tx3+ xa=-—14
- =— Mg+ 923+ Sxa= 22 ij) P </
dxa — x3+ 2xa 3 2 3 U=lugly,, @md uy= coslij) i< j
2xy 4 3xg = 11 3x3 — 13x4=—11 0 > .
— = 14
S = 13 T and B = {h;1}i5,; and byy = tan(i).
3. an ~ n+2t+la- xg= 4 2. Forward-substitution algorithm. A iinear system AX = B is called lower triangula:
—Zatontig+ixs= U provided that a,, = 0 wheni < j. Construct a program forsub, analogous 10
x3— xg—2x5= 3 Program 3.1, to solve the following lower-triangular system. Remark. This program
—2x4— x5=10 will be used n Section 3.5.
3xs= 6 ayixg = b
4. (a) Consider the two upper-triangular matrices anx; +  anx =b
any ap aiz b bz b3 anxi+ apx:+  ann =b
A=| 0 axn an and B=} 0 bz bn
0 0 a3 0 0 b33 . .
aN—1 11X} +ay-12X2 +aN-13%3 + - AN N-1XN-} =bn_1

Show that their product C = A B is also upper triangular.
(b) Let A and B be two N x N upper-triangular matrices. Show that their produ.:

is also upper triangular. 3. Use forsub to solve the system LX = B, where
S. Solve the lower-triangular system AX = B and find det¢A).

ayixi+ an2x2+  anaxz+--- 4+ ann-1xN—) +Fanniy = by

. |
2 =6 L=lyloao and b= "7 =7 and B=[baloa anc by =i,
—x1 +4x2 =5

3x; - 2x2 —x3 =4

X1 = Zxp+6x3+ 3ue =2 34 Gaussian Elimination and Pivoting

6. Solve the lower-triangular system AX = B and find dettA). . .
¢ [n this section we develop a scheme for solving & general system AX = B of N

5x) =-10 eqaations and NV unknowns. The goal is to construct an equivalent upper-trianguiar
X1+ 3x2 = 4 system U X = ¥ that can be solved by the method of Section 3 3.

3x1 + 4xa + 213 = 2 Two linear systems of dimension N x N are said to be equivalent provided that

X 43t —bry—xg = S their solution sets are the same. Theorems from inear algebra show that when certain

transformations are applied to a given system the solution sets do not change.
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Theorem 3.7 (Elementary Transformations). The following operations applied to
a linear system yield an equivalent system:

(1) Interchanges: The order of two equations can be changed.

(2) Scaling: Multiplying an equation by a nonzero constant.

(3) Replacement: An equation can be replaced by the sum of itself and
a nonzero multiple of any other equation.

It is common to use (3) by replacing an equation with the difference of that equa-
tion and a multiple of another equation. These concepts are illustrated in the next
example.

Example 3.15. Find the parabolay = A4 Bx + Cx? that passes through the three points
(1,1),(2,—1), and (3, I).
For each point we obtain an equation relating the value of x to the value of y. The

result is the linear system
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ai a2 an | by
azy ax - anN | ;o
0 [A|B] = . . )

LaN[ aNz - aNNrbN_]

The system AX = B, with augmented matrix given in (7), can be solved by per-
forming row operations on the augmented matrix [A|B). The variables xi are place-
holders for the coefficients and can be omitted until the end of the calculation.

linear system is represented as follows:

Theorem 3.8 (Elementary Row Operations). The following operations applied to
the augmented matrix (7) yield an equivalent linear system.

(8) Interchanges: The order of two rows can be changed.
(9) Scaling: Multiplying a row by a nonzero constant.
(10) Replacement; The row can be replaced by the sum of that row and

AF B+ C=1 at (17
{4) A+2B+4C =—1 at (2, —1)
A+3B+9C= 1 at (3, ).

The variable A is eliminated from the second and third equations by subiracting the

first equation from them. This is an application of the replacement transformation (3), and
the resulting equivalent linear system is

The variable B is eliminated from the third equation in (5) by subtracting from it two times
the second equation. We arrive at the equivalent upper-triangular system:

A+B+ C= 1

(6) B+3C=-2

2C= 4.
The back-substitution algorithm is now used to find the coefficients C = 4/2 = 2 B =
—2-3@2) = -8,and A = 1 — (—8) — 2 = 7, and the equation of the parabola :-
y=7—8x 422 'I

It is efficient to store all the coefficients of the linear system AX = B in an arru
of dimension N x (N + 1). The coefficients of B are stored in column N + 1 of the
array (i.e., agy+1 = bg). Each row contains all the coefficients necessary to represen:
an equation in the linear system. The augmented matrix is denoted [A]|B] and the

a nonzero multiple of any other row; that is:
TOW, = TOW, —M;p X TOWp,.

[t is common to use (10) by replacing a row with the difference of that row and a
multiple of another row.

Definition 3.3 (Pivot). The number a,, in the coefficient matrix A that is used to
eliminate ag,, where k = r 4+ 1, r + 2, ..., N, is called the rth pivatal element, and
the rth row is called the pivot row. A

The following example illustrates how to use the operations in Theorem 3.8 to
obtain an equivalent upper-triapgular system UX = ¥ from a linear system AX = B
where A is an N x N matrix.

Example 3.16. Express the following system in augmented matrix form and find an
equivalent upper-triangular system and the solution.

X1 +2x0+ xat4xs=13
2x1 4+ 0xp + 4x3 + 3x4 = 28
4x1+2x2+2x3+ x4=20

34+ 243+ 2u= 6

The augmented mairix is

pivot - ,’ 12 1'4|13'l
mp) =2 2 0 4 3{28
m3 =4 4 2 2 1720 |-
gy = —3 -3 1 3 2| 6
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The first row is used to eliminate eiements in the first column below the diagonal.
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Proof. 'We will use the augmenicd mairix with B stored in coiumn ¥ + i:

We refer to the first row as the pivotal row and the element a;1 = | is called the pivotal a1 M - - - A
element. The values my; are the multiples of row 1 that are to be subtracted from row £ for G G 43t dyy *1 a{ h)l+1
k = 2. 3, 4. The result after elimination is (I (13
@G 4y day o @y |lx al
+1
(1) (1) (1) (1}
1 2 1 4| 13 AX =[%1 G 433 - ay || B3] aélg,ﬂ =B.
pivot — 0 -4 2 =5 2
m3pp =15 0 -6 -2 -—-15|-32 . . . . :
mga=—-175 0 7 6 14| 45 n o ! 1 {
ag,[ ax,% ai,% e af(vk, |V | _aN N+1 |
The second row is used to eliminate elements in the second column that lie below the M e ey T o
diagonal. The second row is the pivotal row and the values my; are the multiples of row 2 tHeh we Wil CONSUCt an equivalent upper-triangular system U X = ¥
that are to be subtracted from row k for k = 3, 4. The result after elimination is 2V a(l) L () - r o1y M
11 41z 93 aN |_xi AN+
2) (2 o] 2)
I_ rlx i g 4 | 1:5) ] 0 ap ay - gy || x @ N+
vo-4 2 = < 3) (3) 3)
pivot — 0 0 =5 75 l -35 vx=| 0 0 ay - a3 | ey |y,
mgy=-191 0 0 35 3457483 |
Finally, the multiple m43 = —1.9 of the third row is subtracted from the fourth rov. and 0 o o ... aﬁm N at™
the result is the upper-triangular system B 4 - VN

2 1 4 13
-4 2 -5 2
0 -5 -75!-35
0 0 -9 -18

(1N

[ R ]

The back-substitution algorithm can be used to solve (11), and we get
x4 =2, x3 =4, x3 = —}, x1=3. ]

The process described above is called Gaussian elimination and must be modified
so that it can be used in most circumstances. If a;x = 0, row & cannot be used to
eliminate the elements in column &, and row & must be interchanged with some row
below the diagonal to obtain a nonzero pivot element. If this cannot be done, then the
coefficient matrix of the system of linear equations is nonsingular, and the system does

a nniaue enlutinn
nave a unique sgaution.

Theorem 3.9 (Gaussian Elimination with Back Substitution). If A is an NxN
nonsingular matrix, then there exists a system UX = ¥, equivalentto AX = B, where

U is an upper-irianguiar mairix with ugz; # 0. Afier U and ¥ are constructed, back
substitution can be used to solve UX = ¥ for X.

Step 1. Store the coefficients in the augmented matrix. The superscript on a'l means
that this is the first time that a number is stored in location (r, ¢):

() (N M om
[ o) o) ay - afy AN+
T RV () (
Gy Gy A3 " Gy | Gang
ay (D (| M
Ay 3 433 - Gay | d3n
m o m |
Ayl An2 An3 Tt By | BNyl
L .

Step 2. If necessary, switch rows so that aﬂ) # 0; then eliminate x| in rows 2

through N. In this process, m, is the multiple of row 1 that is subtracted from row r.

forr=2:N
o Ay, (1),
mrl=4a,ja;’,
a® =0

{2) 1 ' I
are = ar('c) — My *asc):

and
eng

end
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The new elements are written a,(f’ to indicate that this is the second time that a
number has been stored in the matrix at location (r, ¢). The result after step 2 is

room (D m [ ()
ay ap %3 Gy “1N+1T
ey £ 12\ fz\
0 ay ay 0 ayy | Gy
2) @ {2) (2
0 ay ay - agy | agyy
2 2 2
0 ag af) - alk laWhi

Step 3. If necessary, switch the second row with some row below it so that

ag) # 0; then eliminate x; in rows 3 through N. In this process, m,; is the multi-

ple of row 2 that is subtracted from row r.
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forc=p+1:N+1

(p+1 () (p),
ar({? )=arf _mrp*ap}c)'s

end
end

The final result after xy_.; has been eliminated from row N is

(o) ) Al L a®fam T

a) a4 4 N | PN
(2) 2) ()] 2)

0 ap ayy - ayy | Gy
{3} {3) (3)

0 0 ag - ay|ayy,
o0 . W |

0 0 0 - ayy|ayyg

forr=3:N
s = a2 7a;
ag) =0
forc=3:N+1
2 2,
P =02 —max a?;
end
end

The new elements are written aﬁ) to indicate that this is the third time that a num-
ber has been stored in the matrix at location (r, ¢). The result after step 3 is

Rt [¢)] {1} [¢}] 1) n
agl) 8y @3 0 AN | Y N4
2 (2) 3] )
0 “éz) Gy3 " Gay ) ANy
3 @ @
0 0 a3 - a3y | agyy
3) @ |3
0 0 ay; - agy | g
L -

Step p + 1. This is the general step. If necessary, switch row p with some row
p)

beneath it so that a,; # 0; then eliminate x, in rows p + 1 through N. Here m,, is
the multiple of row p that is subtracted from row r.

forr=p+1:N
i o), _(p),
flrp = Grp [Gpp ,

aff,’H) =0

The-upper-trianguiarization process is now complete.

Since A is nonsingular, when row operations are performed the successive matrices
are also nonsingular. This guarantees that aé’,“) # O for all £ in the construction process.
Hence back substitution can be used to solve UX = Y for X, and the theorem is prove.

Pivoting to Avoid a,(,‘;,) =0

if a},f,) = {}, row p cannot be used to eliminate the elements in column p below the
main diagonal. It is necessary to find row k, where aéi) # 0and k > p, and then in-
terchange row p and row & so that a nonzero pivot element is obtained. This process is
called pivoting, and the criterion for deciding which row to choose is called a pivoting
strategy. The frivial pivoting strategy is as follows, If aﬁ,‘,’,) # 0, do not switch rows.
If aﬁ,’,’,) = 0, locate the first row below p in which algg) # 0 and switch rows k and p.

This will result in a new element a‘f,f,) # 0, which is a nonzero pivot element.

Pivoting to Reduce Error

Because the computer uses fixed-precision arithmetic, it is possible that a small error
will be introduced each time that an arithmetic operation is performed. The following
example illustrates how the use of the trivial pivoting strategy in Gaussian elimination
can lead to significant error in the solution of a linear system of equations.
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1.133x; +5.281x; = 6.414
24.14x1 — 1.210xp = 22.93.

Use four-digit anithinetic {see Exercises 6 and 7 in Seciion 1.3) and Gaussian elimination
with trivial pivoting to find a computed approximate solution to the system.

The multiple my; = 24.14/1.133 = 21.31 of row 1 is to be subtracted from row 2 to
obtain the upper-riangular system. Using four digits in the calculations, we obtain the new
coefficients

a = —1.210 - 21.31(5.281) = =1.210 - 112.5 = ~113.7

a2 = 2293 -2131(6414)= 22.93-136.7= 1138
The computed upper-trianguiar system is

1.133x1 + 5,281)(2 = 6414
~113.7x, = ~113.8.
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The purpose of a pivoting strategy is to move the entry of greatest magnitude &«
the main diagonal and then use it to eliminate the remaining entries in the column, I
there is more than one nonzero element in column p that lies on or below the mair

diagonal, then there 15 a choice to determine which rows ta interchange. The partia:
Pivoting strategy, illustrated in Example 3.18, is the most common one and is used ir
Program 3.2. To reduce the propagation of error, it is suggested that one check the
magnitude of all the elements in column p that lie on or below the main diagonal

Locate row & in which the element that has the largest absolute value lies, that is,

lakp’l = max{lappla |ap+lp|; ey |aNf1p!s |aNpl},

and then swiich row p with row & if k > p. Now, each of the multipliers myp for
r=p+1,..., N will be less than or equal to 1 in absolute value. This process will
usually keep the relative magnitudes of the elements of the matrix U/ in Theorem 3.9
the same as those in the original coefficient matrix A. Usually, the choice of the larger
pivot element in partial pivoting will result in a smaller error being propagated.

In Section 3.5 we will find that it takes a total of (4N3 4+ 9N? — 7N)/6 arithmetic

operationsto-solve-an NN systemr— When N =20, the totat mumber of arithmetic———————————

Back substitution is used to compute x; = —~113.8/(—113.7) = 1.001, and x; = (6.414 —
5.281(1.001))/(1.133) = (6.414 — 5.286)/(1.133) = 0.9956. n

The error in the solution of the linear system (12) is due to the magnitude of the

| DN st pvorsale tlia o s len | P L,

muiipuer mj| = 21.31. In the next exampie (ne ludguiluuc of the MWiIper mzi is
reduced by first 1nterchang1ng the first and second equations in the linear system (12}
and then using the trivial pivoting strategy in Gaussian elimination to solve the system.

Example 3.18. Use four-digit arithmetic and Gaussian elimination with trivial pivoting
to solve the linear system
24.14x; — 1.210x2 = 22.93
1.133x; 4+ 5.281x; = 6.414,
This time mz) = 1.133/24.14 = 0.04693 is the multiple of row 1 that is to be subtracted
from row 2. The new coefficients are
as? = 5.281 — 0.04693(—1.210) = 5.281 + 0.05679 = 5.338

agg* = 6.414 — 0.04693(22.93) =6.414—1.076 = 5.338.

24.14x; -~ 1.210x0 = 22.93
5.338x2 = 5.338.

Darl cizhats e 1o
Daun :uuauluuu wn

1.210(1.000)) /(241 )

operations that. must be performed is 5910, and the propagation of error in the compu-
tations could result in an erroneous answer. The technique of scaled partial pivoting
or equilibrating can be used to further reduce the effect of error propagation. In scaled
partial pivoting we search all the elements in column p that lie on or below the main
diagonal for the one that is largest relative to the entries in its row. First search rows p
through N for the largest element in magnitude in each row, say s,:

(13) sy = max{la,pl, [@rpstl ... darnl} forr=p, p+1, ..., N.

The pivotal row £ is determined by finding

(14) |akp| = max [ Iappl |ap+1pl - laNpi

Sk Sp ’ Sp+1 ! ' SN

Now interchange row p and k, unless p = k. Again, this pivoting process is designed
to keep the relative magnitudes of the elements in the matrix U in Theorem 3.9 the
same as those in the original coefficient matrix A.

I conditioning

- . . s . . - .
1 i b '~ 3 w1l ot
A matrix A is called ill condifioned if there eXists a matrix B for which small pertur-

bations in the coefficients of A or B will produce large changes in X = A~'B. The
system AX = B is said to be ill conditioned when A is ill conditioned. In this case,
numerical methods for computing an approximate solution are prone to have more
error. '

One circumstance involving ill conditioning occurs when A is “nearly singular”
and the determinant of A is close to zero. Ill conditioning can also occur in systems
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2}

v+ 3y=34
PN
08 \ (0.8,0.6)
06 Z
04

x+2y=2
02
0.0 . . : — r  Figure 34 A region where two
0.5 1.0 15 20 equations are “almost satisfied”.

ot two equations when two lines are nearly parallel (or in three equations when three
planes are nearly parallel) A conseqnence of 111 condmomng is that subsutuuon of

qu.laUOIlS

x+2y—200=0

s 2% +3y — 3.40 = 0.

Substitution of xp = 1.00 and yg = 0.48 into these equations “almost produces zeros™:

1+42(0.48)—2.00=196—2.00= -0.04~0
243(0.48) - 340 =344 -340= 0.04 0.

Here the discrepancy from O is only £0.04. However, the true solution to this lin-
ear system is x = 0.8 and y = 0.6, so the errors in the approximate solution are
x —x0=0.80—1.00=—-0.20and y — yp = 0.60 — 0.48 = 0.12. Thus, merely sub-
stituting values into a set of equations is not a reliable test for accuracy. The rhombus-
shaped region R in Figure 3.4 represents a set where both equations in (15) are “almosi
satisfied"":

R={(x,y):lx+4+2y—-2.00] <01 and [2x+3y-—-3.40 <0.2}.

There are points in R that are far away from the solution point (0.8, 0.6) and yet
produce small values when substituted into the equations in (15). If it is suspected
that a linea system is ill conditioned, computations should be carried out in multiple-
precision . ;. hmetic. The interested reader should research the topic of condition num-
ber of a matrix to get more information on this phenomenon.

11 conditioning has more drastic consequences when several equati?ns areqin
volved. Consider the probiem of finding the cubic polynomial y = ¢jx° + cax~ +
c1x4c4 that passes through the four points (2, 8), (3, 27), (4, 64),and (5, 125) (clearly.
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y = x? is the desired cubic polynomial). In Chapter 5 we will introduce the method
of least squares. Applying the method of least squares to find the coefficients requires
that the following linear system be solved;

20514 4,424 978 2240 [ ;] [20,5147
4,424 978 224 S4|| ey | | 4,424
978 224 54 14| | T 978
224 54 14 4|l 224

A computer that cartied nine digits of precision was used to compute the coefficients
and obtained

¢1 = 1.000004, c; = —0.000038, 3 =0.000126, and c4 = —0.000131.

Although this computation is close to the true solution, cr=landey=c3=c¢4=0,it
shows how easy it is for error to creep into the solution. Furthermore, suppose that the
coefficient @); = 20,514 in the upper—]eft comer of the coefﬁcxent matnx is changed
to the value 20,515 and the pe ! 3 ned with :
computer were

c1 =0.642857, 3 =3.75000, c3=-12.3928, and g = 12,7500,

which is a worthless answer. Il conditioning is not easy to detect. If the system is
solved a second time with slightly perturbed coefﬁmems and an answer that differs
51gmﬁcantly from the first one is discovered, then it is realized that ill conditioning
is present. Sensitivity analysis is a topic normally introduced in advanced numerical

analysis texts.

MATLAB

In Program 3.2 the MATLAB statement [A B} is used to construct the augmented
matrix for the linear system AX = B, and the max command is used to determine
the pivot element in partial pivoting. Once the equivalent trianguiated matrix [{7|¥]
is obtained it is separated into U and ¥, and Program 3.1 is used to carry out back
substitution (backsub(U, Y}). The use of these commands and processes is illustrated
in the following example.

Example 3.19. (a) Use MATLAB to construct the augmented matrix for the linear system
in Example 3.16; (b) use the nax command to find the element of greatest magmtude in the
first column of the coefficient matrix A; and (c) break the augmented matrix in (11) into
the coefficient matrix U and constant matrix ¥ of the upper-trangular system UX = ¥,
@

>> A=1214;2043;4221;-313 2];

>> B=[13 28 20 6] 7;

>> Aug=[4 B]
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Aug= for p=1:N-1
121413 %Partial pivoting for column p
204328 [Y, j]l=max(abs(Aug(p:N,p)));
422120 %Interchange row p and j
31326 C=Aug(p,:);
(b) In the following MATLAB display, a is the element of greatest magnitude in the tirt Aug(p,:)=Aug(j+p-1,:);
column of A and j is the row number. Aug(j+p~1,:)=C;
>>[a, j]=max{abs(A(1:4,1))} if Aug(p,p)==0
a= ’A was singular. No unique solution’
4 break
= end
3 %Elimination process for column p
for k=p+1:N

(c) Let Augup = [I7|Y] be the upper-triangular matrix in (11). —hug(k,p)/Aug (p.p) ;
>> Augup={1 2 1 4 13;0 -4 2 -5 2;0 0 -5 ~7.5 -35;0 0 0 -9 -18]. e R PP . .
>> U=Augup(1:4,1:4) ’ Aug (k,p:N+1)=Aug(k,p:N+1) -m*Aug(p,p:N+1) ;

= end
1-0000-2-0000—1-0000—4-0000 end
0 -4.0000 2.0000 -5.0000 %Back Substitution on [U|Y] using Program 3.1
0 0 -5.0000 -7.5000 X=backsub(Aug{1:N,1:N),Aug(1:N,N+1});
0 ] 0 -9.0000
>> Y=Augup(1:4,5)
Y=
13 Exercises for Gaussian Elimination and Pivoting
2
35 In Exercises 1 through 4 show that AX = B is equivalent to the upper-triangular system
-18 . UX = ¥ and find the solution,
1. 2x) +4xy —6x3 = —4 2x1+4x;— 6x3= —4
" - x14+5x2+3x3= 10 3x34 6x3= 12
Program 3.2 (Upper Triangularization Followed by Back Substitution). To = =
. A X1 4+3x+2x3= 5 3xz3 =
construct the solution to AX = B, by first reducing the augmented matrix [4]|B] to
upper-triangular form and then performing back substitution. 2, X1+ x2+6x3= 7 x4+ x4 6x3= 7
function X = uptrbk(4,B) i +2n+9n = 2 x+ 1;x3 - Z
» : -_— = l 1 = 1
AInput - A is an N x N nonsingular matrix X1 — 207+ 3x3 0 X3
% - B is an N x 1 matrix 3 2xy —2x2+5x3= 6 2x1—2x24+ S5x3= 6
%Output - X is an N x 1 matrix containing the solution to AX=B. ;4 3x2+ x3= 13 52— 4= 7
%Initialize X and the temporary storage matrix C - x+4xn—4x3= 3 09x3= 1.8
[}_I N]=31ze(ﬂ); 4 _5x1+2x2" = -1 _5x1+212_ X3 = —1
X=zeros(N,1);
C=zeros(1,N+1); ¥1+0n+3x = 3 04xy +28x; = 4.8
#Form the augmented matrix:Aug=[A!E] I+ b= 17 ~10x3 = ~10

S. Find the parabolay = A 4+ Bx + Cx? tha‘t passes through (1. 4}, (2, 7), and (3, 14).
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6. Find the parabola y = A + Bx + Cx2 that passes through (1, 6), (2, 5), and (3, 2). is found by substitution:

7. Find the cubic y = A + Bx + Cx? + Dx? that passes through (0, 0), (1, 1), (2, 2), 34(—0.11) + 55(0.45) — 21 = 0.01

and (3, 2).

In Exercises 8 through 10, show that AX = B is equiv

UX =Y and find the solution.
8 dx14+8x24+4x3+0xy= 8

dx; 4+ 8x2 +4x3+0xg4= 8

55(—0.11) + 89(0.45) — 34 = 0.00.

The MightDo 11 computer gives x = —0.99 and y = 1.01, and its check for accuracy
is found by substitution:

Xt +5x34+4x3—3x4= —4 3x34+3x3—3x4= —6
X444+ T +2= 10 dxy+dxs= 12 34(=0.99)+55(1L01) =21 = 0.89
£1 4 35 0% — 2s = 4 e 2 55(—0.99) + 89(1.01) ~ 34 = 1.44.

9 2x144x—dxs+0xg = 12
X)) +3x2~5x3—-3x4= 18
2x1+3x2+ x3+3x4 =

X+ dx2 =23+ 254 =

2x)+3x2— x340x4= 9

2x1+4x —4xs +0x4 = 12

3x2—3x3—3x3= 12
4JC3 + ZX4 = 0

—X2— Xx3+2xg= -9

14.

Which computer gave the better answer? Why?
Solve the following linear systems using (i) Gaussian elimination with partial pivot-
ing, and (ii) Gaussian elimination with scaled partial pivoting.

(@ 2x1— 30+ 100x3=1 ) o+ W0xw- x+0

0 x 20— =9 a2t Or— =9k W00 =000lx3=0 2y — Sup+ 30— Olu=1
10x4 =0

3x; — 1001z + 0.01x3=0 Sx14+  xp—100x3 —
2xy - 100x3 —  x3+4 x4 =0

Oxy +4x2+2x3—5x4= 26 —2x3+3x4 = ~10
Sxp+3x2+ 20 —dxs= 32 ESxs= -3 15. ‘The Hilbert matrix is a classical ill-conditioned matrix and small changes in its coef
11. Find the solution to the following linear system. ficients will produce a large change in the solution to the perturbed system.
(a) Find the exact solution of AX = B (leave all numbers as fractions and do exact
x1+2x; =7 arithmetic) using the Hilbert matrix of dimension 4 x 4:
2x14+3x3— x3 =9
11 1
4xz + 2x5 + 3x4 = 10 [T 3 3 7] -
- = | S T |
2x3—4x4 =12 A= 3 3 3 5 B= 0
12. Find the solution to the following linear system. % i % % g
11 11
X1+ x2 = 5 i 5 8 7
2x1 — x3+5x3 = -9 . .. . . -
(b) Now solve AX = B using four-digit rounding arithmetic:

3xp —4dx3 4 2x4 = 19
2x3+6x4= 2

13. The Rockmore Corp. is considering the purchas

e of a new computer and will choose

either the DoGood 174 or the MightDo 11. They test both computers’ ability to solve

the linear system

1.0000 0.5000 0.3333 0.2500 1
N [o.sooo 03333 0.2500 o.zooo] 5 [o

03333 02500 0.2000 0.1667

|0.2500 02000 0.1667 0.1429 ] Lo]

Note. The coefficient matrix in part (b) is an approximation to the coefficient

34 -21=
x+55y—21=0 matrix in part (a).
55x 4+ 89y —34=0.

The DoGood 174 computer gives x = —0.11 and y = 0.45, and its check for accuracy
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Algorithms and Programs

1. Many applications involve matrices with many zeros. Of practical importance are

iridiagonal systems (see Exercises 11 and 12) of the form

dixy +¢1x2 = b
ayx) + dyxy + ¢2x3 =
azxz + dax3 + c3x4 =

aN-3xN—3 +dN-1XN-1 + CN_1XN = bN_
aN-_1XN—1 + dnxy = by.

Construct a program that will solve a tridiagonal system. You may assume that row
interchanges are not needed and that row & can be used to eliminate x; in row & + 1.

3,5 Triangular Factorization
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Thus finding A~ is equivaleni to solving the three linear systen_:s.
Using Program 3.2 or your program from Problem 6, find the inverse c;f each of the
.Yollowing matrices. Check your answer by computing the product AA™" and also by

using the command inv (4) . Explain any differences.
16 ~120 240 —140‘1

2 o tj b |-120 1200 2700 1680
@ |3 23 ® | 220 —2700 6480 —4200

1 -1 0 —140 1680 —4200 2800

In Section 3.3 we saw how easy it is to solve an upper-triangular system. Now we
introduce the concept of factorization of a given matrix A into the produc.:t of a lower-
triangular matrix L that has 1’s along the main diagonal and an upper-triangular ma-
trix U with nonzero diagonal elements. For ease of notation we illustrate the ‘conce_pts

2. Use Program 3.2 to find the sixth-degree polynomial y = a; + a2x + asx2 + aqx> +

4.

5.

asx* + asx” + a7x® that passes through (0, 1}, (1,3), (2,2), (3. 1), (4.3), (5,2),
and (6, 1). Use the plot command to plot the polynomial and the given points on the
same graph. Explain any discrepancies in your graph.

Jee Prooram 12 tn colya tha lingar cvetam AY — B whara 4 — F. 1. ..
st Diglalll J.4 0 SUIVE Wb Rl SYSWill Aa = o, WIKIC A = 4 [NxN ana
v r—1 A - . .

a;j = /7!, and B = [Bij]lnx1, where by = N and by; = i¥2/(i — 1) fori > 2.

Use N = 3,7, and 11. The exact solution ts X = [1 1
deviations from the exact solution.

1 1]'. Explain any

Construct a program that changes the pivoting strategy in Program 3.2 to scaled partial
pivoting.

Use your scaled partial pivoting program from Problem 4 to solve the system given
in Problem 3 for N = 11, Explain any improvements in the solutions.

6. Modify Program 3.2 so that it will efficiently solve M linear systems with the same

7.

coefficient matrix A but different column matrices B. The M linear systems look like
AX, =B, AX> = B,, . AXy =By,

The following discussion is presented for matrices of dimensior 3 x 3, but the con-
cepts apply to matrices of dimension N x N. If A is nonsingular, then A~ exists and
AA™! = 1. Let €|, Cy, and €3 he the columns of A™! and E,, E;, and E be the

columns of 7. The equation AA™! = [ can be represented as
A[C[ C> C3] = [El E, E3].
This matrix product is equivalent to the three linear systems

AC,=E,, AC;=E;, and AC;=E;.

with matrices of dimension 4 X 4, but they apply to-an-arbitrary system-of dimension————————

N x N,

Definition 3.4. The nonsingular matrix A has a triangular factorization lf it can
be expressed as the product of a lower-triangular matrix L and an upper-triangular

matrix U:

) A=LU.

ayy ap 413 di4 i 0 0 Of|un wun2 uiz ui4
ail ax @3 au | _ | M2l 1 0 o0 O uzx u23 UM
ay an an am| |my mp 1 011 0 0 w3 un
1 0 0 0 uy a

asl a2 0443 as my) M4z M43

The condition that A is nonsingular implies that uge 7 0 fo.r all k. The not_ation
for the entries in L is m;;, and the reason for the choice of m,; instead of /;; will be

pointed out soon.

Solution of a Linear System

Suppose that the coefficient matrix A for the linear system AX = B has a triangular
factorization (1); then the solution to

2) LUX =8
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can be obtained by defining ¥ = ¥/ X and then solving two systems:
3) firstsolve LY = BforY; thensolveUX =¥ for X.

In equation form, we must first solve the lower-triangular system

Y1 = by
@ may1+  » =b
muyi+muny:+ v = b3

m41¥1 + Meay2 +ma3ys + y4a = by

to obtain ¥, y2, ¥3, and y4 and use them in solving the upper-triangular system

plxy +upexy +upaxs +uiaxq =y
u22X2 + U23X3 4 U4X4 = ¥
U33X3 + U34X4 = ¥3

(5)

U44x4 = y3.
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Now use back substjtutioﬁ and compute the solution x4 = —24/(—6) = 4,x3 = (6 —
34N/(-2) =32 = (10-2(4) +2(3))/4 =2, and x1 =21 —4 - 4(3) - 2(2) = 1, 0r
x=[1 2 3 4]. n
Triangular Factorization

We now discuss how to obtain the triangular factorization. If row interchanges are not
necessary when using Gaussian elimination, the multipliers m;; are the subdiagonal
entries in L.

Example 3.21. Use Gaussian elimination to construct the triangular factorization of the

matrix
4 3 -1
A=]-2 -4 5/|.
1 2 6]

The matrix L will be constructed from an identity matrix placed at the left. For each row

,—Sotve
x1+ 2e4 dx34+ x3=21
2014+ 8x2+ Gr3tAxs =32
3x; +10x2+ 8x3+8x4 =79
4x) + 12x2 + 10x3 + 6x4 = 82.
Use the trianguiar factorization method and the fact that

s sul [2100][of % 3]
A=[3 10 ssJ [ 110-“00—2 3J=LU
412106] (4121][00 0 6

Use the forward-substitution method to solve LY = B;

»n =21

2 =
®) ¥+ ¥ 52
Iyi+yv+ ¥ =179

4yt +y2+2y3 + yq =82,

Compute the values y1 = 21,y; = 52 — 2(21) = 10, y3 = 79 — 3(21) —
ya=82-4(21) - 10~2(6) = —24,0r ¥ =[21 10 6 —24]' Nextwrite n.
vx=Y:
x14+2x24+4x34+ xq= 21
dx2—-2x34+2x4= 10
—2x34+3x= 6

—6xy = —24.

7

('D

operation used to construct the upper-triangular matrix, the multipliers m;; will be put in
their proper places at the left. Start with

[100‘“‘4 3—1]
A=|0 1 0|]-2 -4 5].

loo 11 2 6]

Row 1 is used to eliminate the elements of A4 in column 1 below aj1. The multiples m3| =
—0.5 and m3; = 0.25 of row 1 are subtracted from rows 2 and 3, respectively. These
multipliers are put in the matrix at the left and the result is

1 0 0|4 3 -1
A=|-05 1 0|0 -23 45].
025 0 1[{06 125 625
Row 2 is used to eliminate the elements of A in column 2 below a22. The multiple 3o =

—0.5 of the second row 1s subtracied from row 3, and the multiplier is entered in the matrix
at the left and we have the desired triangular factorization of A.

1 o0 0o][4 3 -1
(8) A={-05 1 0||0 —25 45].
[025 -05 1]|0 0 85 .

Theorem 3.10 (Direct Factorization A = LU. No Row Interchanges). Suppose
that Gaussian elimination, without row interchanges, can be successfuily performed to
sulve the general linear system AX = B. Then the matrix A can be factored as the
product of a lower-triangular matrix L and an upper-triangular matrix I:

Lt Ol o nwei=Uilalisttial 1at Lo 3

A=LU.
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Furthermore, L can be constructed to have 1°s on its diagonal and U will have nonzero
diagonal elemnents. After finding L and U, the solution X is computed in two steps:
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1. Solve LU = B for Y using forward substitution.
2. Solve UX =Y for X using back substitution.

Proof. We will show that, when the Gaussian elimination process is followed and
B is stored in column N 4 1 of the augmented matrix, the result after the upper-
triangularization step is the equivalent upper-triangular system I/ X = ¥. The matrices
L.U, B,and Y will have the form

- 7

forr=2:N
[SPRER
me =gy fay’
ay) = M),
forc=2.N+1
@ _ .
Qre =dre — My %)
end
end

The new elements are written a,fg) to indicate that this is the second time that a
number has been stored in the matrix at location (r, ¢). The result after step 2 is

1 0 ¢ 07 a v
(1) [4))] (1) . [49) (1) T
mzl 1 0 aé%&H F 4y 4 i3 o Gy | QN
() 2 (2) 2)
L=|mn ma ] 0 B = afﬁ,“ ma Gy Gyy tt Ay | GaNg
’ (2) (2) (2) 2}
m31 4y 33 0 A3y | Dnyg
At Mo i i (N) X - . .
[~ I VL NI CEN N+1_J (2) (2) (2) (2)
- myl Ayy 83t ANy | Gn N+l |
(a) aiy ay aly] Caih )] Step 3. Eliminate x; in rows 3 through N and store the muitiplier my2, used to
R 2@ s @ eliminate x; in row r, in the matrix at location (r, 2).
4 4n hN d2N+1 forr=3:N
e @ @ e
v=|0 0 a3y G ), Y = | BN+ My = a}('2)/ ay:
ar) = Mr2;
forc=3:N+1
3 2 2).
0o 0 o aM a™ a? = aff —me xal;
NN | NN+ end
end

Remark. To find just L and U, the (N + 1)st column is not needed.

Step 1. Store the coefficients in the augmented matrix. The superscript on aif-)

means that this is the first time that a number is stored in location {r, ¢).

Srep 2. Eliminate x| in rows 2 through & and store the muitiplier m,, used to
eliminate x| in row r, in the matrix at iocation (r, 1).

RS I VI ¢ ay |y

4y 4y agy UN | QN4
My (D Wy | 4D

B 4p 4n AN | TNt
1 1 1 1 1

ayy aéz) “gs) “é.n.z d; .':'+=
m m m | m

ayy Gy Ay3 AN | AN Nyl

The new elements are written a,g) to indicate that this is the third time that a num-
ber has been stored in the matrix at the location {r, c).

Step p + 1. This is the general step

(1 (1) (1) () (1) 7
( a4 43 ot Ay | ANt
(2) (2) @) (2)
ma1 Gp 4yt Gay | GaNg
e e (3 Gy | 3
mz  man 4y asn | a5 n
3 & | @
myy mpN2 4p3 Aun aNN+l
L —

. Eliminate x, in rows p + | through N and
store the multipliers at the location (r, p).
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forr=p+1:N

ey =P a2

Grp =mrp;
forc=p+1:N+1
1

alf = aff —mpp wagl;
end
end

The final result after x .., has been eliminated form row N is
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Computational Complexity

The process for triangularizing is the same for both the Gaussian elimination and tri-
angular factorization methods. We can count the operations if we look at the first N
columns of the augmented matrix in Theorem 3.10. The outer loop of step p + 1 re-
quires N — p = N — (p + 1} + 1 divisions to compute the multipliers m,p. Inside the
loops, but for the first N columns only, a total of (¥ — p){N ~ p) muitiplications and

the same number of subtractions are required to compute the new row elements aif +h,
This process is carried out for p = 1, 2, ..., N — 1. Thus the triangular factorization

portion of A = LU requires

The upper-triangular process is now complete. Notice that one array is used to store
the elements of both L and U. The 1's of L are not stored, nor are the 0's of L and
U that lie above and beiow the diagonal, respectively. Only the essentiai coefficients
needed to reconstruct L and U are stored!

We must now verify that the product LU = A. Suppose that D = LU and
consider the case when r < ¢. Then d,. is

2 -1
©) dre = mrlagi} + m’2a§c) +-+ m"*-la:'r_lc) + a;?-
Using the replacement equations in steps 1 through p +1 = r, we obtain the following
substitutions:

1

)
(2) 2 3

mpdy. = a:(-c) - aj{'c)'

(10

myr1a) =af ™) - af).

When the substitutions in {10) are used in (9), the result is
o= alh a2 — a2+ oo ali - o2 +a =ald.

rc

The other case, r > c, is similar to prove. .

D G g W Nei NN
" Z) pY Zg o an Y WN-pWN-p+1)= 3 multiplications and divisions,
mz1 Gy dy3 o Gy | BNy p=1
3 3) 3)
my mnoag - asy | agng and
: = N3 —3N24 N :
(A D (12) (N - P)(N - P) - E— subtractions.
mNL MmNz MN3 o Gy |Gy —1 6

To establish (11), we use the summation formulas

s, MMty o, MM +DHEM+D)
= 2 - g :

Using the change of variables k = N — p, we rewrite (11) as

= = i )
2LWN-—pW—ptDh=) N-p+) (N-py
p=1 =1 p=1
N-1 N-]
k=1 k=1
(N—DN (N—1D{N2N-1)
= +
2 6
_N-N

3

Onbbithe triangular factorization A = LU has been obtained, the solution to the
lower-triangular system LY = B willrequire 0 + 1+ --- + N — 1 = (N? - N)/2
muitiplications and subtractions; no divisions are required because the diagonal ele-
ments of L are 1’s. Then the solution of the upper-triangular system UX = ¥ requires
14+2+---4+ N = (N? + N)/2 multiplications and divisions and (N* — N)/2 sub-
tractions. Therefore, finding the solution to LUX = B requires

N? multiplications and divisions, and N2 — N subtractions.
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We see that the bulk of the calculations lies in the triangularization portion of the
solution. If the lincar system is to be solved many times, with the same coefficient
matrix A but with different column matrices B, it is not necessary to triangularize the
matrix each time if the factors are saved. This is the reason the triangular factorization

pRpea |

method is ugually chosen over the elimination method. However, if only one linear
system is solved, the two methods are the same, except that the triangular factorization
method stores the muitipliers,

Permutation Matrices

The A = LU factorization in Theorem 3.10 assumes that there are no row inter-
changes. It is possible that a nonsingular matrix A cannot be directly factored as
A=LU.

Exampie 3.22. Show that the following matrix cannot be directly factored as A = LU:
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- The elements of P = [ p;;] have the form

L 1 j=k,
pij = 0  otherwise.

For example, the following 4 x 4 matrix is a permutation matrix,

01 00
1 000 ’

(15) P=\0 0o 0 1|=[B2 Ei Ei Ei]. A
[0 01 of

Theorem 3.11. Suppose that P = [E; Ej, ... E;N]lis a permutation matrix.

The product P A is 2 new matrix whose rows consist of the rows of A rearranged in
the order rowy, A, rowg, A, ... row; A

1 2 6 Example 3.23. Let A be a4 x 4 matrix and let P be the permutation matrix given in (15Y,
A=| 4 8 -1 then P A is the matrix whose rows consist of the rows of A rearranged in the order rows A,
-2 3 5 row] A, rows A, rows 4.

Suppose that A has a direct factorization LU: then

102 6 1 0 0] jun wpp up
(13) 4 8 —-1l|=|mny 1 0 0 ux up
~2 3 my myp L]0 0 w3

The matrices L and U on the right-hand side of (13) can be multiplied and each element
of the product compared with the corresponding element of the matrix A. In the first
column, I = luyy, then 4 = majuyr = mog, and finally -2 = mauq = ma;. In
the second column, 2 = luy, then 8 = myup = (@N2) + ux implies that uyn = 0,
and finally 3 = m3ju12 + mazuzr = (~2)(2) + m32(0) = —4, which is a contradiction.
Therefore, A does not have a LU factorization. "

A permutation of the first ¥ positive integers 1, 2, .. ., N is an arrangement k;, k2,
... ky of these integers in a definite order. Forexample 1, 4, 2, 3, 5is a permutation of
the five integers 1, 2, 3, 4, 5. The standard base vectors E; =[00 --- 01; 0 --- 0},
fori = 1,2,..., N, are used in the next definition.

Definition 3.5. An N x N permutation matrix P is a matrix with precisely one entry

whose value is 1 in each column and row, and all of whose other entries are (. The
rows of P are a permutation of the rows of the identity matrix and can be written as

(14) P=[E, E, .. E,].

Computing the product, we have

01 0 0|[ay ap a3 au a4y ap ax axn

1 0 0 Offan an an au|_|ay a2 a3 au

0 0 0 1f(as a2 a3 au aq] a4 da3 as

0 01 O||layn aw ass au asz] 432 433 a4 -
Theorem 3.12. If P is a permutation matrix, then it is nonsingular and P~! = P’.

Theorem 3.13. If A is a nonsingular matrix, then there exists a permutation matrix
P sothat P A has a triangular factorization

(16) PA=LU.
The proofs can be found in advanced linear algebra texts.

Example 3.24.  If rows 2 and 3 of the matrix in Example 3.22 are interchanged, then the
resulting matrix P A has a triangular factorization.

The permutation matrix that switches rows 2and 3is P = [E; Ej Ej]. Comput-
ing the product P A, we obtain

Moo o]f

12 6]
PA=10 Q0 1 4 8 —1l=
01 0]]-2 3 5
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Now Gaussian elimination without row interchanges can be used:

pivot — 1l 2 6
my=-21{-2 3 5
myp= 4 | 4 8 _I‘.I

After x2 has been eliminated from column 2, row 3, we have
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MATLAB

The MATLAB command [L,U,P]=1u(A) creates the lower-triangular matrix L, the
uppe.r—triangular matrix U (from the triangular factorization of A), and the permutation

lllﬁulx I llUIl.l l.llUUitﬂll .) L‘l

Example 3.25.  Use the MATLAB command [L,U,P]1=1u(A) on the matrix 4 in Ex-

b2 6 ampfe 3.22. Verify that A = P~1 AU (equivalent to showing that PA = LU).
pivot— {0 7 17{=U
my; =00 0 =25_J u >>4=(1 2 6 ;4 8 -1;-2 3 -5]
>>[L,U,PI=1u(A)
1.0000 0 0
-0.5000 1.0000 0
Extending the Gaussian Elimination Process - 0.2500 © 1.0000
The following theorem is an extension of Theorem 3.10, which includes the cases 4.0000 8.0000 ~1.0000
when row interchanges are required. Thus triangular factorization can be used to find g 3.0000 :gggg

the solution to any linear system AX = B, where A is nonsingular.

Theorem 3.14 (Indirect Factorization: PA = LU). Let A beagiven ¥ x N
matrix. Assume that Gaussian elimination can be performed successfully to solve the
general linear system AX = B, but that row interchanges are required. Then there
exists a permutation matrix P so that the product P A can be factored as the product
of a lower-triangular matrix L and an upper-triangular matrix U:

PA=LU.

Furthermore, L can be constructed to have 1’s on its main diagonal and I/ will have
nonzero diagonal elements. The solution X is found in four steps:

1. Construct the matrices L, U, and P.

2. Compute the column vector P B.

3. Solve LY = P B for ¥ using forward substitution.
4, Solve UX =¥ for X using back substitution.

Remark. Suppose that AX = B is to be solved for a fixed matrix A and several differ
ent column matrices B. Then step 1 is performed only once and steps 2 through 4 ar.
used to find the solution X that corresponds to B. Steps 2 through 4 are a computatio
ally efficient way to construct the solution X and require O (N?) operations instead .:|
the O(N?) operations required by Gaussian elimination,

'itnnul that the determinant of I7 isiust tha nroduct of tha alamants aon ite

==
o O =
O = O

>>inv(P)*L*U
1 26

4 8 -1
-235 n

As previously indicated the triangular factorization method is often chosen over the
elimination method. In addition, it is used in the inv(A) and det(A) commands in
MATLAB. For example, from the study of linear algebra we know that the determinant
of a nonsinguiar matrix A equals (~1)7 detU, where U is the upper-triangular matrix
from the triangular factorization of A and g is the number of row interchanges required
to obtain P from the identity matrix I. Since U is an upper-triangular matrix, we

ot diaocana 1
waGE i GAllIinann U1 O 15 JUsi Uil proGUCT OF WG8 SSRGS Ol IS mialn Uragiuiial

{Theorem 3.6). The reader should verify in Example 3.25 that; det(4) = 175 =
(=DX(175) = (-1 det(V).

The following program implements the process described in the proof of Theo-
rem 3,10, It is an extension of Program 3.2 and uses partial pivoting, The interchang-

ing of rows due (o partial pivoting is recorded in the matrix R The mafrix R is then
used in the forward substitution step 10 finc the matrix ¥,
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Program 3.3 (FA = LU: Faciorizaiion with Fivoiing). To consiruct ihe solu- | for k=N-1:-1:1

tion to the linear system AX = B, where A is a nonsingular matrix. X()= (Y(k) ~A(K,k+1:N)*X(k+1:N)) /A(k, k) ;
end

function X = lufact(4,B)

#Input - A is an N x N matrix

* - Bis an N x 1 matrix Exercises for Triangular Factorization

%#0utput - X is an N x 1 matrix containing the sclution to AX = B.

%Initialize X, Y, the temporary storage matrix C, and the row 1. Solve LY = B, UX =Y, and verify that B = AX for(a) B = [—4 10 5]' and

% permutation information matrix R
[N,N]=size(A);
X=zeros(N,1);
Y=zeros(N,1);
C=zeros(1,N);
R=1:N;

for p=1:N-1

I.I'].nﬂ BL].I‘-‘ PJ.VUL; ITOwW fﬁ

r column
{max1, j]=max(abs(A(p:N, )))

umin p

() B=[20 49 32],where A=LUis

[24 =61 [

i 5 i/2 1
Ll 3 ZJ 172 1/3

0 0'| |'2
1o

S W

(b)B=[23 35 7], where A=LUis

1 1 6] [1 0 0}[1 1

~51

)]

2. Solve LY = B,UX = Y, and verify that B = AX for(a) B = [7 2 10] and

6]

%#Interchange row p and j

C=A{p,:);
Alp, :)=A(j+p-1,:);
A(J}" +p-1, :g:g; 3. Find the triangular factorization A = LU for the matrices
d=R(p); [=5 2 -1] (1 0 3]
R(p)=R(j+p-1); @ | 10 3 ® | 31 6
R(j+p-1)=d; L 3 1 6] =5 2 -1]
if Alp,p)==0 4. Find the triangular factorization A = LU for the matrices
’A is singular. No unique solution’ R f % 1 . 1 -2 7]
break ) (a) 2 > ~2 by 14 2 i
ond 11 -2 7] |2 5 -2
%Calculate multiplier and place in subdiagomal portion of A 5. Solve LY = B,UX =Y, and verify that B = AX for@ B=[8 —4 10 4]
for k=p+1:N and(b) B=[28 13 23 4] where A=LUis
malt=A(k,p)/A(p,p);
A(k,p) = nult; 4 8 4 0 } 0 0 014 8 4 0
ACk,p+1:N)=A(k,p+1:N) -mult+A(p,p+1:N}; 154 =31 g1 000033 =3
end 1 47 2 3 % 1 0/{0 0 4 4
— ]
end 1 3 0 -2 i3 -3 1000 1
%Solve for Y 6. Find the triangular factorization A = LU for the matrix
Y(1) = B(R(1));
for k=2:N 1 10 4
Y()= BR(K))-ACk,1:k-1)*Y(1:k-1); 27
end 3 0 2 6
¥<qn r X

f0

lve fo
X(N)=Y(N)/A(N,N};

-1 2 9|=|-1 1 0[|0 3
i -2 3 1 -1 1](0 0O

7. Establish the formulain (12).

15].
12
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PRty PRy gy L.

8. Show that a uiangmm faciorization is u;uqut: in the luuuwmg SEiise!

gularand L1/ = A = LaUs, then Ly =Ly and Uy =
9. Prove the case r > ¢ at the end of Theorem 3.10.

)

X

U'I

o

g

5
1

10. (a) Verify Theorem 3.12 by showing that PP’ = I = P'P for the permutation
matrix
0100
1000
P=10 0 0 1
0010

(b} Prove Theorem 3.12. Hint. Use the definition of matrix multiplication and the
fact that each tow and column of P and P’ contains exactly one 1.
11. Prove that the inverse of a nonsingular N x ¥ upper-triangular matrix is an upper-
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R,
'\N\r ' AA—
-PL +
T T B
1y
R Figure 3.5 The electrical network
o for Exercise 4.

4. Kirchoff’s voltage law says that the sum of the voltage drops around any closed path

triangular matrix.
in the network in a given direction is zero. When this principle is applied to the circuit
shown in Figure 3.5, we obtain the following linear system of equations:
Algorithms and Programs (Ri+ Ry + Ra)I1 + R3ly + Rily = E
(1N Rshh +(Ry+ Rz + Rs)h — Rshy = E
1. Use Program 3.3 to solve the system AX = B, where Rily — Rshh+ (R4 + Rs+ Re)z =
1 3 5 7 1 Use Program 3.3 to solve for the curreni {1, Iz, and I3 if
A= 2 —1 3 5 and B= 2 (a) Ry=1,R=1R3=2,R4=1,Rs=2, ¢=4,and E| =23, E; =29
4] 0 25 13 thy R1=1,K;1,=0.75,33=1,R4=2,R5=1,R5=4,andEi=l?_
-2 -6 -3 1 4 E;=215

Use the [L,U,P)=1u{4) command in MATLAB to check your answer.

2. Use Program 3.3 to solve the linear system AX = B, where A = [ai;]yxn and
ajj = i/~1, and B = [bi;]nx1. where by = N and by = i¥=2/(i — 1) fori = 2.
Use N = 3,7, and 11. The exact solutionis X = [1 1 ... 1 1]. Explain any
deviations from the exact solution.

3. Modify Program 3.3 so that it will compute A~" by repeatedly solving N linear sys-

tems
ACy=E; forJ=1,2, ..., N.
Then
A[C] c, ... CN]=[E1 E; .. EN]
and
’i=[C1 Cy ... CN].

Make sure that you compute the LU factorization only once!

(¢ Ri=1,R;=2R3=4Rs=3Rs=1,Rs=5,andE) =41, E; =38

5, Incaleulus the following integral would be found by the technique of partial fractions:

P 4+x+1
(x— Dix —2)(x — 12x2 + 1)

This would require finding the coefficients A;, fori = 1,2, ...,

6, in the expression

arx+1
x—=Dx=20x-320x2+1)
Ay Az As Aa
“F-D G-2 G- &-3

Use Program 3.3 to find the partial fraction coefficients.

6. Use Program 3.3 to solve the linear system AX = B, where A is generated us-
ing the MATLAB command A=rand(10,10) and B=[1 2 3 ... 10]’. Remem-
ber o verify that A is nonsingular (det (A)# 0) before using Program 3.3. Check
the accuracy of your answer by forming the matrix difference AX ~ B and ex-
amining how close the elements are to zero (an accurate answer would produce

Aszx 4+ A
x40
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AX — B = 0), Repeat this process using a coefficient matrix 4 generated by the
command A=rand (20,20) and B=[1 2 3 ... 20]’, Explain any apparent dit-

ferences in the accuracy of Program 3.3 on these two systems.

7. In (8) of Section 3.1 we defined the concept of linear combination in N-dimensional

space. For example, the vector (4, —3), which is equivalent to the matrix [4 —3] .
could be written as a linear combination of [1 0] and [0 1]

(5]l + > [3]

Use Program 3.3 to show that the matrix [ 3 5 7 9] can be written as a line

combination of
0 2 3 5 1
4 0 2 6 4
=21, 10],10!, [-3]. and -2
3 4 5 7

EENEHEE L o]
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Table 3.2 Convergent Jacobi Iteration for the Linear

System (1)

k X Yk 2k

0 .0 20 2.0

1 1.75 3.375 30

2 1.84375 3.875 3.025

3 1.9625 3.025 2.9625

4 199062500 3.97656250 3.00000000

5 1,99414063 3.99531250 3.00093750
15 199999993 3.99999985 2199999993
19 2.00000000 4.00000000 3.00000000

Explain why any matrix [X1 X2 X3 X4 xs]’ can be written as a linear combina-
tion of these matrices.

3.6 Iterative Methods for Linear Systems

The goal of this chapter is to extend some of the iterative methods introduced in Chap-
ter 2 to higher dimensions. We consider an extension of fixed-point iteration that ap-

nliac to evsteme of linear sguztions
PA1€5 10 SYsSiems Of inear equatlens.

Jacobi Iteration
Example 3.26. Consider the system of equations
dx— y+ z= 7
(1 4x ~8y+ z=-21
—2x+4+ y+5z= 15
These equations can be written in the form
—Ity-z
- 4
21+4

_15+2x—y
==

This suggests the following Jacobi iterative process:

P b/ Sk
k+1 a
FER . _ 21 +4Ik + 2k
i Vet = g
154+ 2z —
k41 = —"—E—"—'—
Let us show that if we start with Py = (xg. yo.20) = (l. 2, 2}, then the iteration in (3)

appears to converge ta the solution (2, 4, 3).
Substitute xg = 1. yp = 2, and zp = 2 into the right-hand side of each equation in (3)
10 obtain the new values

2 -
x1=——-—7+4 2 175
1+442
1=3—+§i=3.375
15+2-
z|=——+5~—2=3.00.

The new point P; = (1.75, 3.375, 3.00) is closer to (2, 4, 3) then Py. Iteration us-
ing (3) generates a sequence of points { Py} that converges to the solution (2, 4, 3) (see
Table 3.2). =

This process is called Jacobi iteration and can be used to solve certain types of
linear systems. After 19 steps, the iteration has converged to the nine-digit machine
approximation (2.00000000, 4 00000000, 3.00000000).
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Linear systems with as many as 100,000 variables often arise in the solution w1
partial differential equations. The coefficient mairices for these systems are sparsc:
that is, a large percentage of the entries of the coefficient matrix are zero. If ther:
is a pattern to the nonzero entries (i.., tridiagonal systems), then an iterative proce-~-
provides an efficient method for solving these large systems.

Sometimes the Jacobi method does not work. Let us experiment and see that ..
rearrangement of the original linear system can result in a system of iteration equation-

that will produce a divergent sequence of points.

Example 3.27. Let the linear system (1) be rearranged as follows:

~2x+ y+5z= 15
) 4x -8y + z=-21
x— y+ z= T
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Table 3.3  Divergent Jacobi Iteration for the Linear

System (4)

k X Yk Zk

0 1.0 20 2.0

1 -1.5 3.375 5.0

2 6.6875 2.5 16.375

3 34.6875 8.015625 —17.25

4 ~46.617188 17.8125 —123.73438
5 —307.929683 -36,1503%1 211.28125
6 502.62793 —124.929688 1202.56836

Gauss-Seidel Iteration

Somenmes the convergence can be speeded up. Observe that the Jacobi iterative pro-
cess (3) yields three sequences {x}, {¥¢], and (zx] that converge to 2, 4, and 3, respec-

— =I5+ y¥3z

3
5 21+4x +2
y=—_8""_
z=T7—4x+y.

This suggests the following Jacobi iterative process:

=154 yx + 5z
Xkl = B —

21 +4x + 2
© Y1 = —*—8’5‘—‘:-

i+l =T —dxg + yi,

See that if we start with Pg = (xo, ¥o. z0) = (1, 2,2) then the iteration using (6) wil'
diverge away from the solution (2, 4, 3).
Substitute x¢ = 1, yo = 2, and zp = 2 into the right-hand side of each equation in (6
to obtain the new values x1, y;, and z;:
-154+2410

= e = ] .5
X1 7

yp=atits +; L3378

2n=7-4+2=500

The new point P; = (1.5, 3.375, 5.00) is farther away from the solution (2, 4, 3) than Py
Iteration using the equations in (6) produces a divergent sequence (see Table 3.3). I

tively (sec Table 3:2). Tr seems reasonable that x4 could be used in place of xz in
the computation of yy.. Similarly, x¢.1 and ye4; might be used in the computation
of z;.|. The next example shows what happens when this is applied to the equations
in Example 3.26.

Example 3.28. Consider the system of equations given in (1) and the Gauss-Seidel iteva-
tive process suggested by (2):
T+ ye—zk
4
21 + dxgar + 2
8
15+ 2xp1 — yiat
- .
See that if we start with Pg = (xp. yg. 20) = (1, 2. 2). then iteration using (7) will converge
to the solution (2, 4, 3).
Substitute yp = 2 and zg = Z into the first equation of (7) and obtain

Xp41 =

™ Vet =

Tk+1

T+2-2
X = - T =178
Then substitute x; = 1.75 and zo = 2 into the second equatien and get
214 4(175) + 2
yo = “(x ZT2 =37

Pinaily, substituie x; = 1.75 and y; = 3.75 into the third equation to get
_ 15— 2(1.75) - 3.75

- Ao
T = 490,

1
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Table 3.4 Convergent Gauss-Seidel Iteration for the

System (1)
k X Yk Zk
o 1.0 20 20
i 1.75 375 2.95
2 1.95 3.96875 2.98625
3 1995625 3.99609375 2.99903125
8 1.99999083 3.99999988 2.99999996
9 1.99999998 3.99999999 3.00000000
10 2.00000000 400000000 3.00000000

The new point Py = (1,75, 3.75, 2.95) is closer to (2, 4, 3) than Py and is better than the
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diagonally dominant because

Inrow 1: | - 2] < |1] + |5}
In row 2: t— 8 > |4{+ 111
In row 3: 11} < |4} +| —~ 1.

Rows 1 and 3 do not satisfy relation (8) in Definition 3.6; therefore, the coefficient
matrix A for the linear system (4) is not strictly diagonally dominant.

We now generalize the Jacobi and Gauss-Seidel iteration processes. Suppose that
the given linear system is

anxy +anxy +---+ayxj+-o+ ainxy =by
anx) +anxs +--+axj+ -+ awxy =b

value given in Example 3.26. Iteration using (7) generates a sequence { P} that converges
to (2, 4, 3) (see Table 3.4). H

In view of Examples 3.26 and 3.27, it is necessary to have some criterion to de-
termine whether the Jacobi iteration will converge. Hence we make the following
definition.

Definition 3.6. A matrix A of dimension N X N is said to be strictly diagonally
dominant provided that

N
(8) |akk|>2|akj| fork=1,2, ..., N. i

=

yor

This means that in each row of the matrix the magnitude of the element on the
main diagonal must exceed the sum of the magnitudes of al} other elements in the row
The coefficient matrix of the linear system (1) in Example 3.26 is strictly diagonally
dominant because

Inrow I: [4f = =11 +1L]
In row 2: | — 8 > |4]| + {1
In row 3: I5] = | - 2]+ |1].

All the rows satisfy relation (8) in Definition 3.6; therefore, the coefficient matrix A
for the linear system (1) is strictly diagonally dominant.
The coefficient matrix A of the linear system (4) in Example 3.27 is not strictly

9 ' ) ] ' )
aji1x)tajxy +---+ajx;j+---+ ajniy =b;
an1Xx1 +aN2x2+---+aijj + -+ aNNxN=bN.
,_\ () 3} (), . . .
Let the kth point be Py = (x; x5, ...,xJ ‘ xy')i then the next pomt is
Piyy = (x“‘"'l) x,‘(,””, .. .,x”“{'”, s ,{f*”]. The superscript (%) on the coor-

dinates of Py enables us to 1dent1fy the coordinates that belong to this point. The

iteration formuias use row j of (9) to solve for x("“) in terms of a linear combination
k) {k) \K ) lKJ

t
of the previous values x;™', X5, ..., X7, ..., Xy
Jacobi iteration:
) . (k) . k) k)
a0 x% = bj~ajxy’ — - —ajiax;’) = ajpx ] — - —ajNxy
! ajj

forj=1,2,...,N.
Jacobi iteration uses all old coordinates to generate all new coordinates, whereas
Gauss-Seidel iteration uses the new coordinates as they become available:

Gauss-Seidel Iteration:

(k+1) (k+1) N ® @
(11 I(ic+1) bj —ajix| a”_lx]l —aj41x® ~ gyl
ajf

forj=12,...,N.
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The following thearem gives 4 sufficient condition for Jacobi iteratton to converge.

Theorém 3.15 (Jacobi Iteration). Suppose that A is a strictly diagonally dominant
matrix. Then AX = B has a unique soiution X = P. Iteration using formula (10)
will nroduce a sequence of vectors !P«_‘ that will converge to P for any choice of the

ProdeC A SECQUCIe O VECIOLY 5 % 11l COTY CNcCH

starting vector Py.
Proof. The proof can be found in advanced texts on numerical analysis. .

[t can be proved that the Garss-Seidel method will also converge when the ma-
trix A is strictly diagonally dominant. In many cases the Gauss-Seide] method will
converge faster than the lacobi method; hence it is usually preferred (compare Exam-
ples 3.26 and 3.28). It is important to understand the slight modification of formula
(10) that has been made to obtain formula (11). In some cases the Jacobi method will
converge even though the Gauss-Seidel method will not.

Convergence
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_-:?’ruof. . We prove (17) and leave the others as exercises. For each J, the triangle
equality for real numbers states that [x; + y 71 = Il + ly;). Summing these yields
fnequality (17):

1A +Fily =2 xj+yi1 =) lxl+ ) vyl =Xl + I¥};.
The norm given by (13) can be used to define the distance between points. .

Definition 3.7.  Suppose that X and Y are two points in N-dimensional space. We
define the distance between X and ¥ in the |(*{|, norm as

N
1X =¥l =3Iy — yl. N
j=1

Example 3.29. Determine the Euclidean distance and [|+{], distance between the points
P=1{2.4 3 and Q = ¢1.75,3.75,2.95)

A measure of the closeness between vectors 1s needed so that we can determine if
{P;] is convergihg to P. The Euclidean distance {see Section 3.1} between P =
(x3,x2,...,xn)and @ = (y1, y2,... . yN) is

/N \ /2
(12) P —Ql= (Z(’w ~ y,-)z)
f=1

J=

Its disadvantage is that it requires considerable computing effort. Hence we intraduce
a different norm, || X,

N
(13) 1X =3 bxl.
j=1

The following resuit ensures that { X {[, has the mathematical structure of a metiic
and hence is suitable to use as a generalized “distance formula.” From the study of
linear algebra we know that on a finite-dimensional vector space all norms are equiv-
alent; that is, if two vectors are close in the |[x|/; norm, then they are also close in the
Euclidean norm [[*|.

Theorem 3.16. Let X and ¥ be N-dimensional vectors and ¢ be a scalar. Then the
function || X ||; has the following properties:

(14) 1X); =0,
(15) (X)) =0 ifandonlyif X =41,
(18) leX )l = lcl XN,

(7 BX 4+ Yily < §XH + iYL .

The Euclidean distance is
(P~ QU = (2175 + (4~ 3.75)% + (3 — 2.95)%)1/2 = 0.3570.
The lf«|l, distance is
BP — QW) = 12— 1.75] + |4 — 3.75] + |3 — 2.95| = 0.55.

The 11x)); is easier to compute and use for determining convergence in N-dimensional
space. ]

The MATLAB command A(j, [1:3~1,j+1:N1) is used in Program 3.4. This
effectively selects all elements in the jth row of A, except the element in the jth
cotarn (i.e., A{j, 7). This notation is used to simplify the Jacobi iteration (10) step
in Program 3.4.

In both Programs 3.4 and 3.5 we have used the MATLAB command norm, which
i3 the Buclidean norm. The fjxf}; can also be used and the reader is encouraged to
check the Help menu in MATLAB or one of the reference works for information on
the nerm command.

Program 3.4 (Jacobi Iteration). To solve the linear system AX = B by starting
wih un initial guess X = Py and generating a sequence { P} that converges o the

whaton. A sufficient condition for the method 1o be applicable is that A is strictly
diagonally dominant.

function X=jacobi(4,B,P,delta, maxi)
% Iaput - A is an N x N nonsingular matrix
KA - B is an N x 1 matrix
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L7 2 P . S S

13 - P is an N x i1 matrix; the imitial BUess
% - delta is the tolerance for P
% - maxl is the maximum number of iterations

% Dutput - X is an N x 1 matrix: the jacobi approximation to
% the solution of AX =
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=A(§,j+1:N)*P(j+1:N))/A(j,3);
end
end
err=abs{(norm{X’'-P));

relerr=err/(norm{X)+eps);

elelli=oIl/ \LALIT\/ =/

N = length(B); pP=X’;
for k=1:maxl if (err<delta) | (relerr<delta)
for j=1:N break
X(§)=(B(3)~A(G, [1:3-1,j+1:N])*P([1:4-1,3+1:N1))/A(5,3); end
end end
err=abs{norm(X’-P)); X=x7;
relerr=err/(norm(X)+eps);
P=KX’;
if{err<delta) | (relerr<delta) Exercises for Iterative Methods for Linear Systems
break
end In Exerc:lses 1 Lhrough 8:
end tartw ahd
X=X’; iteration converge to the solutlon"

Program 3.5 (Gauss-Seidel Iteration). To soive the linear system AX = B |
by starting with the initial guess X = Pg and generating a sequence {Py]} that |
converges to the solution. A sufficient condition for the method to be applicable is |
that A is strictly diagonally dominant. !

'
)

function X=gseid(A,B,P,delta, maxl)

% Input ~ A is an N x N nonsingular matrix

% ~ B is an N x 1 matrix

% ~ P is an N x 1 matrix; the initial guess

% ~ delta is the tolerance for P

% ~ maxl is the maximum number of iterations
% Output - X is an N x 1 matrix: the gauss-seidel
% approximation to the solution of AX =

N = length(B);
for k=1:max1

for j=1:N

if j==
X(1)=(B(1)-A(1,2:N)*P(2:N))/4(1,1);

elseif j==
X(N)=(B(N)-A(N,1:N-1)*(X(1:N-1}) ) /A(N,N);

else
%X comtains the kth approximations and P the (k-1)st
X(§)=(B(3)-A(j,1:j-1)*X(1:5-1)

(b) Start with Pg = 0 and use Gauss-Seidel iteration to find Py for k = 1, 2, 3. Will
Gauss-Seidel iteration converge to the solution?

1. 4x ~ y= 15 2. 8x —3y= 10
x+5y= 9 —x+4y= 6
3. —x+3y= 1 4. 2x+3y= 1
6x~2y= 2 Tx—2y= 1
5 5x—~ y+ z= 10 &. 2x+8y— z= 1l
2x 48— z= 1 Sx— y+ z=10
—x+ y+4z= 3 —x+ yt+4z= 3
7. x—~5y— z=-8 8. dx+ y— z=13

4x+ y— z= 13 x=5y— z=-8
2x~ y—6z=-2 2x— y—6z=-2
9. Let X = (x1,x2, ..., xN)- Prove that the [|x{|; norm

N
IXly = bl

satisfies the three properties (14)—(16).
10. Let X = (xy, x2, ..., x5). Prove that the Euclidean norm

Xl = (Z(mz
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satisfies the four properties given in (14)~(17). @ dmi + m =3 (b) dm; + m; =1
11 Let X = (x1. %2, ..., xy). Prove that the [|+].0c norm ™ tdmy 4 omy =3 motdmy + omy =2
m; +4m3z + mq =3 my; +4miy + my =1
"X“w = ‘ﬂaﬁ\, kal ms +4M4 + ms =3 my +4m4 + ms =2
satisfies the four properties given in (14)—(17). ‘ . . : - . . ,
myg +4mas + meg =3 mag +4ma + mso =1
myg +4msp =3 nag +4msp =2
4. Use Gauss-Seidel iteration to solve the following band system.
12x) — 200 + x3 =35
. —-2x1 +12x; — 2x3 + «x =
Algorithms and Programs ) : ; : ;
g g X1 — 200 +12x3 — 24 + x5 =5

X2 — 2x3 +12x4 — 245 + x5 =5
1. Use both Programs 3.4 and 3.5 to solve the linear systems in Exercises 1 through & . . . . . .

Use the format long command and detta = 1077, : : : : T
X26 — 2Xa7 =+ 12x48 — Dxs9  xsn =35

2. In Theorem 3.14 the condition that A be strictly diagonally dominant is a sufficient but : X471~ 2248+ 12xq9 — 2x50 =5
not necessary condition. Use both Programs 3.4 and 3.5 and several different initiu! Xag — 2xgo+ 12x50 = 5

guesses for Py on the following linear system. Note. The Jacobi iteration appears t.-

converge, while the Gauss-Seidel iteration diverges. 5. In Programs 3.4 and 3.5 the relative error between consecutive iterates is used as a

gtoppiqg criterion. The problems with using this criterion exclugively were discussed
in Section 2.3, The linear system AX = B can be rewritten as AX — B — 0. If Xy

x + z=2 . - -
~ , is the k.th iterate from a Jacobi or Gauss-Seidel iteration procedure, then the norm of

x4+ y = the resxfiual AX; — B is, in general, 2 more appropriate stopping criterion.

x+2y~-3z=0 Modify Programs 3.4 and 3.5 to use the residual as a stopping criterion. Use the

modified programs to solve the band svstem in Prohlam 4
prog e band system in Problem 4.

3. Consider the following tridiagonal linear system, and assume that the coefficient ma:-
trix is strictly diagonally dominant.
, L7 lteration for Nonlinear Systems:
dix) +c1x2 = by Sei .
eidel and Newton’
arxy + daxs + cax3 on’s Methods (Optional)

asxy + daxs + €3%4 = b3 herative techniques will now be discussed that extend the methods of Chapter 2 and

Section 3.6 to the case of systems of nonlinear functions, Consider the functions

Al y)=x2—2x—y405

. - {1
an—2xn-2 + dn-1xN-1 + cN-1XN = By Pl yy=x244y2 — 4,

an—1xN-1 + dnxy = by. ;
We seek a method of solution for the system of nonlinear equations

(i) Write an iterative algorithm, following (9)—(11), that will solve this system. Yot od) fi,»)=0 and  folx,y) =0
algorithm should efficiently use the “sparseness” of the coefficient matrix. ! .
(ii) Construct a MATLAB program based on your algorithm in and solve the foliowin: The equations fi(x, ¥} = 0 and fa(x, y) = 0 implicitly define curves in the xy-

tridiagonal systems. plane. Hence a solution of the system (2) is a point (p, g) where the two curves cross *
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y y=x2-2x+ 05

\-—-——'_"/

-1.0

Figure 3.6 Graphs for the nonlinear system y = x? ~ 2x + 0.5
and x? + 4y = 4.
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Table 3.5  Fixed-Point Iteration Using the Formulas in (5)

Case (i): Start with (0, 1) Case (ii): Start with (2, 0)
k Pk g k Px %
0 0.00 1.00 0 2.00 0.00
1 -0.25 1.00 1 2.25 0.00
2 —0.21875 0.9921875 2 2.78125 —0.1328125
3 —0,2221680 0.9939880 3 4.184082 —0.6085510
4 —0.2223147 0.9938121 4 9.307547 —2.4820360
5 —0.222194] (.9938029 5 44,80623 —15.891091
6 —0,2222163 0.9938095 6 1.011.995 ~392.60426
7 ~0.2222147 0.9938083 7 512,263.2 —205,477.82
8 —0.2222145 0.9938084 This sequence is diverging.
9 —0,2222146 0.9938084

(i.e., both f1(p, q) = 0 and f2(p, g) = 0). The curves for the system in (1) are well
known:

x*—2x+05=0 is the graph of a parbola,
x> +4y =4 =0 is the graph of an ellipse.

—~
W
ot

The graphs in Figure 3.6 show that there are two solution points and that they are in
the vicinity of (—0.2, 1.0) and (1.9, 0.3).

The first technique is fixed-point iteration. A method must be devised for generat-
ing a sequence {(p, g4)} that converges to the solution {p, q). The first equation in (3
can be used to solve directly for x. However, a multiple of y can be added to each side
of the secand equation to get x? 4+ 4y2 — 8y — 4 = ~8y. The choice of adding —8y it
crucial and will be explained later. We now have an equivalent system of equations:

x2—~y+05

2

—x%2 —4y? + 8y +4
y= 3 .

These two equations are used to write the recursive formulas. Start with an initial poin.
(Po, go), and then compute the sequence {(Pk-+1, ge+1)} using

€

Pi—qx+05
Pi+1 = 81(Prs g1} = B E—

© Pr—4qf +8qr +4
—Py — 3G k
gr+1 = 82(Pr, qu) = —% ks .

Case (i): If we use the starting value (pg, go) = (G, 1), then

02—1+05 —0% —4(1)? + 8(1) + 4
pl= ———=-025 and gq = =1.0.
2 8
Vamorodd s oot o ctn s mn i fem Anca (I S Tabkla 1 & Tn thia ~Anos tha aanranas
AL AL Wl 551“:1 L wic DC\.’UCHLC 111 Lade \l} Ul lauiv J.J LI RL3LD AN I aﬁ\iucuw

converges to the solution that lies near the starting value (0, 1).
Case (ii): If we use the starting value (pg, go) = (2, 0, then
2-0+05 —22- 40 +8(0) +4 _

P = ——————— =225 and g1 =
o 2 B 8

0.0.

Iteration will generate the sequence in case (ii) of Table 3.5. In this case the sequence
diverges away from the solution.

Tteration using formulas (5) cannot be used to find the second solution (1.900677,
0.3112186). To find this point, a different pair of iteration formulas are needed. Start
with equation (3) and add —2x to the first equation and —11y to the second equation
and get

x?—4x—y+05=-2xr and 2 44y: — 11y —4=—11y.
These equations can then be used to obtain the iteration formulas

—pi+4pi+ g — 0.5
Pe+1 = g1{Pr, qi) = 2

—p}—4g} +11ge +4
11 *

Table 3.6 shows how to use (6) to find the second solution.

(6)

G+t = 2P, qi) =
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Table 3.6  Fixed-point Iteration Using the
Formulas in (6)

k Pk ax

0 2.00 0.00

1 1.75 0.0

2 1.71875 0.0852273

3 1.753063 0.1776676

4 1.808345 0.2504410

8 1.903595 0.3160782
12 1.900924 0.3112267
16 1.900652 03111994
20 1.900677 0.3112196
24 1.900677 0.3112186

Theory
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Example 3.30. Find the Jacobian matrix J(x, y,2) of order 3 x 3 at the point (1, 3,2)
for the three functions

fl(xc.y,z)=-1r3--y2+37-'?-4'*'22
ly v Y =xv4vzdrxz
JL\"vr Ty &g hat LI
=2
fAlxy, )= pol
The Jacobian matrix is
[of 3f1 3]
dx 8y ¥ 3x2 —2y+1 —472+2:
T P
TErd= e By w |{Tl2 L T
ofs 3 fs x%z xz xz
[ ax 3y 8z ]

We want to determine why equations (6) were suitable for finding the solution near
(1.9, 0.3) and equations (5) were not. In Section 2.1 the size of thé derivative at the
fixed point was the necessary idea. When functions of several variables are used, the
partial derivatives must be used. The generalization of “the derivative” for systems
of functions of several variables is the Jacobian matrix. We will consider only a few
introductory ideas regarding this topic. More details can be found in any textbook on
advanced calculus.

Definition 3.8 (Jacobian Matrix). Assume that f1(x, ¥) and f2(x, v} are functions

of the independent variables x and y; then their Jacobian matrix J (x, y) is

i o
ox 9y
7
@) o
ax oy

Similarly, if fi(x, y, 2), fa(x, y. ), and fi(x, y, z) are functions of the independent
variables x, y, and z, then their 3 x 3 Jacobian matrix J(x, y, z) is defined as follows:

3 3f 8fi ]
E 5; 0z
®) % 3%
ax 3dy 3z
| dx 3y Bz_ N

Thus the Jacobian evaluated at the point (1, 3, 2) is the 3 x 3 matrix

_28
4.
-3

4.

3 -
J(1,3,2)=

|

MW Ony
Rl= ) Un

Generalized Differential

For a function of several variables, the differentiai is used to show how changes of the
independent variables affect the change in the dependent variables. Suppose that we
have

&) w=filx,y,2), v=falx,y,2), and w=fi(x,y,2).
Suppose that the values of the functions in (9) are known at the point (xo, o, o)
and we wish to predict their value at a nearby point (x, y,z). Let du,dv, and dw

denote differential changes in the dependent variables and dx, dy, and dz d'enotg dif-
ferential changes in the independent variables. These changes obey the relationships

a/ af
du = gl(xo, Yo, 20) dx + ﬁ(xo, yo. 20) dy + YL (%0, yo. 0) dz,
dx dy az
32 ] dy + 222 (x0, yo, 20) dz,
(10) dv= g(xo, ¥0. 20) dx + 3y {(x9, Yo, zo) d¥ a‘z( 0s Y0,

- na '_\fa
dw = E(Jtn:), Yo, z0) dx + ﬂ(Jfou 0. 20) dy + =2 (x0, 0, 20) d2.
ox ay 3z
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If vector notation is used, (10) can be compactly written by using the Jacobian
matrix. The function changes are d F and the changes in the variables are denoted 4 X.

du dx
(1 dF = | dv | = J(x0, y0, 20} | dy | = J (x0. Yo, z9) dX.
[dw] L4z |
Example 3.31, Use the Jacobian matrix to find the differential changes (du, dv, duw)

when the independent variables change from (1, 3, 2) to (1.02, 2. 97, 2.01) for the system
of functions

u=fit, v, 0=x -y +y—zt4 72
v=flx,y. ) =xy+ yz+xz
w= filx,y,7)= Z

Xz

Use equation (11) with J(1,3,2) of Example 3.30 and the differential changes
(dx,dy, dz} = (0.02, —0 3, 0.01) to obtain
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Definition 3.10. For the functions (12), fixed-point iteration is

(14) Pr+1 = 1Pk gy and gty = g2(pr. gi)

fork =0, 1, .... Similarly, for the functions (13), fixed-point iteration is

Pi+1 = g81{Pk» gk, Tk)
{15} G+t = 82(Pks Gk, T)
re+1 = &3( P, gk, Tk)

fork=0,1,.... A

Theorem 3.17 (Fixed-Point Iteration). Assume that the functions in (12) and (13)
and their first partial derivatives are continuous on a region that contains the fixed point
(p.gqyor (p, q,r), respectively. If the starting point is chosen sufficiently close to the
fixed point, then one of the following cases applies.

Case (i): Two dimensions. If (pg, qo) is sufficiently close to (p, ¢) and if

F o o | r

du —5——287

dv = 3 4

dw - % —%
2.

Notice that the function values at (1.02,
tions obtained by adding the differentiale du —
the cormresponding function values fi(I,3,2) = ~17, S2(1,3,2) = 11, and f3(1,3,2) -
1.5; that is,

Rl Lh

o021 =007
0031 = 0.05].
0.01 —0.0525

97, 2.01) are close to the linear approxima-

~0.07,dv = 0.05, and dw = —0.0525 10

F1(1.02,2.97,2.01) = —17.072 % —17.01 = £i(1,3,2) + du
£2(1.02,2.97,2.01) = 11.0493 ~ 11.05 = f(1,3.2) + dv
f3(1.02,2.97,2.01) = 1.44864 = 1.4475 = f5(1,3,2) + duw.

Convergence Near Fixed Points

The extensions of the definitions and theorems in Section 2.1 to the case of two and
three dimensions are now given. The notation for N-dimensional functions has not
been used. The reader can easily find these extensions in many books on numerical
analysis.

Definition 3.9. A fixed point for the system of two equations
(12) ¥ =g1{x,y) and y=gax,y)

is a point (p, g) such that p = g;(p, ¢) and g = ga2(p, ¢). Similarty, in three dimen-
sions a fixed point for the system

(13) x=gi{x,y,2),

e
og
L)
—
»
o
N
e
s
=]
a
&
g
[
o~
2]
e
3
m——

isapoint(p.q,r)suchthatp=g|(p,q,r), =gp.g.r)andr = gi3(p,q,.7r). a

3 3
ﬁ(p, )\ + ‘ﬂ(p,q)

< i,

(16)
(p q)‘ ’—(p,q)| <1,

then the iteration in (14) converges to the fixed point (p, g).
Case (ii): Three dimensions. If (pg, qo, ro) is sufficiently close to {(p, g, r) and it

p.q,7) [-!-'i( pig,r) +|@(;’,q,r} <1,
Jax ] 8y | a2
082

an '——(p q,r )‘ ‘ (p.q.r) +)£~(p,q,r) <1,
9g3

ax (p,q,r) +!3;(p,q,r) --—(p q.r)|<l1,

then the iteration in (15) converges to the fixed point (p, g, r).

If conditions (16) ot (17} are not met, the iteration might diverge. This will usually
be the case if the sum of the magnitudes of the partial derivatives is much larger than 1.
Theorem 3.17 can be used to show why the iteration (5} converged to the fixed point
near (—0.2, 1.0). The partial derivatives are

L {x,y) 8 (x,5) !
X, ¥)=1x, —g1{x, y)=—=,
Bxg! ' aygl ’ 2

a x a 1
a—xgz(X,Y)—*Z' ang(x’ yV=-y+1
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Indeed, for ali (x, y) satisiying —0.5 < x < 0.5 and 0.5 < y < 1.5, the partiai

derivatives satisfy

2 ad
N | =ix|+]1-05] <1,
pt ALl y)‘ laygn(x y)’ x| +1 I

3 a | — x|
‘agz(x,y)"*-r@gz(x,)’)‘— 1 +|—v+1] <0625 < 1.

Therefore, the partial derivative conditions in (16} are met and Theorem 3.17 implies
that fixed-point iteration will converge to (p, g) = (—0.2222146, 0.9938084). Notice
that near the other fixed point (1.90068, 0.31122) the partial derivatives do not meet
the conditions in {16); hence convergence is not guaranteed. Thai is,
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which can be considered a transformation from the xy-plane to the yv-plane. We are
interested in the behavior of this transformation near the point (xp, yg) whose image
is the point (ug, vp). If the two functions have continuous partial derivatives, then the
differential can be used to write a system of linear approximations that is valid near the
point (xq. yo):

0 ]
u—up = a—fl(xo. yoX(x — xo) + a_fl {(xg, y0)(¥ — yo0).

@1) ; ay
v—vp= a—xfz(xo, yo)(x — xg) + @fz(xo, yo)(y — vo).

The system (21) is a local linear transformation that relates small ¢

s hanges in the
independent variables to small changes in the dependent variable. When the Jacobian

a . . . . . . . . - .
531(1-90063. 0.31122)| + B;gl(l-90068, 0.31122)| = 2.40068 > 1, matrix J(xo, yo) is used, this relationship is easier to visualize:
X
a 9 —’
|2 22190068, 031122)| + |2 g2¢1.90068, 031 12“;! = 1.16395 > 1. [ — ug] [af' (o 30) ooy e
|ox | oy 22) IJ’ )= )

Seidel Iteration

An improvement, analogous to the Gauss-Seidel method for linear systems, of fixed
point iteration can be made. Suppose that pyq is used in the calculation of g1+
{in three dimensions both pi4; and g¢+1 are used to compute ry). When these
modifications are incorporated in formulas (14) and (15), the method is called Seide!

iteration:
(18) it =g1{prog)  and  gev1 = g2(Pr+1, Gi),

and
Pe+1 = g1(Pi, Gk- ')

(19 Gi+1 = 82(Pi+1, Gk, Tk)
Tkt1 = 83(Pr+1, Qe 1, Te)-

Program 3.6 will implement Seidel iteration for nonlinear systems. Imple
tion of fixed-point iteration is left for the reader.

Newton’s Method for Nonlinear Systems
We now outline the derivation of Newton's method in two dimensions. Newton's
method can easily be extended to higher dimensions.

Consider the system

20 v = flx Y.

B 1T ey T ey Rt
I_ax 2(X0, yo 3 2 o.yOJ

If the system in (20) is written as a vector function ¥V = F(X), the Jacobian
J(x, ) is the two-dimensional analog of the derivative, because (22) can be written as
23) AF = J(xo, yo) AX.

We now use (23) to derive Newton's method in two dimensions.
Consider the system (20) with & and v set equal to zero:

N £ N
U= J1W&, )Y)

24

@9 0= falx, y).

Suppose that (p, ¢) is a solution of (24); that is,

25) 0= filp.q)
0= f2(p’ 4)

To develop Newton’s method for solving (24), we need to consider small changes
iin the functions near the point (pg, go):
Au = u — ug, Ap =x — po.
Av=v—up, Ag =Yy — qo.
Set (x, ¥) = (p, q) in (20) and use (25) to see that (x, v} = (0, 0). Hence the changes
in the dependent variables are

£26)

u~ug = fi(p.a) — fr(po. go) =0— fi(po. o)

27
v~ vy = f2(p. q) — f2(po. q0) = 0 — fr(pe. q0).
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Use the result of (27) in (22) to get the linear transformation Example 3.32. Consider the nonlinear system

xr—2x—y+05

3 9
P J1(po. g0} P J1(po, qo)-l
X 4 214yt _a,

o o
it

[ap] o _[Aipo.a0)]

0 ) A ‘ .
[a—fz(po, 90 5= f2(po. 90) J LAl LA2(po.q0)]
X 3y

Il
i

[#3:3)
iy

Use Newton's method with the starting value (po, go) = (2.00, 0.25) and compute (py, g1 ).

. . . . -. g2}, and . q3).
H the Jacobian J(py, go) in (28) is nonsingular, we can solve for AP = [Ap Aq]’ = (7 Tq'lzmi_ f?..::lcflgfl \fgmr and Jacobian matrix are

[r q] = [po g0 as follows:

[x2 -2z —y+0.5] [2x -2 -1]
(29) AP ~ —J(po, q0)” F(po, qo)- Faen=\" aigts |0 JEN=1T0" 5]
Then the next approximation P, to the solution P i
en the next approximation £ clution £18 Atihe point (2.00, 0.25) they take on the values

thatis, py = pp — f{po)/f'{po)-

Qutline of Newton’s Method
o ~1.077ap] f0.25]
Suppose that Py has been obtained. 4.0 2_0} l_Aq_l T lo ZSJ

Step 1. Evaluate the function

F(Py) = {fl(pk, i) |

Falpe. qi) | AP = |BP] _ [-009375
“lag) ~ | 00625 |

A straightforward calculation reveals that

Step 2. Evaluate the Jacobian

d 9 The next point in the iteration is

afl(Pk,CIk) @fI(Pk,Q‘A-)

JPo=1 p : b posap o [200], [-009375] _ [1.90625
77 2P ) a—yfz(pk,qk} r=70 ~{o2s 0.0625 |~ l0.3125 |

Step 3. Solve the linear system Similarly, the next two points are

.I(Pk)AP = —'F(Pk) for AP . 1.900691 4 Pi e 1.900677
2=los11213f " 3= lo311219)"
Step 4. Compute the next point:
Pi1=P,+ AP The coordinates of P3 are accurate to six decimal places. Calculations for finding P and
T K ) P3 are summarized in Table 3.7. .

Now, repeat the process.
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Table 3.7 Function Values, Jacobian Matrices, and Differentials Required for Each
Iteration in Newton's Solution to Example 3.32
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Program 3.6 (Nonlinear Seidel Iteration). To solve the nonlinear fixed-point
;system X = G(X), given one initial approximation Py, and generating a sequence

Py to the solution P,
Solution of the lincar system L { P} that converges to the solution
Py J(PYAP = —F(Py) Py+AP function [P,iter] = seidel(G,P,delta, max1)
2.00 2.0 —1.01[-0.09375 0.25 1.90625 %Input - G is the nonlinear system saved in the M-file G.m
0.25 40 20 0.0625|= " |o.2s 0.3125 % - P is the initial guess at the solution
% - delta is the error bound
[l.90625] [1.8!25 —1.0:] [-—0.005559]=_[0.008789] [1.900691] Y - max1 is the number of iterations
03125 3.8125 2.5 {-0.001287 0.024414 0.311213 %0utput - P is the seidel approximation to the solution
T - - _ - _ o/ — dtar iz a numhsory itaratinne ramanira
1900691 1.801381  —1.0000007] [-0.000014] _ _ [0.000031 1.900677 * iter is the mumber of iterations required
‘.0.311213J I_3.801381 2489700} | ©0.000006 | = ~|0.000038 0311219 N=length(P) ;
for k=1:maxl
X=P;
% X is the kth approximation to the solution
implementation of Newton’s method can require the determination of several par- for j=1:N

tial derivatives. It is permissible to use numerical approximations for the values 0!
these partial derivatives, but care must be taken to determine the proper step size. In
higher dimensions it is necessary to use the methods for solving linear systems intro-
duced earlier in this chapter to solve for AP,

MATLAB

Programs 3.6 (Nonlinear Seidel Iteration) and 3.7 (Newton-Raphson Method) will re-
quire saving the nonlinear system X = G(X), and the nonlinear system F(X) = ()
and its Jacobian matrix, J F, respectively, as M-files. As an example consider saving
the nonlinear system in Example 3.32 and the related Jacobian matrix as the M-files
F.mand JF.m, respectively.
function Z=F(X) function W=JF(X)
x=X(1);y=X(2); x=X(1);y=X(2);
Z=zeros(1,2); W=[2#x-2 ~1;2+x 8xy];
Z(1)=x"2-2%x-y+0.5;
Z(2)=x"2+4y"2-4;

The functions may be evaluated using the standard MATLAB comm.:n.l-
>>A=feval (’F’, {2.00 0.26])
A=

0.2500 0.2500
>>V=JF([2.00 0.25])
B=

2 -1

4 2

% Update the terms of X as they are calculated
X()=A03);

end

err=abs (norm(X-P));

relerr=err/(norm(X)+eps);

p=X;

iter=k;

if(err<delta)| (relerr<delta)
break

end

end

In the following program the MATLAB command A\B is used to solve the linear
system AX = B (see Q=P-(J\Y’) ). Programs developed earlier in this chapter could
be used in place of this MATLAB command. The choice of an appropriate program
to solve the linear system would depend on the size and characteristics of the Jacobian
matrix.

Program 3.7 (Newton-Raphson Method).  To solve the nonlinear system
F(X)} = 0, given one initial approximation Py and generating a sequence { Py}
that converges to the solution P.

function [P,iter,err]=newdim(F,JF,P,delta,epsilon,maxi)

%Input - F is the system saved as the M-file F.m
% - JF is the Jacobian of F saved as the M-file JF.M
% - P is the initial approximation to the solution
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% - delta is the tolerance for P ¥
% - epsilon is the tolerance for F(P) 2p
% - max1l is the maximum number of iterations

%0utput - P is the approximation to the solution
- itar ieg the number of iterations reqnired

L'
I3 A UTAE AT VMY saamnsTe Li-a8ladal il

A - err is the error estimate for P
Y=feval(F,P);
for k=1:maxl
J=feval (JF,P);
Figure 3.7 The hyperbola and

Q=P-(\Y*)7; igure _
3 E .
Z=feval(F,Q): circle for Exercise 5

err=norm(Q-P);
relerr=err/(norm{Q)+eps) ;
P=Q;

(€) 0= filx,y)=2x —4cos(y)

vz, 0= falx, y) = 4x sin(y)
b ‘ @ 0=fkx,y=x+y"—z
i err ‘ =
fexr< =hHxy,D=x"+y"+z"-1
o 0= falx,y,2)=x+y
ond 3. _Fmd a region in the xy-plane such that if (po. go) is in the region then fixed-point
iteration is guaranteed to converge (use an argument similar to the one that followed
Theorem 3.17) for the system:

Exercises for Iteration for Nonlinear Systems ,
x=gix.y)=x"—y —x-3)/3

y=g0,y)=x+y+1)/3

1. Find (analyticaily) the fixed point(s) for each of the following systems.

@ x=gx.y)=x—-y 4. Rewrite the following linear system in fixed-point form. Find bounds on x, y, and z
y = ga(x,y) = —x + 6y suc;h that fixed-point iteration is sure to converge for any initial guess (po, go. ro) that
b) x=gy) = =y —x—3)/3 satisfies the boundary conditions.
y=g0(,y)=(Cx+y-1/3 6x+ y+ z=1
© x=gi(x, y)=sin(y) x4+dy+ z=2
y=gfx, ) =—6x+ty X+ y+5z=0

@ x=gix,y20=9-3y-2

y=gpx. ) =2—-x+z2 3. For the given nonlinear system, use the initial approximation (pg, go) = (1.1, 2.0%,

and compute the next three approximations to the fixed point usin, i
= =— - S g (a) fixed-point
z=g3(x,¥.2) 94+3x+4y—z iteration and equations (14) and (b) Seidel iteration using equations (18).
2. Find (analytically) the zero(s) for each of the following systems. Evaluat
bian of each system at each zero. 8x —4x2 4+ v2 41
Y X = SJ(X, )') = mi:{-_

(a) 0=filx,y)=2x+y-6 8
0= falx,y)=x+2y 2x —x2 44y —y2 43
(b)y 0= filx,y)=3x"+2y -4 4
0= falx,y)=2x+2y—3

(hyperbola)

y=gx.y) = (circle).
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Figure 3.8 The cubic and porabola
for Exercise 6.

6. For the following nonlinear system, use the initial approximation (pg, q9) = (0.3,
—1.3), and compute the next three approximations to the fixed point using (a) fixed-
point iteration and equations (14) and (b) Seidel iteration using equations {18).

y—x3 4+3x243x
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N/

2 -l ’t/ T
_1'_\

-2+

Figure 3.9 The parabolas for

\ Figure 3.10 The circle and hyper-
Exercise 7. bola for Exercise 8.

x = gi{x, y) = —_—e {cubic)
Y42y —x—2 10. Show that Newton’s method for two equations can be written in fixed-point iteration
y=gx,y) = —_— {parabola). form
7. Consider the nonlinear system x=gix.y). y=glx ),

0= filx,y) =x*—y—02
0= falx,y) =y —x—03.

These parabolas intersect in two points as shown in Figure 3.9,
(a) Start with (po. go) = (1.2, 1.2) and apply Newton’s method to compute (p), 41}
and (p2, 2).
(b) Start with (pg, qo) = (~0.2, ~0.2) and apply Newton's method to compute
(p1. g1} and (p2, q2)-
8. Consider the nonlinear system shown in Figure 3.10.

0= filx,y) =x*+y* =2
0= folx,y)=xy— 1.

(a) Verify that the soludons are (i, 1) and (—1, —1).
(b) What difficulties might arise if we try to use Newton’s method to find the solu-
tions?
9. Show that Jacobi iteration for a 3 x 3 lincar system is a special case of fixed-point

iteration (15). Furthermore, verify that if the cosfficient matrix from 2 3 x 3 linear

LRIV Ry TRAIRNCIINNANS, VRl Wiat D T LSBT ISR ITOM & 2 X 2

system is strictly diagonally dominant then condition (17) is satisfied.

where g1(x, y) and g2(x, y} are given by

[ & A& — e, NE A, )
det(J (x, y))
_ A »EAG Y = A, 0NE AOLY)
det(J (x, y)) '
11. Fixed point iteration is used to solve the nonlinear system (12). Use the following

steps to prove that conditions in (16) are sufficient to guarantee that {(pz, gx)} con-
verges to (p, ). Assume that there is a constant X with 0 < X < 1 so that

gilx, ¥y =x—

g2{x,y) =y

3 3
ﬁgx(x.y)‘ + 531(1, y)‘ <K

2 2
lggz(x,y) + lagz(a\r.y)l <K

for ali (x, y) in the rectangle R = {(x,y) : @ < x < b,c < y < d}. Also assume
thata < pp < band c < gp < d. Define

eg=p-—p, Ey=q—q, and r,=max{|e},|E}.
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Use the following form of the Mean Value Theorem applied to functions of two van-
ables:

d * d *
=— ) — , RV E,
Ck+1 axgl(ak gie; + aygl(p ci)Ex

o A
= —ga(b}, —ga(p, di)Ex,
Ern axgz( % gkdex + aysz(P O Ek

where a and b} lie in [, b] and ct and df lie in [c. 4]. Prove the following:

(a) leil = Kroand |E|| < Kro

(b) ezl < Kr1 < K*roand [Ez| < Kry < KPro

© leel < Kriet < K¥*rpand |Ei| < Knier < Ko

(d) liMpoo pr = pand limy o gk = ¢

As noted earlier, the Jacobian matrix of system (20} is the two-dimensional anulog
of the derivative. Write system (20) as a vector function ¥V = F(X), and let JUF)
be the Jacobian matrix of this system. Given two nonlinear systems V = F(X) and
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0=9x2+36y2 + 472 — 36
0=x?-2y2-20;
0=16x ~x? —2y% - 1672

—
=
-

" 5, We wish to solve the nonlinear system

0=7c3—10x—y—1
0=8y—lly+x—1.

Use MATLAB to sketch the graphs of both curves on the same coordinate system
Pse the .grapl_l to verify that there are nine points where the graphs intersect. Using.
the graph, esumate the points of intersection. Use these estimates and Program 3.7 to
approximate the points of intersection to 9 decimal places. ‘

6. The system in Problem $ can be rewritten in fixed-point form:

Algorithms and Programs

V = G{X) and ihe real number ¢, prove: e 73—y -1
(@) J(cF(X)) = cJ(F(X)) - 10
M) J(F(X)+ G(X)) = J(F(X))+ J(GX) EETLE T

e

1

. Use Program 3.6 to approximate the fixed points of the systems in Exercises 5 a

Answers should be accurate to 10 decimal places.

Use Program 3.7 to approximate the zeros of the systems in Exercises 7 and 8.

swers should be accurate to 10 decimal places.

. Construct a program to find the fixed points of a system using fixed-point iter:
Use the program to approximate the fixed points of the systems in Exercises 5 a
Answers should be accurate to § decimal places.

Use Program 3.7 to approximate the zeros of the following systems. Answers st

be accurate to 10 decimal places.

@ O0=x2—-x+y"+z2-5
O=x’+y*—y+8—4
0=x*+y*+2>+z-6

B 0=x}—x+2y"+yz—10
0=5x—6y+z
0=z-x2—y?

© O=(+02+0+D*—2
o= —-12+y -2
0=4x2+2y%+ 22— 16

11

Do some computer experimentation. Discover that, no matter what starting value is
use‘c!, o‘nlynone of the nine solutions can be found using fixed-point iteration (on this
particular fixed-point form). Are there other fixed-point forms of the system i

em in 3 that
could be used to find other solutions of the system? ’ :
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of

sk y=pix)

4F

3+

2K

1k Figure 4.2 The graph of the col-

location polynomial that passes

' ! : I : * through (1,2), (2,1}, (3.5), 4,6),
i 2 3 4 5

and (5, 1).

trasted with the Chebyshev approximation in Figure 4.1(b). The maximum error for
the Taylor approximation is 0.218282, whereas the maximum error for the Chebyshev

polynomial is 0.056468. In this chapter we develop the basic theory needed to investi-

The computational procedures used in computer software fo_r the evaluzjlljon. of a li-
brary function, such as sin(x), cos(x), or ¢*, involve polynomial appproximation. Thf
state-of-the-art methods use rational functions (which are the quotients of polynomi-
als). However, the theory of polynomial approximaiion is su‘itz‘oie for a first course
in numerical analysis, and we will mainly consider them in this chapter. Suppose that

the function f(x) = &* is to be approximated by a polynomial of degree n = 2 over

the interval [—1, 1]. The Taylor polynomial is shown in Figure 4.1(a) and can be con-

2 " - Loy . L

< PP

-1.6 -0.5 4.0 6.5 1.0 -i6 -0.5 0.6 8.5 i.0
(@) O]

Figure 4.1 (a) The Taylor polynomial p(x) = 1.000000 + 1.000000x +
0.500000x2 which approximates f(x) = e* over [—1, 1]., (b) The Chebyshev
approximation g{x) = 1.000000 + 1.129772x + 0.532042x* for f{x) = e* over
[-1,1].

186

41

Zarte (hese matters,

An associated problem involves the construction of the collocation polynomial.
Given n + 1 points in the plane (no two of which are aligned vertically), the colloca-
tion polynomial is the unique polynomial of degree < n that passes through the points.
In cases where data are known to a high degree of precision, the collocation polyno-
mial is sometimes used to find a polynomial that passes through the given data points.
A variety of methods can be used to construct the collocation polynomial: sciving a
linear system for its coefficients, the use of Lagrange coefficient polynomials, and the
construction of a divided differences table and the coefficients of the Newton poly-
nomial. All three techniques are important for a practitioner of numerical analysis to
know. For example, the collocation polynomial of degree n = 4 that passes through
the five points (1, 2), (2, 1), (3, 5), (4, 6), and (5, l)is

5x% — 82x3 + 4274 — 806x + 504
24 ’
and a graph showing both the points and the polynomial is given in Figure 4.2,

P(x) =

Taylor Series and Calculation of Functions

Limi! processes are the busis of calculus. For example. the derivative

v, o g flx—h)— fix)
7= fim

is the limi1 of the difference quoticnt where both the numerator and the denominator

tyna f}..-..‘ SRS T

imit process. In this case an

o

0 lo zero. A Taylor series iliugtratas anoth

SLAAlS LAGMAILS Aol
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Table 4.1 Taylor Series Expansions for Some Common Functions
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Table 4.2 Partial Sums S, Used to

Determine e
. 3 5 7 all
sm(x)—x—§+§—ﬁ+--- for all x n Sp=t+di 4Ll 41
) ) 1! 2 n!
AN ol 10
cos(x)y=1— T + et for all x 1 20
2 3 2 2.5
e"=l+x+?+§+ﬁ+--~ forall x 3 2.666666666666 . . .
! ! ! 4 2.708333333333 ...
ERE 5 2716666666666 . .
ln(1+x)=x_72-+?—z+-.- —l<x=1 6 2.718055555555 ...
\ S ; 7 2.718253968254 . ..
FERR B 8 2718278769841 ..
=x— s 4. —-1=< 1 ’
arctan(x) =x 3 + 5 7 + ) =x = 9 2718281525573 ...
( b ’ ¢ 2 10 2.718281801146 . ..
A+nP=14pxt PB=D 2 PO-VP=D 5 o) 11 2718281826199 . ..
il 38 12 2. 718281828286 . ..
13 2. 718281828447
14 2718281828458 . ..
15 2.718281828459 . ..

infinite number of terms is added together by taking the limit of certain partial sums.

An important application is their use to represent the elementary functions: sin{x),
cos(x), e*, In(x), etc. Table 4.1 gives several of the common Taylor series expansions.
The partial sums can be accumulated until an approximation to the function is obtained
that has the accuracy specified. Series solutions are used in the areas of engineering
and physics.

We want to learn how a finite sum can be used to obtain a good approximation
to an infinite sum. For illustration we shall use the exponential series in Table 4.1 to
compute the number e = ¢!, which is the base of the natural logarithm and exponential
functions. Here we choose x = 1 and use the series

WEPENE AR GEND SR 1*
e = +E+a+§‘+z+"'+a+"'

The definition for the sum of an infinite series in Section 1.1 requires that the partial
sums Sy tend to a limit. The values of these sums are given in Table 4.2.

A natural way to think about the power series representation of a function is to
view the expansion as the limiting case of polynomials of increasing degree. If enough
terms are added, then an accurate approximation will be obtained. This needs to be
made precise. What degree should be chosen for the polynomial, and how do we

M PRy I [ —

PR R Frrey = ma PRS-PERFIY RS, RPN SR Mgy .y [ Y o T 1 . .
Ln}uu}utc fh:: l-'UEl.mll.blUlltb fUl tuc PUWClb Ul X 1l uic lellullﬂd».l.[ IIICVUICIHI <. 1 dlIdSWCEID

these questions.

Theorem 4.1 (Taylor Polynomial Approximation). Assume that f ¢ C¥+![q, b}
and xg € [a, b] is a fixed valve. If ¥ € [a, b], then

) F(x) = Py(x) + En(x),

where Py (x) is a polynomial that can be used to approximate f(x):

N ok
@ e~ Py =3 L0

k=0
The error term E n(x) has the form

f(N+l)(C)
(3 En(x) = WD xg)VH!

for some value ¢ = c(x) that lies between x and xg.
Proof. The proof is left as an exercise. .

Relation (2) indicates how the coefficients of the Taylor polynomial are calculated.
Although the error term (3) involves a similar expression, notice that SP D (c)isto be
evaluated at an undetermined number c that depends on the value of x. For this reason
we do not try to evaluate Ey(x): it is used to determine a bound for the accuracy of
the approximation.
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Example 4.1, Show why 15 terms are all that are needed to obtain the 13-digit approx:
mation e = 2.718281828459 in Table 4.2.

Expand f(x) = ¢* in a Taylor polynomial of degree 15 using the fixed value xp = U

and involving the powers (x — 0)¥ = x*, The derivatives required are f'(x) = f"(x) =
.. = fU6) — ¢* The first 15 derivatives are used to calculate the coefficients @y = e%/k'
and are used to write
2 xls
P, =1 — .
(4} 1s(x)=1+x+ = T + 3 +- 15!;

Setting x = 1 in (4) gives the partial sum §15 = Pi5(1). The remainder term is needed to

ahasr tha o e
show the accuracy of the approximation:

f(lﬁ](c)xlﬁ

(5 Eis(x) = — 5

2l

Since we chose xg = 0 and x = 1, the value c lies between them (G u.c., 0<cx IJ', which
implies that ¢ < e'. Notice that the pamal sums in Table 4.2 are bounded above by 2.
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Combining these two inequalities vields e < 3, which is used in the following calculation

1 £ 3 i3
[Eys(Dl = = —ﬁ <16 < 1.433844 x 10
Therefore, all the digits in the approximation e = 2.718281828459 are correct, because the
actual error (whatever it is) must be less than 2 in the thirteenth decimal place. ]

Instead of giving a rigorous proof of Theorem 4.1, we shall discuss some of the
features of the approximation; the reader can look in any standard reference text on
calculus for more details. For illustration, we again use the function f(x) = ¢* and
the value xp = 0. From elementary calculus we know that the slope of the curve
y = e* at the point (x, e*) is f(x) = ¢*. Hence the slope at the point (0, 1) i~
f/(0) = 1. Therefore, the tangent line to the curve at the point (0, 1) is y = 1 + x
This is the same formula that would be obtained if we used N = 1 in Theorem 4.1}.
that is, P1(x) = F(0) + f'(0)x/1! = 1 + x. Therefore, Pi(x) is the equation of th.
tangent line to the curve. The graphs are shown in Figure 4.3.

Observe that the approximation ¢* = 1 4+ x is good near the center xp = 0 and that
the distance between the curves grows as x moves away from 0. Notice that the slope-
of the curves agree at (0, 1). In calculus we learned that the second derivative indicate-
whether a curve is concave up or down. The study of curvature! shows that if twi
curves y = f(x)and y = g(x) have the property that f (xo) = g(x0), f'(x0) = g'(x0)
and f”{xq) = g"(xp) then they have the same curvature at xp. This property would b
desirable for a polynomial function that approximates f(x). Corollary 4.1 shows tha
the Taylor polynomial has this property for N > 2.

I'The curvature X of a graph v = £ (x} at (xg, o) is defined by K = | " (xp}t/ (1 +[ f' (x0)12)%/*

Corollary4,1, If Py(x) is the Taylor polynomial of degree N given in Theorem 4.1
“then
6) PP o) = fP(xg) for k=0,1, ..., N.

Proof. Set x = xp in equations (2) and (3), and the result is Px(xg) = f(xo). Thus
statement (6) is true for k¥ = 0. Now differentiate the right-hand side of (2) and get

N @) (k+1)
O P = Y G ) Ef B0 o,

Set x = xp in (7) to obtain Py (xp) = f'(x0). Thus statement (6) is true for k = 1.
Successive differentiations of (7) will establish the other identities in (6). The details
are left as an exercise. .

Applying Coroliary 4.1, we see that y = P(x) has the properties f(xg) = P2(x0),
f!(x0) = Pj(xg), and f” (x0) = P (x); hence the graphs have the same curvature
at xg. For example, consider f(x) = e" and P2(x) = 1 +x + x2/2. The graphs are
shown in Figure 4.4 and it is seen that they curve up in the same fashion at (0, 1).

In the theory of approximation, one seeks to find an accurate polynomial approx-
imation to the analytic function® f(x) over [a, &]. This is one technique used in de-
veloping computer software. The accuracy of a Taylor polynomial is increased when
we choose N large. The accuracy of any given polynomial will generally decrease as
the value of x moves away from the center xo. Hence we must choose N large enough
and restrict the maximum value of |x — xg| so that the error does not exceed a specified
bound. If we choose the interval width to be 2R and xg in the center (i.e., [x —xpl < R),

2The function f(x) is analytic at xp if it has continuous derivatives of all orders and can be
represented as a Taylor series in an interval about xg.
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Figure 44 The graphsof y = e and y = Po(x) = 1 +
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y=e* y=Px)

10}
y=Pyx)
ar /
6l 7Y = Bx)
4F
2}
%/ : —
-2 -1 1 2

Figure 4.5 The graphs of y = ¢*, y = Pa(x), y = P3(x),

x +x2/2. and y = Py(x).
Table 4.3  Values for the Error Bound |error| < e® RN'”/(N + 1)1 Using the ¥
Approximation e = Py(xyfor (x| < R
PP N Il 1% 107}
R=20, R=135, R=1.0, R =035, y=E9(x)
lx} < 2.0 x| = 1.5 x| 1.0 x| 0.5 .
2x 1077}
& 2 Ps(x) 0.65680499 0.07090172 0.00377539 0.00003578
e* =z Pg(x) 0.18765857 0.01519323 (.00053934 G.00000256
& 2 Py(x) 0.04691464 0.00284873 0.00006742 0.00000016 1 x 167
& = Py(x) 0.01042548 0.00047479 0.00000749 0.00000001 X [
: : * : *  Figure 4.6 The graph of the error
-10 05 0.0 0.5 1.0 ¥ = Eo(x) = €* — Po(x).

the absolute value of the error satisfies the relation
N+1

(8) ferrorf = [En(x)| < iU

where M < max{| f ¥+(2)| : xo— R < z < xp+ R}. If N is fixed and the derivatives
are uniformly bounded, the error bound in (8} is proportional to RN+ /(N 4 1)! and
decreases if R goes to zero as N gets large. Table 4.3 shows how the choices of these
two parameters affect the accuracy of the approximation e* =2 Py (x) over the interval
{x| < R. The error is smallest when N is largest and R smatlest. Graphs for Py, P3,
and Py are given in Figure 4.5.

Example 4.2. Establish the error bounds for the approximation ¢* = Py(x) on each of
the intervals |x| < 1.0 and |x| = 0.5.
If 1x| < 1.0, then letting R = 1.0 and | ¥ (c)| = |e¢] < ¢! = M in (8) implies that
6"0(1.0)9
9!

lerrori = [Eg(x)| < 22 ().60000749.

If [x| < 0.5, then letting R = 0.5 and { f @ (c)| = {e°] < €% = M in (8) impiies that

e23(0.5)°
9
Example 4.3, If f(x) = ¢*, show that N = 9 is the smallest integer, so that the |error] =
|En{x)| = 0.0000005 for x in [—1, 1]. Hence Py(x) can be used to compute approximate
values of ¢* that will be accurate in the sixth decimal place.
We need to find the smallest integer N so that

lerror] = |Eg(x)| < 22 0.00000001. ™

(1 N+1
lerror] = [Ey(x)| < (I\E;-k])' < 0.0000005.

In Example 4.2 we saw that N = 8 was too small, so we try N = 9 and discover
that [Ex(0) < e'(1PF1/(9 4+ I} < 0.000000749. This value is slightly larger than
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desired; hence we would be likely to choose N = 10. But we used ¢ < ¢! as a crude
estimate in finding the error bound. Hence 0.000000749 is a little larger than the actual
error. Figure 4.6 shows a graph of Eg(x) = ¢* — Py(x). Notice that the maximum vertical
range is about 3 x 10~7 and occurs at the right end point (1, E9(1)). Indeed, the maximum
error on the interval is Eg(1) = 2.718281828 — 2.718281526 ~ 3.024 x 10~7. Therefore,
N = 9is justified. [

Methods for Evaluating a Polynomial

There are several mathematically equivalent ways to evaluate a polynomial. Consider,
for example the function

(9 fx) =@ -1k

The evaluation of f will require the use of an exponential function. Or the binomial
formula can be used to expand f(x) in powers of x:
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Proof. ‘This follows directly from the definition of convergence of series in Sec-
tion 1.1. The limit condition is often stated by saying that the error term must go
to zero as N goes to infinity. Therefore, a necessary and sufficient condition for (13)
1o hold is that

S ) (x — )N

14 lim E = [i =
{14) am wn(x) Nljlﬂm N+ 1) 0,
where ¢ depends on N and x. .

Exercises for Taylor Series and Calculation of Functions

1. Let f(x) = sin(x) and apply Theorem 4.].

{ay lica yn — N and And P-ivY Poiv) and P.f )
18y Use xp vangt ong rsix), &74x),

afiv g \X .

{b) Show thatif x| < ! then the approximation

am 5™ i (=
xX}= X -
k=0 kk)
= xB — 8x7 +28x% — 56x7 + 70x* - 56x% +28x% — 8x + 1.

Horner’s method (see Section 1.1), which is also called nested multiplication, can
now be used to evaluate the polynomial in (10). When applied to formula (10}, nested
muitiplication permits us to write

(D fx) = {((((((x — B)x + 28)x — 56)x + 70}x — 56)x + 28)x — 8)x + 1.

To evaluate f(x) now requires seven multiplications and eight additions or sub-
tractions. The necessity of using an exponential function to evaluate the polynomial
has now been eliminated.

We end this section with the theorem that relates the Taylor series in Table 4.1 and
the Taylor polynomials of Theorem 4.1.

Theorem 4.2 (Taylor Series). Assume that f(x) is analytic and has continuous
derivatives of all order N = 1,2, .. ., on an interval {a, b) containing x;. Suppose that
the Taylor polynomials (2) tend to a limit

O (xg)

Kbkt 24

k!

N
12 S(x)= lim Py(x)= Lm ¥ — x0)¥,
(12) (x) Jim '~ (x) Nl’m""% (x —xo0)
then f(x) has the Taylor series expansion

00 olkyso v

13) f) =3 e =z,
k=0 "

. x3 x5 ):7 xg
szn(x)~x—§+5—!—ﬁ+ﬁ
has the error bound | Eg(x)}| < 1/10! < 2.75574 x 10~7,

(¢) Usexp = n/4and find Ps(x), which involves powers of (x — 7 /4).
2. Let f(x) = cos(x) and apply Theorem 4.1.

(8) Use xg = 0and find Pyix), Ps(x), and Ps(x).

(b) Show thatif |x| = 1 then the approximation

2 gt 26 B
cos(x)%1~5+-4—!—a+§
has the error bound |Eg(x)| < 1/9! < 2.75574 x 107,
(e} Usexg = m/4and find P4(x), which involves powers of (x — 7 /4).
3. Does f(x) = x'/? have a Taylor series expansion about xg = 07 Justify your answer.
Does the function f(x) = x /2 have a Taylor series expansion about xg = 17 Justify

FOUI answer. _
4. (a) Find a Taylor polynomial of degree N = 5 for f(x) = 1/(l + x) expanded
about xg = 0.

(b) Find the error term Es(x) for the polynomial in part (a).
-]

Find the Taylor polynomial of degree N = 3 for f(x) = e~*/2 expanded about
x9 =0,

6. Find the Taylor polynomial of degree N = 3, P3(x), for f(x) = x> — 2x2 4 2x
expanded about xg = 1, Show that f(x) = P3(x).
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7. (2) Find the Taylor polynomial of degree N = 5 for f(x) = x'/? expanded about (¢) Show that the error term for Py (x) is
x0 = 4.
(b) Find the Taylor polynomial of degree N = 5 for f(x) = x'/? expanded about En(x) = (—=1)Nx N+
x =9 ) (N + D1+ )N+

fa1  Datarmina whinh of tha nalunomiale i
{c} Letermune wihich O e polynonuals in

65172 | (d) Evaluate P3(0.5), P5(0.5), and Py(0.5). Compare with In(1.5).

8. Use f(x) = (2+ x)1/? and apply Theorem 4.1. {e) Show that if 0.0 < x < 0.5 then the approximation

(a) Find the Taylor potynomial P3(x) expanded about xo = 2. o) ER OB 0
(b Use P3(x) to.ﬁnd an approxim(il;ionto 31/2.. {(x) & x — > + T + -3 + 5
(c) fl;im!i Et:ht(z n)‘tlaxunum value of | f ¥ (c)| on the interval I < ¢ < 3 and find a bound s he ezvo boand | < 0.0000G7ES.....
r | E3(x)|. N “'""' = 0.000097
9. Determine the degree of the Taylor polynomial Py (x) expanded about xp = 0 that 14. Binomial series. Ig S(x) =1 +x)? and xo = 0.
should be used to approximate %! so that the error is less than 1076, (@) Showthat fO)=p(p—1)---(p—k+ (1 +x)7*,

10. Determine the degree of the Taylor polynomial Py (x) expanded about xo = that (b) Show that the Taylor polynomial of degree N is
should be used to approximate cos(33x /32) so that the error is less than 107°. _ 2 .
i X cos(12)dt ex PN(x)=l+px+-——-—-p(p Dx +._.+p(p D

{p~N+1DxV

panded about xp = 0.
(b) Use the Taylor polynomial to approximate £(0.1).
(¢) Find a bound on the error to the approximation in part (b). En(x) = p(p ~ 1)~~(p—N)xN"'1/((1 +C)N+1_p(N+ .

(¢) Show that

12. (a) Use the geometric series

LE ! LA et

(d) Set p = 1/2 and compute P»(0.5), P4(0.5), and Pg(0.5). Compare with

! ,2=I—XZ+JC4—X6+JCB—--~ for Ix] <1, (1.5)”2.
14x (e) Show thatif 0.0 < x < 0.5 then the approximation
and integrate both sides term by term to obtain o 33 e s
I+l 4+ - 2 4 12
[P R ( ) +2 8 +16 128+256
arctan(x) =x — — + — ~ —+---  for [x] < L.
35 7 has the error bousd {Es| < (0.5)5(21/1024) = 0.0003204 . . ..

(b) Use x/6 = arctan(3~"/2) and the series in part (a) to show that (f) Show thatif p = N is a positive integer, then

2
=32 x2(1_§;+3?4_3;+§_...), PN(x)=1+Nx+£v-(iz—!li+-v-+NxN“l +xV.
Notice that this is the familiar binomial expansion.
(¢) Use the series in part (b) to compute 7 accurate to eight digits. 15, Find c such that | E4] < 107 whenever |x — xg/ < ¢.
Fact. w == 3.141592653589793284 . . .. (@) Let f(x) = cos(x) and xg = 0.
13. Use f{(x) = In(1 + x) and xg = 0, and apply Theorem 4.1. (b) Let f(x) =sin(x) and xo = 7 /2.
(a) Show that f®(x) = (=¥ ((k — DH/(1 + 0k, () Letf(x)=e¢"andxp=0.
(b} Show that the Taylor polynomial of degree N is 16. (a) Supposethaty = f(x)is an even function (i.e., f(—x) = S(x) foral) x in the
s a s L NelN domain of f). What can be said about Py {x)?
Pvin=x—— 4 T (b) Suppose that y = f(x) is an odd function (i.e., f(—x) = — f(x) for all x in the

2 3 4 N domain of f). What can be said about Py (x)?
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17. Lety = f(x) be a polynomial of degree N. If f(xg) > Oand f'(x0), ..., f ™ (x0) =
0, show that all the real roots of f are less than xo. Hint. Expand f in a Taylor
polynomial of degree N about xp.

18. Let f(x) = e*. Use Theorem 4.1 to find Py{x), for N = 1, 2, 3,..., expanded
about xg = 0. Show that every real root of Py (x) has multiplicity less than or equal

dOOML A — V. 31 Al CVCTY 1€l 1O O TN A7 Tlas 1R

to one. Note. If p is a root of multiplicity M of the polynomial P{x), then p is a root
of multiplicity M — 1 of P'(x).

19. Finish the proof of Corollary 4.1 by writing down the expression for P m(x) and
showing that

Exercises 20 and 21 form a proof of Taylor’s theorem.

20. Let g(r) and its derivatives g*) (1), for k = 1,2...., N 4 1, be continuous on the
interval (a, &), which contains xg. Suppose that there exist two distinct points x and
xg such that g(x) = 0, and g(x0) = g'(x0) = ...g"¥(x0) = 0 Prove that there
exists a value ¢ that lies between xq and x such that ¥ =

4.2.
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AT 1

matrices X and Y musi be

~

ot Fos wil AT <
CIMarixX U = LA° I°j Uvoie. lﬂE

form of a table by defining th
of the same length.)
1. (a8) Use the plot comunand to plot sin(x), Ps(x), Py(x), and Py(x) from Exercise
1 on the same graph using the interval —1 < x < 1.
(b) Create a table with columns that consist of sin(x), Ps{x), Py(x), and Py(x)
evaluated at 10 equally spaced values of x from the interval [—1, 1].

2. (a) Use the plot command to plot cos(x), P4(x), Ps(x), and Py(x) from Exercise
2 on the same graph using the interval —1 < x < 1,
(b) Create a table with columns that consist of cos(x), Ps(x), Ps(x), and Pg(x)
evaluated at 19 equally spaced values of x from the interval [—1, 1].

Introduction to Interpolation

In Section 4.1 we saw how a Taylor polynomial can be used to approximate the func-

tion f(x). The information needed to construct the Taylor polynormal is the value

Remark. Note that g(t) is a function of ¢, and the values x a.nd Xg are to be treated

as constants with respect to the variable 7.

Hint. Use Rolle’s theorem (Theorem 1.5, Section 1.1) on the interval with end
points xo and x to find the number ¢, such that g ’(c1) = 0. Then use Rolle’s theorem
applied to the function g/(t) on the interval with end points x5 and ¢; to find the

number ¢; such that g7(cz) = 0. Inductively repeat the process until the number
cn+1 is found such that g™+ (cy 1) =0

21. Use the result of Exercise 20 and the special function

0 = £0) — Pwie) — Entry L0
g= N (x —x)¥+1’

where Py (x) is the Taylor polynomial of degree N, to prove that the error term
En{x) = f(x) — Py(x) has the form

N+ oy xo)N+!

En(x)=f (e )W-

Hint. Find g¥+1(r) and evaluate it at t = c.

Algorithms and Programs

The matrix nature of MATLAB allows us to quickly evaluate functions at a large nurn-
ber of values. If X=-1 0 1], then sin(X) will produce [sin{(-1) sin(0) sin(1}].
Similarly, if X=—1:0.1:1, then Y=sin(X) will produce a matrix Y of the same dimension
as X with the appropriate values of sine. These two row matrices can be displayed in the

of f and 1ts denivatives at xo. A shortcoming is that the higher-order derivatives must
be known, and often they are either not available or they are hard to compute.
Suppose that the function y = f(x) is known at the N + 1 points (xg, yo), - . -,
(xx. yn), where the values x; are spread out over the interval [a, b] and satisfy
a<xp<xy<--<xy<b and y= flx).
A polynomial P(x) of degree N will be constructed that passes through these N + 1
points. In the construction, only the numerical values x; and y; are needed. Hence

#ho hichar Ardar darvativvac ara nat nasaccary Tha nnalunamial Piv) ~an ha necad tn
=1C MENer-Oroer Convallves are notl necessary, 108 poiyniua: »{xX) fan o2 uses o

approximate f (x) over the entire interval (a, b]. However, if the error function E(x) =
F(x) — P(x) is required, then we will need to know f¥*1}(x) and a bound for its
magnitude, that is

M =max{|fM*P(x)| :a <x < b).

Situations in statistical and scientific analysis arise where the function y = f(x)
is available only at N + 1 tabulated points (xx, y:), and a method is needed to approx-
imate f(x) at nontabulated abscissas. If there is a significant amount of error in the
tabulated values, then the metheds of curve fitting in Chapter 5 should be considered.

s b b d PR mrn lremmarzin £ Aomens ~Af nnmsrion s,

Ull WIC OuIcl jana, lf uie lJUu.lLB \.Lk, )/k) ale RAMIUWL W a xusu UCEICU I at.\.ula\.y, LllCll
the polynomial curve y = P(x) that passes through them can be considered. When
g < x < xp, the approximation P(x)} is called an inferpolated value. 1f either
X < xgorxy < x,then P(x) is called an extrapolated value. Polynomials are used to
design software algorithms to approXimate functions, for numerical differentiation, for
numerical ‘ntegration, and for making computer-drawn curves that must pass through

tpecified points.
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The tangent line
¥ ¥ has slope P'(4).

20}

4, P(4 '
1.5F 1.5
1.0 i.0

4, P(4)
05+ 05
0.0 1 1 i ! I i x 0.0 1 i 1 L 1 L x F‘igure 4.8 'me approximating
1 2 3 4 5 6 1 2 3 4 5 6 polynomial P(x) is integrated and
its antiderivative is used to find the
Figure 4.7 (a) The approximating Figure 4.7 (b) The approximating area under the curve for 1 <x < 4.
polynomial P (x) can be used for inter- polynomial P{x) is differentiated and -7
polation at the point (4, P(4)) and ex- P’(x} is used to find the slope at the in-
trapolation at the point (5.5, P(5.5)). terpolation point (4, P(4)).
The interpolated value is P(4) = 1.60 (see Figure 4.7(a)).
. R ; (b} dz = 3:13 = -—0.06
Let us briefly mention how to evaluate the polynomial P(x): dy = 2ar + dox = 04 + (—0.06)(4) = 0.16
'§)) Pixy=anx" +ay_ix" '+ b o faix + do=a; +dix =044 (0.16)(4) = 0.24,
Homer’s method of synthetic division is an efficient way to evaluate P(x). The deriva- The numerical derivative is P’(4) = (.24 (see Figure 4.7(b)).
tive P'{x) is a
. 3
C is = — = -0.005
(¥)) P'(x) = Nanx" 1 + (N = Dany-1xV 2+ 4 2ax + a4 © A"
= 2 _ =
and the indefinite integral /(x) = [ P(x) dx, which satisfies I'(x) = P(x), is i3 = 7 +iax = 0.06666667 + (—0.005)(4) = 0.04666667
,a .
(3) ry 2 NNt an i xN s ax? L 52 o iy = ?1 +i3x = —0.2 + (0.04666667)(4) = —0.01333333
T ON+1 N 3 2 aox ' i1l = agp + fax = 1.28 + (—0.01333333)(4) = 1.22666667

where C is the constant of integration. Algorithm 4.1 (end of Section 4.2) shows how ig = 0+ i1x = 0+ (1.22666667){4) = 4.90666667.

to adapt Horner's method to P’(x) and 7 (x). 4
Hence I(4) = 4.90666667. Similarly, I (1) = 1.14166667. Therefore, f, P(x)dx =

Exampie 4.4. The polynomial P(x) = —0.02x7 + 0.2x% — 0.4x + 1.28 passes through 74y — (1) = 3.765 (see Figure 4.8).
the four points (1, 1.06), (2, 1.12), (3, 1.34), and (5, 1.78). Find (a) P(4), (b) P'(4). {d) Use Algorithm 4.1(i) with x = 5.5,
(c) Jf: P{x)dx, and (d) P(5.5). Finally, (e) show how to find the coefficients of P(x)}.

Use Algorithm 4.1{i)—(iii) (this is equivalent to the process in Table 1.2) with x = 4. by =a;=-002

by = a3 + bax = 0.2 + (~0.02)(5.5) = 0.09
(a) by = a3 = —0.02
5 5 0 0.02(4) = 0.12 b1 = a; + bax = —-0.4 + (0.09)(5.5) = 0.095
2= 02+ bax =02+ (-0.02(%) = 0. b = ag + bix = 1.28 + (0.095)(5.5) = 1.8025.

s 1N o N

; " AA N Ao
bt =ay +b2x = —0.4+(0.12){4) = 0.08

bo =ap+bix = 1.28 + (0.08)(4) = 1.60. The extrapolated value is £(5.5) = 1.8025 (see Figure 4.7(a)).
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Table 4.4  Values of the Tavlor Polynomial T (x) of Degree 5, and the
Function In{1 + x) and the Error In(1 4+ x) — T(x) on [0, 1]

SEC. 4.2 INTRODUCTION TO INTERPOLATION 203

Table 4.5  Values of the Approximating Polynomial P (x) of Example 4.5 and the Function
F(x} = In{1 + x) and the Emror £(x) on [—0.1, 1.1]

Taylor polynomial, Function, Error, Approximating polynomial, Function, Error,
x T(x) In{1 + x) In(l+x) — T (x) x P(x) fix)y=n{l+x) E(x) = f(x) — P(x)
0.0 0.00000000 0.0053K000 0.00000000 —0.1 —{0.10509718 —0.10336052 —0.00026334
0.2 0.18233067 0.18232156 —0.00000911 0.0 0.00000000 0.00000000 0.00000000
0.4 0.33698133 0.33647224 —0.00050909 0.1 0.05528988 0.09531018 0.00002030
0.6 0.47515200 0.47000363 —0.00514837 0.2 0.18232156 0.18232156 0.00000000
0.8 0.61380267 0.58778666 —0.02601601 03 0.26237015 0.26236426 —0.00000589
1.0 0.78333333 0.69314718 —0.09018615 04 0.33647224 0.33647224 0.00000000
0.5 0.40546139 0.40546511 0.00000372
0.6 0.47000363 0.47000363 0.00000000
0.7 0.53063292 0.53062825 —0.00000467
. N 58778666 0.58778666 0.00000000
{(e) The methoc;s of Ch;xpter 3 can be used to find the coefficients. Assume that P(x) = gg 3.241841 18 0.64185389 0.00001271
A + Bx + Cx” + Dx”; then at each value x = 1,2,3, and 5 we get a linear equatior 1.0 0.69314718 0.69314718 0.00000000
involving A, B, C, and D. i1 0.74206529 0.74193734 ~0.00012795
Atx=1:A+1B+ 1C+ 1D =106
@ Atx=2:A4+2B+ 4C+ 8D=1.12
Atx=3:A+3B+ 9C+ 271D =134 y
Atx=5:A+5B+25C+125D =178 /
0.6 |
The solution to (4) is A = 1,28, B = —0.4,C = 0.2, and D = -0.2. ¥ 6 y=In(l + )
This method for finding the coefficients is mathematically sound, but sometimes
the matrix is difficult to solve accurately. In this chapter we design aigorithms specifi- 04
cally for polynomials.
Let us return to the topic of using a polynomial to calculate approximations to a
known function. In Section 4.1 we saw that the fifth-degree Taylor polynomial for 02 -
fxy=In(l+x)is
X2 ¥ xS Figure 4.9 The graph of y =
5) Tx)=x—— 4+ — — — 4+ —, L 1 | L ! x  P(x), which “lies on top” of the
2 3 4 5 0.0 0.2 04 0.6 038 1.0 graph y = In(1 + x).

If T(x) is used to approximate In{(1 + x) on the interval [0, 1], then the error is O at
x = 0 and is largest when x = 1 (see Table 4.4). Indeed, the error between T (1) and
the correct value In{1) is 13%. We seek a polynomial of degree 5 that will approximate
In(1 + x) better over the interval [0, 1]. The polynomial P (x) in Example 4.5 is an
interpolating polynomial and will approximate In(1 4 x) with an error no bigger than
0.00002385 over the interval [0, 1].

Example 4.5. Consider the function f(x) = In(1 + x) and the polynomial

P(x) = 0.02957206x> ~ 0.12895295x* + (.28249626x3
— 0.48907554x2 + 0.99910735x

based on the six nodes x;x = k/5fork = 0, 1, 2, 3, 4, and 5. The following are empirical
descriptions of the approximation P (x)} = In(l + x).

CTIPLN

1. P(xx) = f{xz) at each node (see Table 4.5).

2. The maximum error on the interval [—0.1, 1.1] occurs at x = —0.1 and |error} <
0.00026334 for —0.1 < x < 1.1 (see Figure 4.10). Hence the graph of y = P(x)
would appear identical to that of y = In (1 + x) (see Figure 4.9).

3. The maximum error on the interval [0, 1] occurs at x = 0.06472456 and |error| <,
0.00002385 for 0 < x < 1 (see Figure 4.10).
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y

0.00002 [\ y=E)
) —

/)

-0.00002 -

-0.00004(-
I

0. 04

- X L x
0.6 08 1

Figure 4.10 The graphof the error y = E(x) =

In(1 + x) - P(x).

Remark. At a node x; we have f(x;) = P(x;). Hence E(x;) = 0 at a node. The graph ¢

SEC. 4.2 INTRODUCTION TO INTERPOLATION 205

1. Consider P(x) = —0.02x3 + 0.1x2 — 0.2x + 1.66, which passes through the four
points (1, 1.54), (2, 1.5), (3, 1.42), and (5, 0.66).
(a) Find P(4).
(h) Find P'(4).
(¢) Find the definite integral of P(x) taken over [1, 4}.
(d) Find the extrapolated value P(5.5),
(&) Show how to find the coefficients of P(x).

2. Consider P(x) = —0.04x% 4 0.14x% — 0.16x + 2.08, which passes through the four
points (0, 2.08), (1,2.02), (2, 2.00), and (4, 1.12).
{(a) Fnd P(?).
(b) Find P'(3).
(c¢) Find the definite integral of P(x) taken over [0, 3].
{d) Find the exirapolated value £{4.5).

() Show how to find the coefficients of P(x).

E(x) = f(x)— P(x) looks like a vibrating string, with the nodes being the abscissa wher.

there is no displacement.

E:4

Algorithm 4.1 (Polynomial Calculus).

To evaluate the polynomial P(x), its

derivative 7/(x), and its integral j' P (x) dx by performing synthetic division.

INPUT N {Degree of P(x}}
INPUT A(0), A(1),..., A(N} {Coefficients of P{x)}
INPUT C {Constant of integration}
INPUT X {Independent variable}

(i) Algorithm to Evaluate P{x)

B(N) = A(N)

FOR K = N — 1 DOWNTO 0 DO
B(K):=A(KY+ B(K+1)#*X

PRINT “The value P(x} is”, B(Q)

Space-saving version:

Poly := A(N)

FOR K = N — 1 DOWNTQ 0 DO
Poly := A(K) + Poly # X

PRINT "The value P(x) is", Poly

(i) Algorithm to Evaluate P'(x)

DIN — 1) :=Nx A(N)

FOR K = N — | DOWNTO 1 DO
DIKE—-1D=KxAK)+ D(K)* X

PRINT “The value P'(x) is”, D(0)

Space-saving version:

Deriv ;= N x A(N)

FOR K = N - 1 DOWNTO 1 DO
Deriv := K # A(K) + Detivx X

PRINT “The value P/(x) is”, Deriv

(iii) Algorithm to Evaluate f(x)
HN+ 1) = AN/IN+1)
FOR K = N DOWNTO 1 DO
K =AK -1/ K+HKADxX
IOy =C+I1{)y=X
PRINT “The value ! (x) is”, 7(0)

Space-saving version:
Integ := A(NY/(N + 1)
FOR K = N DOWNTO 1 DO
Integ := A(K — 1)/K +Intea « X
Integ := C + Integ = X
PRINT “The value /(x) is”, Integ

Consider P(x) = —0.0292166667x> + 0.275x% —0.570833333x — 1.375, which

passes through the four points (1, 1.05), (2, 1.10), (3, 1.35), and (5, 1.75).

(a} Show that the ordinates 1.05, 1,10, 1.35, and 1.75 differ from those of Exam-
ple 4.4 by less than 1.8%, yet the coefficients of x? and x differ by more than
42%.

(b) Find P(4) and compare with Example 4.4.

() Find P'{4) and compare with Example 4.4.

(d) Find the definite integrat of P(x) taken over [1, 4] and compare with Exam-

nla A4 4
Pic a5

(e} Find the extrapolated value P(5.5) and compare with Example 4.4.
Remark. Part (a) shows that the computation of the coefficients of an interpolating
polynomial is an iil-conditioned problem.

bt

Algorithms and Programs

1. Write a program in MATLAB that will implement Algorithm 4.1. The program
should accept the coefficients of the polynomial P(x) = anx¥ tay_1x¥ T4 4
a3x* +aix +apasanl x N mawrix: P ={ay ay-y -~ @ a5 ao).

2. For each of the given functions, the fifth-degree polynomial P(x) passes through
the six points (0, £(0)), (0.2, £(0.2)), (0.4, £(0.4)), (0.6, F£(0.6)), (0.8, £(0.8)),
(1, £(1)). The six coefficients of P(x) are aq, ay, .. ., as, where

P(x) = asx’ + agx® + a3x® + apx? + a1x + ap.



(i) Find the coefficients of P(x) by solving the 6 x 6 system of linear equations
ap +arx + ax” + a3x’ + asxt + asx® = fix;)

usingx; = (f — 1)/Sand j = 1, 2, 3, 4, 5, 6 for the six unknowns {a);_p-

(ii) Use your MATLAB program from Problem 1 to compute the interpoiated va

ues P(0.3), P(0.4), and P{0.5) and compare with F{0.2Y, F{0.4) and F(0.5
I i) 7 SRR0 CUINNPRIC WD JAV.5), JWusj, and j{u.D
respectively,

(iif) Use your MATLAB program to compute the extrapolated values P(—0.l)an*

P(1.1) and compare with f(—0.1) and f(1.1), respectively.

(iv) Use your MATLAB program to find the integral of P(x) taken over [0,1!
and compare with the integral of f(x) taken over [0, 1]. Plot f(x) and P{x:
over [0, 1] on the same graph. }

(v) Make a table of values for P(x;), S(xx), and E{xy) = f(xg} — P(xy), whero
1, =k/100fork =0,1,...,100.

(a) fx)=¢
{b) f(x)=sin(x)
€ fx)=@&x+DEHD

When formula (1) is expanded, the result is a polynomial of degree < 1. Evaluation of
P(x) at xg and x| produces yg and y|, respectively:
P(xp) = yo + (y1 — ¥0}(0) = yo,

2
@ P(x1) = yo+ (y1 — yo(1) = y1.
The French mathematician Joseph Louis Lagrange used a slightly different method to
find this polynomial. He noticed that it could be written as

X — X X — X0

3 y =P =yo — -ty

Each term on the right side of (3) involves a linear factor; hence the sum is a polynomial
of degree < 1. The quotients in (3) are denoted by

- X1 X — X0

and Lj1(x)= .
Xp — X1 X1 —Xp

“ Liolx) =

— oo C PRSI 2 £y i r VAU nr A WY SR I § fe 1
Lompuiation reveais inat L1 glxg) = 1, L1,04X]) =, L] (X0} =V, allQ L[ JiA]) = 1

so that the polynomial Py (x) in (3) also passes through the two given points:

<.~ A poriton of an amusement park ride is to be modeled using three polynomials. The
first section is to be a first-degree polynomial, Py (x), that covers a horizontal dis
tance of 100 feet, starts at a height of 110 feet, and ends at a height of 60 feet. The
third section is to also be a first-degree polynomial, () (x), that covers a horizontal
distance of 50 feet, starts at a height of 65 feet, and ends at a height of 70 feet. The
middle section is to be a polynomial, P{x) (of smallest possible degree), that covers

a horizontal distance of 150 feet.
(a) Find expressions for P(x), Pi(x), and Q;(x) such that P(100) = P(100).
P'(100) = P{(100), P(250) = Q(250), and P'(250) = Q1(250) and the

curvature of P{x) equals the curva brara ~f D fe nt oo AR o3 4
cury WA Mualb Wil LUlvaWre O ) at &4 = 1VU and equais ihe

curvature of @) (x) at x = 250.

(b) Plot the graphs of Pi(x), P(x), and O (x) on the same coordinate system.

(¢) Use Algorithm 4.1(iii) to find the average height of the ride over the given hori-
zontal distance.

Lagrange Approximation

Interpolation means to estimate a missing function value by taking a weighted aver-
age of known function values at neighboring points. Linear interpolation uses a line
segment that passes through two points. The slope between (xp, yo) and (x;, yi) is
m = (y1 — yp)/{x1 — x0), and the point-slope formula for the line y=m(x —x0)+ yo
can be rearranged as

(1 y=P(_x)=\m+(y

FaY

(5) Piixp)=yo+n(® =y and Pi(x)=y0)+yi=mn.

The terms L1 o(x) and L (x) in (4) are called Lagrange coefficient polynomials
based on the nodes x¢ and x1. Using this notation, (3) can be written in summation
form

1
(6) Pi(x) = ) yLialx).
k=0

Suppose that the ordinates y are computed with the formula yy = f(x¢). If P1(x) is
used to approximate f(x) over the interval [xo, x1], we call the process interpolation.
If x < xp{or x; < x), then using P;(x) is called extrapolation. The next example

illustrates these concepts.

Example 4.6. Consider the graph y = f{x) = cos(x) over [0.0, 1.2].
(a) Use the nodes xo = 0.0 and x; = 1.2 to construct a linear interpolation polyno-
mial Pi{x).
(b) Use the nodes x¢ = 0.2 and x; = 1.0 to construct a linear approximating polyno-

mial Oy (x). ' o
Using (3) with the abscissas xg = 0.0 and x; = 1.2 and the ordinates yo = c0s(0.0} =

1.000000 and y; = cos(1.2) = 0.362358 produces

x—12 x —0.0
Piix) = l.OOOOOOW + O.362358m

= —0.833333(x — 1.2) + 0.301965(x — 0.0).
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{(a) (&)

Figure 4.11 (a) The linear approxitnation of y = P;j(x) where the nodes xp = 0.0
and x; = 1.2 are the end points of the interval [a, b]. (b) The linear approximation of
¥ = {h{x) where the nodes xp = 0.2 and x; = 1.0 lie inside the interval [a, b].
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Table 4.6 Comparison of f(x) = cos(x) and the Linear Approximations P;(x) and Q;(x)

X Sxg) = cos(xy) Py} FOa) = Pr{xg) Q1(x) Flxg) = 21(x0)
04 1.000000 1.000000 0.000000 1.090008 —0.090008
0.1 0.995004 0.946863 0.048141 1.035037 —0.040033
0.2 0.980067 0.893726 0.086340 0.980067 0.000000
0.3 0.955336 0.840589 0.114747 0.925096 0.030240
0.4 0.921061 0.787453 0.133608 0.870126 0.050935
0.5 0.877583 0.734316 0.143267 0.815155 0.062428
0.6 0.825336 0.681179 0.144157 0.760184 0.065151
0.7 0.764842 0.628042 0.136800 0.705214 0.059628
0.8 0.696707 0.574905 0.121802 0.650243 0.046463
0.9 0.621610 0.521768 (.099842 0.595273 0.026337
1.0 Q.540302 0.468631 0071671 0,540302 0.000000
1.1 0.453596 0.415495 0.038102 0.485332 —0.031736
1.2 0.362358 0.362358 0.000000 0.430361 ~0.068003

When the nodes xo = 0.2 and x; = 1.0 with yo = cos(0.2) = (.980067 and vi =
cos(1.0} = 0.540302 are used, the result is
L x—02

O Z AN
V.JowuouL

a0t i0-02
= —1.225083(x — 1.0) + 0.675378(x — 0.2).

O fx) — onm:-:x—l'o
Wik ) = v,7ouwug

Figure 4.11(a) and (b) show the graph of y = cos(x) and compares it with y = P;(x) and
¥y = Q) (x), respectively. Numerical computations are given in Table 4.6 and reveal that
1(x) has less error at the points x; that satisfy 0.1 < x; < 1.1. The largest tabulated
error, £(0.6) — P (0.6) = 0.144157, js reduced to f(0.6) — Q1(0.6) = 0.065151 by using

O1(x). =

The generalization of (6) is the construction of a polynomial Py (x) of degree at
most N that passes through the N + 1 points (xgp, yo), {(x1, y1), ..., (x¥. yn) and has
the form

N
(7 Pr(x) = wLyi(x),
=0

where Ly j is the Lagrange coefficient polynomial based on these nodes:

(x —x0) - (¥ = xp—1)(x — Xpq1) - - (X — xN)
(xk = x0) - (X — X 1Y%k — K1) - (i~ xp)

(8) Lyi(x)y=

It is understood that the terms (x — x¢) and (x; — x4) do not appear on the right side of

equation {8). It is appropriate to introduce the product notation for (8), and we write

[T)=otr = xp)
© Lya(n) = =37 :
e [0tk —x)
ik

Here the notation in (9) indicates that in the numerator the product of the linear
factors (x — x;) is to be formed, but the factor (x — x;) is to be left out {or skipped).
A similar construction occurs in the denominator,

A straightforward calculation shows that, for each fixed &, the Lagrange coefficient
polynomial L v x (x) has the property

(100 Lyx(x;)=1 when j=k and Lyx(x;)=0 when j #k.

Then direct substitution of these values into (7) is used to show that the polynomial
curve y = Py (x) goes through (x;, ¥;):

(1D Py(xj)=yolwyo(x;) +---+yiLy j(x;)+---+ ynLy n(x;)
=y +- +yD)+ -+ yv0 =y;.

To show that Py(x) is unique, we invoke the fundamental theorem of algebra,
which states that a polynomial 7 (x) of degree < N has at most N roots. In other
words, if T(x) is zero at N + 1 distinct abscissas, it is identically zero. Suppose that
Px(x) is not unique and that there exists another polynomial Qx(x) of degree < N
that also passes through the N + 1 points. Form the difference polynomial T(x) =
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Figure 4.12 (a) The quadratic approximation polynomial y = P(x) based on the
nodes xp = 0.0, x; = 0.6, and x; = 1.2. (b) The cubic approximation polynomial
v = P3(x) based on the nodes xp = 0.0, xy =0.4,x; =08, and x3 = 1.2.

SEC. 4.3 LAGRANGE APPROXIMATION 211

and y» == cos(1.2) = 0.362358 in equation { 12) produces

x—0.0)(x —1.2)
0.6—-0.00006-1.2)

(x — 0.6)(x — 1.2)
(0.0 — 0.6)(0.0— 1.2)
(x — 0.0)(x — 0.6)
(12-0.0)(12—0.6)
= 1.388889(x — 0.6)(x — 1.2) — 2.292599(x — 0.0)(x — 1.2)
+0.503275(x — 0.0)(x — 0.6).

+ 0.825336

Py(x)= 1.0

; noAarsac
+ U.202L300

Using xp = 0.0, x; = 0.4, x3 = 0.8, x3 = 1.2 and yg = co0s(0.0) = 1.0, y; = cos(0.4) =
0.921061, y2 = cos(0.8) = 0.696707, and y3 = cos(1.2) = (0.362358 in equation (13)
produces

(x —0.4)(x —0.8)(x — 1.2)

hu)=lﬂwmum0—a®mn—ammn—Lm

0991061 F 200 — 0.8)(x ~ 1.2)
+0. (0.4—0.0)(0.4 — 0.8)(0.4 — 1.2)

Py{x} — Qn(x). Observe that the polynomial 7 {x) has degree < N and that T'(x;) =
Py(x;) — On(x;) =y;—y; =0,for j =0,1,..., N. Therefore, T(x) = 0 and nt
follows that @y (x) = Pn(x).

When (7) is expanded, the resuit is similar to (3). The Lagrange quadratic interpo-
lating polynomial through the three points (xgp, yo). (X1, ¥1), and (xz2, y2) is

(12)  Pyx) = yoo & = x2) (x — x0)(x — x2) (x — x0)(x — x1)
2 = O T e — o) o 2ot — 2 V2 e — )
(xg — x; Yxg — x2) (x1 — Xo)(x1 — x2) (x2 — xp)(xz — x1)

The Lagrange cubic interpolating polynomial through the four points (xp, yo), (x1, ¥1).
(x2, ¥2), and (x3, y3) is

x — x)(x —x2)(x —x3) (x — x0){x — x2){x — x3)

(xo — x1)(xp — x2)(xo — x3) ! (xy — xp)(xy — x2)(x; — x3)

+y (x — xp)(x —x1Hx ~ x3) X (x — x0){x —x1)(x ~ x2) ‘
(x2 — xoHx2 — x1)(x2 — x3) (x3 — x0)(x3 — X3 }(x3 — x2)

(13) Pa(x) = yo

-

| oY PPN £y PINEY rn oA
LXJAmMpIC 4. /.  LONSIACT ¥ = J LX) = COsS(X ) OVCT [U.U,

p—

2]
(a) Use the three nodes xo = 0.0,x; = 0.6, and x; = 1.2 to construct a quadrati
interpolation polynomial P> (x).

{b) Use the four nodes xo = 0.0, x; = 0.4, x3 = 0.8, and x3 = 1.2 to construct a cubi
interpolation polynomial Pz(x).
Using xg = 0.0, x1 = 0.6, xo = 1.2 and yg = ¢0s(0.0} = 1, y; = cos(0.6) = 0.82533¢

(x — 0.0} (x — 0.4)(x — 1.2)
(0.8—0.0)(0-8 — 0.4)(0.8 — 1.2)
(x — 0.0)(x — 0.4)(x — 0.8)
(1.2—0.0)(1.2—04)(1.2—08)

= —2.604167(x — 0.4)(x — 0.8)(x — 1.2)
+7.195789(x — 0.0)(x — 0.8)(x — 1.2)
~ 5.443021(x — 0.0)(x — 0.4)(x — 1.2)
+0.943641(x — 0.0)(x — 0.4)(x - 0.8).

+ 0.696707

+ 0.362358

The graphs of y = cos{x) and the polynomials y = P>(x) and y = P3(x) are shown in
Figure 4.12(a) and (b), respectively. n

Error Terms and Error Bounds

Itis important to understand the nature of the error term when the Lagrange polynomial
is used to approximate a continuous function f(x). It is similar to the error term for
the Taylor polynomial, except that the factor (x — xo)V*! is replaced with the product
{x - xo)(x — x1) - - - (x — x). This is expected because interpolation is exact at each

fthe N 4+ 1 nodes x3 wher hova F../v.) — Ffv.Y . Pufr.) — v = 0} fnr

3 vhara wa has : = s
T 1 OOGUS A, WilCIC Wo ndve CN\Xk) = JRk) — FNAEK) = Yk — Yk = viUl

2,.... M.

uic £

=0,1,

G

Theorem 4.3 (Lagrange Polynomial Approximation). Assume that f € C N+l[g. b)
and that xp, x1, ..., X5 € [a, b]lare N + 1 nodes. If x € [a, b], then

(14) flx) = Py(x)+ En(x),
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where Py (x) is a polynomial that can be used to approximate f(x):
N
(15) fx) = Py(x) =) fx)Lya(x),
k=0

The error term £ n(x} has the form

(x — xg}(x —x1)--- (x —xn) FN V()

16 En(x} = s
(16) (N+ 1)
for some value ¢ = c{x) that hies in the interval [a, 5]

Proof. As an example of the general method, we establish (16) when N = 1. The
general case is discussed in the exercises. Start by defining the special function g(1) as
follows

- t —
an )= £ = Py = Ey ()20 — %)

SEC. 4.3 LAGRANGE APPROXIMATION 213

Now go back to {17) and compute the derivatives g’(¢) and g”(¢):

’ ) , (t —xp) + (t —~x1}
2 = =P - By ——
1) g)y= f)y— Pty — E1(x) (x —xo)(x — x1)

2
(x —xp}(x —x1)°

In (22) we have used the fact the P;(¢) is a polynomial of degree N = I; hence its
second derivative is Py’() = 0. Evaluation of (22) at the point ¢ = ¢ and using (20)
yields

22) g/t = £"(1) — 0~ Ex(x

i LA

2
(x —xo)(x = x1)
Solving (23) for Ej(x) results in the desired form (16) for the remainder:

(x — x0)(x = x1) fP(c)
2! ’

(23) 0= f"(c) — Ey(x)

(24} Ei(x) =

and the proof is complete. 'y

(x —xp){(x — x1}

Notice that x, xg and x| are constants with respect to the variable 7 and that g(r) eval-
uates to be zero at these three values; that is,
— xp){x — x1)

glx) = f(x)— Pi(x) — Ex(x) o = f(x)= Pi(x) — E1{(x) =0.

(x — xp){x — x1)
{xg — x0)(x0 — x1)

0
= - =0,
Y p—— S (x0) — Pi(xp)

g{xo) = f{x0) = Pi{xo) — E1(x)

(xi — xo){x1 — x1)
glx) = fx1) — Piix1) — Ei(x) ) —x1) Fxy = Py(xp)

Suppose that x lies in the open interval (xq, x1). Applying Rolle’s theorem to g(r)
on the interval [xg, x] produces a value dp, with xg < dy < x, such that

(18) g'tdgy = 0.

A second application of Rolle’s theorem to g(t) on [x, x;] will produce a value 4,
with x < d; < x, such that

!
(19} (d) =0

ir

Equations (18) and (19) show that the function g'(t) is zero at t = dp and ¢ = d|.
A third use of Rolle’s theorem, but this time applied to g’(r) over {dy, d|], produces a
value ¢ for which

(20) ¢Per=o.

The next result addresses the special case when the nodes for the Lagrange poly-
nomial are equally spaced x; = xo + hk, fork = 0, 1, ..., N, and the polynomial
Pr(x) is used only for interpolation inside the interval [xg, xx1.

Theorem 4.4 (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes).
Assume that f(x) is defined on [a, b], which contains equally spaced nodes x; =
xo + hk. Additionally, assume that f(x) and the derivatives of f(x), up to the order
N + 1, are continuous and bounded on the special subintervals [xg, x11, [xg, x2], and
[x0, x3], respectively; that is,

(25) LFYH )] < My for xo < x < xy,

for N = 1, 2, 3. The error terms (16) corresponding to the cases N = 1, 2, and 3 have
the following useful bounds on their magnitude:

M.

(26) E1)] < —= 2 valid for x € [xp, x1),
mM;

27 |E2(x)| < valid for x € [xg, x2],
9./3

FaN [ R | - h4M4 salid £o.. . - 1

(20} 1£3(xj] = 24 vaua ror x € (xg, x3].

Proaf. We establish (26) and leave the others for the reader. Using the change of
variables x — x¢ = ¢ and x — x; =1 — h, the error term E; (x) can be written as
(1 —h) f A )

(29) Ei(x) = Ey(xp+1) = =

for 0<r<h
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The bound for the derivative for this case is

2
(30) fPl<M forxpscsm.
Now determine a bound for the expression (42 — 42) in the numerator of {20V czb”
INUYW UCICIIILIIIC & Uruw, uu AL uie Ci\ylcablull U fe8 ) 10 WG LUV alUL UL (&7 ), L(—

this term @{1) = t? — k1, Since $'(t) = 2t — h, there is one critical point t = A,
that is the solution to ®’(r) = 0. The extreme values of ®(r) over [0, k] occur eith. :
at an end point ®(0) = 0, ®(h) = 0 or at the critical point ®(h/2) = —h%/4. Sinc.
the latter value is the largest, we have established the bound

22

i ' L2
| — a7

ry

(1) I =2 —htl < for 0<z<h.

Using (30) and (31) to estimate the magnitude of the product in the numerator n 2
results in

D] F 2 ) - M,
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Figure 4,13 (a) The error function E3{x) = cos(x) — P;(x). (b} The emor function
E3(x}y = cos(x) — Pa(x).

(32) By = 51 =-3

and formula (26) is established.

Comparison of Accuracy and Q(hV+1)

The significance of Theorem 4.4 is to understand a simple relationship between the
size of the error terms for linear, quadratic, and cubic interpolation. In each case the
error bound | Ex{x}| depends on / in two ways. First, v + is explicitly present so
that | Ex (x)] is proportional to ¥ *!. Second, the values My ) generally depend o
h and tend to | F¥+D(xg)| as & goes to zero. Therefore, as h goes to zero, |Ex(x)
converges to zero with the same rapidity that #V+! converges to zero. The notation
O(hNTYY is used when discussing this behavior. For example, the error bound (26}

can be expressed as
|E1(o)l = O valid for x € [xp, x).

The notation @ (k%) stands in place of h2M,/$ in relation (26) and is meant to convey
the idea that the bound for the error term is approximately a multiple of #2; that is,

[E1(x)] < Ch? = 0.

As a conseguence, if the derivatives of f(x) are uniformly bounded on the in-

terval |#| < L, then choosing N large will make AV sraall, and the higher-degree
approximating polynomial will have less error.

Example 4.8. Consider y = f(x} = cos(x) over {0.0, 1.2]. Use formulas {26) through
(28) and determine the error bounds for the Lagrange polynomials P; (x), P2(x), and Pi(x)
that were constructed in Examples 4.6 and 4.7,

First, determine the bounds Mz, M3, and M, for the derivatives | f@ (x)}, 17 x)!,
and | £ (x}{, respectively, taken over the interval (0.0, 1.2];

|F P = |- cos(x)] £ |- cos(0.0)] = 1.000000 = Ma,
ij(3 U:” = |sm(x)l < |sin(1. z)] = 0.932039 = M3,
lf(‘U(x)l = lCOS(X)l < lCOS(OO]l = 1.000000 = M.

For Py(x) the spacing of the nodes is & = 1.2, and its error bound is
KMy _ (1.2)2(1.000000)
8§ - 8
For P»(x) the spacing of the nodes is h = 0.6, and its error bound is

= 0.180000.

(33) 1By =

BMs (0.6)%(0.932039)

(34) |E2{x)| = < — = 0.012915.
94/3 93
Tre D7 thha cnasriino aftha nedac io b - A ced 4o seere bomened fo
LWVE I jl\.,{.) LIS D Cl\.«ulE VI WIW HUICY 1D 7L — Uy, AllU 1w LIV UOULIA 1S
M 4)*(1.000000
(35) |Es(ry < M4 o QK ) . 0.001067. -

- 24 ~ 24
From Example 4.6 we saw that [ E;(0.6)| = | cos(0.6) — P,(0.6)| = 0.144157, so

the bound 0.180000 in (33) is reasonable. The graphs of the error functions £3 (x) =
cos(x) — Pp(x) and E3(x) = cos(x) — P3(x) are shown in Figure 4.13(a) and (b),



216 CHAP.4 INTERPOLATION AND POLYNOMIAL APPROGXIMATION

Table 4.7 Comparison of f{(x) = cos(x) and the Quadratic and Cubic Pelynomial
Approximations P2(x) and P3(x)

i Fxk) = cos(xg) Po(xe) Es{xk) Py(xx} Ea{xy)
0.0 1.000G00 1.000000G 0.0 1.000000 0.0

0.1 0.995004 0.990911 0.004093 0.995835 —0.00083 |
0.2 0.980067 06.973813 0.006253 0.980921 —0.000853
0.3 0.955336 0.948707 0.006629 0.955812 —0.000470
0.4 0.921061 0.915592 0.005469 0.921061 0.0

0.5 0.877583 0.874468 0.003114 0.877221 0.00036!
0.6 0.825336 0.825336 0.0 0.824847 0.00089
0.7 0.764842 0.768194 —0.003352 0.764451 0.00035 .
0.8 0.696707 0.703044 —0.006338 0.696707 0.0

0.8 0.621610 0.629886 —~0.008276 0.622048 —0.000-43~
1.0 0.540302 0.548719 —0.008416 0.541068 —0.0007€¢
1.1 0.453596 0.459542 —0.005946 0.454320 —0 00072~
1.2 $.362358 0.362358 0.0 0.362358 0.0
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| Pro 4. i i
| > (g;imz’} (LaLgran(ge Approximation). .To evaluate the Lagrange polynomial
L k=0 YeLn & x)basedonN+1pomts(xk.yk)fork=0,I,...,N.

function [C,Ll=lagran(X,Y)

?Input - X is a vector that contains a list of abscissas
f - Y is a vector that contains a list of ordinates
fDutput - C is a matrix that contains the coefficients of
f the Lagrange interpolatory polynomial

f = L is a matrix that contains the Lagrange

A coefficient polynomials

w=length(X);

==l

L=zeros(w,w);
#Fcrm the Lagrange coefficient polynomials

Fomn Lo oo
~WD K=LiaTl

= .
=

respectively, and numerical computations are given in Table 4.7. Using values in the
table, we find that |E2(1.0)] = |cos(1.0) — P2(1.0)| = 0.008416 and |E3(0.2)] --
| c0s(0.2) — P3{0.2)| = 0.000855, which is in reasonable agreement with the bour
0.012915 and 0.001607 given in (34) and (35), respectively.

MATLAB

The following program finds the collocation polynomial through a given set of poir- -
by constructing a vector whose entries are the coefficients of the Lagrange interpo.
tory polynomial. The program uses the commands poly and conv. The poly co - -
mand creates a vector whose entries are the coefficients of a polynomial with specifi.
roots. The conv commands produces a vector whose entries are the coefficients o
polynomial that is the product of two other polynomials.

Example 4.9. Find the product of two first-degree polynomials, P(x) and Q(x), w
roots 2 and 3, respectively. :

>>P=poly(2)
P=

1t -2
>>Q=poly(3)
Q:

1 -3
>>conv(P,Q)

ans=

1 -566
Thus the product of P(x) and Q(x) is x> — 5x + 6

for j=l:n+1

1f k~=j

V=conv(V,poly (X(j)))/(X(K)-X(j));
end

()
3
&

L(k,:)=V;
end

4Datermine the coefficients of the Lagrange interpolating
4polynemial

C=YsL;

Exercises for Lagrange Approximation

L. Find Lagrange polynomials that approximate f{x) = x3.

(a) Find the linear interpolation polynomial Pj(x) using the nodes xp = —1 and
xp =0

(b) Find ke guadratic interpolation poiynomial P>(x) using the nodes xp = —I,
xt=0and x; = 1,

(¢} Findthe cubic interpolation polynomial P3(x) using thenodesxp = —1,x; =0,

x2= 1, andx; = 2.
(d) Find the lirear interpclation polynomial P)(x) using the nodes xg = | and
x =2

(¢} Find the quadratic interpolation polynomial Py(x) using the nodes xq = €,
x1=1,and xz = 2.
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2 Let f(x)=x+2/x.
(a) Use quadratic Lagrange interpolation based on the nodes xo = 1, x1 = 2, and
x2 = 2.5 to approximate f(1.5) and f(1.2).
{b) Use cubic Lagrange interpolation based onthenodes xg = 0.5, x) =1, x» =
and x3 = 2.5 to approximate f(1.5) and f(L.2).

210 2PpPTAANNAlE 7 L1

3. Let f(x) = 2sin(wx/6), where x is in radians.
(a) Use quadratic Lagrange interpolation based on the nodes xp = 0,x1=12a:l
x2 = 3 to approximate f(2) and f(2.4).
(b) Use cubic Lagrange interpolation based on thenodesxg =0, x1 =1, x2 = -
and x3 = 5 to approximate f(2) and f(2.4).

4. Let f(x) = 2sin(mx/6), where x is in radians.
(a) Use quadratic Lagrange interpolation based on the nodes xop = 0, x; = 1, a1d
" x; = 3 to approximate f(4) and f(3.5).
() Use cubic Lagrange interpolation based on the nodes xo = O, xp=Lxy="

3 = . vt i EFAN o d £ BN
and x3 = D 0 approxXimate j (4) ana ji13.2).

mterpo]atlon is to be exact at thc four nodes xo=—1,x1=0x=3, and xq4 =4
and f{(x) is given by
(@ fx)=4x-3x+2
(b) flx)=x*-22°
© fx)= x5~ 5x%
6. Let f(x) =x*.
(a) Find the quadratic Lagrange polynomial P(x) using the nodes xgp = 1, x1 =
1.25,and x5 = 1.5.
(b) Use the polynomial from part (a) to estimate the average value of f(x) over 1he
interval [1, 1.5].
(c) Use expression (27) of Theorem 4.4 to obtain a bound on the error in appro:-
mating f(x) with P2(x).
7. Consider the Lagrange coefficient polynomials L x(x) that are used for quadritic
interpolation at the nodes xo, x|, and x2. Define g(x) = Lao(x) + Lz1(x -
Lya(xy—1.
(a) Show that g is a polynomial of degree < 2.
(b) Show that g{xz) =0fork =0,1,2.
(c) Show that g(x) = 0 for all x. Hint. Use the fundamental theorem of algebra

8. Let Lyo(x), Ly 1{x), ...
based on the N + 1 nodes xg, x1, ...,
real number x.

, and Ly n(x) be the Lagrange coefficient polynom .:!-
and xy. Show that 3" o Ly & (x) = 1 for .n.

9. Let f(x) be a palynomial of degree < N. Let Py (x) be the Lagrange polynomia. I

degree < N based on the N + 1 nodes xq, X1, . .., XN- Show that f(x) = Py{(x) I:
all x. Hint. Show that the error term £y (x) is u:lenncally ZETo.
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i0. Consider the funciion f{x} = sin{x) on the intervai {0, i].
determine the step size / so that
(a) linear Lagrange interpolation has an accuracy of 1076 (i.e., find h such that
[E1(x)| <5 x 1077).
{b) quadratic Lagrange interpolation has an accuracy of 10~9 (i.e., find A such that
|E2(x)| <5 x 1077).
(¢} cubic Lagrange interpolation has an accuracy of 1076 (i.e., find # such that
[E3(x)i < 5 x 1077).
1. Start with equation (16) and N = 2, and prove inequality (27). Let x; = xg + 4.
X2 = xg + 2h. Prove that if xg < x < x; then

Use Theorem 4.4 to

2h3
3 x 3172

Hint. Use the substitutions t = x — x), ¢t + s = x — xg, and t —h = x — x; and the
function v{¢) = 1> — th? on the interval —h <t < h. Setv'(r) = 0 and solve for ¢ in
terms of A.

lx —xollx — xi|lx — xz2| <

ation in two dimensions. Consider the polynomialz = P{x, y) = A+
Bx+Cy thatpasses through the three points (xo. ¥o. zo). (x1. ¥1, 21), and (x2, ¥2. 22).
Then A, B, and C are the solution vaiues for the linear system of equations

A+ Bxp+Cyvo =20
A+Bx1+Cy1 =27
A+ Bxa+Cyvi=z.

(a) Find A, B, and C so that z = P(x,y) passes through the points (1,1, 5).
(2,1,3),and (1, 2, 9).

(b) Find A, B, and C so that z =
(2,1,0),and (1,2, 4).

(c}) Find A, B, and C so that z = P(x,y) passes through the points (2, 1, 5),
{1,3,7),and (3,2,4).

(d) Can values A, B, and C be found so that z = P(x, y) passes through the points
(L1,2,5),(3,2,7,and (1, 2, 0)? Why?

13. Use Theorem 1.7, the Generalized Rolle’s Theorem, and the special function

P(x, y) passes through the points (1, 1, 2.5),

—x0)(t —x1)--- (t — xN)
= - P E, ,
g) = ) 'N () — En(x )(x X3 =)
where Py(x) is the Lagrange polynomial of degree N, to prove that the error term
En(x) = f(x) — Py(x) has the form
(N+1)
En(x) = (x —xo)(x —x1) - {x — xN){T:;)i!).

Hint. Find g™V (¢} and then evalnate itat r = c.
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1. Use Program 4.1 to find the coefficients of the interpolatory polynomials in Prob-
lem 2(i) a, b, and ¢ in the Algorithms and Programs in Section 4.2. Plot the graphs
of each function and the associated interpolatory polynomial on the same coordinate
system.

3. The measured temperatures during a 5-hour period in a suburb of Los Angeles on
November 8 are given in the following table.

(a) Use Program 4.1 to construct a Lagrange interpolatory polynomial for the data

in the table.
b) Use Algorithm 4.1(iii} to estimate the average temperature during the given

( Use Algor at
5-hour period.
(c) Graph the data in the table and the polynomial from part (a) on the same coordi-

nate system. Discuss the possible error that can result from using the polynomial
in part (a) to estimate the average temperature.

SEC. 4.4 NEWTON POLYNOMIALS 221

3) P3(x) = ag + a1 (x — xp) + az(x — x0)(x — x1)
+ aalx — x0)(x — x1){(x — x3),

@ Pr(x) = ao + ai(x — xg) + az{x — x0){x ~ x1)

+a3(x — x0)(x ~ x1)(x — x3)

Fas(x —xo)(x —x)(x —x2)(x —x3) + - - -

+anx —xo0)--- (x —xy_p).
Here the polynomial Py (x) is obtained from Py_i1(x) using the recursive relationship
5) Pr(x) = Py_1(x) + an(x — xo)(x —x1}(x = x2) - - (x — xn_1).

The poiypomja.l (4) is said to be a Newton polynomial with N centers X0, X
... ¥N-1. It involves sums of products of linear factors up to T

an(x —x)(x —x)(x —x2) - (x —xpn_p),

_ Time; PM| Degrees Fahrenheit
1 66
2 66
3 65
4 64
5 63
6 63

4.4

Newton Polynomials

It is sometimes useful to find several approximating polynomials Py(x), Po(x), ooy
Py(x) and then choose the one that suits our needs. If the Lagrange polynomials
are used, there is no constructive relationship between Py_1(x) and Py{(x). Each
polynomial has to be constructed individually, and the work required to compuie the
higher-degree polynomials involves many computations, We take a new approach and
construct Newton polynomials that have the recursive pattern

(1) Pi(x) = ap + a1{x — xo),
) Py(x) = ag + a1 (x — xq) + az2(x — Xp)(x — x1),

80 Py (x) will simply to be an ordinary polynomial of degree < N,

Exaéll.ﬂe 4.10.  Given the centers xp = 1, x; = 3, x3 = 4, and x3 = 4.5 and the
coerficients ap = 5, @y = —2, a3 = 0.5, a3 = —0.1, and a4 = 0.003, find P, (:t) Px)
Ps(x). and Py(x) and evaluate P, (2.5) fork = 1,2, 3, 4, ' AR

Using formulas (1) through (4), we have

Pi(x)=5-2(x—1),

Pa(x)=5-2(x — 1) +0.5(x — 1)(x — 3),

P3(x) = P2{x) — 0.1(x — 1){x — 3)(x — 4),

Py(x) = P3(x) + 0.003(x ~ D(x — 3)(x — 4)(x — 4.5).
Evaluuiing the polynomials at x = 2.5 results in

PI(2.5)=5—2(1.5) =2,

Py(2.5) = P1(2.5) + 0.5(1.5)(—0.5) = 1.625,

P3(2.5) = P2(2.5) — 0.1(1.5)(—0.5)(—1.5) = 1.5125,

P4(2.5) = P3(2.5) + 0.003(1.5)(—0.5)(—1.5)(—2.0) = 1.50575. .

‘Nested Multiplication

li; .N ts fixed and the polynomial Py (x) is evaluated many times, then nested multi-
p :icatron.should be used. The process is similar to nested multiplication for ordinary
poiynomials, except that the centers x; must be subtracted from the independent vari-

able x The nested muitiplication form for P3(x) is

(3] Pi(x) = ((a3(x — x2) + a2)(x ~ x1) + a))(x — xp) + ag.
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To evaluate P3(x) for a given value of x, start with the innermost grouping and form
successively the quantities

$3=waa,
Cq = Cafly —x7) 4 a0
32 27 2,

= M T

§1 = 8:20x - x1) +ai,
So = Si(x — x0) + a0

=

(€A]

The quantity Sp is now P3(x).
Exampie 4.11. Compute P3(2.5) in Examp
Using (6), we write

Ax)=({(-01x—-4H+05Hx-3H-D(x -1 +5.
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Hence a) is the slope of the secant line passing through the two points (xp, f(x0))
and (xq, f(x1)).

The coefficients ag and a) are the same for both P (x) and Pa(x). Evaluating (2)
at the node x,, we find that

an f(x2) = Pa(x2) = ap + ay (x2 — x0) + a2(x2 — x)(x2 — x7).
The values for ap and ay in (9) and (10) can be used in (1 1) to obtain
2 = 1) — a0 — a1(x2 — x0)
2 —
(x2 = x0)(x2 — x7)
_ ([ = fo)  Jx) — Fixo) /
( P X —xg ) {x2 — x1).

For computational purposes we prefer to write this last quantity as

The values in (7) are (12) {fx) — Flxy Flxd = FGa)\ 7
as; = - — x0).
Sy=—0t - ) [ -0
S = —~0.1(2.5 - 9+ 05 = 0.65, The two formulas fOT_ @y can be shown to be equivalent by writing the quotients
51 =0.65(2.5 - 3) — 2 = —2.325, over the common denominator (x; — x1)(x2 — X0)(xi — x0). The details are left for
So = —2.325(2.5— 1) + 5 = 1.5125. the reader. The numerator in (12) is the difference between the first-order divided
=-2. . differences. In order to proceed, we need to introduce the idea of divided differences.
Therefore, P3(2.5) = 1.5125. [ ]

Polynomial Approximation, Nodes, and Centers

Suppose that we want to find the coefficients a, for all the polynomiais P(x}, ...,
Px (x) that approximate a given function f (x). Then Pi(x) will be based on the centers
Xg, X1, ..., Xx and have the nodes xg, x|, ..., Xk+1- For the polynomial Py(x) the
coefficients ag and @1 have a familiar meaning. In this case

(8) Pi(x0) = f(xo} and Pi(x1) = fx1).

Using (1) and (8) to solve for ag, we find that

(9) F(x0) = P1{xo) = ap + a)(xo — xo} == ao.
Hence ag = Fixp). Next, using (1), (]), and (9), we have
ence dg = J (Xp . ANGAL USRI R L 820 L

Flx) = Pi(x1) = ao + ar1(x; — xg) = fxo} + ar{x1 — x0),

which can be solved for ay, and we get

f(x1) = f(x)
q) = —————,

(10) =10

Definition 4.1 (Divided Differences). The divided differences for a function f(x)
are defined as follows:

Flxe] = Fxg),

Floo, ] = L2 = ]
13) X — Xk—)
( f[xk"‘Zv xk—[,xt] = f[xkkl’ x’(] - f[x,k;z! xk—]] ’
Xk — Xg—2
Flxe_3, xp—2, xp—1, x1] = Flxe—2, Xem1, %] = FIXk=3, Xke2, Xp—1] |

Xk — Xk-3

The recursive rule for constructing higher-order divided differences is

(14) Fkmjo X jt1s -5 Xk = UL e (L S RNIETR)
Xfp = Xk—j
and ig used to construct the divided differences in Table 4.8. A

The coefficients a; of Py(x) depend on the values flxp),forj=0,1,...,k The
next theorem shows that a: can be computed using divided differences:

(t5 ar = fixo, x1, ..., x).
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Table 4.8 Divided-difference Table for y = f(x) Table 4.9
oS LSO L T Y A First Second Third Fourth Fifth
. divided divided divided divided divided
*0 flxol . . Xt flxz] | difference difference difference difference difference
x Six1} Slxg, x1] — 3
X3 Six2) Slxp. x] Slxp, x1, %21 0= ‘_0
x3 | flal | flxaes] | flanxaoas) | flxe, x1, %2, %3] = .- 3
X3 flxa] flx3, x4] Flxa, x3, x4] flxy, x2,x3. %4 Slxg. x1. X2, x3, x4] Xz = i5 _6
x3=4| 48 33 9 1
=5 105 57 12 i 0
¥»s=6| 192 87 15 1 ) 0
Theorem 4.5 (Newton Polynomial). Suppose that xg, x1, ..., xx are N + | distinct
numbers in [a, b]. There exists a unique polynomial Py (x)} of degree at most N with
the property that Table4.10  Divided-Difference Table Used for Constructing the Newton Polynomials
) Py(x) in Example 4.13
flxjd=Pylx;) forj=0,1,... N
. P Xk Slxl fl. 1] fl.. FL, e ]
The Newton form of this polynomial is
xp=0.0 1.0000000
(16)  Py(x) =ap+ai(x —xp)+ - +aylx —xp){x —x1) - (x — xn=1), x=10| 05403023 | —0.459%6977
where ax = flxo, x1, ..., xxl. fork=0,1,..., N. x2=20| —04161468 | —0.9564491 | —0.2483757
Remark. If {(x}, ;) }?’=0 is a set of points whose abscissas are distinct, the values x3=30| —09899925 | -0.5738457 0.1913017 0.1465592
f(xj) = y; can be used to construct the unique polynomial of degree < N that passes x3=40| —0.6536436 0.3363499 0.4550973 0.0879318 | —0.0146568

through the N + 1 points.
Corollary 4.2 (Newion Approximation). Assume that £y (x} is the Newton poly-
nomial given in Theorem 4.5 and is used to approximate the function f(x), that is,

a7 f@x) = Py(x) + En(x).

If f € C¥*a, b), then for each x € {a, b] there corresponds a number ¢ = ¢(x) in
(a, b}, so that the error term has the form

(I —xo)(.!: —_).’1) . e -(_x _xN)f(N+1)(C)
(N +1)! ’

(18) Ey(x) =

Remark. The error term E » (x) is the same as the one for Lagrange interpolation, which
was introduced in equation (16) of Section 4.3.

It is of interest to start with a known function f (x) that is a polynomial of degree N
and compute its divided-difference table. In this case we know that ¥+ (x) = ¢
for all x, and calculation will reveal that the (N + 1)st divided difference is zero.
This wili happen because the divided difference (i4) is proportional to a numerical
approximation for the jth derivative.

Example 4.12. Let f(x) = x? — 4x. Construct the divided-difference table based on the
podesxo = 1,x7 = 2,..., x5 = 6, and find the Newton pelynomial P;(x) based on xg, xj,
X2, and x3.

See Table 4.9. [ ]

. The coefficients ap = ~3, a; = 3, a; = 6, and az = 1 of P3(x) appear on the
diagonal of the divided-difference table. The centers xo=1,x =2, and x> = 3 are
the values in the first column. Using formula (3), we write

Py(x) = =343(x = D+ 6(xr — D{x —2) + {x — Dz — 2)(x - 3).

Example 4.13. Construct a divided-difference table for f(x) = cos(x) based on the five
points (k, cos(k)), for k = 0, 1, 2, 3, 4. Use it to find the coefficients a; and the four
Newton interpolating polynomials Py (x), fork == 1,2, 3, 4.

For simplicity we round off the values to seven decimal places, which are displayed
in Table 4.10. The nodes xq, x1, x2, x3 and the diagonal elements ag, ay, a3, a3, a in
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10
-il.ur

Figure 4,14 (b} Graphs of y = cos(x)
and the quadratic Newton polynomial
y = P2(x) based on the nodes xgp =
x = 1.0 0.0, x; = 1.0, and x; = 2.0.

Figure 4.14 (a) Graphs of y = cos(x)
and the linear Newton polynomial y =
P, (x) based on the nodes xo = 0.0 and
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¥y
1.0
0.5+
1 Figure 4.14 (c) Graphs of
05l ¥y = cos{x) and the cubic New-
ton polynomial y = Py(x) based
1ok on the nodes xy = 0.0, x; = 1.0,

X2 = 2.0, and X3 = 3.0

Relation (14) is used to obtain the formula to recursively compute the entries in the array:

Dk, j = 1)~ D(k - 1

H
i,

— 1
17

{20} Dk, j)=
Xg — Xi—j

Table 4.10 are used in formula (16), and we write down the first four Newton polynomials:

Py (x) = 1.0000000 — 0.4596977(x — 0.0},
Pa(x) = 1.0000000 — 0.4596977(x — 0.0) — 0.2483757(x — 0.0)(x — 1.0},
P5(x) = 1.0000000 — 0.4596977(x — 0.0) — 0.2483757(x — 0.0}(x — 1.0)
+ 0.1465592(x — 0.0)(x — 1.0)(x — 2.0),
Py(x) = 1.0000000 — 0.4596977(x ~ 0.0) — 0.2483757(x — 0.0)(x — 1.0}
+0.1465592(x — 0.0)(x — 1.0)(x = 2.0)
— 0.0146568(x — 0.0)(x — 1.0)(x — 2.0){(x — 3.0).

The following sample calculation shows how to find the coefficient az.

flxi] = flxol _ 0.5403023 — 10000000

= = —0.4596977,
flro. ;)= =" 1.0-0.0
— flx]  —0.4161458 — 0.5403023 _
flazi = A=A 50 = —0.9564491,
X2 — X1 . R
flr1 3o} = flxo, x1] _ —0.9564491+0.4596977 _ o oooo

az = flxo, %1, %21 = g 7000
The graphs of y = cos(x) and y = Pi(x), y = Pax),and y = P3(x) are shown in

Figure 4.14(a), (b), and (c), respectively. ‘
’ For computational purposes the divided differénces in Table 4.8 need to be stored in an

array which is chosen to be D(k, j). Thus (15) becomes

(19) Dk, j) = flxe—js Xk—j41s..., %l for j <k

Notice that the value ay in {15) is the diagonal element a;, = D(k, k). The algorithm for
computing the divided differences and evaluating Py (x) is now given. We remark that
Problem 2 in Algorithms and Programs investigates how to modify the algorithm so that
the values {a;} are computed using a one-dimensional array. [

Program 4.2 (Newton Interpolation Polynomial). To construct and evaluate the
Newton polynomial of degree < N that passes through (xz, i) = (xy, f(xz)) for
k=0,1,...,N:

2n P(x) =do,o + di,1(x — x0) + da2(x ~ xg)}(x — xy)
Feootdy v (x = xo)x —x1) - (x — xN—p),

where

dk,O = Vi and dk,j =

Xk — Xg—j
function [C,D]=newpoly(X,Y)
%nput - X is a vector that contains a list of abscissas
% — Y is a vector that contains a list of ordinates
%0utput - C is a vector that contains the coefficients
% of the Newton intepolatory polynomial
% - D is the divided-difference table

r=length(X) ;
=zeros(n,n);

D(:,1)=y";
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% Use‘ formula (20) to form the divided-difference table 5 fo) =x? 6. f(x) = 3.6/x
for j=2:n x=45,75 x =2.5,35
for k=j:n
D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-K(k-j+1)); E | x| flaw) E| xe |fixo)
endend 0 | 4.0 | 2.00000 0 |10 | 360
_ 1 5.0 | 2.23607 1 20 | 1.80
YDetermine the coefficients of the Newton interpolating 2 6.0 2.44949 2 3.0 1.20
%polynomial 3 7.0 | 2.64575 3 4.0 | 0.90
C=b(n,n): 4 8.0 | 2.82843 4 50 | 0.72
for k=(n-1):-1:1
C=conv(C,poly(X{k})); 5
n=length(C); 7. fx) = 3sin“(wx/6) 8. flx) =e™*
C(m)=C(m)+D{k,k); x=15,35 x=0515
d
en k| oxe |flxo k| x| fG)
0 00 | 0.00 0 0.0 | 1.00000
1 1.0 | 075 1 1.0 | 0.36788
2 20 | 2.25 2 20 | 0.13534
Exercises for Newton Polynomials 330 1300 3 |30 (004979
y 4 |40 | 225 4 |40 | 001832

In Exercises 1 through 4, use the centers xo, X, X2, and x3 and the coefficients ag, a1, a2, a3,
and as to find the Newton polynomials Py(x)}, P2(x), P3{x), and P4 (x), and evaluate them
at the value x = e. Hint. Use equations (1) through (4) and the technigues of Example 4.9.

L. ap=4 a=-1 a=04 a3 =001 a4=-0.002
xp=1 x) = =4 x3 =45 c=25

2. ap =S5 ag==-2 az=05 a3 =-01 a3 =20.003
xp=0 xp=1 x=2 x3=3 c=25

3 a="7 a =3 a =101 a3 =005 a4=-004
n=-1 x= =1 x3=4 c=3

4. aqg=—-2 a1= ay=—0.04 a3=006 a4=0.003
x=-3 xn=-1 x=1 x3=4 c=2

Tn Exercises 5 thorugh 8:

(a) Compute the divided-difference table for the tabulated function.

{b) Write down the Newton polynomials P(x), P2(x), P3{(x), and Ps(x).

i)

o ralivan oF o
Tl VAIUCS U1 X.

(¢) Evaluate the Newton polynomiais in pari {b) ai ihie giv

(d) Compare the values in part (c) with the actual function value f(x).

9. Consider the M + 1 points (X, yo), ..., {xXpm, YM).
(a) Ifthe (N + 1)st divided differences are zero, then show that the (N + 2)nd up
to the Mth divided differences are zero.
b} 1f tha F A7 1 1Vet djvidad diffarancac ara z

A1 UGC oy 1 1 50 GIVIGEA GLLGICHLES alv

nomial Py (x) of degree N such that

~—

Pyvixry=yw fork=0,1, ..., M.

In Exercises 10 through 12, use the result of Exercise 9 to find the polynomial Py (x) that
goes through the M + 1 points (N < M),

10, — — 11, — 17— 12, ——

Xk | Yk Xk | Yk Xk | Yk

0 -2 1 8 0] 5

1 2 2|17 1 5

2 4 3124 2 3

3 4 4 129 3 5

4 2 5132 4 117
51-2 6133 5145

- - 6 ]95




230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION
13. Use Corollary 4.2 to find a bound on the maximum error (|E2(x)|) on the inter-

val [0, 7}, when the Newton interpolatory polynomial P(x) is used to approximate
f(x) =cos(mx) at the centers xg = 0, x; = 7/2,and x3 = .

Algorithms and Programs

1. Use Program 4.2 and repeat Problem 2 in Programs and Algorithms from Section | 3.

2. In Program 4.2 the matrix D is used to store the divided-difference table.
(a) Verify that the following modification of Program 4.2 is an equivalent wa: to
compute the Newton interpolatory polynomial.

for k=0:N
A(k)=Y(k);
end
for j=1:N
for k=N:-1:3

88C. 4.5 CHEBYSHEV POLYNOMIALS 231

Table4.11 Chebyshev Polynomials
To(x) through T7(x)

ity =1
Tl (x) =X .
Dx) = 2x2 -1

3(x) = 4x3 —3x

Ty(x)=8x* — 82241

T5(x) = 16x5 — 20x3 + 5x

To(x) = 3208 —48x% + 1822 — |
T7(x) = 64x7 — 112x5 £ 5623 — 7x

our task is to foilow Chebyshev’s derivation on how to select the set of nodes {xe I P
that minimizes max_j<,<1{}Q(x)|}. This leads us to a discussion of Chebyshev poly-
nomials and some of their properties. To begin, the first eight Chebyshev polynorruah

are Jisted in Table 4.11,

4.5

ACKY=(A(R)-A(k-1))/(X(k)-X(k~-§));
end
end

(b) Repeat Problem 1 using this modification of Program 4.2

Chebyshev Polynomials (Optional)

We now tumn our attention to polynomial interpolation for f(x) over [—1, 1] based
on the nodes —1 < xp < x; < --- < xy < 1. Both the Lagrange and Newton

polynomials satisfy
F(x} = Pn{x) + En(x),
where
_ f(N+l)(C)
(1) Ey{x) = Q(x)—_(N+ Y

and (3(x) is the polynomial of degree N + 1:
(2) Qx)} = (x ~ xo)(x — x1)--- {x — xn).
Using the relationship

max_ <, <1{| f ¥V (x0)})
(N + 1)

|En(x)| = |Q(x))

Properties of Chebyshev Polynomials

Property 1. Recurrence relation

Chehyshev polynomials can be generated in the following way. Set Tp(x) = 1 and
71141 = x and use the recurrence relation

(3 Te(x) =2x Ty () — Ti—a(x)  for k=2, 3, ....

Property 2. Leading Coefficient
The coefficient of xV in Ty(x) is 2V~! when N > 1.

Property 3. Symmetry

When N = 2M, Tap(x) is an even function, that is,

@ Dy (—x) = Tap(x).
When N = 2M + 1, Topsy1(x) is an odd function, that is,

i

(s) Tom+1(=x) = —Tapgy1 ().
Property 4. Trigonometric Representation on [~1, 1]

(3] Tn(x) =cos(Narccos(x)) for —1<x<].
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y
1.0 y= To(-x)

S

y=T,(x) Figure 415 Graphs of the Che
shev polynomials To(x), T;(x),
..., T4(x) over [—1,1).

2k + l)n)
7 = - = for k=0,1, ..., N-1.
7N Xk = COS ( N
These values are called the Chebyshev abscissas (nodes)

Property 6. Extreme Values

®) ITw(x)l <1 for —lsx<l.

Property 1 is often used as the definition for higher-order Chebyshev polynomials.
Let us show that 7T3(x) = 2xT2(x) — T1(x). Using the expressions for 71 (x) and T>(x) '
in Table 4,11, we obtain

2 T(x) — Ti(x) = 2x(2x2 — 1) — x = 4x° — 3x = T3(x).

Property 2 is proved by observing that the recurrence relation doubles the leading -
coefficient of T,,_, (x) to get the leading coefficient of T (x).

Property 3 is established by showing that T>s (x) involves only even powers of x
and Tp41(x) involves only odd powers of x. The details are left for the reader.

The proof of property 4 uses the trigonometric identity

cos(kf) = cos{28) cos((k — 2)8) — sin(26) sin{(k — 2)8)
Substitute cos(28) = 2cos?(#) — 1 and sin(28) = 2 sin(8) cos(6) and get

cos(k9) = 2 cos(8){cos(8) cos((k — 2)8) — sin(B) sin((k -~ 2)8)) — cos{(k — 2)8)
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which is simplified as
cos(k8) = 2 cos(f) cos((k — 1)8) — cos{(k — 2)8).

Finally, substitute & = arccos(x) and obtain

{9) 2xcos((k — 1) arccos{x)) — cos{{k — 2) arccos(x)}
= cos(k arccos(x}}  for —l1 <k <1
The first two Chebyshev polynomials are Tp(x) = cos(Qarccos(x)) = | and
Fi(x) = cos(l arccos(x)} = x. Now assume that T {x} = cos(k arccos{x)} fork = 2.

3,.... ¥ — 1. Formula (3} is used with (9) to establish the general case:

TNix) = 2uTy_1(x) — Ty-20x)

arccosi{x})
)

= cos(N arccos{x)) for —1 <=x <.

Properties 5 and 6 are consequences of Property 4.

Minimax

The Russian mathematician Chebyshev studied how to minimize the upper bound for

of |0 (x)| over all x in {—1, 1] and the maximum value | f*V"(x)/(N + 1)!| over
all x in [—1, 1]. To minimize the factor max{] @(x}|}, Chebyshev discovered that xg,
x|, ... xy should be chosen so that Q(x) = (1/2")Ty1(x).

Theorem 4.6. Assume that N is fixed. Among all possible choices for Q(x) in equa-
tion (2), and thus among all possible choices for the distinct nodes [xk},f;oin [—1, 1]
the polynomial T(x) = Ty 4+1(x) /2% is the unique choice that has the property

_max {IT)} < _max {10}

Moreover,
(TN =
(i0) _{rgxsl O} = 55-
Proof  The proof can be found in Reference [29). .
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Table 4.12  Lagrange Coefficient Polynomials Used to Form P3(x)
Based on Equally Spaced Nodes x; = —~1 4 2k/3

L3 g(x) = —0.06250000 + 0.06250000x + 0.56250000x2 — 0.56250000x>
Ly (x) = 0.56250000 — 1.68750000x — 0.56250000x2 + 1,68750000x3
L3 2(x) = 0.56250000 + 1.68750000x — 0.56250000x2 — 1.68750000x>
L3 3(x) = —0.06250000 — 0.06250000x + 0.56250000x2 + 0.56250000x3

The consequence of this result can be stated by saying that, for Lagrange interpo-
fation f(x) = Py(x} + En(x) on [~1, 1], the minimum value of the error bound

(max{)Q (x)|})(max{] f ¥V @) /(N + D))

is achieved when the nodes {x;} are the Chebyshev abscissas of Tyi1(x). As anil-
lugtration. we lnok at the T aoranos coafficiant moloo i 1o ol o0 4= o .
FESRSULE, o IDUR @ Uie LagTange CoCliCieni porynonuais inai are used in forming

P3(x). First we use equally spaced nodes and then the Chebyshev nodes. Recall that
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Table .13 Coefficient Polynomials Used to Form P3{x} Based on the
Chebyshev Nodes xx = cos((7 — 2k) /8)

Co(x) = —0.10355339 +0.11208538x + 0.70710678x2 — 0.76536686x°
Ci(x) = 0.60355339 — 1.57716102x — 0.707106781% + 1.84775906):?
Ca(x) = 0.60355339 + 1.57716102x — 0.70710678x — 1.84775906x"
C3(x) = —0.10355339 — 0.11208538x + 0.70710678x% + 0.76536686x°

and using the coefficient polynomials L3 ¢ (x) in Table 4.12, and forming the linear combi-
nation
P(x) = 0.36787944L3 o(x) + 0.71653131L31(x) + 1.39561243L3 2(x)
+2.71828183L3 3(x).

Similarly, when the Chebyshev nodes are used, we obtain

the Lagrange polynomial of degree N = 3 has the form
(1) Py(x) = f(xo)L3o(x)} + f(x1)L31(x} + f(x2)L32(x) + f(x3)L33(x).

Losrnlly Qraand A
Lajuanry opaicy i

g P
NUUES

If f(x) is approximated by a polynomial of degree at most N = 3 on [—1, 1], the
equally spaced nodes xp = —1, x; = —1/3, x; = 1/3, and x3 = 1 are easy to
use for calculations. Substitution of these values into formula (8) of Section 4.3 and

simnlifvine will nroduce tha coefficiant nalunaminle 7o, f+) 1o TULI_ 4 14
..... FoRS/3Tn AR PRRARRLL LRO LUCLCIWI POsYTIONILALS L3 p( X I 14ADIE 4.12Z.

Chebyshev Nodes

When f(x) is to be approximated by a polynomial of degree at most N = 3, using
the Chebyshev nodes xo = cos(7r/8), x| = cos(57/8), x2 = cos(3x/8), and x3 =
cos(m /8). the coefficient polynomials are tedious to find (but this can be done by a
computer). The results after simplification are shown in Table 4.13.

Exampl.e 4.14. Compare the Lagrange polynomials of degree N = 3 for f(x) = e* that
are obtained by using the coefficient polynomials in Tables 4.12 and 4.13, respectively.

ITeimo eanally enasad nadac wrn ont thn el aar t
VEng cquaay spacto nNodes, W gel tne podynomial

P(x) =0.99519577 + 0.99904923x + 0.54788486x% + 0.17615196x>.

This is obtained by finding the function values

787944,  f(xy) =1 = 071653131,
flxa) = e/3 = 139561243,  f(x3) = eV = 2.71828183,

V(x) = 0.99461532 + 0.99893323x + 0.54290072x% +0.17517569x°,

Notice that the coefficients are different from those of P (x). This is a consequence of using
different nodes and function values:

F(xp) = e~ 09387953 = 0.39697597,

fxy) = e 038268343 — 0 68202877,

£xg) = 038268383 — 1 46621380,

Flxs) = (092387953
Then the alternative set of coefficient polynomials Cy(x} in Table 4.13 is used to form the
linear combination

V (x) = 0.39697597Co(x) + 0.68202877C1(x) + 1.46621380C2(x) + 2.51904417Cs(x).

For a comparison of the accuracy of P{x) and V (x), the error functions are graphed
in Figure 4.16(a) and (b), respectively. The maximum error |e* —~ P{x)}| occurs at x =
0.75490129, and

le* — P(x)] < 0.00998481 for —1 <x <1

The maximum error |¢* — V(x)] occurs at x = 1, and we get

(¥ — V{x)| < 0.00665687 for —1<x =<1

PP o tha mmawvimeren o

Notice that the maximum error in ¥ {x) is about two-thirds the maximum eIt
Also, the error is spread out more evenly over the interval.
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y y
0?\# e = P(x) nyp e*— V(1) /
. / \ A4 _/ \ [
-1.0 -0.5 05 1.0 —1.0\—7 0.5 /1.0
~0.005 ~0.005
~0.010+- -0.010+
(a) ()

Figure 4.16 (a) The error function y = e* — P(x) for Lagrange approximation over [—1, 1]
(b) The error function y = ¢* — V{(x) for Lagrange approximation over [—1, 1].
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Runge Phenomenon

We now look deeper to see the advantage of using the Chebyshev interpolation nodes.
Consider Lagrange interpolating to f(x) over the interval [—1, 1] based on equally
spaced nodes. Does the error Ex(x) = f(x) — Py(x) tend to zero as N increases? For

functions like sin(x)} or ¥, where all the derivatives are bounded by the same constant
M, the answer is yes. In general, the answer to this question is no, and it is easy to find
functions for which the sequence { Py (x)} does not converge. If f{x) =1/(1+ 12x%),
the maximum of the error term En(x) grows when N — oc. This nonconvergence
is cailed the Runge phenomenon (see Reference [90], pp. 275-278). The Lagrange
polynomial of degree 10 based on 11 equally spaced nodes for this function is shown
in Figure 4.17(a). Wild oscillations occur near the end of the interval. If the number of
nodes is increased, then the oscillations become larger. This problem occurs because
the nodes are equally spaced!

If the Chebyshev nodes are used to construct an interpolating polynomial of de-
gree 10to f{x) = 1/(1 4+ 12x?), the error is much smaller, as seen in Figure 14.17(b).
Under the condition that Chebyshev nodes be used, the error Ey(x) will go to zero
as N — oo. In general, if f(x) and f'(x) are continuous on [—1, 1], then it can be
proved that Chebyshev interpolation will produce a sequence of polynomials { Py (x}}
that converges uniformly to f (x) over [—1, 1].

Transforming the Interval

Sometimes it is necessary to take a problem stated on an interval [a, b] and reformu-
late the problem on the interval [c, 4] where the solution is known. If the approxima-
tion Py (x) to f(x) is to be obtained on the interval [a, ], then we change the variable

¥y
1.0
A
0.5F
y=f@x) Figure 4.17 (a) The polynomial
approximation to y = 1/{1 + 12x%)
—L i—4——x  based on 11 equally spaced nodes
-1.0 -0.5 0.0 0.5 1.0 over [—1, 1].
y
1oL
0.5
¥=Folo
,,J/f(x , \ Figure 4.17 (b) The polynomiat
¥= approximation to y = 1/(1 + 12x%)
: : : —x based on 11 :
10 05 00 05 o P 1fn Chebyshev nodes over
$o that the problem is reformulated on [—1, 1]:
b—a a+b X ~—a
1 x= t or t=2 -1.
a2 ( 2 ) + 2 b~a

wherea <x <band -1 <t < 1.
The required Chebyshev nodes of Ty,1(t) on{—1, 1] are

T

{
(13 I = Cos k(ZN +1-— 2k)m

) for k=0, 1 N

and the interpolating nodes on [a, b} are obtained by using (12):

b—a a+¥b
+

> 5 for k=90,1, ..., N.

Xi = ¥
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v

'i GIein 4 7 (La LAgT qugc-\,ucu_ys

1= hev
Py(x)is Lag'range polynomial that i
If f € CNT[q, ), then

2b — a)N-i-l

(15) [f &) = Pyl < iy max 1@
UV 1} agx<h

Example 4.15. For f(x} = sin(x) on [0, m/4), find the Chebyshev nodes and the crror
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Theorem 4.8 (Chebyshev Approximation). The Chebyshev approximation poiyno-
mial Py (x) of degree < N for f(x) over [—1, 1] can be written as a sum of {T;(x)}:

N
@1 F@O) = Pvx) =) ¢;T;(x).

The coefficients {c;} are computed with the formulas

bound (15) for the Lagrange polynomial Ps{x). 1 N
Formulas (12) and (13) are used to find the nodes; : = T =
(22) 0= +lzf(xk) o) = g 2 Fw
(1 =2\ 7m =w k=0
x=cos| ———— o+ fork=0,1, ..., 5 )
\ /8 8 and
Using the bound | f® (x)| < |—sin(/4)| = 272 = M in (15), we get
6= + 1 Zf(xk)rj(xk)
F) = Pun)l < () ( )2 122 < 0.00000720. .
TR RN
_ 2 Jzt\ﬂc + 1) i
Orthogonal Property @ =5 l;)f(Xk) cos 2N +2 ) forj=1,2...N

In Exampie 4.14, the Chebyshev nodes were used to find the Lagrange interpolating
polynomial. In general, this implies that the Chebyshev polynomial of degree N can be
obtained by Lagrange interpolation based on the N + 1 nodes that are the N + 1 zeros
of Tw.i(x). However, a direct approach to finding the approximation polynomial is
to express Py (x) as a linear combination of the polynomiais T, (x), which were given
in Table 4.11 Therefore, the Chebyshev interpolating polynomial can be written in the
form

| I ETY
e Tl N\J‘

(16) Puxy=) ¢

The coefficients {c; } in (16} are easy to find. The technical proof requires the use
of the following orthogonality properties. Let

2k+1
17 = = :
an X = COS (ﬂ2N+2) for k=0, 1, . ¥
N
(18) ZTf(XIc)Tj(JCk) =0 when i # j,
k=0
N
19 vT-(x;\T:fh\:ﬂ__l wh F=7F£0
-7 L“l\ X’ J\"'i(} 2 LT A W J T,
k=0
N
(20) > ToG)Tolxe) = N + 1.
k=0

Property 4 and the identities (18) and (20) can be vsed to prove the following
theorem.

Example 4.16. Find the Chebyshev polynomial P3(x) that approximates the function

f(x) =¢€" over[-1,1].

The coefficients are calculated using formulas (22) and (23), and the nodes x; =

i3 IT-S9-

cos(m(Zk+1)/8) fork =0,1,2,3.

3 3
o= i Y e Tp(x) = %Ee"‘ = 1.26606568,
k=0 k=0
3

o

I
(ST
L[]
N -

e Ti(xe) = = Y €™ = 113031500,
k=0

k=0
[ oo e 2k +1
= — == et =0.2714503
o=y ; Tox) = 3 Z cos (2:: 2 ) 0.27145036,
3 2

€3 = "Z IkT3(xk)=_Z - ( k+1) = 0.04379392,

k=0
Therefore, the Chebyshev polynomial P3(x) for e* is
24 P3(x) = 1.26606568T5(x) 4 1.130315007;(x)

+0.27145036T»(x) + 0.04379392T3(x).
If the Chebyshev polynomial (24) is expanded in powers of x, the result is
P3(x) = 0.99461532 + 0.99893324x + 0.54290072x2 + 0.17517568x>,

which is the same as the polynomial V(x) in Example 4.14. If the goal is to find the
Chebyshev polynomial, formulas (22) and (23) are preferred. n
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MATLAB

The following program uses the eval command instead of the feval command use .

in earlier programs. The eval command interprets a MATLAB text string as an ex

pression or statement. For example, the following commands will quickly evaluat.

cosine at the values x = k/10fork=0,1,...,5:
»>> x=0:.1:.5;
>> eval{’cos(x)’)
ans =
1.0000 0.9950 0.9801 0.9553 0.9211 0.8776

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Cheby-
shev interpolating polynomial of degree N over the interval [—1, 1], where

N
P(x) = c;Tj(x)
i=0

SEC.4.5 CHEBYSHEV POLYNOMIALS 41

C(3)=C{G)+¥Y (k) *cas((j-1)*z};
end
and

C=2%C/(n+1);

e(1)=C(1)/2;

Exercises for Chebyshev Polynomials (Optional)

1. Use property | and
(a) construct T4(x) from 73(x) and T (x).
(b) construct 75(x) from T4(x) and T3{x).

2. Use property 1 and

is based on the nodes

_ (2k + 1)1’!’)
X = COS§ N +2 .

function [C,X,Y}=cheby(fun,n,a,b)

%Input - fun is the string function to be approximated
% - N iz the degree of the Chebyshev interpolating
%4 polynomial

Y w = iz tha laft and noint

4 a is the left end point

% - b is the right end point

%0utput - C is the coefficient list for the polynomial

% - X contains the abscissas

% - Y contains the ordinates
if nargin==2, a=-1;b=1;end
d=pi/(2*n+2};
C=zeros(1i,n+1);
for k=1:n+1
X(k)=cos((2*k-1)*d);
end
X=(b-a)*X/2+(a+b)/2;
x=X;
Y=eval(fun);
for k =1i:n+1
z=(2*k-1)*d;
for j=i:n+l

(a) construct Tg(x) from T5(x) and Ty{x).
(b) construct T5(x) from T4(x) and Ts(x).

3. Use mathematical induction 10 prove property 2.

N

5. F:nd the maximum and micimum values of To(x).

6. Find the maximum and minimum values of T3(x).
Hint. T,(1/2) = 0 and 7,(—1/2) = 0.

7. Find the maximum and minimum values of T3(x).
Hirt. 700 = 0, T;(271/%) = 0.and 7,;(—2"12) _ 0.

8 Let f(x) =sin(x)on|[~1,1.

{a) Use the coefficient polynomials ir. Table 4.13 1o obtain the Lagrange-Chebyshev
polynomial approximation P3(x).
(b) Fird the error bound for | sin(x) — Pyix),.

% Let fix) =In{x +2)on[—1.1..
(a) LUse the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev
polynomial approximation P3(x).
{(b) Find the error bound for | In(x + 2) — P3(x)..

4@ The Lagrange polynomial of degree N = 2 has the form
froy = fleo)lacla) + fle)la ()~ flxz)Laa(x).

If the Chebyshey nodes xp = cosi57/0), x| = U, and x» = cos{7/6) are used, show
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that the coefficient polynomials are

x 2%
Ljolx) = --\/_5 + 3
r rd £ L] 412
L) =1-—,
x 2
Lao(x) = ﬁ + =

11, Let f(x) =cos(x)on[-1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshe
polynomial approximation P(x).
(b) Find the error bound for | cos(x) — Ps(x)|.
12. Let f(x) =e*on[-1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshet
polynomial approximation Py (x).

{b) Find the error bound for |¢* — Ps(x)l.

4.6
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3. f(x) =cos(x) 4. f(x) =In(x +2)
5. fn)y=(x+2)'72 6. f(x) = (x+2)0+d
7. Use Program 4.3 (N = 5) to obtain an approximation for f; cos(x2) dx.

Padé Approximations

In this section we introduce the notion of rational approximations for functions. The
function f(x) will be approximated over a small portion of its domain, For example,
if f(x) = cos(x), it is sufficient to have a formula to generate approximations on the
interval [0, /2]. Then trigonometric identities can be used to compute cos(x) for any
value x that lies outside [0, 7 /2].

A rational approximation to f(x) on [a, b] is the quotient of two polynomials
Py(x) and Qpr(x) of degrees N and M, respectively. We use the notation Ry mx)to

denote this quotient:

fall {
INAX)

In Exercises 13 through 15, compare the Taylor polynomial and the Lagrange-Chebyshev
approximates to f{(x) on {—1, 1]. Find their error bounds.

13. f(x) = sin{x} and N = 7, the Lagrange-Chebyshev polynomial is
sin(x) & 0.99999998x — 0.16666599x> + 0.00832995x° — 0.00019297x".
14. f(x) =cos(x) and N = 6; the Lagrange-Chebyshev polynomial is
cos(x) 2 | — 0.49999734x% + 0.04164535x* — 0.00134608x5,
i5. fi{x) = ¢ and N = 7, the Lagrange-Chebyshev poiynomiai is
e* ~ 0.99999980 + 0.99999998x + 0.50000634x>

+ 0.16666737x> + 0.04163504.x* + 0.00832984x°

+0.00143925x5 + 0.00020399x .
16. Prove equation (18).
17. Prove equation (19).

Algorithms and Programs

In Problems 1 through 6, use Program 4.3 to compute the coefficients {¢i} for the Cheby -
shev polynomial approximation Py (x) to f(x) over[—1,1), when{a) N =4, (b) N = 5.
(©) N = 6, and (@) N = 7. In each case, plot f(x) and Py (x) on the same coordinate
system.

1. f(x)=¢" 2. f(x) =sin(x)

(1) Ry m(x) = for a = x < b.

Om(x)

Our goal is to make the maximum error as small as possible. For a given arnount
of computational effort, one can usually construct a rational approximation that has a
smaller overall error on [a, b] than a polynomial approximation. Our development is
an introduction and will be limited to Padé approximations.

The method of Padé¢ requires that f(x) and its derivative be continuous at x = 0.
There are two reasons for the arbitrary choice of x = 0. First, it makes the manipula-
tions simpler. Second, a change of variable can be used to shift the calculations over to
an interval that contains zero. The polynomials used in (1) are

2 Pn(xy = po+pix + p2x® + -+ + pyxVN
and
3) Omx)=1+q1x +qx* + -+ gyxM.

The polynomials in (2} and (3) are constructed so that f(x) and Ry pm(x) agree at
x = 0 and their derivatives up to N 4 M agree at x = 0. In the case Colx) = 1, the
approximation is just the Maclaurin expansion for f(x). For a fixed value of N + M
the error is smallest when Py {(x) and Qs (x) have the same degree or when Py (x) has
degree one higher than () (x).

Notice that the constant coefficient of Qs is g = 1. This is permissible, because
it cannot be 0 and Ry s (x) is not changed when bath Pr(x) and Qp(x) are divided
by the same constant. Hence the rational function Ry 4 (x) has N + M + | unknown
coefficients. Assume that f(x) is analytic and has the Maclaurin expansion

(4) fW =a+axtax’+  4axt+-.,
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and form the difference f(x)}Qu(x) — Py(x) = Z(x):
®) (Z“fx’) (Z 411’) -2 3 e
=0 =0 j=0 F=N+M+1

The lower index j = M + N + 1 in the summation on the right side of (5) is chosen
because the first N 4 M derivatives of f(x) and Ry m(x) are to agrec atx = Q.
When the left side of (5) is multiplied out and the coefficients of the powers of

are setequal tozero fork = 0, 1, ..., N + M, the resultis a system of N + M 4 |
linear equations:
ag—po=10
qiag+a;— p1 =0
©6) Qa0+ qa+ax—p2=0

gsap+ gy +qraz+az— p3 =0
gMaN-mM + am-1ay-m+1+ - +av—py =0

SeC 4.6 PADE APPROXIMATIONS 245

y
1.0

e N
\ VAN AV 3
—s\\-4 -3 2/ 1 \2 3 affs
Y =°°s(‘\ / 0.5
N/ -10f \4

Figure 4.18 The graph of y = cos(x) and its Padé
approximation R 4(x).

T

and
gmMaN-—m+1 + gum—1an-m+2 + -+ q1an +any =0

gMaN-m2 +am—1aN_M+3 +---+qrany1 +any2 =0
)]

gMan +gu-_1any+1  +- Fgrayem—1 +anem = 0.

Notice that in each equation the sum of the subscripts on the factors of each product
is the same, and this sum increases consecutively from 0 to N + M. The M equations
in (7) involve only the unknowns g1, g2, ..., gy and must be soived firsi. Then the
equations in (6) are used successively to find po, p1, - ... Pn.

Example 4.17.  Establish the Padé approximation

15,120 — 6900x* + 313x*
® cost) = Raal) = ey T 660x? + 1310
See Figure 4.18 for the graphs of cos(x) and Ry 4(x) over [—35, 5].
If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine
unknowns. Instead, notice that both cos{x} and R4 4(x) are even functions and involve
powers of x2. We can simplify the computations if we start with f(x} = cos(x'/?):

1 P 1,
:1__ o . | I
) fx) 2** 5% ~ 720" t30320"
In this case, equation (5) becomes
1 1, 1 4 1 4 2 2
(1 2x+24x - 720 +40!_ —X )(1+q1x+qzx) po— p1x — px

320
=0+0x+0x2+0x3+0x4+csx5+05x6+---.

When the coefficients of the first five powers of x are compared, we get the following
system of linear equations:

1-po=0
1

—5+41—P1=0
(0) Ll im—m=0
2 2! g—-—p=

i 1 1
70t g — 302 =0
_+ 1 LIS
20,320 7207 T 32 ="

The last two equations in (10) must be solved first. They can be rewritten in a form that is
<asy te solve:

g — 12 = L d 3 —1
1 Q2—30 an —Q1+ 0q2=§a'

Firstfind g7 by adding the equations; then find ¢;

1 1 1 13
it _ L _ty_ 13
ay =13 (30 se) 15,120°
1 156 11

D=3t 5120 " 252

Now the first three equations of (10) are used. It is obvious that py = 1, and we can
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use g1 and g2 in (11) to solve for py and p7:

" 1,11 15
(12) PL="5T253 7 "252
1o, 13 313

P2= 347504 " 15,120~ 15,120
Now use the coefficients in (11) and (12) to form the rational approximation to f (x):

3 ya L= 115x/252 4 313x%/15,120
a3 S~ T 252 + 13x2/15.120

Since cos(x) = f (xz), we can substitute x2 for x in equation (13) and the result is the
formula for Rs 4(x) in (8). ™

N av W T__ 48 . T e
COINtINnuea rraciivil rorin
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1.0 05 00 05 10 0.000025 |
-] L B— rl x
0.000020 |-
— -7L
1x10 0.000015 |-
x107) yeEg 0.000010 1 £
0.000005 L
-3x1077L
| | 1.0 -05 00 05 1.0
(a) €)]

lf‘igure 4.19 (a) Graph of the error Eg(x) = cos(x) — Ry 4(x} for the Padé approxima-
tion Ry,4(x). (b) Graph of the error £ p(x) = cos{x)~— Ps(x) for the Taylor approximation
Fg(x).

“Thie Padé approximation R3 g (x)imExampte4-17 requires aminimumrof 2 arithmetic
operations to perform an evaluation. It is possible to reduce this number to seven by
the use of continued fractions. This is accomplished by starting with (8) and findin.
the quotient and its polynomial remainder.

15,120/313 — (6900/313)x% + x*
15,120/13 + (660/13)x2 4 x*

313 (296.280)( 12,600/823 4 x2 )
13\ 169 15.120/13 + (600/13)x% + x* | °

Ry 4(x) =

\

The process is carried out once more using the term in the previous remainder. The
result is

Rea(x) — 313 296,280/169
' 13 15,120/13 4 (660/13)x% + x*
12,600/823 + x2
313 296,280/169
T 137 379380, 420,078,960/677.329
70600 12 600/823 + x2

LRV IS 2L S&S T

The fractions are converted to decimal form for computational purposes and we obtair

(14)  Rya(x) = 24.07692308
1753.13609467
35.45938873 + x2 + 620.19928277/(15.30984204 + x2)

To evatuate (14), first compute and store x2, then proceed from the bottom right term
in the denominator and tally the operations: addition, division, addition, addition, divi-
sion, and subtraction. Hence it takes a total of seven arithmetic operations to evaluate
R4 4(x) in continued fraction form in (14).

We can compare R, 4(x) with the Taylor polynomial Ps(x) of degree N = 6,

‘which requires seven arithmetic operations to evaluate when it is written in the nested

form

_ af 1 of1 1 ,
(15)  Ps(x)=1+x ( S+ (24 555" ))

=1+ x%(—0.5 + x2(0.0416666667 — 0.0013888889x2)).

The graphs of Eg(x) = cos(x) — Ry 4(x) and Ep(x) = cos(x) — Ps(x) over [—1, 1]
are shown in Figure 4.19(a) and (b), respectively. The largest errors occur at the
end points and are Eg(1) = -0.0000003599 and Ep(l) = 0.0000245281, respec-
tively. The magnitude of the largest error for Ry 4(x) is about 1.467% of the error
for Pg(x). The Padé approximation outperforms the Taylor approximation better on
smaller intervals, and over [—0.1, 0.1] we find that Eg(0.1) = —0.0000000004 and
Ep(0.1) = 0.0000000966, so the magnitude of the ermror for Rz 4(x) is about 0.384%

of the magnitude of the error for Pg(x).



2. (a)

(b)

(b)

4. (a)

(b)

248 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION SEC. 4.6 PADE APPROXIMATIONS 249
Exercises for Padé Approximations 6. (a) Find the Padé¢ approximation Ry,2(x) for f(x) = In(1 + x)/x. Hint, Start with
the Maclaurin expansion:
1. Establish the Padé approximation: x x2 43 4
2+J: f(x)=1—;+T—T+?—
e~ R = 5—. =0 T2
(b) Use the result in part (a) to establish
Find the Padé approximation R; 1(x) for f(x) = In(1 + x)/x. Hint. Start with ) .
the Maclaurin expansion: 30x +21x° 4 x
Inl+x)=~R3(x) = ———— =
0% Rt = S e v on
X X
= = - . .
fx) 2 + 3 {c} Express the rational function R3 2(x) in part (b in continued fraction form.
Use the result in part (a) to establish the approximation (@) F'ind R2.2(x) for f(x) = tan(x '/2)/x/2. Hint. Start with the Maclaurin expan-
31on
6x + x2
In(l4x) = Ry (%) = x 2% 17k e2xt
6+4x fR=14++—+—F =+
3 1 315 2835
—sc_fa')—Fmd_R]Tr(ﬂ_fOT_f(ﬂ'}_:wuz)ﬁm_lﬂﬂf Start-withthe Muaclauri (b) Use the resultin part (a) to establish
sion:
3 5
x 2x? tan(x) = Rs alx =945x—105x +x
f(x)=1+§+_15‘+~- @ 5:4(%) 945 — 420x2 + 15x4°
Use the result in part (a) to establish the approximation (¢} Express the rational function Rs 4(x) in part (b) in continued fraction form.
155 — 23 8. (@) Find R 2(x) for f(x) = arctan{x!/?)/x!/2. Hint. Start with the Maclaurin
tan(x) = = expansion:
)= Rsa() = 15— P
‘ T ) x  x2 i3 4
Find Ry i(x) for f(x) = arctan(x'/2)/x1/2. Hipt. Start with the Maclaur . fx)y=1- 3 + 37 + T
expansion: .
R (b} Use the result in part (a) to establish
X X
FK=l——t—= -
fx) 375 945x + 735x% + 64x°
arctan(x) = Rs 4(x) = 7 7
Use the result in part (a) to establish the approximation 945 + 1050x2 +225x
15x + 4x3 (c) Express the rational functionRs 4(x) in part (b) in continued fraction form.
arctan(x) & Ry (x) = ——. ! . S
15 + 9x2 9. Establish the Padé approximation:
Express the rational function Rz 2(x) in part (b) in continued fraction form. 120 + 60x + 12x2 + x3

2

th
o~
»

—

(b)

12+ 6x + x2

RO =Ty

Express the rational function Rz 3(x) in part (a) in continued fraction form.

* 2~ R = .
¢ 3.3(%) 120 — 60x + 12x2 4 x3

4 0. Establish the Padé approximation:

1680 + 840x + 180x2 + 20x3 + x*
1680 — 840x 4 180x2 — 20x3 4 x*~

€" = Ry 4(x) =
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Algorithms and Programs

1. Compare the following approximations to f(x) = ¢*.

Tylor  Tet) = l4x+ o bl g
yier = T Ty T ™
12+ 6x 4 x?

Pades R =gy

(@) Plot f(x), Tg(x), and Rz,2(x) on the same coordinate system,
{b) Determine ihe maximum error that occurs when f(x) is approximate : - 1
Te(x) and Ry 7(x), respectively, over the interval [—1, 1].

2. Compare the following approximationsto f(x) = In(1 + x).

SEC. 4.6
5. (@)

(b)
(c)
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Use equations (6) and (7) to derive Rg g(x) and R g(x) for f(x) = cos(x) over
the interval [—1.2, 1.2].

Plot f(x}), R 6(x), and Rg g(x) on the same coordinate system.

Determine the maximum error that occurs when f(x) is approximated with
Re,6(x) and Rg g(x), respectively, over the interval [—1.2, 1.2].

_— . 2 X3 xS
laylor: IS(I)=x—?+?_I+_5_.
30xF 21 F 27
Padél R — e————
3200) = 30 36x 1952

(a) Plot f(x), Ts(x), and R32(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximate.. . 1}
T5(x} and R3 2(x), respectively, over the interval [—1, 1].

3. Compare the following approximations to f(x) = tan(x).

3 2x5 T 9
Taylor: TQ()‘)=X+£:+T+}:?.xT+?.._2f.‘
3 15 315 2830
945x — 105x3 4 %
945 — 420x2 + 15x*

Padé:  Rs4(x) =

{a) Plot f{x), To(x), and Rs 4(x) on the same coordinate system.

(b) Determine the maximum error that occurs when f(x) is approximated with
Ty(x) and Rs 4{(x), respectively, over the interval [—1, 1].

Compare the following Padé approximations to f{x) = sin(x) over the interval

[—1.2, 1.2].

=

166,320x — 22,260x* + 551x°
15(11,088 + 364x2 + 5x%)

Ry g(x) = 11,511,339,840x — 1,640,635,920x2 + 52,785,432x5 — 479,249x7
: 7(1,644,477,120 + 39,702,960x2 + 453,960x% + 2,623x6)

Rsa(x) =

(a) Plot f(x}, Rs 4(x}, and R; s(x} on the same coordinate system,

(b} Determine the maximum error that occurs when f(x) is approximated with
Rs,4(x) and R7 ¢(x), respectively, over the interval [—1.2, 1.2].
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Least-squares Line

In science and engineering it is often the case that an experiment produces a set of
data points (x1, ¥1), ..., (xn, yn), where the abscissas {xx} are distinct. One goal of
numerical methods is to determine a formula ¥ = f(x) that relates these variables.
Usually, a class of allowable formulas is chosen and then coefficients must be deter-
mined. There are many different possibilities for the type of function that can be used.
Often there is an underlying mathematical model, based on the physical situation, that
will determine the form of the function. In this section we emphasize the class of linear
functions of the form

s

(D _‘y=f(x)=/“1x+3.

In Chapter 4 we saw how to construct a polynomial that passes through a set of
points. If all the numerical values {x¢}, {y¢} are known to several significant digits
of accuracy, then polynomial interpolation can be used successfuily; otherwise it can-
not. Some experiments are devised using specialized equipment so that the data points

will have at least five digits of accuracy. However, many experiments are dope with

Applications of numerical techniques in science and engineering often involve curve
fitting of experimental data. For example, in 1601 the German astronomer Johannes
Kepler formulated the third law of planetary motion, T = Cx3/2, where x is the dis-

tance to the sun measured in millions of kilometers, T is the orbital period measured
in days, and C is a constant. The observed data pairs (x, T) for the first four planets,
Mercury, Venus, Earth, and Mars, are (58, 88), (108, 225), (150, 365), and (228, 687),
and the coefficient C obtained from the method of least squares is C = 0.199769. The

curve 7 = 0.199769x%/2 and the data points are shown in Figure 5.1.

T
750 |
500 - T=0.199769 x372
250
Figure 5.1 The least-squares fit
T = 0.199769x%2 for the first four
L L - . x  planets using Kepler’s third law of

planetary motion.

252

equipment that is reliable only to three or fewer digits of accuracy. Often there is an
experimental error in the measurements, and although three digits are recorded for the
values {xi} and {y}, it is realized that the true value f (x;) satisfies

@ S = ye +ex,

where e, is the measurement error.

How do we find the best linear approximation of the form (1) that goes near (not
always through) the points? To answer this question, we need to discuss the errors
{aiso calied deviations or residuals):

&) e = flu)—y for t<k<N.

There are several norms that can be used with the residuals in (3) to measure how

farthe curve y = f(x) lies from the data.

@ Maximum error:  Eoo(f) = lg}{iXNUf(xk) — »elt
| 1
{63)] Average error: Eif)= v ; |FCex) — el
L 1/2
e Root.-mean-square Exf)= (—]\7 Z | f G} — )’klz) .
CITOE: k=1

The next example shows how to apply these norms when a function and a set of
. )
Jposnts are given.



254 CHAP.5 CURVE FITTING

Tabie 5.1 Caiculations for Finding E1{f} and E2{f)

Example 5.1
xi ¥ Flxz) = 8.6 — L6ixg lex| e
-1 10.0 10.2 0.2 0.04
0 9.0 8.6 0.4 0.16
1 7.0 7.0 0.0 0.00
2 50 5.4 0.4 0.16
3 40 3.8 0.2 0.04
4 3.0 2.2 0.8 0.64
5 0.0 0.6 0.6 0.36
6 | —10 ~1.0 0.0 0.00
26 1.40

Example 5.1. Compare the maximum error, average error, and rms error for the lincur
imati (—1.10), (0.9, (1,7, (2,
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4

v o )

Wy V)
- ) ., . . L Figure 5.2 The vertical distances

X .
between the points {(xg, and
X % 5 Xy | iy points {(xg, y)]

the least-squares line y = Ax + B.

Theorem 5.1 (Least-squares Line). Suppose that {(x¢, y&)}}_, are N points, where

(3,4). (4,3),(5,0), and (6, —1).
The errors are found using the values for f(xz) and e; given in Table 5.1.

)] Ex(f) = max{0.2,04,0.0,0.4,0.2,0.8, 0.6,0.0} =
@) E\(f) = %(2.@ — 0.325,

1.4 1/2
) Ex(f) = (?) ~ 041833

We can see that the maximum error is largest, and if one point is badly in error. 1t
value determines Eq( f). The average error E1(f) simply averages the absolute value of
the error at the various points. It is often used because it is easy to compute. The erro
E2(f) is often used when the statistical nature of the errors is considered.

A best-fitting line is found by minimizing one of the quantities in equations (4) through
(6). Hence there are three best-fitting lines that we could find. The third norm £2(f) is the
traditional choice because it is much easier to minimize computationally. ]

Finding the Least-squares Line

Aictinst Tha loact.

Let {{xx, yknkél be a set of N points, where the abscissas {x; | are distinct. The least-
squares line y = f(x) = Ax + B is the line that minimizes the root-mean-square error

E2(f).

The quantity E2(f) will be a minimum if and only if the quantity N{(E2(f )2 =
Z,, (Ax + B — y)* is a minimum. The latter is visualized geometrically by mini-
mizing the sum of the squares of the vertical distances from the points to the line. The
next result explains this process.

the abscissas {x; };;"=1 are distinct. The coefficients of the least-squares line
y=Ax+ B

are the solution to the following linear system, known as the normal equations:
N s N N
(Zxk) A+ (Z »wc) B= chm,
k=1 k=1 k=1
(& X
kLIk) A+ NB= Lyk.
k=1 k=1

Proof Geometrically, we start with the line y = Ax + B. The vertical distance dj
frorn the point (xx, yx) to the point (x¢, Axx + B) on the line is dy = |Axx + B — y|
(see Figure 5.2). We must minimize the sum of the squares of the vertical distances d:

(to)

N

N
an E(A,B)=) (Ax+B—y)* =) df.

k=1 k=1

The minimum value of E(A, B) is determined by setting the partial derivatives
dE/3A and D E /3 B equal to zero and solving these equations for A and B. Notice that
{xx} and {yx} are constants in equation (11) and that A and B are the variables! Hold
£ fixed, differentiate £(A, B) with respect to A, and get

nr-

; N N

R .

. — = AAxi + B - y)(xx) =2 _(Ax} + Bxe — xi0)
k=1 k=1

A n\
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Table 5.2  Obtaining the Coefficients for

Normal Equations
2

Xk Yk X Xk Vi
-1 10 1 -~10
0 9 1] 0
1 7 1 7
2 5 4 10
3 4 9 12
4 3 16 12
5 0 25 0
6 -1 36 -6
20 37 92 25

Now hold A fixed and differentiate E(A, B) with respect to B and get
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- . . A .
-1

~___* Figure 5.3 The least-squares line
N y = —1.6071429x + 8.642857!,

[\~ ]
W
I
h ¢

The solution of the linear system is A &~ —1.6071429 and B = 8.6428571. Therefore, the
least-squares line is (see Figure 5.3)

dE(A, B)

(13 dB

N N
=Y 2Axn+B-y)=2) (Axe+B -y
k=1 k=1
Setting the partial derivatives equal to zero in (12) and {13}, use the distributive
properties of summation to obtain

N N i N
(14) O=Z(Axf+BXk—xkyk)=AZX;%+BZIJ< —ZXkyk,
k=1 k=1 k=1 k=1

N N N
(15) 0= (An+B-y) =AY x+NB-) wn. .
k=1 k=1 k=1

Equations (14) and (15) can be rearranged in the standard form for a system and
result in the normal equations (10). The solution to this system can be obtained by one
of the techniques for solving a linear system from Chapter 3. However, the method
employed in Program 5.1 translates the data points so that a well-conditioned matrix is
employed (see exercises).

Example 5.2. Find the least-squares line for the data points given in Example 5.1.
The sums required for the normal equations (10) are easily obtained using the values
in Table 5.2. The linear system involving A and B is

92A420B =125
20A+ 8B =13T.

y = —1.6071429x + 8.6428571 ]

The Power Fit y = Ax™

Some situations involve f(x) = Ax™, where M is a known constant. The example of
planetary motion given in Figure 5.1 is an example. In these cases there is only one
parameter A to be determined.

Theorem 5.2 (Power Fit). Suppose that {(xg, y,;c)},‘i‘L1 are N points, where the ab-
scissas are distinct. The coefficient A of the least-squares power curve y = AxM is
given by

o eEe)/(e)

Using the least-squares technique, we seek a minimum of the function E(A):

N
an E(A) =) (Ax -y
k=1

In this case it will suffice to solve E’(A) = 0. The derivative is

N N
(18) E'(A) =2 (As¥ = ydxf) =23 (AxfM — <} yp).
k=1 k=1
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Table 5.3  Obtaining the Coefficient for a Power Fit A=sumxy/sumx2;
B=ymean-A*xmean;
Time, Distance, dj dy? I
0.200 0.1960 0.00784 0.0016
0.400 0.7850 0.12560 0.0256
0.600 1.7665 0.63594 0.1296 . .
0.800 3.1405 2.00092 0.4096 Exercises for Least-squares Line
1.000 4.9075 4.90750 1.0000
7.68680 1.5664 In Exercises 1 and 2, find the least-squares line y = f(x) = Ax + B for the data and
calculate Ez( f)
1 (a) )
' . ' . X% o| oy | flu) X | v | flu)
Hence the coefficient A is the solution of the equation
-2 i 1.2 —6 7 7.0
N -1 2 1.9 -2 5 4.6
(1 D:_A_Y‘)t_';'!M—Y\):_'.Mm,i n 2 A £ n ~ a4
7 Lk Lk IR v ) &0 U a 3.4
k=1 k=1 1 3 3.3 2 2 22
which reduces to the formula in equation (16). © 2 4 40 6 0 —0.2
c
Example 5.3. Swudents collected the experimental data in Tabie 5.3. The relation is . Yk A
d = % g2, where d is distance in meters and ¢ is time in seconds. Find the gravitational —4 |-3 | =30
constant g. -1 -1 -0.9
The values in Table 5.3 are used to find the summations required in formula (16), where 0 0 —0.2
the power used is M = 2. 2 1 1.2
The coefficient is A = 7.68680/1.5664 = 4.9073, and we get d = 4.9073:> and 3 2 1'9
2 =24 = 9.7146 m/sec?. " =
. , . . 2 (a) )
The following program for constructing a least-squares line is computationally sta- X Yk Fixw) Xi Vi £ (xe)
ble: it gives reliable results in cases when the normal equations (10} are ill conditioned.
The reader is asked to develop the algorithm for this program in Exercises 4 through 7. —4 1.2 044 -6 | -53|-6.00
-2 28] 334 -2 | -35|-284
. 0 62| 6.24 -1.7 | -1.
Program 5.1 (Least-squares Line). To construct the least-squares line y = Ax + 2 78| 914 (2) (1) ;’ (]) ig
B that fits the N data points (x1, y1), .... {xn§, YN). 4 132 | 12.04 6 4.0 3.48
function [A,Bl=lsline(X,Y) (c}
%Input - X is the 1xn abscissa vector |y | fow)
“ - Y is the 1xn ordinate vector _8 68| 7.32
%0utput - A is the coefficient of x in Ax + B -2 50! 3.81
% - B is the constant coefficient in Ax + B 0 22| 2.64
xmean=mean{X) ; 4 0.5 0.30
ymean=mean{Y); 6 | —-131-087
supx2=(X-xmean) * (X-xmean) ’; . 3. Find the power fit y = Ax, where M = 1, which is a line through the origin, for the

sumxy= (Y-ymean) * (X-xmean) ’ ; data and calculate Ea(f).
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SEC.5.1 LEAST-SQUARES LINE 26}

(a) - (b) PN Hint. Use X = x¢ — X, Y& = yx — ¥ and first find the line ¥ = AX.
Xk Ye | SOu) Xk Ye | J{x) ; )
8. Find the power fits y = Ax~ and y = Bx” for the following data and use E2(f) to
-4 -3 —-2.8 3 1.6 1.722 determine which curve fits best,
-1 ~1 -0.7 4 24| 2.296 @ )
0 0 0.0 5 29| 2870 Xi Ve X Vi
2 1 i.4 6 34| 3.444
3 2 2.1 8 46| 4592 20| 5.1 20 59
© 23| 7.5 2.3 8.3
26| 10.6 26 10.7
X
X | e | SO 2.9 | 14.4 29| 137
1 1.6 1.58 3.2 19.0 321170
2 28| 3.16 .
3 471 4.74 9. Find the power fits y = A/x and y = B/x? for the following data and use E2(f) o
4 641 6.32 determine which curve fits best.
5 80| 790 (a) (b)
Xk Yk X Y
4. Define the means X and ¥ for the points {(xx, yx)}'., by
05| 7.1 0.7 8.1
I I 08| 44 09| 49
S PV y"zvf;”‘ 11| 32 11| 33
o . . ined by the i ¢ 1.8 1.9 1.6 1.6
Sh.ow that the point (x, 7) lies on the least-squares line determined by the given set o 40| 09 30| 05
points.
5. Show that the solution of the system in (10) is given by 10. (a) Derive the normal equation for finding the least-squares linear fit through the

[~}

+h
. ouuw that thc va:ue of L u: vt

.

i N N N
A=?\‘(Nzxkyk_zxk yk).
N k=l k=1 k=1 /
A N N N
po g (S Eu )
k=1 k=l k=1 k=1

where

N 2
D=N Z x} - (Z ) .
k=1
Hint. Use Gaussian elimination on the system (10).

at tha unlive of N in FExarcig
Ercis

£ 2 18 nonzer

Hint. Show that D = N 3°b_| (xx — 1)

Show that the coefficients A and B for the least-squares line can be computed a~
follows. First compute the means X and y in Exercise 4, and then perform the calvu-
lations:

N N
C=) -0 A= Zxk—mm— B =7 - A%.
k=1 k=

origin y = Ax.
(b) Derive the normal equation for finding the least-squares power fit y = Ax?.
(c) Derive the normal equations for finding the least-squares parabola y = Ax?+ B.
11. Consider the construction of a least-squares line for each of the sets of data points
determined by Sy = {(%, (%)2)},"‘;1, where N = 2,3,4,.... Note that, for each
value of N the points in Sy all lie on the graph of f(x) = x? over the closed interval
[0, 1]. Let ¥ and ¥, be the means for the given data points (see Exercise 4). Let X

be the mean of the values of x in the interval [0, 1], and let ¥ be the mean (average)
value of f(x) = x? over the interval [0, 1].

(a) Show limy e X¥ = X.
(b) Showlimy_ ¥y = .

12. Consider the construction of a least-squares line for each of the sets of data points:

k k
Sw = —a)5 +a F(b - )5 +a)ie,

for N =2,3,4,.... Assume that y = f(x) is an integrable function over the closed
interval [a, b]. Repeat parts (a) and (b) from Exercise 11.
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Algorithms and Programs

1. Hooke’s law states that /' = kx, where F is the force (in ounces) used to streich
a spring and x is the increase in its hmgt‘n (in inches). Use Program 5.1 to find an

oy s

dppl. U:\l[lldLlU[l {0 the bpl'lllg consiant K IUI the lUllUWlllg daia,

—
[
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Curve Fitting

v W =

Data Linearization Method for y = Ce4*
Suppose that we are given the points (x;, y1), (x2, ¥2), ..., (xn, ¥&) and want to fit an

axpanential eurve of the form

CADUMDIUGE bl ¥ WL weit 23782

a)
( ® Xk F el y = Ce™
D21 36 021 53 The first step is to take the logarithm of both sides:
0.4 7.3 041 106
0.6 | 109 0.6 159 () In(y) = Ax + In(C).
08) 145 08| 21.2 . . .
100 182 1.0 26.4 Then introduce the change of variables:
2. Write a program to find the gravitational constant g for the following sets of data. Ux. 3 Y=In(y), X=x, and B=In(C).
the power fit that was shown in Example 5.3. . , . . e Vi v
(ﬂ) (b) TIITIS resuits i a linear relation between the new variavies A anda !
Time, # Distance, di Time, 1 Distance, d
@ Y =AX + B.
Q.200 0.1960 0.200 0.1965 ) )
0.400 0.7835 0.400 0.7855 The original points (xy, vk} in the xy-plane are transformed into the points (X, Yi) =
Q.600 1.7630 0.600 17675 (xt. In(y)) in the X ¥-plane. This process is called data linearization. Then the least-
0.800 3.1345 0.800 3.1420 squares line (4) is fit to the points {(X, ¥i)}. The normal equations for finding A and
1000 | 48975 1.000 4.9095 Bare

3. The following data give the distances of the nine planets from the sun and their side

reat period in days.
| Distance from Sidereal period

Planet sun (km x 105) (days)
Mercury 5759 87.99
Venus 108.11 22470
Earth 149.57 365.26
Mars 227.84 686.98
Jupiter 778.14 43324
Saturn 1427.0 10,759
Uranus 2870.3 30,684
Neprune 44999 60,138
Plato 5909.0 90,710

Modify your program from Problem 2 to also calculate E2(f). Use it to find the
power fit of the form y = Cx3/2 for (a) the first four planets and (b) all nine planets.

4. (a) Find the least-squares line for the data points {(xi, yk)}},, where x¢ = (0.1)k

and yx = x; + cos(ki/2).
(b} Calculate E5(f).

(c} Plot the set of data points and the least-squares line on the same coordinate

system.

—~
n
-

(ﬁ:xk)mr NB =i”k-

After A and B have been found, the parameter C in equation (I) is computed:

(& C=eb.

Exampie 5.4. Use the data linearization method and find the exponential fit y = C et
for the five data points (D, 1.5), (1, 2.5), (2,3.5), (3, 5.0), and (4, 7.5).
Apply the transformation (3} to the original points and obtain

{(Xe, Yo)} = {(0, In(1.5), (1, In{2.5)), (2, In(3.5)), (3, m(5.0)), {4, In(7.5))
o = {{0, 0.40547), (1,0.91629}, (2, 1.25276), (3, 1.60944), (4, 2.01490}}.

These transformed points are shown in Figure 5.4 and exhibit a linearized form. The equa-

tion of the least-squares line ¥ == AX + B for the poinis (7) in Figare 5.4 is

(8 Y =0.391202X 4 0.457367.



264 CHAP.5 CURVE FITTING

290 /
L5F Y=AX+ R

1.0

-

0.5

" N N ,

0 1 2 3 4

X Figure 54 The transformed 1. .
points {(Xg, ¥;)}.

Table 5.4  Obtaining Coefficients of the Normal Equations for the Transformed Data Points

265
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¥
b
6 y= Ce®
4 -
-
2 - .
h Figure 5.5 The ex 1nennal fit
L . . —Lx y= 1.579910ec'39”“’.2“"o‘ntamed by
0 1 2 3 4 using the data linearization method.

Noniinear Least-squares Meth

Xz, Yeii

X Y Xy Yy = In(y) X2 XYy
0.0 1.5 0.0 0.405465 0.0 0.000000
1.0 2.5 1.0 0.916291 1.0 0.916291
2.0 35 2.0 1.252763 4.0 2.505526
3.0 5.0 3.0 1.609438 9.0 4.828314
4.0 7.5 4.0 2.014903 16.0 8.059612

10.0 6.198860 30.0 16.309743
=2 X =X 4 =21 X; =X XYy

Calculation of the coefficients for the normal equations in (5) is shown in Table 5.4.
The resulting linear system (5) for determining A and B is

304 + 10B = 16.309742
@ 10A+ 5B = 6.198860.

The solutionis 4 = 0.3912023 and B = 0.457367. Then C is obtained with the calculation
C = e%%57367 — 1579910, and these values for A and C are substituted into equation (1)
to obtain the exponential fit (see Figure 5.5):

(10} y = 1.579910%3%1203% (£t by data linearization). .

Suppose that weare given the points (et yx2, Vo), (xx. vy) and want to fit an
exponential curve:

an y=CeM.

z

(12) E(A,C) =) (Cet™ - ¥
k=1

The partial derivatives of E(A, C) with respect to A and C are

N
(13) 9E _ 2 (Ce™™ — y)(Cxre™™)
8A
and
N
(14) OF _ 23 (Cett — et
aC k=1

When the partial derivatives in (13) and (14) are set equal to zero and then simplified,

Y IICTL uiv pansi SLIVAMEY

the resulting normal equations are

(15) N i )
cy et — ypet =0,
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The equations in (13) are nonlinear in the unknowns A and C and can be solved using
Newton's method. This is a time-consuming computation and the iteration involved
requires good starting values for A and C. Many software packages have a built-in
minimization subroutine for functions of several variables that can be used to minimize
E(A, C) directly, For example, the Nedler-Mead simplex algorithm can be used to

PRIy L X A Y g Ty L oY

minimize (12} direcily and bypass the need ior equaiions (13) through {15).

Example 5.5. Use the least-squares method and determine the exponential fit y = Ce#*
for the five data points (0, 1.5), (1, 2.5), (2, 3.5), (3, 5.0), and (4, 7.5).
For this solution we must minimize the quantity E(A, C), which is
E(A,C) = (C — 1.5% + (Ce* —2.5)2 + (Ce? - 3.5)*

16
(16) +(CeA —5.0)% + (Ce*t - 7.5)%

We use the fmins command in MATLAB to approximate the values of A and C that n.i
mize E(A, C). First we define E(A, C) as an M-file in MATLAB.

function z=E(u)
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Table 5.5 Comparison of the Two Exponential Fits

Xi Vi 1.5799,0-39120x 1.61090-38357x
0.0 1.3 1.5799 1.6109
1.0 25 2.3363 2.3640
2.0 35 3.4548 3.4692
3.0 5.0 5.1088 5.0911
4.0 1.5 7.5548 7.4713
5.0 11.1716 10,9644
6.0 16.5202 16.0904
7.0 24.4293 23.6130
8.0 36.1250 34.6527
90 53.4202 50.8535
16.0 | 78.9955 74.6287

i-u(l} ]
C=u(2); y
2z={C-1.5) .~ 2+{(C.*#exp(A)~2.5} . "2+(C.*exp(2%A)-3.5) . "2+. .. 80

(C.*axp(3+A)-5.0) . "2+ (C.*exp(axA)~7 .5) ."2; /

Using the fmins command in the MATLAR Command Window and the initial valucs 601
A=10andC = 0 we find
»>>fmins (?E?, [1 1] 401—
ans =

0.38357046980073 1.61089952247928 ok
Thus the exponential fit to the five data points is /

T T T T —— X Figure 5.6 A graphical compari-

an y = 1.6108995¢%3835705  (fit by nonlinear least squares). 0 2 4 6 8 10 som of the two exp?f:ential curves.

A comparison of the solutions using data linearization and nonlinear least squares 1~
given in Table 5.5. There is a slight difference in the coefficients. For the purpose o
interpolation it can be seen that the approximations differ by no more than 2% over 1hw
interval [0, 4] (see Table 5.5 and Figure 5.6). If there is a normal distribution of the errors
in the data, (17) is usually the preferred choice. When extrapolation beyond the range of
the data is made, the two solutions will diverge and the discrepancy increases to about 6«
when x = 10.

Transformations for Data Linearization

The technigue of data linearization has been used

y=Ce™ y=Aln(x) + B,and y = + B. Once the curve has been chosen.
1 suitable transformation of the va.nables must be found S0 that a linear relation is

by SC!Q. to fit curves such i

obtained. For example, the reader can verify that y = D/(x + () is transformed
into a linear problem ¥ = AX + B by using the change of variables (and constants)
X =xy,Y = y,C = —1/A, and D = —B/A. Graphs of several cases of the
possibilities for the curves are shown in Figure 5.7, and other useful transformations
are given in Table 5.6,

Linear Least Squares

The linear least-squares problem is stated as follows. Suppose that N data points
(3%, Y)} and a set of M linear independent functions {f;(x)} are given. We want
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Tabie 5.6 Change of Variable(s) for Daia Linearization

/ L ‘/i | :K Function, y = f(x) Linearized form, ¥ = Ax + B Change of variable(s) and constants
¥ 1
-------------------- ! A 1 1
i :' | : y=—+B y=A-+B X=-,Y=y
+ e — o x X
’/ ‘/Ii ! D P P - . y
' y= y+ <G+ = =xy,¥=y
17 I i P— E x+C c C - s
C= D= —
=2 4B D -1 A’ A
y= +8, A=-3,B=4 y= y D=-1,C= — = 1 =
¥ x+C & PTiep At%E=3 y=— Lcarts X=x¥=-
Ax+ B y ¥
x i 1 1 1
= —=A-+B X=—-YV=-
:' Y Ax+ B ¥ x+ x ¥
; / y=Aln(x)+ B y=Aln(x)+ B X=Inx),¥=y
t
S _ L \ y=Cet™ Iy} = Ax + I{C) X=xY=h{
N
v ' s
I I ="
x -1
Y= aTE A=5-B=1 )'=Aln(x)+B;A=2,B'=—;— y=Aln() +B; A=-2,B=2 y=Cx# In(y) = Aln(x) + In(C) X =In(x). ¥ =In(y
C=eB
y=(Ax+ B2 y V2= Ax+B X=x,¥=y172
’ y = Cxe~Px In (X) = —Dx +1n(C) X=x¥Y=In (1)
X X
_‘.L/ C=¢8D=-A
l\ r y=— m{E-1)car+m©) | x=x¥=m(= -1
= —_—— = X = X = - —
1 2 | 14 Cehx ’
y=Cetx; A=5.C=; y=Ce®*;, A=-|, C=3 y=Crh; A'-l C=—3- ¢ Y ?
37 2 € = ¢ and L is a constant
that must be given

[~ N
1
= M = =— = ~Dx C =
y W,A 4.8 3 y—Cxe J.C—IZ,D=1 y=l+CeM: L=5.C=20,A=—2
Figure 5.7 Posgibilities for the curves used in “data Linearization™

to find M coefficients {c;]} so that the function f (x) given by the linear combination
M

(18) fEy =3 c;fix)
j=1

will minimize the sum of the squares of the errors

N N M 2
19)  E(crca....om =9 (fa—yi=Y ((Zc;f,-(xo) - )%) :
k=] j=1

k=1
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For E to be minimized it is necessary that each partial derivative be zero (i.e.,
dE/dc; =0fori =1,2, ..., M), and this results in the system of equations

(20) Y‘((Tcrfr(xk)\ —Yk\ (i) =0 fori=12, ..., M.

k—' Fl

Interchanging the order of the summations in (20) will produce an M x M system
of linear equations where the unknowns are the coefficients {c;}. They are called the
normal equations:

M /N N
(21) Z (Zfi(xk)fj(xk)) i fitxyye fori=1,2,.... M.

i=1 \i=1 k=1
The Matrix Formulation
Al h is easil i i i i QWS

Sec. 5.2 CURVE FITTING 271

Fall 1

Now consider the product F'F, which is an M x M matnix:

F'F =
Ay foalx) - fu(x)
T I TN TN | it 5 foted
[“\.ﬁ” e “‘,"'J fitx3)  falxz) - fuxs) |
Tut) Sue) fM(Jfa) o JuG) f](;fN) fz(jw) fM(:XN)

The element in the ith row and jth column of F'F is the coefficient of ¢; in the
ith row in equation (21); that is,

N
(24) Y filts) fit) = [ i) + FGED i) + -+ f[iGen) £ (en).
k=1

When M is small, a computationally efficient way to calcuiate the linear least-squares
coefficients for (18) is to store the matrix F, compute F'F, and F’Y and then solve

one must be clever so that wasted computations are not performed when writing the
system in matrix notation. The key is to write down the matrices F and F’ as follows:

AGn frlx) - fulx)

£ ) [ SR Y £ 0 N
JINALS Jawzy o ot JMA\AZ)

F=1A0G3) filkxay -+ fu(xs)

fl(:’-’N) fz(;rN) fM(.xN)
N AG)  AGD) - filxw)
P Loy o) falx3) oo falaw)
fM-(xl) fM&xz) fMix3) e fM(‘xN)

Consider the product of F’ and the column matrix ¥:

Hix)) A Alx) - fAilaw) ¥
f2x1)  falx2)  falxa) - Halxw) || w2

(22) FY=|" _ _ _
l_fMixL) fM‘(JfZ) fMixa) fM(xN)_l ‘_YN_I

The element in the ith row of the product F'Y in (22) is the same as the ith element 1n
‘he column matrix in equation (21); that is,

N
23) Y fiom=row F'-[y y2 ... y].
k=1

the linear svstem
the system

(25) F'FC = F'Y forthe coefficient matrix  C.

Polynomial Fitting

When the foregoing method is adapted to using the functions { f;(x) = x/ —13 and the
index of summation ranges from j = 1to j = M + 1, the function f(x) will be a
polynomial of degree M:

(26) fx)=cr+ e +cax? o+ o™

We now show how to find the least-squares parabola, and the extension to a poly-
nomiat of higher degree is easily made and is left for the reader.

Theorem 5.3 (Least-squares Parabola). Suppose that {(x, Yk)}i?'.—.l are N points,
where the abscissas are distinct. The coefficients of the least-squares parabola

(27) y=fx)= Ax>+Bx+C

are the solution values A, B, and C of the linear system

() () 0 (55

. -._12’
2| A ) P €=

(28) (ixf) A+ (ixf) B+ ixk) C= iym,

=1
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Table 5.7 Obtaining the Coefficients for the Least-Squares Parabola of Example 5.6
X Yk 3 X x XYk x2 vk
-3 3 2 -27 81 -9 27
0 ] 0 1] 0 0 0
2 1 4 8 16 2 4
4 3 16 64 256 12 48
3 8 29 45 353 5 79

Proof. The coefficients A, B, and C will minimize the quantity:

(29) E(A, B, C)= Z(Axk + Bxp + C — w)?
k-.,

The partial derivatives 3E/dA, 3E /9B, and 9 E /9C must all be zero. This results in
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¥
3k y=A+Bx+C

2 -
L

Fl L | A L i 1 x Tieure 58 The least-sguares

-~ UL W o7 4% I B‘il-lﬂl\-ﬂ

3 -2 -1 0 1 2 3 4 parabola for Example 5.6.

DE(A.B.C) L, 1,2
0= a4 - 2 §=1(Axk + Bxp + C — y) (xp),
£, "~ aE(«A‘ B‘ C) —_—A qN sa 2 23 ol
(30) b= —ap— = ‘k£=1mxk + Bxi + C — yi) (xi),
3E(A, B, C) N !
=— =2 -_ )
0 2C kzzl(Axk + Bx+C~yi) (1)

Using the distributive property of addition, we can move the values A, B, and C
outside the summations in (30) to obtain the normal equations that are given in (28). »

Example 5.6. Find the leas{-squares parabola for the four points (-3, 3), (0, 1), (2. 1),
and (4, 3).

The entries in Table 5.7 are used to compute the summations required in the linear
system (28).

The linear system (28) for finding A, B, and C becomes

353A4+458+29C =19

454 L‘)ODL 2= 5
oo i 5

S04 T &

2944 3B+ 4C = &

The solution to the linear system is A = 585/3278, B = —631/3278,and C = 1394/1639,
and the desired parabola is (see Figure 5.8)
585 Lo 631 1394

— — 2 _
Y= 35785 T 398" + 1630 = 0.178462x° — 0.192495x + 0.850519, ]

Polynomial Wiggle

It is tempting to use a least-squares polynomial to fit data that is nonlinear. But if the
data do not exhibit a polynomial nature, the resulting curve may exhibit large oscilla-

tiome Thin b oan oo allad mafusammind winats hancmas mars weanannaa A writh

HULDS. 111y PIIUIIUIJIUIAUII, \,aubu Pl}lylllll’llm( Wlsslt; UCLULIICD TUVIC PEURIVULILGOU Wil
higher-degree polynomials. For this reason we seldom use a polynomial of degree 6 or
above unless it is known that the true function we are working with is a polynomial.

For example, let f{x) = 1.44/x% + 0.24x be used to generate the six data points
(0.25,23.1), (L.0, 1.68), (1.5, 1.0), (2.0, 0.84), (2.4, 0.826), and (5.0, 1.2576). The
result of curve fitting with the least-squares polynomiais

Py(x) = 22.93 — 16.96x + 2.553x2,
P3(x) = 33.04 — 46.51x + 19.51x% — 2.296x3,
Py(x) = 39.92 — 80.93x + 58.39x% — 17.15x> + 1.680x*,

and

Ps(x) = 46.02 — 118.1x + 119.4x% ~ 57.51x> + 13.03x* — 1.085x°

is shown in Figure 5.9(a) through (d). Notice that P3(x), P4(x), and Ps(x) exhibit a
large wiggle in the interval [2, 5]. Even though Ps(x} goes through the six points, it
produces the worst fit. If we must fit a polynomial to these data, P>(x) should be the
choice.

The following program uses the matrix F with entries f;(x) = x/~! from equa-
tion (18).
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A=F*F;

B=F’*Y?;

C=A\B;

C=f1ipud(C);

@ ®) Exercises for Curve Fitting
y 1. Find the least-squares parabola f(x) = Ax% + Bx + C for each set of data.
0K 30 @ ®) T
X
20 20 k Yi Xk _yk—
10 ¥y =fx) 10 -3 | 15 -3 | =1
0 . L x 0 -1 5 -1 25
-10 N -10 1 1 1 |25
20 —20 3 5 3 1
(©) @ 2. Find the least-squares parabola f(x) = Ax? + Bx + C for each set of data.
Figure 5.9 (a) Using P2(x) to fit data. (b) Using Ps(x) to fit data, (¢) Using Ps(x) to (a) (b) ©
fit data. (d) Using Ps(x) to fit data. Xi Yk X Yk Xk Yi
-2 | —-58 -2 2.8 -2 10
- -1 1.1 -1 21 -1 1
Program 5.2 (Least-squares Polynomial). To construct the least-squares polyno- 0 3.8 0 3.25 0 0
mial of degree M of the form 1 33 I 6.0 1 2
2 1 ~15 2 11.5 2 g

Pu(x) =c1 +ex + eax® + -+ epx™ ™ o™
3. For the given set of data, find the least-squares curve:
that fits the N data points {(xg, Y}, (@) f(x) = Ce**, by using the change of variables X = x, ¥ = In(y), and C = &5,
from Table 5.6, to linearize the data points.

function C = lspoly(X,Y,H) () f(x) = Cx*, by using the change of variables X = In(x), ¥ = In(), and
Aloput - X is the lxn sbscissa vector C = ¢, from Table 5.6, to linearize the data points.
e - ¥ is the 1xn ordinate vector . (¢} Use Ez(f) to determine which curve gives the best fit.
% - M is the degree of the least-squares polynomial
% Output - C is the coefficient list for the polymomial
n=length(X}; Xg Y
B=zeros(i:M+1); 1 0.6
F=zeros{n,M+1); 2 1.9
#Fill the columns of F with the powers of X 3 4.3
for k=1:M+1 4 7.6

F( L) =X .~ (k-1); 5 12.6
end

%Solve the linear system from (25}
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g f data, find the 1 rve:
(@) f(x) = Ce™, by using the change of variables X = x, ¥ = In(y),and C = e®.

froin Table 5.6, to linearize the data points.

() f{x) = 1/(Ax + B), by using the change of variables X = x and ¥ = 1/3.

(¢) Use Ez(f) to determine which curve gives the best fit.
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(a) Assume that L = 8 x 108 (b) Assume that L = 8 x 108

Year g P Year t Py
1800 —10 5.3 1900 | © 76.1
1850 -5 232 19201 2 | 106.5
1900 0 76.1 1940 | 4 | 1326
1950 5 152.3 1960 6 | 180.7
1980 ) 8 | 226.5

wh

Xk Yk
n Exercises 8 through 15, carry out the indicated change of variables in Table 5.6, and
-1 6.62 lerive the linearized form for each of the following functions.
0 3.94
1 2.17 A D
8. y=—48 9. y==
2 | 135 =1+ YT it c
3 0.89
10 y= ! 1. y= ud
Ax+ B A+ Bx
1. y=Aln(x) + B 13, y=Cx4
14. y = (Ax + B) 2 15. y = Cxe™Dx

For each set of data, find the least-squares curve:

(@) f(x)= Ce?*, by using the change of variables X = x, ¥ = In(y),and C = e*
from Table 5.6, to linearize the data points.
(b) f(x) = (Ax + B)~2, by using the change of variables X = x and ¥ = y !/~

from Tahle 5.6, to linearize the data in!‘!{S.

IIOEAL aadns 2.0 SANLLT WAL Lats

(¢) Use E2(f) to determine which curve gives the best fit.

{ (ii)
xg Yk X Y
-1 13.45 -1 13.65
0 3.01 0 1.38
1 0.67 1 0.49
2 0.15 3 0.15

. Logistic population growth. 'When the population P(¢) is bounded by the limiting

value L, it follows a logistic curve and has the form P(r) = L/(1 + Ce*’). Find .4
and C for the following data, where L is a known value.

@ (0,200, (1, 400), (2, 650), (3, 850), (4, 950), and L = 1000.

Fa Y AN 010 10D 373}

M & M 1Q V41 RN A I0N nd
) U, S, UL, LUV, 1L, LoV )y L, LTy JIVU A

. Use the data for the U.S. population and find the logistic curve P(t). Estimate the

population in the year 2000.

r. (@) Follow the procedure outlined in the proof of Theorem 5.3 and derive the normal

equations for the least-squares curve f(x) = A cos(x) + B sin(x).

(b) Use the results from part (a) to find the least-squares curve f(r) = A cos(x) +
B sin(x) for the following data:

Xk Yk
-3.0{-0.1385
—-1.5 | —2.1587

0.0 0.8330

1.5 2.2774

3.0 | -0.5110

17. The least-squares plane z = Ax + By + C for the N points (x}, ¥1,21), ..,

(x¥.¥n, Zn) is obtained by minimizing

N
E(A,B,C) =) (Ax+ By +C — z)%
k=1



278 CHAP.5 CURVE FITTING

Derive the normal eguations:
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{b) Determine E>(f).
(¢) Plot the data and the least-squares curve from part (a) on the same coordinate

N N N N
(Z xf) A+ (Z xkyk) B+ (Z xk) C= z kX, system.
k=1 k=1 k=1 k=1
/ixy\A+/iy2\B+{iy\C iz
k ¥k % k = k Yies
kk-—-—l ) \k:l ) kk=1 } k=1 Time, p.m. | Degrees || Time,am. | Degrees
N N N 1 66 1 58
(Zx;)A+(Zyg)B+NC=sz. 2 66 2 58
k=1 k=1 k=1 3 65 3 58
18. Find the least-squares planes for the following data. : ol I 8
@ (L1L,7,(1,29,21,10,2,211),2312) p 65 g >
(b) (1,2,6),(2,3,7),(1,1,8),(2,2,8).(2,1,9) 7 62 7 57
©@ (3, 1,-35(2,1,-1)(2,2,0,(1,1,1),(1,2,3) 8 61 8 58
19. Consider the following table of data % 0 60
i1 59 i; g;
Xk Yk Midnight 58 Noon 68
10| 20
20| 5.0
3.0 | 100
4.0 { 17.0 )
sol 260 83 Interpolation by Spline Functions

When the change of variables X = xy and ¥ = 1/y are used with the func
y = D/(x + C), the transformed least-squares fit is
_ —17.719403

Y= 5476617
When the change of variables X = x and ¥ = 1/y are used with the function
1/(Ax + B), the wransformed least-squares fit is

_ 1
¥ = Z0.1064253x + 0.4987330°

Determine which fit is best and why one of the solutions is completely absurd.

Algorithms and Programs

1. The temperature cycle in a suburb of Los Angeles on November 8 is given in
accompanying table below. There are 24 data points.
(a) Follow the procedure cutlined in Example 5.5 (use the fmins command)
the least-squares curve of the form f(x) = A cos(Bx)+Csin(Dx) fortheg
set of data.

Polynomial interpolation for a set of N + 1 points {(xx, yk)};?"_o is frequently unsatis-
lactory. As discussed in Section 5.2, a polynomial of degree N can have N — 1 relative
Marima and minima, and the graph can wiggle in order to pass through the points
j-\nnther method is to piece together the graphs of lower-degree polynomials Si(x) anci
nrerpolate between the successive nodes (xk, yi) and (Xg41, Y1) (see Figure 5.10).

e v

Gy_y -y

(XO’ yg)
) \
(. Yo
f } } } } 4 4 x
T X X % T IN-1 XN

Figure 5.18 Piecewise polynomial interpolation.
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Gy_ponoy)

W
(xp. %1} \

(Xys ¥u)
) I— i e i 4 i x
T 1 L | L T T
X o n Xk s v Ay

Figure 5.11 Piecewise linear interpolation (a linear spline).

The two adjacent portions of the curve y = Sp(x} and y = Sp41(x), which lie above
{xk, xk+1] and [xg4 1, xk42], respectively, pass through the common knot (x41, yi+1).
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The form of equation {2) is better than equation (1) for the explicit calculation of
Sty It is assumed that the abscissas are ordered xp < x; < -+ < xy_] < xy. For
a fixed value of x, the interval [xg, xz4;] containing x can be found by successively
computing the differences x — xy, ..., X — Xk, X — Xp4+1 until k 4 1 is the smallest
integer such that x — xz| < 0. Hence we have found % so that x; < x < x4, and
the value of the spline function S(x) is

Y S(x) = Sp(x) = yp +dp(x — xx)  for  xp £ x < x4

These techniques can be extended to higher-order polynomials. For example, if an
odd number of nodes xg, xy, ..., x2pr 18 given, then a piecewise guadratic polyno-
muzl can be constructed on each subinterval {xo, x2k42), fork =0, 1, ..., M — 1.
A shortcoming of the resulting quadratic spline is that the curvature at the even nodes
x> changes abruptly, and this can cause an undesired bend or distortion in the graph.
The second derivative of a quadratic spline is discontinuous at the even nodes. If we

e nierewice cuhic nolvnomiale. then hoth the first and second derivatives can he
use plecewise Cuolc poiynonuals, then both the hrst and second derivalives can be

made continuous,

¥+1 Yi+1), and the setof

functions {S; (x)} forms a piecewise polynomial curve, which is denoted by S(x).

Piecewise Linear Interpolation
The simplest polynomial to use, a polynomial of degree 1, produces a polygonal path
that consists of line segments that pass through the points. The Lagrange polynomial
from Section 4.3 is used to represent this piecewise linear curve:
(1) Sery =X o T for me<axsx
= X -
Xg — Xipl et — % =53 Mt

The resulting curve looks like a broken line (see Figure 5.11).

An equivalent expression can be obtained if we use the point-slope formula for a
line segment:

Se(x) = yg + die(x — xz),

where di = (yk+1 — yu)/(xk+1 — xx)- The resulting linear spline function can be
written in the form

[ vo + do(x — xp) for x in [xg, x1],

v +di{x —x1) for x in [xy, x2],
@) S(x) = ) o

Vi + di(x — xp) for x in [x, X441,

yv-y+dyoilx —xn-1) forxin{xy—y, xnl.

Piecewise Cubic Splines

The fitting of a2 polynomial curve to a set of data points has applications in CAD
{computer-assisted design), CAM (computer-assisted manufacturing), and computer
graphics systems. An operator wants to draw a smooth curve through daia points that
are not subject to error. Traditionally, it was commeon to use a french curve or an ar-
chitect’s spline and subjectively draw a curve that looks smooth when viewed by the
eye. Mathematically, it is possible to construct cubic functions Si(x) on each inter-
val [xy, x;41] so that the resulting piecewise curve y = S{x) and its first and second
derivatives are all continuous on the larger interval [xg, x,]. The continuity of §’(x)
means that the graph y = §(x) will not have sharp corners. The continuity of 5% (x)
means that the radius of curvature is defined at each point.

Definition 5.1 (Cubic Spline Interpolant). Suppose that {(xz, yk)};?' —g are N + 1
points, where @ = xg < x3 < --- < xy = b, The function S(x) is called a cubic
spline if there exist N cubic polynomials Sy (x) with coefficients 5.0, S,1. 5k,2, and
i3 that satisfy the properties:

L S(x) = Se(x) = Sk.0 + S0 — xp) + 8,200 — xx)? + sp.3(x — xx)°

forx € [x¢, xp+1]and k =0,1,..., N — L.
. S(xp) = w fork=0,1,...,N.
I Selxg+1) = Sp1{xk+1} fork=0,1,...,. N -2,
V. S;c(xk+1) = S;:+l(xk+1) fork=0,1,...,N—-2.
V. 8 (xe1) = Slfc’+l(‘xk+1) fork=0,1,....,N-2.
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Property | states that $(x} consists of piecewise cubics, Property IF states that the
piecewise cubics interpolate the given set of data peints. Properties Il and IV requir.
that the piecewise cubics represent a smooth continuous function. Property V state-

that the second derivative of the resulting function is also continuous.

Existence of Cubic Splines

Let us try to determine if it is possible to construct a cubic spline that satisfies proper-
ties I through V. Each cubic polynomial S¢(x) has four unknown constants (s q. Sk,[-
k.2, and sy 3); hence there are 4N coefficients to be determined. Loosely speaking.
we have 4N degrees of freedom or conditions that must be specified. The data point.
supply N + 1 conditions, and properties III, IV, and V each supply N — 1 conditions
Hence, N + 1+ 3(N — 1) = 4N — 2 conditions are specified. This leaves us two addi-
tiona) degrees of freedom. We will call them end-point constraints: they will involve
either S'(x) or §”(x) at xg and xy and will be discussed later. We now proceed with

tha ~anctriction
i CONSITuCion.

Since S(x) is piecewise cubic, its second derivative $”(x) is piecewise linear on
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a 101 that involves ﬁﬂi_‘y’
the unknown coefficients {my}. To find these values, we must use the derivative of (8),
which is

m m
Si(x) = “},_Li(xk-i-l -0+ ~———~qﬁ+l (x — xx)?
9 L) LI
@ — (9’_" _ mkhk) TN my 4 1hy
hy 6 hy he

Evaluating (9) at x4 and simplifying the result yield

. ; ny Mg
(10 Slw) =——h - ——h +di, where dy =———
3 6 hi

Similarly, we cap replace & by k — 1 in (9) to get the expression for §;_,(x) and
evaluate it at x; to obtain

an S () = M1 .
(11) e " ;

[xg, xn]. The linear Lagrange interpolation formula gives the following representation
for §”(x) = S§;/(x):
— X+l X —Xx;

1 I3 X 1
(4) Sk (x) = 5" (xx) + 8" (xe41)
Xie = X1 Xl = Xk

Use my, = S"(xp), meq1 = S"(xp41), and by = x441 — X in (4) to get

My
(x —xp)

) S{(x) = %(ml 0+
k

forx; <x < xppyandk =0,1,..., N — 1. Integrating (5) twice will introduce tv
constants of integration, and the result can be manipulated so that it has the form

Mgl
6h;

Substituting x; and xx4 into equation (6) and using the values y; = Sp(x;) and
Yir1 = Sk(xp1) yields the following equations that involve px and g, respectively;

6) Si(x)= ;"T"(le -+ (x —x0)°  + pr(igr — X) + gelx — xp).
k

mg, Mi+1,2
(N Y= _6_h" + prhy and  ypp = hy + grhy.
ThLoce b annnticne ara ancily saluad far 5. and 2. and when thece values are suh-
These two equations are casiiy s01vea 10T py and gy, anc wnen (Qesd Vailes are sub

¥ 1
J E u
stituted into equation (6), the result is the following expression for the cubic function

m
Sk(x) = —%E"(xk+l -0+ ﬁ-—l(x —x)?
® &hy 6hy
Y Mkhk) _ Yetl _ mghe)
+ (hk 6 (Xe41 — x) +( he 5 )(x Xg).

Y= —hp o+ —hy  +dp
3

Now use property 1V and equations (10) and (11) to obtain an important relation
involving sy, my, and my,1:

112) Bi—tmg_1 + 20hi_y + hedmy + hanter) = uy

where uy =6 (d), —dy—)fork=1,2,....N~1.

Construction of Cubic Splines

Observe that the unknowns in (12) are the desired values {my), and the other terms
dre constants obtained by performing simple arithmetic with the data points {(x, y¢)}.
iihere_fore, in reality system (12) is an underdetermined system of ¥ — 1 linear equa-
tiens involving N 4 1 unknowns. Hence two additional equations must be supplied.
They are used to eliminate mq from the first equation and my from the (N —~ 1)st
equation in system (12). The standard strategies for the end-point constraints are sum-
marized in Table 5.8.

. ‘Consider §tratcgy (v) in Table 5.8. If my is given, then komg can be computed, and
the iirst equation (when & = 1) of (12) is

(13) 2(ho + kydmy + hymay = uy — homy.

Similarly, if m y is given, then hy_ m w can be computed, and the last equation (when
K=N-—1of (12)is

(i9) hn-amy 2+ 2hy-2+hn-Dmyi =uy_) —hy_imy.
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Table 5.8 End-point Constraints for a Cubic Spline

Description of the strategy Equations involving mg and m y

(1) Clamped cubic spline: spec-
ify §'(xp), $'(xn)
(the “best choice™ if the

m

3 _ mi
my = %(do =8 (xg)) — —

derivatives are known) 3 2 m
my = (' (N) —dy_y) - =5
N-1
(iiy Natural cubic spline my=0my =0
fa “valavad prirua™
{a “relaxed curve™)
(iii) Extrapolate $”(x) to the
endypoints
P ho(my —my)
. mo = my — == —L-
1
hy_1imy—) —my_2)
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coefficients {s; ;} for Si(x) are computed using the formulas

hy(Cmy + mgy)
5¢.0 = Yk, sg =dy — B —
(16)
my My — My
S2=—, 3= ————.
F4 bhy

Each cubic polynomial Si(x) can be written in nested multiplication form for effi-
cient computation:

(n Se(x) = ((sg3w + s 2)w + s, 1)w + v, where w=x—x;

and S; (x} is used on the interval xp < x < x4 1.

Equations (12) together with a strategy from Table 5.8 can be used to construct a
tubic spline with distinctive properties at the end points. Specifically, the values for mq
and my in Table 5.8 are used to customize the first and last equations in (12) and form
¥e system of N — 1 equations given in (15). Then the tridiagonal sysiem is solved for

the remaining coefficients m |, ma, . . ., my—;. Finally, the formulas in (16) are used to

(tv)  §”(x) is constant near the
endpoints
(v) Specify §”(X) at each

andnnint
Snopomt

mp=mp,my =my_|

mg = §"(xp), my = §"(xn)

Equations (13) and (14) with (12) used fork = 2,3, ..., N -2 form N — 1 lmes
equations involving the coefficients my, my, ..., my_1.

Regardless of the particular strategy chosen in Table 5.8, we can rewrite equa-
tions 1 and N — 1 in (12) and obtain a tridiagonal linear system of the form HM = V,
which involves m, m2, . .

- md] o]
(15) =l

an-3 by-2 cn_a||my2 vN_2
ay—y bn_1| | mno) UN_1|

M=

The linear system in (15) is strictly diagonally dominant and has a unique solu-
tion (see Chapter 3 for details). After the coefficients {m;} are determined, the spline

determine the spline coefficients. For reference, we now state how the equations must
Be prepared for each different type of spline.

Ead-point Constraints

The following five lemmas show the form of the tridiagonal linear system that must be
gotved for each of the different endpoint constraints in Table 5.8.

lethma 5.1 (Clamped Spline). There exists a unigue cubic spline with the first
derivative boundary conditions §'(a) = dg and S'(b) = dy.

Proof.  Solve the linear system

3
(Eho + 2h1) my + hymz = uy — 3(dy — §'(xo)

Rg_ymy1 + 2(he_1 + hpmg + Bhemie) = ug for k=2,3, ..., N-2

3
hy_amy—2+ (2hy_2 + EhN—l)mN-l =un_t —3(8'(xn) —dy-1). .

Remark. The clamped spline involves slope at the ends. This spline can be visualized
as the curve obtained when a flexible elastic rod is forced to pass through the data
points, and the rod is clamped at each end with a fixed slope. This spline would be
useful to a draftsman for drawing a smooth curve through several points.

Lemma 5.2 (Natural Spline). There exists a unique cubic spline with the free
boundary conditions §”(a) = 0 and $”(b) = 0.
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Proof. Solve the linear system

2(ho + hiymy + hyma = uy
hi_imi—1 + 2(hec1 + homy + kgmps) = ug for k=2, 3, ..., N—
hy-amy—2+2hn_2+hN_[IMN-1 = UN-1. ¢

3
e

Remark. The natural spline is the curve obtained by forcing a flexible elastic rod

through the data points, but letting the slope at the ends be free to equilibrate to the
it oot minimizes the ascillaiorv behavior of the curve. It is useful for ﬁt[ing i

POSIUDGI Wikl MUIIMILALS WIS SLALail § owss L Wk

curve to experimental data that are significant to several significant digits.

Lemma 5.3 (Extrapolated Spline). There exists a unique cubic spline that use
extrapotation from the interior nodes at xt and x; to determine $”(a) and extrapolatiot

from the nodes at xy—_1 and xy_3 to determine 5" (b).
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Temma 5.5 (End reduzmn ol ivecdard

s ™
VO g
S5 (ENG-POINL Curvatur e-A0jusiea Spﬁ.ﬁi‘:). 11ETE €

€T€ €Xi5i5 @ unique cubic

spline with the second derivative boundary conditions §”(a) and 5" (k) specified.

Proof. Solve the linear system

2(ho 4+ hodmy + hymy = w1 — hoS"(xg)
hiomp_1+ 20— +heyme +hempy =uy for k=23, ..., N=-2
hy_amy_2+2hy2+hy-1)my_1 =uny_) —hy_18"(xn). .

Remark. Imposing values for §”(a) and 5”(b) permits the practitioner to adjust the
curvature at each endpoint.

The next five ex.a'mples illustrate the behavior of the various splines. It is possible
to mix the end conditions to obtain an even wider variety of possibilities, but we leave
these variations to the reader to investigate.

Example 5.7. Find the clamped cubic spline that passes ﬂuough 0,0), (1,0.5), (2, 2.0),

Proof. Solve the linear system

h3 h}
3ho+ 281 + 2 |my+ (A1 — 2 | ma=m
h1 hl

\

hi—1mg-1 + 2(hi—1 + hdme + hemgey = we - for k=23 .., N-2

K2 hy
1 N1 _
(hN_z—h )m»pz-?— (2hNA2+3hN—1+T;) my—1| = UN-I- i

Remark. The exirapolated spline is equivalent to assuming that the end cubic is as
extension of the adjacent cubic; that is, the spline forms a single cubic curve over the
interval [xg, x2] and another single cubic over the interval [xy_2, X1

Lemma 5.4 (Parabolically Terminated Spline). There exists a unique cubic spline
that uses S”(x) = 0 on the interval [xo, x1] and §”(x) = O on [xy-1, xn).

Proof. Solve the linear system

(3ho + 2 ymy + himz = )

M1 + 20—t + hidmg + hgmpyy = ug for k=23, ..., N~2
hy_amy—2 + (Qhy_z + 3hN-1)mN-1 = UN-1.

Remark. The assumption that $”(x) = 0 on the interval [xg, x1] forces the cubic‘§ '

degenerate to a quadratic over [xo, x1], and a similar situation occurs over [xy—1, XN

—and (3, 1.5) with the first derivative boundary conditions 3'(0) = 0.2 and §'(3) = —1.,

First, compute the quantities

hh=hy=h; =1

do=(y1 —y0)/ho = (0.5~ 0.0)/1 =0.5
d=@p—n)/h=20-05)/1=15
dy = (y3—y2)/ha = (1.5 = 2.0)/1 = —0.5
#1 =06(d; —do) =6(1.5-0.5)=6.0

uz = 6(dy — dy) = 6(—0.5 — 1.5) = —12.0

Lol VA RS

Then use Lemma 5.1 and obtain the equations

3
(5 +2)ml +my =60-3(0.5-02) =51,

3
my + (2 + -2-) mz = —~12.0 — 3(=1.0— (-0.5)) = —-10.5.

when these equations are simplified and put in matrix notation, we have

|'3.5 1.01 [m.] _ ,’ 5.1'|
1.0 35]|m|=|-105]"
Risa straightforward task to computc the solution my; = 2.25 and my = —3.72 Now
3pply the equations in (i) of Table 5.8 (o determine the coefficients mp and ma:

mo =3(0.5-0.2) ~ azgg = —0.36,

my = 3(—1.0 +0.5) — _—322 = 0.36.
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10+ / 1.0F
0.5 LI/ o5)
b, i Il ! 1 1 1 P i 1

x
05 1.0 15 20 25 30 05 10 15 20 25 3.0

Figure 5.12 The clamped cubic Figure 513 The natural cubic spline
spline with derivative boundary condi- with $7(0) = 0 and $”(3) =0
tions: §(0) = 0.2 and §'(3) = —1

SEC.5.3 INTERPOLATION BY SPLINE FUNCTIONS 289

m3y = §"(3) = 0, when equations (16) are used to find the spline coefficients, the result is

So(x) = 0.4x3 4+ 0.1x for 0<x <1,
Si(x) = —(x ~ 1* +1.2(x — 1)
(19) +13(x — 1) +0.5 for 1<x<2,
S2(x) = 0.6(x — 2)° — 1.8(x —2)2
+0.7(x —2) +2.0 for 2<x <3.
“This natural cubic spline is shown in Figure 5.13. =

Exampie 5.9. Find the extrapoiated cubic spline through (0, 0.0), (1, 0.5), (2, 2.0), and
(3,1.9).

Use the values {A}, {di}, and () from Example 5.7 with Lemma 5.3 and obtain the
linear system

GB+24+Dm+ (1 —Dmz = 6.0,

Next, the values mg = —0.36, m; = 2.25, m3 = —3.72, and m3 = 0.36 are substituied
into the equations (16) to find the spline coefficients. The solution is

So(x) = 0.48x> — 0.18x% + 0.2x for 0<x =<1,
S1(x) = —1.04(x — 1)* + 1.26(x — 1)2
(18) +1.28x - 1)+ 0.5 for l<x <2,
S2(x) = 0.68(x — 2)* — 1.86(x — 2)?
+0.68(x ~2)+2.0 2 3.
This clamped cubic spline is shown in Figure 5.12. ]

Example 5.8, Find the natural cubic spline that passes through (0, 0.0), (1, 0.5),(2, 2.0),
and (3, 1.5) with the free boundary conditions 5”(x) = 0 and $”(3) =0

Use the same values {hx), {dk}, and {i;] that were computed in Example 5.7. Then
use Lemma 5.2 and obtain the equations

2(1 + Dmy 4+ m3 = 6.0,
my+2(1 + Dmy = —12.0.

The matrix form of this linear system is

40 1.01Tm] 6.01

[1.0 40]|m;] ™ [-120]'

It is easy to find the solution m) = 2.4 and mz = —3.6. Since mo= 5"(0) = 0 and

A-1Dm +2+3 4+ Dme= -120.
The matrix form is

[6.0 00][m] [ 6.0]

00 6.0]|m2] ~ [-12.0]

and it is trivial to obtain m; = 1.0 and my = —2.0. Now apply the equations in (iii) of
Table 5.8 to compute mg and m3:

mo=10-(=20-10) =
= —2.0+ (=20 - 1.0) = —5.0.

Finaily, the values for {m} are substituted in equations (16) to find the spline coefficients.
The solution is

So(x) = —0.5x° + 2.0x* — x for 0<x <1,
S1(x) = —0.5(x — 1)® + 0.5(x — 1)
20) +15(x—-1)+05 for lsx <2,
$2(x) G5 -2V - (x—2)
+x-2)+2.0 for 2<x <3,
The extrapolated cubic spline is shown in Figure 5.14, [

Example 5.10. Find the parabolically terminated cubic spline through (0, 0.0), (1, 0.5),
-£2.2.0), and (3, 1.5).
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20f 2.0 L
L5f \ 15 F
1.0 1.0
051 0S|
| L 1 L~ x  Figure 5.14 The extrapolated cu- e — : : “— x  Figure 5.15 The parabolicaliy
S 10 15 20 25 30 bicgl;piine. po 05 10 15 20 25 30  terminated cubic spline.
¥y
Use {hz}, {di), and {u;}) from Example 5.7 and then apply Lenima 5.4 to obtain
(3 +2my +my = 6.0, 20
m1+ 2+ 3)my = —12.0. 15+ / .
The matrix form is 1.0+
[5.0 1.0] [ml] _ [ 6.0] 05k
1.0 5.0f|m> —-12.0)° Figure 5.16 The curvature ad-
1 i 1 Lt 2 iiciad . . ith $7(0) —
and the solution is m; = 1.75 and m» = ~2.75. Since §”(x) = 0 on the subintervul at 05 10 15 20 25 30 ‘lf;?af:;og;”:g;uf 3“' ;m ol
each end, formulas (iv) in Table 5.8 imply that we have mg = m| = 1.75, and m3 = m1~ = ’ e
—2.75. Then the values for {m;} are substituted in equations (16) to get the solution
So(x) = 0.875x2 — 0.375% for 0<x<1, and the solution 1s m| = 2.7 and my = —4.5. The given boundary conditions are used
’ lo determine mg = S7(0) = —0.3 and m3 = S$”(3) = 3.3. Substitution of {m;} in
— 3 —_1Nn2
en §1(x) =—0.75(x — 1)° + 0.875(x - 1) squations (16) produces the solution
+1.375(x - 1) + 0.5 for 1 <x <2, 3_o 2 0.15 p
: Sp(x) = 0.5 — 0.15x° 4+ 0.15x or 0<x <1,
S2(x) = —1.375(x — 2)*> + 0.875(x — 2) + 2.0 for 2<x <3. o) 3 2 -
) ) . o ) Sifx)=-12(x— 1y +135(x—1)
This parabolically terminated cubic spline is shown in Figure 5.15. . 22 +1.35(x — 1)+ 0.5 for 1 <x<2,
Example 5.11. Find the curvature-adjusted cubic spline through (0,0.0), (1, 0.5 Sa6) = 130 = 2)° 2256~ 2
ple 5.11. ind the curvature-adjusted cubic spline ugh (0,0.0), (1,05, _
(2,2.0), and (3, 1.5) with the second derivative boundary conditions 5”(0) = —0.3 nd +045( - 2)+2.0 for2=x 3.
$"(3)=33. This curvature-adjusted cubic spline is shown in Figure 5.16. -
Use {h;}, {di}, and {u;} from Example 5.7 and then apply Lemma 5.5 to obtain

6 wol[m]=[-i53]

Suitability of Cubic Splines

A practical feature of splines is the minimum of the oscillatory behavior that they
pussess. Consequently, among all functions f{x} that are twice continuousiy differen-
tiable on [a, b] and interpolate a given set of data points {(xx, yi)}}_. the cubic spline
has less wiggle. The next result explains this phenomenon.
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Theorem 5.4 (Minimum Property of Cubic Splines). Assume that f € (2o, b]
and S(x) is the unique cubic spline interpolant for f(x) that passes through the points
{(xx, F (x,())}f=0 and satisfies the clamped end conditions §'(a) = f(a)and §'(b) =
f'(b). Then

rb ~ rb
(23) | " w)dx < j (F"(x))*dx.

a a

Proof.  Use integration by parts and the end conditions to obtain

b
f "0 (" (x) — §"(x)) dx

a

x=b b
= 8" (%) — S'(I))\ha - f S (f'(x) — §'(x)) dx

b
=0-0—~ f S"(x)(f'(x) — §(x)) dx.

Ja
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” 1
Program 5.3 (Clamped Cubic Spline). To construct and evaluate a clamped cubic
spline interpolant S(x) for the N + 1 data points {(xk, ye)}) .

function S=csfit(X,Y,dx0,dxn)

%Input - X is the ixm abscissa vector

% - Y is the 1xn ordinate vector

A - dx0 = S?(x0) first derivative boundary condition
A - dxn = $’(xn) first derivative boundary condition
%Butput - 8: rows of 5 are the coefficients, in descending
% order, for the cubic interpclants

N=length(X}-1;

B=diff(X);

D=diff(Y)./H;
A=H(2:N-1);
B=2%(H(1:N~1)+H(2:N));

C=H{2-N}
A=

————Since §"(x) = 65y 3 on the subinterval {xg, x5 11, it follows that

Kk+1 x=x
| w0 ® - s dr = bss£) - senf T =0

& X=Xk

fork =0,1,..., N — 1. Hence [’ S”(x)(f"(x) — §”(x)) dx = 0, and it follows th1
b b
(24) f §"(x)f"(x)dx = f (5" (x)) dx.
a a
Since 0 < (f"(x) — $"(x))?, we get the integral relationship

b
0< f (f"(x) - §"(x))? dx
(25) .

b b b
:f (F"(x)) dx —2/ f”(x)s”(x)dx+f ($"(x))dx.
a a a

Now the result in (24) is substituted into (25) and the result is

b b
0< [ rwrax— [ (5" dx.

This is easily rewritten to obtain the relation (23) and the resuit is proved. o

The following program constructs a clamped cubic spline interpolant for the dat:
points {{(x, yk)}_,’)’:g. The coefficients, in descending order, of Sg(x), fork = 0, 1.
.., N — 1, are found in the (k — 1)st row of the output mamx S. In the exercises the

reader will be asked to modify the program for the other end-point constraints listed in
Table 5.8 and described in Lemmas 5.2 through 5.5.

Atz N

U=6+dif£(D);

%#Clamped spline endpoint constraints
B(1)=B(1)-H(1)/2;

A .
U( 1}=U(1)’3* (D(i)*m\u ;

B(N-1)=B(N-1)-K(N)/2;
U{N-1)}=U(N-1) -3*(dxn-D{N));
for k=2:N-1
temp=A{(k-1)/B(k-1);
B(k)=B(k)-temp*C(k-1);
U(k)=U(k) -temp*U(k-1) ;
end

M(N)=U(N-1}/B(N-1};

for k=N-2:-1:1
M(k+1)=(U(k)-C(k)*M(k+2)) /B(k);

end

M{1)=3*(D(1)-dx0) /H(1)-M(2)/2;
M{N+1)=3% (dxn-D{N)Y ) /BN -H{N) /2;
for k=0:N-1

S(k+1,1)=(M(k+2)-M(k+1))/(6+H(k+1});
S(k+1,2)=M(k+1)/2;
S{k+1,3)=D{k+1)-H{k+1)* (2+M{k+1)+M(k+2))/6;
SCk+1,4)=Y (k+1);

end
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ascas thrr\ucrh (0,0.0), (1. 0

1
13 e P LR LAY

unda.ry conditions S’(O) 0.2and §'(31 =

14 Bk
Example 5.12. Fi

(2,2.0), and (3, 1.5) with the first
-1.

In MATLAB:
>>X=[0 1 2 31; Y=[0 0.5 2.0 1.5];dx0=0.2; dxn=-1;
>5>8=¢sfit(X,Y,dx0,dxn)
S =

0.4800 -0.1800 0.2000 0
-1.0400 1.2600 1.2800 0.5000

0.6800 -1.8600 0.6800 2.0000

&
=
=8
=z
IS
3

he cubic spline interpolants in

the cub 1C SN AARCTD

Notice that the rows of S are precisely the coeffi

equation (18) in Example 5.7. The fo.'owing commands show how to plot the cubic sp] ine
interpolant using the polyval command. The resulting graph is the same as Figure 5.1

ficiants
CICIS

>>x1=0:.01:1; yi=polyval(S(1,:),x1-X{(1));

>>x2=1:.01:2; y2=polyval(8(2,:),x2-X(2));

»>>x3=2:.01:3; y3=polyval(S(3,:),x3-X(3));
plot(xt,

Exercises for Interpolation by Spline Functions

1. Consider the polynomial S(x) = ap + a1x + axx? +azx>.
(a) Show that the conditions 5(1) = 1, S =0,5(2) =
the system of equations

2, and §'(2) = 0 produce

a+ a1+ e+ az=1
ai+2a;+ 3a3=0
ap+2a1 +4a; + 8ay =2

ay +4az + 12a3 =0

(b) Solve the system in part (a) and graph the resulting cubic polynomial.

2. Consider the polynomial S(x) = ap + aix + a2x? + a3x>.
(a}) Show that the conditions S(1) = 3, S =-4,82)=1,ad §(2) -2
produce the system of equations

a+ a1+ 2+ a= 3
a;+2a+ 3az=-4
ap+2a1 +dar+ 8az= 1

a| + 4az + 12a3 =

b2

(b) Solve the system in part () and graph the resulting cubic polynomial.

St¢ 5.3 INTERPOLATIONBY SPLINE FUNCTIONS
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. Determine which of the following functions are cubic splines. Hint. Which, if any, of

the five parts of Definition 5.1 does a given function f(x) not satisfy?

(a)

(b)

(c)

)

B850 - By? forl <x <2

re= T4 Wy 22+ Ux for2<x<3

11 — 24x + 18x% — 4x3 forl<x =<2

I 54+72x 30x2 + 4x3 for2 <x <3

Bx+26x2 - i3 forl <x <2

[ 70+ 185 — 402 + i3 for2<x <3

"3—.:144-;.:;2—.;;3 forl<x<?2
flx)=

i—35+51x—22x2+3x3 for2<x=<3

. Find the clamped cubic spline that passes through the points (-3, 2), (-2, 0}, (1, 3),

and (4, 1) with the first derivative boundary conditions §'(—=3) = —1 and $'(4) = 1.

. Find the natural cubic spline that passes through the pomts ( 3 2) ( 2,0} (1,3),

. Find the extrapolated cubic spline that passes through the points (—3,2), (=2,0),

(1, 3), and (4, 1).

. Find the parabolically terminated cubic spline that passes through the points (—3, 2),

(—2,0),(1,3),and (4, 1).

. Find the curvature-adjusted cubic spline that passes through the points (-3, 2),

(=2.0), (1, 3), and (4, 1) with the second derivative boundary conditions §”(—3) =
—~land $"(4) =2

. {a)

(b)

(a)

-~
(=
-

Find the clamped cubic sp]ine that passes through the points {(xx, f{x))}i_q.
on the graph of f(x) = x +2 £, using the nodes xp = 1/2,x; = 1,xz = 3/2,
and x3 = 2. Use the first derlvatlve boundary conditions §'(xo) = f'(x¢) and
§'(x3) = f'(x3). Graph f and the clamped cubic spline interpolant on the same
coordinate system.

Find the natural cubic splinc that passes through the points {(xx, f (xk))}?go’ on
the graph of f(x) = x + , using the nodes xo = 1/2,x; = 1,x2 = 3/2, and
x3 = 2. Use the free boundary conditions $”(xg) = 0 and §”(x3) = 0. Graph
f and the natural cubic spline interpolant on the same coordinate system.

Find the clamped cubic spline that passes through the points {(xz, f (xk))]LO,
on the graph of f(x) = cos(x?), using the nodes xo = 0,x; = 7/2,x2 =
V3772, and x3 = /37/2. Use the first derivative boundary conditions $’(xo) =
f'(xp) and §'(x3) = f'(x3). Graph f and the clamped cubic spline interpolant
on the same coordinate system.

Find the natural cubic spline that passes through the points {(x, f{x x)}}LO,

on the graph of f(x) = cos(x2), using the nodes xo = 0, x; = /772, X3 =
3772, and x3 = /572, Use the free boundary conditions $”(xp) = 0 and
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§”(x3) = 0. Graph f and the natural cubic spline interpolant on the sam
coordinate system.

11. Use the substitutions
Ykl — X = g + (x5 — x)
and
(et = x)° = k) + 3h3uxe — x) + Shi (e — x)2 + (2 — %)

to show that when equation (8) is expanded into powers of (x; — x), the coefficients

are those given in equations (16).

12. Consider each cubic function Sg (x) over the interval [x, x¢11].
(a) Give a formuia for [**" Sy (x) dx.
Then evaluate f;:f S(x)dx in part (a) of

(b) Exercise 10 () Exercise 11
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2. Modify Program 5.3 to find the (a) natural, (b) extrapolated, (¢) parabolically termi-
nated, or {(d) end-point curvature-adjusted cubic splines for a given set of points.

3. Use your programs from Problem 2 to find the five different cubic splines for the
points (0, 1), (1,0), (2,0), (3. 1), (4,2), (5,2), and (6, 1), where §'(0) = —0.6,
5'(6) = —1.8, §"(0) = 1, and S""(6) = —1. Plot the five cubic splines and the points
on the same coordinate system.

4. Use your programs from Problem 2 to find the five different cubic splines for the
peints (0,0), (I,4), (2.8), (3,9, 4,9, (5,8) and (6, 6), where S'(0) = 1,
$'(6) = —2, §7(0) = 1, and §”(6) = —1. Plot the five cubic splines and the points
on the same coordinate system.

@

5. The accompanying table gives the hourly temperature readings (Fahrenheit) during
a 12-hour period in a suburb of Los Angeles. Find the natural cubic spline for the
data, Graph the natural cubic spline and the data on the same coordinate system. Use
the natural cubic spline and the results of part (a) of Exercise 12 to approximate the
average temperature during the 12-hour period.

13."Show how straiegy (i) in Tabie 5.8 and system (12} are combined to obtain the equa- Time, a.m. | Degrees || Time, am. | Degrees
tions in Lemma 5.1. 1 58 7 p
14. Show how strategy (iii) in Table 5.8 and system (12) are combined to obtain the 2 58 8 58
equation in Lemma 5.3. 3 58 9 60
15. (@) Using the nodes xp = —2 and x; = 0, show that fix) = x> — x is its own ; ;; ;‘; Z;
clamped cubic spline on the interval {2, 0]. 6 57 Noon 68

{(b) Using the nodes xg = —2, x; = 0, and x; = 2, show that f(x) = x¥ - 1 is
its own clamped cubic spline on the interval [—2, 2]. Note. f has an inflection
point at x;.

(c)  Use the results from parts (a) and (b) to show that any third-degree polynomial,
fix) = ap+a1x + azx? + a3x3, is its own clamped cubic spiine on any closed
interval [a, b].

{d) What, if anything, can be said about the other four types of cubic splines de-
scribed in Lemmas 5.2 through 5.5?

Algorithms and Programs

1. The distance dj that a car traveled at time #; is given in the follwoing table, Use
Program 5.3 with the first derivative boundary conditions 5/(0) = 0 and 5'(8) = 98
and find the clamped cubic spline for the points.

[
=
>
-]

Time, i 0
Distance, dy | 0 | 40 | 160 | 300 | 480

6. Approximate the graph of f(x) = x — cos(x?) over the interval {—3, 3] using a
clamped cubic spline.

84 Fourier Series and Trigonometric Polynomials

Scientists and engineers often study physical phenomena, such as light and sound, that

‘have a periodic character. They are described by functions f(x) that are periodic,

) glx+ P)=g(x) for all x.
The number P is called a period of the function.

It will suffice to consider functions that have period 2. If g(x) has period P, then
f(x) = g(Px/2m) will be periodic with period 2. This is verified by the observation

Px

P
2) f(x+2n)-—-g(§+f’)=g(2n)=f(x).
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y=flx}
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Definition 5.3 (Fourier Seriesy. Assume that f(x) is pericdic with period 2x and

thut f(x) is piecewise continuous on [-7, 7]. The Fourier series S(x) for f(x)is

o0
i S =2 43 (aj cos(ix) + b; sin(jx)),
2 T &

w here the coefficients a; and b; are computed with Euler’s formulas:

=27 4] v dr
Figure 5,17 A contin functi i i 1
uous tion f(x) with period 27. (3) a;=— fx)cos(jx)dx for j=0, 1, ...
T Jm
y and
l \ \ y =f(x) l [yr
- (6 bi=— fixysin(jxydx for j=1,2,.... A
AN L)
T~
\° \° The factor % in the constant term ag,/2 in the Fourier series (4) has been introduced
for convenience so that @q could be obtained from the general formula (5) by setting
’ ; 1 t : ; } x j = 0. Convergence of the Fourier series is discussed in the next result.
a:to tl .[2 tk—Z tk—] tk—b

Figure 5.18 A piecewise continuous function over [a, b].

Hepccforth in this section we shall assume that f(x) is a function that is pericdic with
period 2, that is,

(3) Fx+2m)= f(x) for all x.

The graph y = f(x) is obtained by repeating the portion of the graph in any interval

of length 2, as shown in Figure 5.17.
- Examplfas of functions with period 27 are sin(jx) and cos(jx), where Jis an
integer. This raises the following question: Can a periodic function be represente

by the sum of terms involving a; cos(jx) and b jsin(jx)? We will soon see that the
answer is yes.

Deﬁl:ntlon 5.2 (Pieceyvise Continuous). The function f(x) is said to be piecewise
continuous on [a, b] if there exist values fo, 1, ..., 1¢ witha = 5y < n o< ---
tx = bsuch that f(x) is continuous on each open interval ;| < x < fori = 1. .

e K, and f(x) has left- and right-hand limits at each of the points #;. The situation
is illustrated in Figure 5.18. &

Theorem 5.5 (Fourier Expansion). Assume that S(x) is the Fourier series for f(x)
over [—7, ). If f'(x) is piecewise continuous on [, 7r] and has both a left- and
right-hand derivative at each point in this interval, then §(x) is convergent for all x €
{—m, m]. The relation

Sx)=fx)

holds at all points x € [—m, ], where f(x) is continuous, If x = a is a point of
discontinuity of f, then

- +
Sa) = fla );-f(a ),

where f(a~) and f(a™) denote the left- and right-hand limits, respectively. With this

1.t e 03 e

understanding, we obtain the Fourier expansion:
a =
17) flx) = ?+Z(ajcos(jx)+bjsin(jx)).
=1

A brief outline of the derivation of formulas (5) and (6} is given at the end of the
section.
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Example 5.13.  Show that the function f(x) = x/2 for —x < x < , extended periodi-
caliy by the equation f(x + 2r) = f(x), has the Fourier series representation

=it i
f()_z( ) sm(lx)—sm(x)_gm_(zx_)_l.w._....
j=1
Using Euler’s formulas and integration by parts, we get

x xsin(jx) cos(fx)im
j;” cos(jx)dx = 2] + 2 /2 _H—O

forj=1,2,3,...,and
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¥
1.5} ¥ =850 v =f(x)

tof  Y=5W

~1.0
1 ™ x | ~x cos{jx) sm(jx) T (=1)itl W
j—;‘[”531n(1x)dx 27 - ’ _—-—j sk
for j = 1,2,3,.... The coefficient ap is obtained by a separate calculation: Figure 5.19 The function f(x) = x/2 over [~m, x] and its trigono-
) metric approximation 52 (x), 53(x) and Sz(x).
T
LAY N P LAY
3 ] 4 i

These calculations show that all the coefficients of the cosine functions are ze:ro.The
graph of f(x) and the partial sums

PR Ly ALY
QL&A S

S2(x) = sin(x) — ‘2 ,
sin(2x)  sin(3x)

S$3(x) = sin(x) — _i_ + —‘3—,
and
. sin(2x in(3. in(4
Sa(x) = sin(x) — ; ), S“‘(B x) _ s ;x)
are shown in Figure 5.19. =

We now state some general properties of Fourier series. The proofs are left a-
exercises,

Theorem 5.6 (Cosine Series). Suppose that f(x) is an even function; that is, sup-

pose f(-—x) = f(x) holds for all x. If f(x) has period 2 and if f(x) and f'(x) are
piecewise continuous, then the Fourier series for f(x) involves only cosine terms:

(8) flx )——+Za,cos(;x)

j=1

9 aj = %[Q f(x)cos(jx)dx for j=0, 1,

Theorem 5.7 (Sine Series). Suppose that f(x) is an odd function; that is, fl—x) =
— f(x) holds for all x. If f(x) has period 27 and if f(x) and f’(x) are piecewise
continuous, then the Fourier series for f(x) involves only the sine terms:

(10) fx) =Y bjsin(jx),
i=1
where
1D b, =%f fx)sin(jx)dx for j=1,2,....
0

Example 5.14. Show that the function f(x) = {x| for —r < x < m, extended periodi-
cally by the equation f(x 4+ 2) = f(x), has the Fourier cosine representation

T cos{(2j — 1)x)
fx) = 3T Z

(2j — 1y
@ (3x) (5x)
T 4 cos{3x cos(Sx
=5"‘—(C0( )+ 32 52 +"')-

The function f(x) is an even function, so we can use Theorem 5.6 and need only to
compute the coefficients {a;}:

7f 2x sin(Jf 2¢os(jx) |7
aj=£ [ xcos(jx)dx = ki ,(jx)+ c .(QIX)l
i m Jo T 4
_ 2c08(jm) -2 _ 2((—=1)/ = 1)

= for j=1,2, 3, ....
Tj? mj? orJ
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Since ({(—1) — 1) = 0 when J is even, the cosine series will involve only the odd terms.
The odd coefficients have the pattern

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 303

Tha valua nf tha farm ssmoalole o o0 s x = n . R .
S YR UL Ule lofm NVOIVING cos{y x) cos(m.x) is found by using the trigonometric

—4 -4 -4
= — , . , 1

aj p as ) as 752 a7n cos(jx) cos(mx) = 7 cos((j +m)x) + %cos((j —m)x).

The coefficient gg is obtained by the separate calculation When j # m, then (17) is used t t
, ed to ge
a 2 f" xdx = i =r i 1 i
0= A =7l ajf cos(jx)cos(mx)dx = Eaj,[ cos((j +m)x)dx
—n _
Therefore, we have found the desired coefficients in (12). u (18) 1 " b
Proof of Euler’s Formulas for Theorem 5.5.  The following heuristic argument as- + iaj .,/;ﬁ oK ~mx)dx =0+0=0.
sumes the existence and convergence of the Fourier series representation. To deter- When j = m, the value of the integral is
mine ag, we can integrate both sides of (7) and get ’ gr
Vig
. . o (19) amf cos(jx}cos(mx)dx = a7,
[ flx)ydx = f ?-O—-Q-Z(gl f,:os(}x)-l-bJ sln(jx))\ dx - ™
Jo J.\Z77 4 J; h b i , .
1 E . e value of the term on the right side of (15) involving sin{jx) cos(mx ) is found

(13) T a F3 L3 y using the trigonometric identit

= 7°dx+2aj[ cos(jx)dx-{—ijf sin(jx) dx & Y

-n j=1 J-= i=1 - 0 . | 1
sin(jx) cos(mx) = — sin((j + m)x) + — sin((j —
= 70 +040. 5 J )x) 3 ((j — m)x).

Justification for switching the order of integration and summation requires a detailed
treatment of uniform convergence and can be found in advanced texts. Hence we have
shown that

£ AN —_ Lroy 2.
Li14) uo——j Jujax.
7 J x

To determine a,,, we let m > 0 be a fixed integer, multiply both sides of (7) by
cos(mx}, and integrate both sides to obtain

(15)

" f(x)cos(mx)dx = % fﬂ cos(mx) dx + Zaf/ cos(jx)cos(mx)d.
- —

o i= -

00 b4
+ E bj f sin(jx) cos(mx) dx.
j=1 -

Equation (15) can be simplified by using the orthogonal properties of the trigonometric
functions, which are now stated. The value of the first term on the right- hand side
of (15} is

n .
2m —n

-

=0.

J and m in (20), we obtain

n . . 1 big
bjf sin(jx) cos(mx)dx = —bjf sin((f + m)x) dx
—r 2 _
Q) 8
N P L
+§bjj sif(j —m)x)dx =0+0=0.
i 4

'tf:;refore, using the results of (16), (18), (19}, and {21) in equation (15), we conclude

ki 4

22) Tdy, = f{x)cos(mx)dx, form=1, 2, ....

-
Therefore, Euler's formula (5) is established. Euler's formula (6) 1s proved
simfiarly. .

Trigonometric Polynomial Approximation
Definition 5.4 (Trigonometric Polynomial). A series of the form

23 Tar(x) =

i called a trigonometric polynomial of order M. A
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Theorem 5.8 (Discrete Fourier Series). Suppose that {(x;, y 1)]N—~n are N+1 pounis
where y; = f(x;), and the abscissas are equally spaced:

(24) Xj=-m4+—— for j=0,1, ..., N.

If f(x} is periodic with period 27 and 28 < N, then there exisis a trigonometric
t minimizes the quantity
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e

15} y=Tsx) °

ai /\
05} \
1 1 1 L 1

|
N X
-3 -2 -1 1 2 3
(25) D) — Tur ().
k=1 -‘0.5 r
The coefficients a; and b; of this polynomial are computed with the formulas \/ 10k
2 &
(26) o =5 Z Fflxp)cos(jxy) for j=0, 1 M, ° -LSF
k=1 Figure 520 The trigonometric polynomial 75(x) of degree
and M =3, based on 12 data points that lie on the line y = x/2.
3 N
(27) b= -ﬁ Fflxedsin(fxg) for j=1,2, ..., M.

Although formulas (26) and (27) are defined with the least- squares procedure they
can also be viewed as numcrical approximations to the integrals in Euler’s formulas (5)
and (6). Euler’s formulas give the coefficients for the Fourier series of a continuous
function, whereas formulas (26) and (27) give the trigonometric polynomial coeffi-
cients for curve fitting to data points. The next example uses data points generated by
the function f(x) = x/2 at discrete points, When more points are used, the trigono-

metric pelynomial coefficients get closer to the Fourier series coefficients.

Example 5.15. Use the 12 equally spaced points x; = —r + kx/6, fork = 1,2, ..., 12,
and find the trigonometric polynomial approximation for M = 5 to the 12 data points
{(xk, f (xk))}k_l, where f(x) = x/2. Also compare the results when 60 and 360 points
are used and with the first five terms of the Fourier series expansion for f(x) that is given
in Example 5.13.

Since the periodic extension is assumed, at a point of discontinuity, the function value
f () must be computed using the formula
\ o @Y HfY)  mf2-mp2
Y )= = ={.

2 2

The function f(x) is an odd function; hence the coefficients for the cosine terms are all
zero (i.e., a; = O for ail j). The trigonometric polynomial of degree M = 5 involves only
the sine terms, and when formula (27) is used with (28), we get

Ts (x) = 0.9770486 sin(x) — 0.4534498 sin(2.x) + 0.26179938 sin(3x)
—1.1511499 sin(4x) + 0.0701489 sin(5x).

28

(29}

Table 5.9 Comparison of Trigonometric Polynomial Coefficients for
Approximations to f{x) = x/2 over [—-r, &}

Trigonometric polynomial coefficients . .
Fourier series
12 points 60 points 360 points coefficients
b 0.97704862 0.99908598 0.99997462 1.0
by | —0.45344984 —0.49817096 —0.49994923 -0.5
by | 0.26179939 0.33058726 0.33325718 0.33333333
by | —0.15114995 —0.24633386 —0.24989845" -0.25
bs 0.07014893 0.19540972 0.19987306 0.2

The gr‘apu of T5({x) is shown in r‘igurc 5.20.

The coefficients of the fifth-degree trigonometric polynomial change slightly when the
number of interpolation points increases to 60 and 360. As the number of points increases,
they get closer to the coefficients of the Fourier series expansion of f(x). The results are

compared in Table 5.9. »

The following program constructs matrices A and B that contain the coefficients a;
and b}, respectively, of the trigonometric polynomial (23) of order M.
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h Y TR, T i mdam s ot Hlha et ooy e bl oy

l'mgram 5.4 urlgonomemt. l'ulyllunnuls)- To construct the wigonomewic p
nomial of order M of the form

a X
PO =~ + (ajc0s(jx) + bj sin(jx))
=

based on the N equally spaced values x; = —x +2mk/N, fork=1,2,..., N. The
construction is possible provided that 2M + 1 < N.

function [4,Bl=tpcoeff(X,Y,M)

%Input - X is a vector of equally spaced abscissas in [-pi,pil
% - Y is a vector of ordinates

% - M is the degree of the trigonometric polynomial
%0utput - A is a vector containing the coefficients of cos{(jx>
% - B is a vector containing the coefficients of sin(jx)

N=length(X)-1;
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Far avamnlae tha fallawing cananoa o~
COF CRAmp:l, WiC IOuowWIng SCQuciice ©

window will produce a graph analogous to Figure 5.20.
>>x=-pi:.01:pi;

>>y=tp(4,B,x,M};

>>plot (x,y,X,Y,’0")

Exercises for Fourier Series and Trigonometric Polynomials

In Exercises 1 through 5, find the Fourier series representation of the given function,

Hint Follow the nroceduras outlined in Examples 5.12 and 5.14. Granh each function
i, rOulW NS ProCeGures Culidnel in CXAMP:Ss 2.1 2 and J.14. USraphn €ach [unclion

and the partial sums S7(x), S3(x), and S4{x) of its Fourier series representation on the
same coordinate system (see Figure 5.19).

-1 for —m<x<0 Z4+x for -m<x<0
1.f(X)={ 1 forQex<x zf(X)“{i ¥y forNe< vy -
{ » Wri=x<nm 12 x or =X <™,

max1=Ffix((N-1)/2);

if M>maxl

M=max1;
end
A=zeros(1,M+1);
B=zeros(1,M+1);
Yends={(Y{1)+Y(N+1))/2;
Y(1)=Yends;

AT TSI WK, | U
Y{N+i)=Yenas;

A(1)y=sum(Y);

for j=1:M
A(j+1)=cos(j*X)*Y’;
B(j+1)=sin{(j*X)*Y’;

end

A=2#A/N;

B=24B/N;

AQD)=A(1)/2;

PO Ry

The luuuwmg Snort pro gr
4 a

order M from Program 5.

function z=tp(A,B,x,M)

z=A{1);

for j= 1:M
z=z+A(j+1)*cos (§*x)+B(j+1) *sin(j*x);

end

s 0 for —m <x<0 ) =1 funzz'—<1<n
= - . = == b
- f&) x for0<x<nm foo= L for T <*=<3

for - <x < 5

I—rr—x for —m <x <

5 fix)= x for _2—”<x<-’25
n—X for <X <

6. In Exercise 1, set x = :r/2 and show that
g 1 1 1

Z—*l —+g—-+
7. In Exercise 2, set x = 0 and show that
LATR NS +5 Ly
8 327 52

8. Find the Fourier cosine series representation for the periodic function whose defini-
tion on one period is F{x) = x2/4 where -7 < x < 7.

9. Suppose that f(x) is a periodic function with period 2P; that is, f(x +2P) = f(x)
for all x. By making an appropriate substitution, show that Euler’s formulas (5) and
(6) for f are

1 P
ag = F/Pf(x)dx

1 P i
8; = +f f(x)cos(%’z) dx for j=1,2, ...

b= mf f(x)sm(j—P—) for j=1,2,....
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In Exercises 10 through 12, use the results of Exercise 9 to find the Fourier series rep
resentation of the given function. Graph f(x), S4(x), and Ss(x) on the same coordinat

system.
[—1 for —3<x < —I Table 5,10 Daia for Probiem 5
10. fry= |0 fr 2=x<0 11 f@={Ix for -1<x<1
. fx) = | for 0<x <2 . =3 Ixt for =Tx< Time, p.m. Degrees Time, a.m. Degrees
. I forl<x<3

1 66 1 58
12. f(x)=—x2+9 for ~3<x <3 2 66 2 58
13. Prove Theorem 5.6. :f 95 3 §§
4 o4 4 58
14. Prove Theorem 5.7. 5 63 5 57
6 63 6 57
7 62 7 57
Algorithms and Programs 8 61 § 58
S S 9 60 9 60
10 60 10 64
1. Use Program 5.4 with N = 12 points and follow Example 5.15 to find the trigono 11 59 11 67
metric polynomial of degree M = 5 for the equally spaced points {(x;, f (xk))}}‘il. Midnight 58 Noon 68

where f{x) is the function in (a) Exercise 1, (b) Exercise 2, (¢) Exercise 3, and
(d) Exercise 4. In each case, produce a graph of f(x), T5(x}, and {(x, f(xk))]}(il

he same coordinate system

an a
i SQINL CUUTULEGW Sy S,

-

2. Use Program 5.4 to find the coefficients of T5(x) in Example 5.15 when first 60 and
then 360 equally spaced points are used.

3. Modify Program 5.4 so that it will find the trigonometric polynomial of period 2P =

b m c are o PR PRt R

r S T TP S FRRPU RS T TR R Lo 2 Al P L1
0 — @ WIEN iN¢C aia poinis are €qiidily spacea OVEer iné 1nervai |4, oj.

4, Use Program 5.4 to find T5(x) for (a) f(x) in Exercise 10, using 12 equally spaced Table 5.11 Data for Problem 6

data points, and (b) £ (x) in Exercise 12, using 60 equally spaced data points. In eacl
case, graph Ts(x) and the data points on the same coordinate system. Calendar date | Average degrees
5. The temperature cycle {Fahrenheit) in a suburb of Los Angeles on November 8 i Jan. 1 -14
given in Table 5.10. There are 24 data points. Jan. 29 -9
(a) Find the trigonometric polynomial T7(x). ) f;:: 222 lg
(b) Graph 7T7(x) and the 24 data points on the same coordinate system. Apr_b23 35
(¢) Repeat parts (a) and (b) using temperatures from your locale. May 21 52
June 18 62
6. The yearly temperature cycle (Fahrenheit) for Fairbanks, Alaska, is given in Ta July 16 63
ble 5.11. There are 13 equally spaced data points, which correspond to a measuremen Aug. 13 58
every 28 days. Sept. 10 50
(a) Find the trigonometric polynomial Tg(x). N »
(b} Graph Tg(x) and the 13 data points on the same coordinate system. Dec. 3 -5
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(5, —0.3276), {6, TVLLITT J, @il 7,
tion of an interpolation polynomial. Let us focus our attention on finding J{(2). The
interpolation polynomial p>(x) = —0.0710 + 0.6982x — 0.1872x? passes through the
three points (1, 0.4400), (2, 0.5767), and (3, 0.3391) and is used to obtain J{(2) =~

p’2(2) = —0.0505. This quadratic polynomial p(x} and its tangent line at (2, J;(2))

NYTETY and (7 _NDNMNAY Tha nndarlyimg metmaimla to diffanantia
vauusr . 100 dniulnnying principnsc is Qiiaciciia-

- are shown in Figure 6.1(a). If five interpolation points are used, a better approximation

can be determined. The polynomial p4(x) = 0.4986x+0.011x2—0.0813x>4+0.0116x*

-passes through (0, 0.0000), (1, 0.4400), (2, 0.5767), (3,0.3391), and (4, —0.0660)

and is used to obtain J{(2) = p;(2) = —0.0618. The guartic polynomial p,(x) and its
tangent line at (2, J1(2)) are shown in Figure 6.1(b). The true value for the derivative
is J{(Z) = —0.0645, and the errors in p2(x) and ps(x) are —0.0140 and —0.0026,
respectively. In this chapter we develop the introductory theory needed to investigate
the accuracy of numerical differentiation.

Approximating The Derivative

Formulas for numerical derivatives are important in developing algorithms for solv-
ing boundary value problems for ordinary differential equations and partial Fliffcrer?-
tial equations (see Chapters 9 and 10). Standard examples of numerical differenti-
ation often use known functions so that the numerical approximation can be com-
pared with the exact answer. For illustration, we use the Bessel function Jy(x), whose
tabulated values can be found in standard reference books. Eight equally spaced

P e Ve A e ] N NL Lt

POin[S over [0, 7] are (07 OOUOO), (1! 0A4400)s (2v UoD/o/h 3, G~3391), (4, —uU.ubh ).

y y

0.6+ 0.6

s LY
0.2 s-’n' ‘\‘ 02
: i [l [l “u._ Il 1 4..-L x
1 2 3 \ 5 6,;7

02} N S 02

04} T 04
(a) ()]

Figure 6.1 (a) The tangent to pa(x) at (2, 0.5767) with slope p§(2) = —0.0505.
(b) The tangent to p4(x) at (2, 0.5767) with slope p;(2) = —0.0618.

The Limit of the Difference Quotient

We now turn our attention to the numerical process for approximating the derivative
of f(x):

o fa R - )
n f(X)_gl—rR]—h—“-

The method seems straightforward; choose a sequence {k;} so that #; — 0 and com-
pute the limit of the sequence:

_ fx ) = £

@ Dy I

for k=12, ...,n, ....

The reader may notice that we will only compute a finite number of terms Dy, Dy, ...,
Dy in the sequence (2), and it appears that we should use Dy for our answer. The
following question is often posed: Why compute Dy, Dy, ..., Dy_1? Equivalently,
we could ask: What value 4 5 should be chosen so that Dy is a good approximation to

the derivative f'{x)? To answer this question, we must look at an example to see why

there is no simple solution.

For example, consider the function f(x) = ¢* and use the step sizes A = 1,
1/2, and 1/4 to construct the secant lines between the points (0, 1) and (&, f(h)),
respectively. As & gets small, the secant line approaches the tangent line as shown in
Figure 6.2. Although Figure 6.2 gives a good visualization of the process described
numerical answer, and for this value of 4 the graphs of the tangent line and secant line
would be indistinguishable.



312 CHAP.6 NUMERICAL DIFFERENTIATION

L —~L i A x Rigure

000 025 050 075 100 v e,

Table 6.1 Finding the Difference Quotients Dy = ('™ — o)/ by
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In Example 6.1 the mathematical value for the limit is f'(1) & 2.718281828. Observe
that the value ks = 107> gives the best approximation, Ds = 2.7183.

Example 6.1 shows that it is not easy to find numerically the limit in equation (2).
The sequence starts to converge to e, and Ds is the closest; then the terms move away
from ¢. In Program 6.1 it is suggested that terms in the sequence { Dy} should be
computed until | Dy+1— Dy| = | Dy — Dy—1]. This is an attempt to determine the best
approximation before the terms start to move away from the limit. When this criterion
is applied to Example 6.1, we have 0.0007 = |Dg — Ds| > |D5 — D4 = 0.00012;
hence Ds is the answer we choose. We now proceed to develop formulas that give a
reasonable amount of accuracy for larger values of A.

The Central-difference Formulas

If the function £ (x) can be evaluated at values that lie to the left and right of x, then
the best two-point formula will involve abscissas that are chosen symmetrically on both

I R
SIUCS U1 X .

Fg fi="Ft+4p) fr—e Di=—fi—e¥hy
2 3 d

B =01 3.004166024 0.285884196 2 858841560 ;hmren;l 6.1 (Cel;ltered F‘;orrTnhula of Order O(h%)). Assumethat f € C”[a, b] an

hy=0.01 2.745601015 0.027319187 2731918700 atx —h,x,x +h € [a, b]. Then

hy=0.001 2721001470 0.002719642 2.719642000

A4 =0.0001 2.718553670 0.000271842 2.718420000 3) flix) = SR, - ARt .

h5 = 0.00001 2718309011 0.000027183 2718300000 - 2h

hg=10"6 2.718284547 0.000002719 2719000000 : _

hy=10-7 2 718282100 0.000000272 2.720000000 Furthermore, there exists a number ¢ = c(x) € [a, b] such that

hg=10"% 2.718281856 0.000000028 2.800000000 B — flx —

hg=10""° 2.718281831 0.000000003 3.000000000 (4) flixy = fat )__. fxe=h) + Etrunc(f, k),

hig=10"10 2718281828 £.000000000 0.000000000 <h

where
h2f ey
Equnc(f, h) = ~———— = O(k’).

Exampie 6.1. Let f(x) = ¢* and x = 1. Compute the difference quotients Dy, using the
siep sizes by = 10~* fork = 1,2, ..., 10. Carry out nine decimal places in all calculations.

A table of the values (1 + Az) and (f(1 + hy) — f(1))/hy that are used in the
computation of Dy is shown in Table 6.1. =

The largest value #; = 0.1 does not produce a good approximation Dy =~ f'(1),
because the step size &) is too large and the difference quotient is the slope of the secant
line through two points that are not close enough to each other. When formula (2) is
used with a fixed precision of nine decimal places, g produced the approximation
Dg = 3 and /o produced Dyp = 0. If Az is too small, then the computed function
values f{x + hg) and f(x) are very close together. The difference f(x + hy) — f(x)
can exhibit the problem of loss of significance due to the subtraction of quantities
that are nearly equal. The value Ao = 10710 is so small that the stored values of

F{x+hp) and f(x) are the same, and hence the computed difference guotient is zero.

6
The term E(f, k) is called the truncation error.

Proof ~ Start with the second-degree Taylor expansions f(x) = P2(x) + E2(x), about
x, for f(x +h) and f(x —~ h):

[P | fOenh’

) Fa+h = f@)+ f0h+ 3
and

) 2 3 3
(6) Flx—h) = () — f'h 4 R Sl

2 3!
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After (6) is subtracted from (5), the result is
e G e )h3
- ) - fe—hy =25 on S 1)‘;1f ek’

U [ T . [P . R
die vdiue WCOITIIL Cdil DE uscd 10 Lind d

value ¢ so that

® F3ep) -;- F3er) = 1O,

This can be substituted into (7) and the terms rearranged to yield

_ Ja+h) = flx=h) F®(cn?

9 f1eo

2h 3!
The first term on the right side of (9) is the central-difference formula (3}, the second
term is the truncation error, and the proof is complete. .
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Then use the step size 24, instead of /, and write down the following approximation:
16D (x)h3 | 64 £ (cp)h®

3! 5! '
Next multiply the terms in equation (12) by & and subtract (13) from it. The terms
involving f** (x} will be eliminated and we get

=fx+2h)+8f(x+h) ~8f(x —h)+ f(x —2h)
(14) S er) — 64 FS 5
_ 12 on < (8D — 647 O eann
120

e ~(5),

If f*7(x) has one sign and if its magnitude does not change rapidly, we can find a
value ¢ that lies in {x — 2k, x + 2k] so that
(15) 165 er) — 6410 (co) = —48£P(c).

F'{x)
(x), w

(13) Fx+2h) — fix —2R) =4f (x)h +

After (15) is substituted into (14) and the result is solved fo J
~fx+2h) +8F (x + h) — 8F (x — h) + f(x —2h) ) eyt

=1

Suppose that the value of the third derivative f'°’(c) does not change too rapidly;
then the truncation error in {(4) goes to zero in the same manner as b2, which is ex-
pressed by using the notation Q(42). When computer calculations are used, it is not
desirable to choose i too small. For this reason it is useful to have a formula for

n arrar term of the order (54

N , .
" A tMinoatin A
approximating f'(x) that has a truncation error term of the order O (h*).

Theorem 6.2 (Centered Formula of Order O (h%)). Assume that f € C3[a, b) and
thatx —2h, x —h,x,x +h,x +2h € {a, ). Then

0 ) —F A2 8+ Ry —8F(x —h) 4 Flx —2h)
(10) fix)= ok
Furthermore, there exists a number ¢ = c¢(x) € [a, b] such that
(11
—flx+2R)+8f(x+h)—8f(x —h)+ f(x —2h)

flix) = ! ! 7 S ! + Eeunc(f. h).

where
h O (e
Eame(f, 1) = 2212 = 004,

Proof. One way to derive formula (10) is as follows. Start with the difference betv cen
the fourth-degree Taylor expansions f(x} = P4(x) + E4(x), aboutx, of f(x + &) and
flx —h)

273 (x)n? + 2SN c1)h?

(1)  fax+m - fx-m=2fh+=— 51

w6y fliixy= z
T 124 50
The first term on the right side of (16) is the central-difference formula (10), and
the second term is the truncation error, the theorem is proved. .

SRR TP .1 ) FIRNI

Suppose that [ f¢*}(c)] is bounded for ¢ € [a, b]; then the truncation error in (11)
goes to zero in the same manner as 4%, which is expressed with the notation O (h%).
Now we can make a comparison of the two formulas (3) and (10). Suppose that f(x)
has five continuous derivatives and that | f®(c)| and | £ (c}| are about the same.
Then the truncation error for the fourth-order formula (10) is O(A*) and will go to

zero faster than the truncation error O (h2) for the second-order formula (3). This
permits the use of a larger step size.

Example 6.2. Let f(x) = cos(x)

(a) Use formulas (3) and (10) with step sizes A = 0.1, 0.01, 0.001, and 0.0001, and cal-
culate approximations for f*(0.8). Carry nine decimal places in all the calculations.
(b) Compare with the true value £(0.8) = — sin(0.8).
(a) Using formula (3) with 4 = 0.01, we get

0.81) — £(0.7 . -
f( )A Mf( 9 . 06894984331 - _0.703845316 % —0.717344150.
U.UZ 0.02

Using formuta (10) with % = 0.01, we get
—f(0.82) + 8 £(0.81) — 8 £(0.79) + f(0.78)

108~

o8~

07 + 8(0.689498433) — 8(0.703845316) + 0.710913538
0.12

N roAafn1A
=U.0QLLLLL
]

"z —0.717356108.
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Table 6.2 Numerical Differentiation Using Formulas (3) and (10)

Step Approximation by Error using Approximation by Error using
size formula (3) formula (3) formula (10) formula (10)
0.1 —0.716161095 —0.001194996 —0.717353703 —0.000002389.
0.01 —0.717344150 —0.000011941 —0.717356108 0.000000017
0.001 —0.717356000 —0.000000091 ~0.717356167 0.00000007 6
0.0001 —0.717360000 —0.000003909 —0.717360833 0.00000474 2

(b) The error in approximation for formulas (3) and (10) tumns out to be —0.000011941 «nd
0.000000017, respectively. In this example, formula (10) gives a better approximation to
£'(0.8) than formula (3) when & = 0.01. The error analysis will illuminate this exampie
and show why this happened . The other calculations are summarized in Table 6.2. u
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Corollary 6.1(b). Assume that f satisfies the hypotheses of Theorem 6.1 and that nu-
merical computations are made. If [e_1| < €, |ej| < €, and M = maxg<; <s{| f S (x)]}.
then

. € Mh2

(209 |E(f. )| < + + ——

and the value of £ that minimizes the rlght—hand side of (19) is

1/3
(21 h = (3—E) .
M

I

When h is smali, the portion of (19) involving (¢} — e_ 1)/2h can be relatively
large. In Example 6.2, when h = 0.0001, this difficulty was encountered. The round-
off errors are

Error Analysis and Optimum Step Size

An important topic in the study of numerical differentiation is the effect of the com-
puter’s round-off error. Let us examine the formulas more closely. Assume that a
computer is used to make numerical computations and that

SGo—hy=y_1+e and flxo+h) =y +ei,

where f(xo—h) and f(xp -+ &) are approximated by the numerical values y_| and y)
and e_; and e are the associated round-off errors, respectively. The following resuit
indicates the complex nature of error analysis for numerical differentiation.

Corollary 6.1(a). Assume that f satisfies the hypotheses of Theorem 6.1 and use the
computational formula

xgy e P
a17) fixp) = h
The error analysis is explained by the following equations:
1= ¥-1
(18) £y =22 L Brm
2h
where

E(f h) Eround(f h)+En'unc(f h)
(19 _ei—e RO
T2 6

where the total error term E(f, k) has a part due to round-off error plus a part due -
truncation ertor.

£(0.8001) = 0.696634970 + ¢, where e; =~ —0.0000000003
F(0.7999) = 0.696778442 + e_ where e_; 2 0.0000000005.
The truncation error term is
—h2FO)e) sin(0.8
__J;_ —(0.0001)2 ( “(6 )) ~ 0.000000001

The error term E( £, k) in (19) can now be estimated:

—0.0000000003 — 0.0000000005
E(f h)~ 0.0002 — 0.000000001

Indeed, the computed numerical approximation for the derivative using A = (.0001
is found by the calculation

F0.8) ~ f(0.8001) — £(0.7999)  0.696634970 — 0.696778442
) 0.0002 = 0.0002
= —0.717360000,

and a loss of about four significant digits is evident. The error is —0.000003909 and
this is close to the predicted error, —0.000004001.

When formula (21) is applied to Example 6.2, we can use the bound | f3)(x) <
Isin(x)] < 1 = M and the value ¢ = 0.5 x 10~ for the magnitude of the round-

off error. The optimal value for k is easily calculated: & = (1.5 x 10~%/1)!/3 =

0.001144714. The step size h = 0.001 was closest to the optimal value 0.001144714
and it gave the best approximation to f/(0.8) among the four choices involving for-
mula (3) (see Table 6.2 and Figure 6.3). A

An error analysis of formula (10) is similar. Assume that a computer is used to

‘make numerical computations and that f(xp + k) = y; + e;.
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Error bound

4x 1076 /

Figure 6.3 Finding the optimum
step size & = 0.001144714 when

1 i & RN, PR B R YT e, 13

% formula (21) is applied to f{x) =
0.002 0.004 cos(x) in Example 6.2.

Corollary 6.2(z). Assume that f satisfies the hypoth Theorem 6.2 a

computational formula
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Error bound

4x 1077 | /

2x 1077 +

0.02 0.04 0.06

Figure 6.4 Finding the optimum step size
h = 0.022388475 when formula (26) is applied to
S(x) = cos(x) in Example 6.2.

—-y2+8y1 —8y_1+y2
12k '

(22) f'(xg) =

The error analysis is explained by the following equations:

-2+ 8y —8y_1+y-2

(23) fixg) = 3h +E(f, h)
where
E(f- h) = Emund(ﬁ h) + Etmnc(f- h)
(24) _ —ex+ 8e) —8e_1+e—3 + h4f(5)(c)
- 12h 30

where the total ervor term E(f, #) has a part due to round-off error plus a part due to
truncation error.

Corollary 6.2(b). Assume that f satisfies the hypotheses of Theorem 6.2 and that
numerical computations are made. If |ex| < € and M = max,<<»{| f > (x)|}. ther

E h)|<36+Mh“
(25) E(f, <5t 30

and the value of A that minimizes the right-hand side of (25) is

45¢\ /5
(26) h=(m) .

When formula (25) is applied to Example 6.2, we can use the bound | O <
Isin(x)] < 1 = M and the value ¢ = 0.5 x 10~ for the magnitude of the round-
off error. The optimal value for £ is easily calculated: h = (22.5 x 10~°/4)!/5 —
0.02Z2388475. The step size & = 0.01 was clpsest to the optimal value 0.022388475,
and it gave the best approximation to f7(0.8) among the four choices involving for-
mula (10) (see Table 6.2 and Figure 6.4).

We should not end the discussion of Example 6.2 without mentioning that numer-

ical differentiation formulas can be obtained by an alternative derivation. They can

ke derived by differentiation of an interpolation polynomial. For example, the La-
grange form of the quadratic polynomial pa(x) that passes through the three points
1.7, c0s(0.7)), (0.8, cos(0.8)), and (0.9, cos(Q.9)) is

p2(x) = 38.2421094(x — 0.8)(x ~ 0.9) — 69.6706709(x ~ 0.7){(x —0.9)
+ 31.0804984(x — 0.7){x — 0.8).

il:: polynomial can be expanded to pbtain the usual form:

p2(x) = 1.046875165 — 0.159260044x — 0.348063157x2.
/A ~rnilar computation can be used to obtain the quartic polynomial p4(x) that passes
thivngh the points (0.6, cos(0.6)), (0.7, cos(0.7)), (0.8, cos(0.8)), (0.9, c0s(0.9)), and
vl cos(1.0)):

pa(x} = 0.998452927 + 0.009638391x — 0.523291341x2
+0.026521229x> + 0.028981100x4.
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¥ = pglx)
y=p /7
’
S 05 )

- /'
10k Ny = cos{x)
(a) &
Figure 6.5 (a) The graph of y = cos(x) and the interpolating polynomial ps(x} usc
to estimate f'(0.8) = p’2(0.8) = ~0.716161095. (b) The graph of y = cos(x) and the
interpolating polynomial p4{x) used to estimate f(0.8) ~ p}(0.8) = —0.717353703.

-1.0
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Example 6.3, Let f(x) = cos(x). Use (27) and (28) with # = (.01, and show how the
lincar combination (4Dg{h) — Dg{2k))/3 in (30) can be used to obtain the approximation
to f'(0.8) given in (10). Carry nine decimal places in al! the calculations.

Use (27) and (28) with h = 0,01 to get

F0.81) ~ £(0.79)  0.689498433 — 0.703845316

Dyo(h) =~ ~y
o(h) 002 TR
=~ —0.717344150
and
f(0.82) - f(0.78)  (.682221207 —0.710913538
Do(2h) = = ~

0.04 0.04
~ —(1.717308275.

Now the linear combination in (30) is computed:

4Do(h) ~ Do(2k) _ 4(—0.717344150) — (—0.717308275)

£'(0.8) =

When these polynomials are differentiated, they produce p5{0.8) = —0.716161095
and p;(O.B) = —().717353703, which agree with the values listed under h = 0.1 in
Table 6.2. The graphs of pa(x) and psa(x) and their tangent lines at (0.8, cos(0.8) are
shown in Figure 6.5(a) and (b), respectively.

Richardson’s Extrapolation

In this section we emphasize the relationship between formulas (3) and (10). [
fi = f{xi) = flxg + kh), and use the notation Do(h) and Dp(2h) to denot. il
approximations to f’(xg) that are obtained from (3) with step sizes & and 2k, respec
tively:

(27 f/(x0) = Do(h) + Ch?
and
(28) F/(x0) = Do(2h) + 4Ch2,

If we multiply relation (27) by 4 and subtract relation (28) from this product. thei the
terms involving C cancel and the result is

MqEi~FD FB—Ff

’ —~ _ YA Sl il VA J=2
(29 3£ (x0) = 4Dp(h) — Do(2h) = h ah

Next solve for f/(x0) in (29) and get

. oy o 400 — Da2k) _ —fa+8fi—8f+ f2
(30) f'(xp) = 3 = R .

The last expression in {30) is the central-difference formula (10).

3 3
~ ~0.717356108.

This is exactly the same as the solution in Example 6.2 that used (10) directly to apptoxi-
marg £(0.8). .

The method of obtaining a formula for f/(xp) of higher order from a formula of
lower order is called extrapolation. The proof requires that the error term for (3) can
be expanded in a series containing only even powers of 4. We have already seen how
to use step sizes & and 2k to remove the term involving #2. To see how A* is removed.
let Dy(h) and Dy (2k) denote the approximations to f’(xp) of order O (h*) obtained
with formula (16} using step sizes 4 and 2k, respectively. Then

—fi+8A—8f 1+ f2 + m* FO )

4 — ~ 4
@y o= o o Di(h) +Ch
and
— - 4 £(5)
) fug= L3St M/ L op 4 16cn.

12h 30

Suppose that 7 (x) has one sign and does not change ioo rapidly; then the assump-
ton that f9(c;) = FG¥(c2) can be used to eliminate the terms involving 4% in (31)
and (32), and the result is

freen n 16D1R) — Di(2h)

@) i
15

“The general pattern for improving calculations is stated in the next result.
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Theorem 6.3 {Richardson’s Extrapolation). Suppose that two approximations of
order O (h%*) for f'(xo) are Dy_1(k) and Di—;(2h) and that they satisfy

(34) F'(x0) = Di—i(h) + c1h™ + b2 4. ..
and
(35) f'(xp) = D=y (2h) + dFc % + d¥H 42 4

Then an improved approximation has the form

45D

(hY — D, (2
k—1\re/ L&

o Ok,

(36)  f(x0) = Dp(h) + O(h**%y =

The following program implements the centered formula of order Q (h%), equi-
tion (3), to approximate the derivative of a function at a given point. A sequence ¢!
approximations { L} ] is generated, where the centered interval for Dy, | is one-tenth as
long as the centered interval for Dy, The output is a matrix L=[H> D’ E’], where i
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for n=1:2
h=h/10;
H(n+1)=h;
D{n+1)=(feval(f,x+h)-feval (f,x~h))/(2#h);
E{(n+1)=abs (D(n+1)-D(n));
R(n+1)=2+E(n+1) *(abs (D(n+1) }+abs(D{(n) ) +eps) ;
end
n=2;
while((E(n)>E{n+1) )& (Ri{n)>toler))&n<maxl
h=h/10;
H(n+2)=h;
D(n+2)=(feval (f,x+h)-feval(f,x-h))/(2%h};
E(n+2)=abs(D(n+2)-D(n+1));
R{n+2)=2+E{n+2)* (abs(D{n+2) Y +abs(D{n+1) }+eps) ;

is a vector coniaining the step sizes, D is a vector containing the approximations to the
derivative, and E is a vector containing the error bounds. Note. The function £ need-
to be input as a string; that is, ' f’.

Program 6.1 (Differentiation Using Limits). To approximate f'(x) numerically
by generating the sequence

_ Flx+107ERy — fx — 107*h)
- 2010-kp)

Fl(x) =~ Dy for k=0, ..., n

until |D, 4} — D,) = | Dy — Dy_y] 011Dy — Dy 1| < tolerance, which is an attempt
to find the best approximation f'(x) ~ D,.

function [L,n]l=difflim(f,x,toler)
‘/.Inpuf - f is the function input a8 a string £’

% - X is the differentiation point

% - toler is the tolerance for the error
%Output-L=[H> D’ E’]:

% H is the vector of step sizes

% D is the vector of approximate derivatives

% E is the vector of error bounds

% - n is the coordinate of the ‘‘best approximation’’
maxl=15;

h=1;

H(i)=ns

D(1)=(feval (f,x+h)-feval{f,x-h))/(2+h);

n=n+1;
end
n=length(D)-1;
L=[H’ D° E’];
Program 6.2 implements Theorem 6.3 {Richardson’s extrapolation}. Note that, the
expression for the elements in row j is algebraicalty equivalent to formula (36).

Program 6.2 (Differentiation Using Extrapolation). To approximate f'(x) nu-
merically by generating a table of approximations D{j, k} for x < j, and using
f'(x) & D(n,n) as the final answer. The approximations D(J, k) are stored ina
lower-trianguiar matrix. The first column is

fx+277n) - flx— 2~7h)
2~i+lp

D(j, 0=

and the elements in row j are

DG, k-1)-D(j-1Lk—-1

1 for 1<k=<ij

DU =D, k~-1)+

function [D,err,relerr,n]=diffext(f,x,delta,toler)
%Input -f is the function input as a string °f’

% - delta is the tolerance for the error

% - toler is the tolerance for the relative error
YMsdrmasd — T 2o +ha matwivy AFf annravimats darivatives
AJUTPUT ¥ 318 Ttne RatrixX oI appreillale Qellva 2

% - arr is the error bound
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% -~ relerr is the relative error bound 3. Let f(x) = sin(x), where x is measured in radians.
[} - . . ' . N 3
/' n is the coordinate of the °‘best approximation’ (a) Calculate approximations to £(0.8) using formula (10) with # = 0.1 and & =
err=1; . 0.01, and compare with f/(0.8) = cos(0.8).
relerr=1; {b) Use the extrapolation formula in (29) to compute the approximations to f'(0.8)
h=1; in part (a).
j=1; (¢) Compute bounds for the truncation error (11). Use
D(1,1)={feval (f,x+h)-feval (f,x-h))/(2+h); 5
| £ (c)| < cos(0.6) ~ 0.825335615
while relerr>toler & err>delta &£j<12
h=h/2; for both cases.
D(j+1,1)=(feval (f,x+h)-feval(f,x-h))/(2+h); 4, Let f(x) = €.
for k=i:] (a) Calcuiate approximations to *(2.3) using formuia (10) with 4 = 0.1 and 7 =
D(j+1,k+1)=D(j+1,k)+(D(j+1,k)-D(j,k))/({4"k)-1); 0.01, and compare with f'(2.3) = €23,
end (b) Use the extrapolation formula in (29) to compute the approximations to f'(2.3)
err=abs(D(j+1,j+1}-D(j,j)); in part (a).
relerr=2+err/(abs(D(j+1,j+1))+abs(D(j,j))+eps); {c) Compute bounds for the truncation error (11). Use
=i+l
gnaJ ) O e)-< €25 ~ 12.18249396
(n,n]=size(D}; for both cases.
5. Compare the numerical differentiation formulas (3} and (10). Let f{x} = x° and find
approximations for f'(2).
. ] . . . (a) Use formula (3) with & = 0.05.
Exercises for Approximating The Derivative (b} Use formula (10) with A = 0.05.
(¢) Compute bounds for the truncation errors (4} and (11).
1. Let f(x) = sin(x), where x is measured in radians. 6. (a) Use Taylor’s theorem to show that
(a) Calculate approximations to f'(0.8) using formula (3) with 2 = 0.1, # = 0.01, 2 £
and 2 = 0.001. Carry eight or nine decimal places. fx+h) = fx)+hf (x)+ _f_@, where |¢ — x| < h.
(b) Compare with the value f'(0.8) = cos(0.8). 2
(¢} Compute bounds for the truncation error (4). Use (b) Use part (a) to show that the difference quotient in equation (2) has error of
order O(h) = ~hfP(c)/2.
| f‘3’(c)| < ¢0s(0.7) =~ (.764842187 (¢) Why is formula (3) better to use than formula (2)?
7. Partial differentiation formulas. The partial derivative f;(x, y) of f(x, y) with re-

for all cases.

2. Let f(x)=¢".
(a) Calculate approximations to f(2.3) using formula (3) with 2 = 0.1, A = (
and A = 0.001. Carry eight or nine decimal places.
Compare with the value f7(2.3) = 23,
Compute bounds for the truncation error (4), Use

(b)
(c)

¥ VA e = .

LFPe)| < e** 2 11.02317638

for all cases.

spect to x is obtained by holding y fixed and differentiating with respect to x. Simi-
larly, fy{x, y) is found by holding x fixed and differentiating with respect to y. For-
mula (3) can be adapied to partial derivatives

fx+hy)—fx—hy)
2h
fx,y+h) — f(x.y—h)
2h
(a) Let f(x,y) = xy/(x + y). Calculate approximations to f;(2,3) and f,(2, 3)
using the formulas in (i) with A = 0.1, 0.01, and 0.001. Compare with the
values obtained by differentiating f (x, v) partially.

+ 0D,

flx,y)y=
(i
+ o).

fy(X,}’) =
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(hy T at
vy

_J'f
LAY FACH _}‘}—ﬂ.l\—

U’.’"J where z is in radians. Calculate dppruxlm.mnm

to fx (3,4) and f,(3,4) using the formulas in (i) with & == 0.1, 0.01, and 0.001.
Compare with the values obtained by differentiating f(x, y) partially.

8. Complete the details that show how (33) is obtained from equations (31) and (32}

[+

Loalooe 2 2t

FEnY Choves tlame 1Y 20 ol o
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(a) Find approximations for f'(1.2) using formula (17} with A =
and & = 0.001.

(b) Compare with f'(1.2) = —sin(1.2) = —0.93204.

(¢) Find the total error bound (19) for the three cases in part (a).

[=]
-
-
I
=)
=)
=

9. (&) Show that (21} is the value of £ that minimizes the righi-hand side of (20). i3. Let f(x) be given by the tabie foliowing. The inherent round-off error has the bound
(b) Show that (26) is the value of & that minimizes the right-hand side of (25). lex| <5 x 1078, Use the rounded values in your calculations.
10. The voltage E = E(t) in an electrical circuit obeys the equation E(t) = L(d/d11 +
RI(t), where R is resistance and L is inductance. Use L = 0.05and R = 2 und x| fl) =In(x)
alues for /(1) in the table following.
values for /() in the e following 2.900 106471
2.990 1.09527
rop I 2.999 1.09828
3.000 1.09861
101 8.2277 3.001 | 1.09895
L1y 7.2428 3010 | 1.10194
12| 59908 3000 | 113140
1.3 4.5260
1.4 2.9122
(a) Find approximations for f’(3.0) using formula (17) with £ = 0.1, A = 0.01.
(a) Find I'(1.2) by numerical differentiation, and use it to compute £(1.2). and 4 = 0.001. :
(b) Compare your answer with I(r) = 10e*/1%sin(2r). (b) Compare with f'(3.0) = 7 = 0.33333.
11, The distance D = D{(r) traveled by an obiect is given in the table following (c) Find the total error bound (19) for the three cases in part (a).
14. Suppose that a table of the function f (x;) is computed where the values are rounded
' D(n) off to three decimat places and the inherent round-off error is 5 x 1074, Also, assume
— that | fP(e)] < 1.5and | f ()] < 1.5.
8.0 17453 (a) Find the best step size A for formula (17).
.U L1900 - -
100 | 25752 (b) Find the best step size # for formula (22).
11.0 | 30.301 15. Let f(x) be given by the table following. The inherent round-off error has the bound
12.0 | 35.084 lex] <5 x 107%. Use the rounded values in your calculations.

(a) Find the velocity V(10) by numerical differentiation.
{b) Compare your answer with D{t) = —70 + 7t + 70e~"/10,

12. Let f{(x) be given by the table following. The inherent round-off error has the bound

lex] < 5 x 1076, Use the rounded values in your calculations.

1100 0.45360
1.190 0.37166
1.199 0.36329
1.200 0.36236
1.201 0.36143
1.210 0.35302
1.300 0.26750

x | flx) =cos(x)

1.000 0.54030
1.100 0.45360
1.198 0.36422
1.199 0.36329
1.200 0.36236
1.201 .36143
1,202 (.36049
1,300 0.26750
1.400 0.16997

(a) Approximate f'(1.2) using (22) with & = 0.1 and A = 0.001.
(b} Find the total error bound (24) for the two cases in part (a).
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16. Let f(x) be given by the table following. The inherent round-off error has the bound
lex} < 5 x 1078, Use the rounded values in your calculations.

X fx) =In(x)

2.800 1.02962
2.900 1.06471
2998 1.09795
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.002 1.09928
3.100 1.13140
3.200 [.16315

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS
Numerical Differentiation Formulas

More Central-difference Formulas

The formulas for f'(xp) in the preceding section required that the function can be
computed at abscissas that lie on both sides of x, and they were referred to as central-
difference formulas. Taylor series can be used to obtain central-difference formulas for
the higher derivatives. The popular choices are those of order O{h?) and O (h?) and are
given in Tables 6.3 and 6.4. In these tables we use the convention that f = f (xo+kk)

fork=-3,-2-1,0,1,2.3

jLs ) iy gy 2y

For 1llusr.|ranon, we w111 derive the formula for f”(x) of order O (k?) in Table 6.3

Start with the Taylor expansions

2ent 3 ¢03) 4 £(4)
(1} fa+h=f+hfx)+ P GO BN i GO BN i IO

Algorithms and Programs

1. Use Program 6.1 to approximate the derivatives of each of the following functions
at the given value of x. Approximations should be accurate to 13 decimal places.
Note. It may be necessary to change the values of max1 and the initial value of h in

the program.

(a)
(b)

(c)
@
(e)

Flx) = 60x% —32x33 423325 — 4722 — 77y x = 1/4/3
_ 5 + sin(x) 1445
f{x)=tan (cos( T )),x = 3

f(x) =sin(cos(1/x)}); x = 1/+/2

i3 2 . 1-45
f(x) =sin(x” —7x“+6x+ 8 x = 3
f(x) =x*"; x = 0.0001

2. Modify Program 6.1 to implement the centered formula (10) of order O(h*). Use this
araoram to apnroximate the derivatives of the functions given in Problem 1. Again

program O approximalic L COliyayos LR e ImRAA &

approximations should be accurate to 13 decimal places.

3. Use Program 6.2 to approximate the derivatives of the functions given in Problem 1,
Again, approximations should be accurate to 13 decimal places. Note. It may be
necessary to change the initial values of err, relerr, and h.

Table 6.3 Central-difference Formulas of Order O (h2)

frieyas J1 = 1
s LT
il —2fo+ f-
f (x.g)a% f-1
Oy 2= N1+ 21— fa
S 243
-4 6fh—4f. :
fm)(-fo)*’f2 hit Jin S+ fa

Table 6.4 Central-difference Formulas of Order O (k%)

—H+8f -8+ f 2

! ~
el 12
ey —f2F 16S1 —30fg + 161y ~ fp
[ (xg) o2
£ (xg) —f+8H-BA+1 —8f 2+ /3
’ 8H3
FD(0) —fit12H -390 +56f -39 i +12f 32— f3

6h?

2 6 24
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and
L AC N MG O )
2 6 24

Adding equations (1) and (2) will eliminate the terms involving the odd derivatives
F1x), ), FOx), ...

) fa—-h=fx)-hf(x)+

2h:2 " 4 £(4)
@ fath+fa—h =2+ L@ W0

2 24
Soiving equation (3) for f"(x) yieids
” Fx+h) —2fx}+ fx—h) H!Zf(‘” (x)
e = X -
) B 2}141-(6)():) _____ Zhu—zf(u)(@
6! (2k)! o
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Table 6.5 Numerical Approximations to f”(x) for

Example 6.4
Step Approximation by Error using
size formula (6) formula (6)
h=0.1 —0.696126300 —0.000530409
h=0.01 ~—0.696690000 —0.000016709
h=0.001 —0.696000000 —0.000706709

Error Analysis

Let fr = yx + €x, where e is the error in computing f (xx). including noise in mea-
surement and round-off error. Then formula (6) can be written

e M =20 Y1 |, g
(7 flag)y=——5——+E E(f, h).

If the series in (4) is truncated at the fourth derivative, there exists a valuce « that
lies in [x — &, x + A} so that

fi=2fo+ fa B f9)
h? 12

(5 fxo) =

This gives us the desired formula for approximating £ (x):

f1 2Jo+f—

ﬂ‘

() 7 (xp) =

Example 6.4. Let f(x) = cos(x).

{(a) Use formula (6) with # = 0.1, 0.01, and 0.001 and find approximations to " (0.8).
Carry nine decimal places in all calculations.

(b} Compare with the true value f”(0.8) = — co0s(0.8).
(a) The calculation for # = 0.01 is

F(0.81) — 2£(0.80) + £(0.79)

1 —
f(0.8) = 0.0001

. 0.689498433 — 2(0.696706709) + (.703845316

- 0.0001

~ ~0.696690000.
(b) The error in this approximation is —0.000016709. The other calculations are sumnii-
rized in Table 6.5. The error analysis will illuminate this example and show why A = 0.01
was best. []

The etror term E (h, f) for the numerical derivative (7) will have a part due to round-
off etror and a part due to truncation error:

e~ 2eg + € hzf(4) )
% E(f.h)= %) - 5

If it is assumed that each error ey, is of the magnitude €, with signs that accumulate
erors, and that | @ (x)| < M, then we get the following error bound:

o B S 25+ 13

If & is small, then the contribution 4¢/ h? due to round-off error is large. When A
i~ large, the contribution Mh2/12 is large. The optimum step size will minimize the

quantity
4e  Mh?
() gh) = 15+ 5

Setting g’(h) = O results in —8¢/h3 + Mh/6 = 0, which yields the equation
h' = 48¢/ M, from which we obtain the optimal value:

48¢\ /4
W hen formula (11) is applied to Example 6.4, use the bound | f@ (x)} < [cos(x)| <

e <o ie B e —9 131/4
.= M and the value € = 0.5 x 10~2. The optimal step size is b = (24 x107°/1) L/

1).01244666. and we sek that & = 0.01 was closest to the optimal value.
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Since the portion of the error due to round off is inversely proportional to the square
of h, this term grows when h gets small. This is sometimes referred to as the step-size
dilemma. One partial solution to this problem is to use a formula of higher order so

that a larger value of /2 will produce the desired accuracy. The formula for f”(x) of
order O(h* in Table 6.4 is

OIGET U/ ) 10 2alne .5

—f2+16f1 =30fo +16f_1 — f.2

(12) f"(xo) = Rz +E(f.h).
The error term for (12) has the form

16 h*fO(c)
(13) E(f.‘h)=§71-2-+——9—0—-.

where c lies in the interval [x — 2A, x + 2k]. A bound for |E(f, k)| is
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Table 6.6 Numerical Approximations to f'(x) for
Example 6.5
Step Approximation by Error using
size formula (12) formula (12)
h=10 —{0.689625413 —0.007081296
h=0.1 —0.696705958 —0.000000751
h=0.01 —0.696690000 —0.000016709

Table 6.7 Forward- and Backward-difference Formulas of
Order O(hY)

s o T3fotdfi— S (forward )
(a4 i < 166 BN Flro)™ == difference
4 E{f h)| € == 4+ ——,
B < 355+ 55 o 3fo—Afoit fe2 ({ backward )
where | £®(x)| < M. The optimal value for & is given by the f 1 o Zh aerence/
] < M. is given s
p given by the formula v 2fo=5fitdf-f (forward )
2406, /6 )= h2 difference
(15) h= —E_, . ponm M0 =5f 1 +4f2— 3 backward
S / £OAET K2 \ difference /
Example 6.5. Let f(x) = cos(x). f‘”(—m) ~ —Sfo+18f1—245-+14f3 -3 f4
(a) Use formula (12) with s = 1.0, 0.1, and 0.01 and find approximations to f”(0.8). 2h3
Carry nine decimal places in all the calculations. O oy s S0 T 1BF-1 +24f3 — 14f 3 +3f 4
(b) Compare with the true value f"(0.8) = — cos(0.8). o Zn
(¢) Determine the optimal step size. F® ()~ 3fo—1401+26f2 —24f3 + 114 = 2fs
{a) The calculation for 4 = 0.1 is ke
3fo—14f_y +26f 2 —~24f 3+ 1154 —2fs
PLUIIE atl2 m

£7(0.8)
= f(1.0)+ 16£(0.9) — 301 (0.8) + 16 £(0.7) — £(0.6)
0.12
_ —0.540302306 -+ 9.945759488 — 20.90120127 + 12.23747499 — 0.825335615

0.12
= ~0.696705958.

{b) The error in this approximation is ~0.000000751. The other calculations are summa-
rized in Table 6.6.

() When formula (15) is applied, we can use the bound If(6)(x)| < |cos(x)! < | = M and
the value ¢ = 0.5 x 107, These values give the optimal step size h = (120x 10~9/1)1/6 =
0.070231219 n

Generally, if numerical differentiation is performed, only about half the accuracy
of which the computer is capable is obtained. This severe loss of significant digits will
almost always occur unless we are fortunate to find a step size that is optimal. Hence
we must always proceed with caution when numerical differentiation is performed.
The difficulties are more pronounced when working with experimental data, where

the function values have been rounded to only a few digits. If a numerical derivative

must be obtained from data, we should consider curve fitting, by using least-squares

iechniques, and differentiate the formula for the curve.
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iation of the Lagrange Polynomiai

If the function must be evaluated at abscissas that lie on one side of Xp, the centra -
difference formulas cannot be used. Formulas for equally spaced abscissas that lie t
the right (or left) of xp are called forward (or backward) difference formulas. Thes.
formulas can be derived by differentiation of the Lagrange interpolation polynomia.

Some of the common forward- and backward-difference formulas are given in Ts-

bie 6.7.

Example 6.6. Derive the formula
2fo=54 +4f2 -5

!'I"

S (xp) =
Start with the Lagrange interpolation polynomial for 7(z) based on the four points xg.
X1, x2. and x3.

(= x)( ~ x3){t — x3) {t —x)(t — x2){(t — x3)
(x0 ~x1){xo —x2)(xp — x3) 7 (x1 — xp)(x1 — x2)(x] — x3)

) = fo
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Example 6.7. Derive the formula

woo o, o+ 18f1 =24+ 14f5=3f4
f (x0) & 43 -

based on the five pOll’lIS X0.

Start with the Lagrange interpolaiion polynomial for f(¢)
X1, X2, X3, and X4.
(# — x )t — x2)(F — x3)(t — xq)
(xo = x1){xo — x2}(xp — x3)(xp — x4)

{t — xo)(t — x2)(t — x3)(t — x4)
(x1 — x0)(x1 — x2)(x; — x3)(x] — x4)
(t —x0)(t — x1)(# — x3){t — x4)
(x2 - x0)(x2 — x1)(x2 — x3)(x2 — x4)
(r — xo)(t — x1)(t — x2)(t — x4)
(x3 — xo)(x3 = x1)(x3 — x2)(x3 — X4)

¢
+ fa

(x4 — x0)(xa — x1)(xa4 — x2)(x4 — x3)

+ fi
+ f2
+/f3

- M -2 -
—xg){t = 21t — 323t — x3)

. (t = x0)(t = x1)(t — x3) ; (= x0)(t = x)(t — x2)
Sz — x0)(e2 — X)Xz — x3) 72 (x3 — x0)(x3 — x1)(x3 — x2)°

Differentiate the products in the numerators twice and get

e =x))+ ¢ —x)+ G —x3) ¥ HE —xo)+ ¢t —~x)+ — x3))
{x0 — x1 X(xo — x2)(xp — x3) {x1 — xo)(x1 — x2)(x1 — x3)
2((t — x0) + (¢ — x1) + (£ — x3)) 2((t —x0) + (0 ~ x1) + (t — x2))

+f2 - + f3
(xz — xo}(x2 — x1)(x2 — x3) {x3 — xp){x3 — x1)(x3 — x2)
Then substitution of 1 = g and the fact that x; — x j = (i — j)& produces
2((xo = x1) + (xo — x2) + (xp — x3))
F(xo) =~ f;

(x0 — x1)(xp — x2)(xg — x3)
2((x0 — xq) -+ (x0 — x2) + (xp — x3))
(x1 — x0)(x1 — x2)(x) - x3)
2((x0 — x0) + (x0 — x1} + (xg — x3))
(2 = xp)(x2 ~ x3)(x2 — x3)
2((xo — x0) ++ (xo — x1) + (x0 — x2))
(x3 — xo}(x3 — x1)(x3 -- x3)
£ 2U—R) +(=2R) + (=3R))  , 2((0) + (=2k)} + (—3h))
ST e T e
20000+ (=h) + (<3R)) | . 2((0) + (—h) +(—=2k))

+ N

+ f2

+fs

£

R T 7 Yo e e Ty TOYT3)
_ 12h —10h ~8h —6h _ 2f0—-5f1i+4f —
T R

and the formula is established. ]

Differentiate the numerators three times, then use the substitution x; - x; j = ({ — j)hinthe
denominators and get

6((t —x1)+ (¢ —x2) + (¢ — x3) + (£ — x4))

Fr0 = fo (~R)(—2h)(—3h) (—4h)
+A 6((t —x0) + (r —x2) + (t —x3) + (¢ — xq))
(hY(—h)(—2h)(~3h)
+ f26((t —xp) +(F—x))+ @ ~x3)+ (@ — x4))
(Rh)(hY(—h)(2h)
+f 6t —5)+ @~ x1) + G —x) + (¢ — x4))
(3R)(Zh)(R)(—h)
+ f46((t —x0)+{—x)}+(F—x2)+ (t — xs))‘
(4h)(3R)(2h) (h)
Then substitution of ¢ = xg in the form ¢ — x; = xg — x; = — jA produces

6((—h) + (—2h) + (—3k) + (—4h)) +f 6((0) + (=2h) + (—3h) + (—4h))

fm 6;0) ~ fo

24h% —6h4
6((0) + (—h) + (~3h) + (—4h)) 5 6((0) + (—h) + (—2h) + (—4h))
+ pye; —6h
6((0) + (—h) + (~2h) + (~3h))
+fa 24h8 '
60k 54h —36h
= fogg + figa T T+ fig 6h4 e
—5fn+ 1841 ~ 24/, + 14f=| -3fs
2h3 !
and the formula is established. ]
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Differentiation of the Newton Polynomial

In this section we show the relationship between the three formulas of order € (h2) for
approximating f’(xo), and a general algorithm is given for computing the numeri. .;
derivative. In Section 4.3 we saw that the Newton polynomial P(¢) of degree N =2
that approximates f(z) using the nodes #o, t;, and 1 is

(16) PH)y=ap+a1(r —50) +ax(t —t0)(t — 1),
where ag = f(to), a1 = (f(ty) — f(t0))/(#1 ~ tg), and
f@)—fn)  fo) = flw)
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\\ hen these values are substituted into (18), we get

: - - h) +2f(x)— flx—h
P,(x):f(x+h; f(x)+ flx+ )+2.l;kx) flx )_

This is simplified to obtain

flx+h)— flx—h)

2% ~ f),

209 Pl(x)=

w 1ich is the second-order central-difference formula for f'(x).

az = hoh -t Case (iii): If tg = x, 1y = x — h,and t = x — 2, then
(22 — to)
The derivative of P(r) is ay = fx)— flx—h)
h *
(7 Pty =a) + ax((t — 10) + (t — 11)), Fx)—2f(x — h) + fx — 2h)
ap = .
and when it is evaluated at ¢ = ¢y, the result is 2

18) Pl(tg) = a1 + az(to — t1) = f'(to).

Observe that the nodes {#] do not need to be equally spaced for formulas (16)
through (18) to hold. Choosing the abscissas in different orders will produce difference
formulas for approximating f'(x).

Case (i): If 9 = x,t) = x + h, and t; = x -+ 2h, then

SR = f®)
a) = I —
S =2f(x+h)+ f(x +2h)
az = T% ;
When these values are substituted into (18), we get

fa+h) - f&x) | —fQX)+2f(x+h)— f(x+2h)
A + N :

P(x)=

This is simplified to obtain

-3 -
(19) Plx) = fx) +4f(x2-’|; h) — f{x +2h) ~ ).

O PR S |

which is the second-order forward-diiference formulia for f/(x).
Case (i) fro=x,h =x+h,andt; = x — Ak, then

_flx 4Ry - f)
ap =
Flx+h)=2f(x)+ flx —h)
ap =
252

I'hese values are substituted into (18) and simplified to get

" piry = LD ARSI

which is the second-order backward-difference formula for f/(x).

The Newton polynomial P(r) of degree NV that approximates f (#) using the nodes
T Ly ooy IN iS

by PO=atait—io) +axt—0)t—1)
Faz(t —t)t — 1)t —12) + -+ an(t —tg) -+ {t — tn=1).

The derivative of P(t) is

Pi(t) = a1 + ax({t — o) + (t — 11))

+a (- —n)+ - -)+a-1)F —-n))

) 1:':‘1 N-1
+otan Y [Je—1.
k=0 j=0
JFk
When P/(r) is evaluated at t = fg, several of the terms in the summation are zero.
and P’(tg) has the simpler form

Plgy=a1+ato —n)+azlto— 1) —12) +---

24 -
4 + anliog — t){(to — 12) (20 — 13} - - - (f0 — tN—1)-
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The kth partial sum on the right side of equation (24) is the derivative of the Newtar.
polysomial of degree k based on the first & nodes. If

Mo—nl<lo—tal < - <lo—tyl, andif {00},

forms a set of N + 1 equally spaced points on the real axis, the kth partial sum is an
approximation to f(zp) of order O (h*~1).

Suppose that N = 5. If the five nodesare y = x + hk fork =0, 1, 2, 3, and 4.
then (24) is an equivalent way to compute the forward-difference formula for f'(x) o”

order Q(h*). If the five nodes {} are chosentobetg = x, 1 = x +h, tp = x — h.
t3=2x 4+ 2h, and ty = x — 2k, then (24) is the central-difference formula for f {x) o

3 = A &ty QLG I &L, WISl i & iz L0 CONA-ClLLICICNLE 01 g 10D

order 0(!14). When the five nodes are t;, = x—kh, then (24) is the backward- dlfferencc
formula for f/(x) of order O (h*).

The following program is an extension of Program 4.2 and can be used to imple-
ment formula (24). Note that the nodes do not need to be equally spaced. Also, it
computes the derivative at only one point f”(xp).
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nl=length(A)-1;
for k=2:n1
prod=prodx* (x0-X(k));
df=df+prod#*A (k+1);
end

Exercises for Numerical Differentiation Formulas

339

1. Letf(x) = In(x) and carry eight or nine decimal places.
(a) Use formula (6) with & = 0.05 to approximate f"(5).
(b} Use formula (6) with / = 0.0l to approximate f”(5).
(¢} Use formula (12) with # = 0.1 to approximate £”(5).
(d) Which answer, (a), (b), or (c), is most accurate?

2. Letf(x} = cos(x) and carry eight or nine decimal places.

Program 6.3 (Differentiation Based on N + 1 Nodes). To approximate f’(x)
numerically by constructing the Nth-degree Newton polynomial

P(x) = ap + a;(x — xp) + az(x — xg)(x — x1)
+as(x ~xp)(x —x){x —x2)+ - +an(x —xg) - {x —xn_1)

and using f'(xg) = P’(xp) as the final answer. The method must be used at xp.

The points can be rearranged {xi, X0, . - . » Xk—1, Xk+1, - - - X¥ } to compute f'(x;) =~
P'{xg).
.
function [A,df]l=diffnew(X,Y)
%Input - X is the 1xn abscissa vector
% - ¥ is the 1xn ordinate vector
%Output - A is the 1xn vector containing the coefficients of
% the Nth-degree Newton polynomial
% - df is the approximate derivative
A=Y;
N=length(X);
for j=2:N

for k=N:-1:j
AR)=(A(K)-ACk-1)) /(X(k)-X(k-j+1));
end
end
x0=X{1};
df=A(2);
prod=1;

(ﬂ) Use fonmula {ﬁ) with s — 005 to apprgximafn f”ﬂ).
(b} Use formuia (6) with 2z = 0.01 to approximate f”(1).
(¢) Use formula (12) with # = 0.1 to approximate f*(1).
(d) Which answer, (a), (b) or (c) is most accurate?

x| f(x) =In(x)
490 1.5892
4.95 1.5994
5.00 1.6094
5.05 1.6194
5.10 1.6292

(a) Use formula (6) with 2 = 0.05 to approximate f”'(5).
(b) Use formula (6) with # = 0.01 to approximate f"(5).
(e) Use formula (12) with & = 0.05 to approximate 77 (5)
(d) Which answer, (a), (b), or (c), is most accurate?

4. Consider the table for f(x) = cos(x) rounded to four decimal places.

x | f(x) =cos(x)
0.90 0.6216
0.95 0.5817
1.00 0.5403
105 0.4976
1.10 0.4536
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() Use formula (6) with & = 0.05 to approximate f"(1).
(b) Use formuia (6) with # = 0.01 to approximate f"(1).
(¢) Use formula (12) with # = 0.05 o approximate £”(1).

FF R § ¥4 PR T L S £ EE U S N Y1
ay  vwindn answer, (aj, \0}, Or {C), IS Most accuraie’

. Use the numerical differentiation formula (6) and & == 0.01 to approximate f”(1) for

the functions

(@ flo=4x" (b fo)=x*

. Use the numerical differentiation formula (12) and A = 0.1 to approximate £”(1) for

the functions

(@ fl)=x* (b) fx)=x°

. Use the Taylor expansions for f{x + &), f{x — h), f{x + 2k), and f(x — 2h) an

derive the central-difference formula:

o JEH2R) - 2f (xR 2f(x —h) ~ flx —2h)
FP) e :
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13. The numerical solution of a certain differential equation requires an approximation to

F"(x) + f'(x) of order O(h%).

(a) Find the central-difference formula for f"(x) + f'(x) by adding the formulas
for f'(x) and F"(x) of order O(h?).

(b) Find the forward-difference formula for f”(x) 4 f'(x) by adding the formulas
for f'(x) and f”(x) of order O (h?).

(¢) What would happen if a formula for f'(x) of order O Yy were added to a
formula for £ (x) of order O(h%)?

14. Critique the following argument. Taylor’s formula can be used to get the representa-

tions
Kf'x) | BP0
2 T

fax+m=f&)+hrf )+

and

hzf”(x) B :h3f(3](c)

Flr=h) = F(x)—hf (x)+

10.

1L

12

. Use the Taylor expansions for f(x + k), f(x — h), f(x + 2h), and f(x — 2k) and

derive the central-difference formula:

Flyn JEFZW @R + 6 () —4f(x —B) + fx — 20)
hA ‘
. Find the approximations to f’(x¢) of order €}(4%) at each of the four points in the
tables.
@) (b)
x f@® x fix
0.0 0.989992 0.0 (.141120
0.1 0.999135 0.1 0.041581
0.2 0.998295 02 -0.058374
0.3 0.987480 0.3 =0.157746

Use the approximations

g h ,.‘_,i"_:fg ’ h ,vfo_f—l
f(.r+5)~ - and f(x—z)‘v_h

and derive the approximation

noon o JL=2f0+ o
fiix) = —r
Use formulas (16) through (18) and derive a formula for f'(x) based on the absciss:.
o o= v F. o — v L B oand i — v 1 1AL
g = A,ii = X va,all i = X + Ji.

Use formulas (16) through (18) and derive a formula for f'(x) based on the abscissus
to=x,ty =x—h,and ) = x 4 2h.

v

2 6
Adding these guantities results in

Fa+m) + fle—h) =2f(x)+ K f"(x),
which can be solved to obtain an exact formula for £”(x):

hy ~2 —~h
pron = LEHR =20+ S

Algorithms and Programs

1. Modify Program 6.3 so that it will calculate P'(xy) forM = 1,2,... . N+ 1.
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Tabie 7.1  Values of ®(x)
X P(x)
1.0 0.2248052
2.0 1.1763426
3.0 2.5522185
4.0 3.8770542
50 4.8998922
6.0 5.5858554
7.0 6.0031690
8.0 6.2396238
9.0 6.3665739

10.0 6.4319219

y=f®) =1/ —1)for0 <t <5 (see Figure 7.1). The numerical approximation
for ®(5) is

Numerical integration is a primary tool used by engineers and scien?ists to obtain ap-
proximate answers for definite integrals that cannot be solved anatytically. In the are
of statistical thermodynamics, the Debye model for calculating the heat capacity of
solid invoives the foilowing funciion;

x t3
= dr.
®(x) fo el —1

Since there is no analytic expression for ®(x), numericai integration musi be uséc o
obtain approximate values. For example, the value ®(5) is the area under the curve

L5t
y=fl)

IS

05 \

t Figure 7.1 Area under the curve
y=f{)for 0=t <3

342

7.1

343
D(5) = / ——— dr 7= 4.8998922.
o e —1

Each additional value of ¢ (x) must be determined by another numerical integration
Table 7.1 lists several of these approximations over the interval [1, 101

The purpose of this chapter is to develop the basic principles of numerical inte-
gration. In Chapter 9, numerical integration formulas are used to derive the predictor-

corrector metheds for solving differential equations.

Introduction to Quadrature

Wenow approach the subject of numerical integration. The goal is to approximate the
definite integral of f(x) over the interval [q, b] by evaluating f(x) at a finite number
of sample points.

Definition 7.1.  Suppose thata = xp < x| < --- < xp = b. A formula of the form

M
() QU= wnfm0) = wof (o) + wi F 1) + -+ + war Fxn)

k=0

With the property that

b
@ [ rodx = o151+ EL£1

Ja
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is called a numerical integration or quadrature formula. The term E[ f] is called th
truncation error for integration. The values {x;} ,’:”=o are called the quadrature nodes

and {wx }ﬁ_ o are called the weighis. i

Depending on the application, the nodes {x;} are chosen in various ways. For the
trapezoidal rule, Simpson’s rule, and Boole's rule, the nodes are chosen 1o be equally
spaced. For Gauss-Legendre quadrature, the nodes are chosen to be zeros of certair
Legendre polynomials. When the integration formula is used to develop a predicto
formula for differential equations, all the nodes are chosen less than b. For all applica-
tions, it is necessary to know something about the accuracy of the numerical solution.

Definition 7.2. 'The degree of precision of a quadrature formula is the positive inte-
ger n such that E{F;] = O for all polynomials P;(x) of degree i < n, but for which
E[Pny1]) # 0 for some polynomial P4 {x) of degreen + 1. A
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(c) (d)

pens when Jf(v\ 152

polynemizai. Consider the arbitrary polynomial
Py=ax' a1 x . fax +ag

of degree i If i < n, then P""(x) = 0 for all x, and PV (x) = (n + 1)la,_; for
all x. Thus it is not surprising that the general form for the truncation error term is

(3) E[fl=Kf"

where K is a suitably chosen constant and # is the degree of precision. The proof of
this general result can be found in advanced books on numerical integration.

The derivation of quadrature formulas is sometimes based on polynomial interpo-
lation. Recall that there exists a unique polynomial Py(x) of degree < M passing
through the M + 1 equally spaced points {(x, yk)}f: o When this polynomial is used
to approximate f (x} over [a, &], and then the integral of f(x) is approximated by the
integral of Pp(x), the resulting formula is called a Newton-Cotes quadrature formuia
(see Figure 7.2). When the sample points xo = a and x3; = b are used, it is called a
closed Newton-Cotes formula. The next result gives the formulas when approximating

poiynomials of degree M = 1, 2, 3, and 4 are used.

Theorem 7.1 (Closed Newton-Cotes Quadrature Formula). Assume that x;, =
X -+ kh are equally spaced nodes and f; = f(x;). The first four closed Newton-Cotes

Figuf'e 7.2 .(a) 'I'l}e trapezoidal rule integrates y = P, {x) over [xa, x1) = [0.0,0.5].
(b) Stmpson’s rule integrates y = Py(x) over [xo, ;] = [0.0, 1.0} (c) Simpson’s 3 rule
integrates y = P3(x) over [xg, x3] = [0.0, 1.5]. (d) Boole's rule integrates y = Py(x)
over [xg, x4] = [0.0, 2.0).

quadrature formulas are

[ h
4) /. Fx)dy = E(ﬁ; + fi) (the trapezoidal rule).
" 5
&) . Fflx)dx ~ FUo+4fi+ f2) (Simpson’s rule),
*3 3h 1
) . flxydx ~ “8—(f0 +3fi+3/2+ f) (Simpson’s 2 rule),

x 2h
0 f Py dx = =T fo+32f1 + 12f, + 325+ 74
X

(Boole’s rule).

!..:“em!!ary 7.1 (Newton-Coies Precision). Assume that F(x) is sufficiently differen-
h.able; then E[ f ]. for Newton-Cotes quadrature involves an appropriate higher deriva-
tive. The trapezoidai rule has degree of precision n = 1. If f € C?[a, b], then

® [" 7
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Simpson’s rule has degree of precision n = 3. If f € C*[a, b], then
2 h B @

” ./;D f(x)a'x=§(f0+4f1+f2)—*§af (c).
$impson’s 3 rule has degree of precision n = 3. If f € C*[a, b), then

= 3h 3n°

=2 - — 2 f9).

10y jm feydx=T(h+3h+3a+ -5 f
Boole’s rule has degree of precisionn =5, I f € C%a, b, then

x 2h 8h7 6
{n f ' fxydx = ;E(7fo +32Hi+ 12f2+32fa+Tfa) — Ef (0).
X0
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Since fo, f1, and £ are constants with respect to integration, the relations in (13) lead

(13)
/"‘f(x)dx v fo/ 2o —x1)Mx —xp) dx + A
L] X

0 (xo — x1){xg — X2}

X2 _ _
+f2/ _—_(x x0) (x {idx

0 (2 —xp)(x2 — x1)

x (X1 —x0)(x; — x3)

We introduce the change of variable x = X0 + kt with dx = h df to assist with

the evaluation of the integrals in (15). The new limits of integration are from ¢t = 0 to
t= 2. The equal spacing of the nodes Xk = xo + kh leads to x; — x; i =k — jyh and
X = x; = h(t — k), which are used to simplify (15) and get

Proof of Theorem 7.1.  Start with the Lagrange polynomial Pas(x) based on xo, %4,

., Xy that can be used to approximate f(x):
M
(12) fo) = Py(xy=3_ filya(®),
k=0

where fr = f(x;) fork = 0,1, ..., M. An approximation for the. il}tegral isol:g-’
tained by replacing the integrand f (x) with the polynomial Py (x). This is the genera
rnethod for obtaining 2 Newton-Cotes integration formula:

Xpm XM
f f(x)dx%/ Py(x)dx
X0 xQ

X M M Xy
=f ! ):kaMk{.x) dx = Z ([ kaM,k(x)dx)
) 0 k=0 ' k=0 \ %o

M X M
=Y ([ ’ LM.k(x)dx) fe="_ wifi.
k=0 \Wxo i=0

The details for the general pmof of (13) are tedious. We shall give a sa.mple preof:

s e
R T . S
casc = case invoives the a TOXimiaeidn
of almpson 5 rule, which is the case M 2. This case Pp

polynomial

(14)

| > N VL S o

)= Jjo
P G — X (xo — x2)

x-—xipx—x) |, (x=—xp)(x—x2) | (x—x)(x — %)
T = xex —x2) e — x0) (k2 X))

(18
R(r— l)h(f h(r—O)h(r—2)
dx ~
j- fdx~ ff TR 2h) ff wCm "
h(t -MAa(r-1
+ff (2h)(h) — T hdt

2 2
=f05/ (=3 +2)dr»-flkf (gzﬁzt)dt_f_fzﬁ/ t* = ndr
0 2 Jo

hfd 32 ) ( )‘—2
:foz \‘S_—T-I-Zt — fih _.b[

A3 22
-1‘ fz— (_ B ._)
2\3 2 -0
h (2 -4 h /2
=3 (5) ik '\?) i (5)

h
= g(fo +4f1+ f2),

I:_O
=2

and the proof is complete. We postpone a sample proof of Corollary 7.1 until Sec-

fon 72, i

Bxample 7.1.  Consider the function F(x) =1+ e *sin(4x), the equally spaced quadra-
ture nodes xo = 0.0, x; = 0.5, X2 = 1.0, x3 = 1.5, and x4 = 2.0, and the corre spond-
Ing function values fy = 1.00000, Ji = L35152, f = 0.72159, f3 = 0.93765, and

j‘. = 1.13390. Apply the various quadrature formulzs (4) through (7).
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The step size is h = 0.5, and the computations are

0.5 0.5
fx)dx = ——(1.00000+ 1.55152) = 0.63788
10 0.5
j flxydx = (] 00000 + 4(1.55152) + 0.72159) = 1.32128
0

1.5
flxydx = 3(8‘ )(1 00000 + 3(1.55152) + 3(0.72159) + 0.93765)
0
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y
y=Flx) Y =)
1.5 1.5
os4 . . 0-51 j
R D . J . |

4 ? T o T

00 02 04 06 08 1.0 00 02 04 06 08 10

= 1.64193
{2} ()
20 PR ] 2(0‘5) P TR N8 2T Y a1 ES1E° 130 7180
j Fix)dx = s {7(1.00000) + 32(1.55152) + 12{0.7215%)
0
+ 32(0.93765) 4 7(1.13390}) = 2.29444. L Yyt
.. 1.5 1 E -
It is important to realize that the quadrature formulas (4) through (7) applied in the R 1.5
above illustration give approximations for definite integrals over different intervals. Loq- _ 1.0 9 :
The graph of the curve y = f(x) and the areas under the Lagrange polynomials y = o540 o —~y—
. . . B N ‘5 -
Prtxy, vy = Py(x), y = P3(x), and y-= Ps(x) are shown in Figure 7-2(a) through (d), s
respectively. = AL — - e x
00 02 04 06 08 19 g0 02 064 06 08 1.0

In Example 7.1 we applied the quadrature rules with £ = 0.5. If the end points
of the interval {a, b] are held fixed, the step size must be adjusted for each rule. The
stepsizesare h = b —a,h = (b —a)/2,h = (b —a)/3, and h = (b —a)/4 for the
trapezoidal rule, Simpson’s rule, Simpson’s g 2 rule, and Boole’s rule, respectively. The
next example illustrates this point.

Example 7.2. Consider the integration of the function f{(x) = 1 + ¢ sin{4x} over the

fixed interval [a, b] = [0, 11. Apply the various formuias (4) through (7).
For the trapezoidal rule, A = 1 and

{
] f@dx = SO+ F()
1]

= %(1.00000 +0.72159) = 0.86079.

For Simpson’s rule, # = 1/2, and we get
foj Feoydx ~ %%(f(O) Fafh) + F()
= %(1.00000-4- 4(1.55152) + 0.72159) = 1.32128.
For Simpson's % rule, h = 1;3, and we obtain
/ fax w24 2B r@+37G)+37G) + £0)

(1.00000 + 3(1.69642) + 3(1.23447) + 0.72159) = 1.31440.

oat--

() )
Figure 7.3 (a) The trapezoidal rule used over [0, 1] elds the approximation 0. 86‘37°

(b) Simpson’s rule used over [0, 1] yields the approximation 1.32128. (c) Simpson's
n:lle used over [0, 1] yields the approximation 1.31440. (d) Boole’s rule used over [0, 1 |
yields the approximation 1.30859.

For Boole's rule, # = 1/4, and the result is

! 2(1/4
fof(x)dxz—(4~5{-—)(7f(0)+32f@+12f(%)+32f(3)+7fu;)

1
= %{7(1.00000) +32(1.65534) 4+ 12(1.55152)
+ 32(1.06666) + 7(0.72159)) = 1.30859.
“The true value of the definite integral is

1 .
2e — 4 cos(d) —
J£ fo)dx = = CC';;E) Sind) _ | 3082506046426 ...

and the approxinpation 1.30859 from Boole’s rule is best. The area under each of the La-
grange polynomials Py(x), P2(x), P3(x), and P4(x) is shown in Figure 7.3(a) through (d),
respectively. «

To make a fair comparison of quadrature methods, we must use the same number of
function evaluations in each method. Our finai example is concered with comparing
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integration over a fixed interval [a, b] using exactly five function evaluations f; —
f (x), fork = 0, 1, ..., 4 for each method. When the trapezoidal rule is applied \n
the four subintervals fxg, x1], [x], x2], [x2, x3], and [x3, x4], it is called a composite
trapezoidal rule:

[Mf(,x)dxz [n fx)dx + [xzf(_x)dx-l— [XB flxydx+ {Mf(x)d\

an X0 X] X2 X3

h h
a7 wg(fo+f1)+%(fn+fz>+5(fz+15)+5(fs+f4)

h
= 5(fo+2fl +2f2+2f+ fa).

Simpson’s rule can also be used in this manner. When Simpson’s rule is applied on the
two subintervals [xg, x2] and [x2, x4], it is called a composite Simpson’s rule:

x. x2 X4
f4f(x)dx=‘}r f(x)dx-}—f fx)dx
B X0 x
h

(Jo+4f1 +2) + U2 +473+ Ja)
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y

y=flx)

A r=::§
1
-
035pF 05
: { I3 r iy
.00 0.25 0.50 0.75 £.00 0.00 0.25 0.50 0.75 1.00
(a) (b)

Figure 7.4 (a) Thc composile trapezoidal rule yields the approximation 1.28358.
1b) The composite Simpson rule yields the approximation 1.30938.

Thy trme valna oftha d g5
i ~ 1 ES

(18) PRIy e rue value o1 tne integral is
3 3
H . {1 2le—4cos(h—sint4)
= Z(fo+4fi +2f2+4fs+ fO). J, f@dr= T7e = 1.3082506046426 ...,

The next example compares the values obtained with (17), (18), and (7).

Example 7.3. Consider the integration of the function f(x) = 1 + e™*sin(4x) over
fa, b] = [0, 1]. Use exactly five function evaluations and compare the results from the
composite trapezoidal rule, composite Simpson rule, and Boole’s rule.

The uniform step size is # = 1/4. The composite trapezoidat rule (17) produces

Jf’ Faydx ~ 20+ 27 + 25D +2F ) + 1)
Q

1
= §(1.000‘.’)0 + 2(1.65534) + 2(1.55152) 4 2(1.06666) + 0.7215%
= 1.28358.

Using the composite Simpson's rule (18), we get

! . /4 ] ) i
Fdx L +af) + 2B +4£ ) + £
O

= Tli(l.OOOOO + 4(1.65534) 4- 2(1.55152) +- 4(1.06666) + (

= 1.30938.
We have already seen the result of Boole’s rule in Example 7.2:

1
f fxyds = 2—(1?(7;%0) +32f (1) + 1201 +32f P +7£ Q)

= 1.30859.

and Fhe approximation 1 .3_0938 from Simpson’s rule is much better than the value 1.28358
obtained from the trapezoidal rule. Again, the approximation 1.30859 from Boole's rule is
closest. Graphs for the areas under the trapezoids and parabolas are shown in Figure 7.4(a)

OIas dIE | e J.aa)

and (b), respectively. n
Example 7.4, Determine the degree of precision of Simpson’s % rule.
It will suffice to apply Simpson's % rule over the interval [0, 3] with the five test func-

tons f(x} = 1, x, x% x7, and x*. For the first four functions, Simpson’s 3 rule is exact,

3
3
/0 ldx=3 =§(1 +3()+3D)+ 1)

3
/ xdx
0
3
f x2dx
0

f3x3dx—81_3(0 31 3 ~
A =773 + 3(1) + 3(8) + 27).

9 3
3 =30+30+32)+3)

3
9= 5(0 +3(D)+34)+9)

the function f(x) == x* is the lowest power of x for which the rule is not exact.

3
. 243 99 3
Xdx=— 1 = - .
fn x =55~ = 20+ 3(1) +3(16) +81).

U . U Y T . 3 . ~
TECISION Of SImpson’s § rieis n = 3. -
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Exercises for Introduction to Quadrature

o
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Determine the degree of precision of the trapezoidal rule. It will suffice to apply the

— trapezoidal rule over [0, 1} with the three test functions f(x) = 1, x, and x2,
1. Consider integration of f{x) over the fixed interval [a, 5] = [0, 1]. Apply the v: us o. Determine the degree of precision of Simpson’s rule. It will suffice to apply Simp-
qn“d;ature formulas (4) through (7). The stepsizesare h = Lh= 4, h =1 1d son’s rule over [0, 2] with the five test functions f(x) = 1, x, x%, x3, and x*. Contrast

h = Z for the trapezoidal rule, Simpson’s rule, Simpson’s g 3 rule, and Boole’s e
respectively.
(a) f(x)=sin(mx)
{(b) f(x)=14e *cos(4x)
(€)  flx) =sin(/x)
Remark. The true vaiues of ihe definite iniegrais are (a) 2/7 = 0.636619772367...,
(b) (18¢ — cos(4) + 4sin(4))/(17e) = 1.007459631397..., and (c) 2(s1n(l) -
cos(1)) = 0.602337357879 . ... Graphs of the functions are shown in Figures 7.5(a)
through (c), respectively.

2. Consider integration of f(x) over the fixed interval {a. ] = [0, 1]. Apply the various
quadrature formulas the composite trapezmdal rule (l’?) the composxte Sunpson %

your result with the degree of precision of Simpson’s % rule.

7. Determine the degree of precision of Boole's rule. It will suffice to apply Boole’s rule
over [0, 4] with the seven test functions f{x) =1, x, x2, x3 x% x5, and x.

8

The intervals in Exercises 5. 6, and 7 and Example 7.4 were selected to simplify the
calculation of the quadrature nodes. But, on any closed interval [a, b] over which
the funciion £ is integrable, each of the four quadrature niles {4) through (7) has the
degree of precision determined in Exercises 5, 6, and 7 and Example 7.4, respectively.
A quadrature formula on the interval [a, #] can be obtained from a quadrature formula

on the interval [c, 4] by making a change of variables with the linear function

¥

h—n ad — be

= —-—-——: - .
x =g(t) +

The umform step size is i = I
(a) f(x)=sin(rx)
(b) f(x)=1+ e Fcos(dx)
(€  f(x) = sin(/x)

3. Consider a general interval [a, #]. Show that Simpson’s rule produces exact resules
for the functions f(x) = x2 and f{x) = x?; that is,

3 3 4 4
b 2 b a b 3 _ b a
@ [fyxtdx== -3 ) [Pxidx=— -
4. Integrate the Lagrange interpolation pelynomial
X — X X —Xp
Pix) = fo + fi—
xg — X1 X| — Xo

over the interval [xp, x) ] and establish the trapezoidal rule.

¥ ¥y y
1.0 /-\\ 2.0 I«\ 1.0 I
0.5 1.0 \ 05 l/
o\ . |
0.0 05 1.0 0.0 0.5 1.0 00 0.5 1

(@) (&) €}
Figure 7.5 (a) y =sin(wx), (b) y = 1 + e¥ cos(4x), (¢} y = sin(/x).

b—a
wheredx-_-d_

(a) Verify that x = g(¢) is the line passing through the points {(c, a) and (d, ).

(b) Verify that the trapezoidal rule has the same degree of precision on the interval
[a, &] as on the interval [0, 1]

(¢) Verify that Simpson’s rule has the same degree of precision on the interval [a. b)
as on the interval [0, 27,

(d) Verify that Boole’s rule has the same degree of precision on the interval [a, b]
as on the interval [0, 4].

§. Derive Simpson’s % rule using Lagrange polynomial interpolation. Hint. After chang-
ing the variable, integrals similar to those in (16) are obtained:

X3 ho3 h 3
f f(x)dxm-fo—f(t— 1 — 2)(¢ -—3)dt+f|—[(t—ﬂ)(t——ll)(t-3)dt
Yo 6 Jo 2

ko3 hof3
—ng/(r—O){t—l)(t --3)dr+f3— [(f——O)(:—])(r—Z)dr
0

=3 1=3
h (—r“ 5 112 ) h (:4 5¢3 )
=i [T 42— = v L2 43
fo 3 + 5 + + fis 3 + -
\ /=0 7 =0
3 =3
N f -4 - ar 32\|" + 7 hofr* ) !
2\d T3 T2 s\
=0 r=0
)1, Derive the closed Newton-Cotes nua{l_rag_yg formnla, based ona i Lagrange approxi-

matin, polynorma] of degree 5, using the 6 equally spaced nodes x; = xo-+4h, where
k=0,
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11. In the proof of Theorem 7.1, Simpson’s rule was derived by integrating the second-
degree Lagrange polynomial based on the three equally spaced nodes xg, x1, and x3.
Derive Simpson’s rule by integrating the second-degree Newton polynomial based or.
the three equally spaced nodes xg. x1, and x3.

Composite Trapezoidal and Simpson’s Rule

An intuitive method of finding the area under the curv

hnt aran swith o camiac AF trnmamaida thas 12
at aiva wiul a SUrIits Ul UdpCcZoids uia

-

hy annravimatino
Oy approximaling

(e, xp1]}

=
e

Theorem 7.2 (Composite Trapezoidal Rule). Suppose that the interval {a, #] is
subdivided into M subintervals [xy, xx+11of width 4 = (b—a)/M by using the equally
spaced nodes x; = a +&h, fork =0, 1, ..., M. The composite trapezoidal rule for
M subintervals can be expressed in any of three equivalent ways:

h M
(1a) T(foh) =353 (f umi) + F50)
k=1

or
Or

h
(1b) T(f.h)= E(fo +2fi+2h+2f+ -+ 2 2+ 2fuot + fu)

or
A M—1
(1e) T(fh) =@+ f ) +h Ig} Fixe).
This is an approximation to the integral of f(x) over [a, b], and we write

b
2) f Fx)dx = T(f, h).

Proof. Apply the trapezoidal rule over each subinterval [x;_), x4] (see Figure 7.6).
Use the additive property of the integral for subintervals:

b M Xk M h
(3) f floydx = Zf HOYIEDY 3 (f 1) + S (xi))-
a k=1Y%i-1 k=1

Since h1/2 is a constant, the distributive law of addition can be applied to obtain (1a).
Formula (1) is the expanded version of (1a). Formula (1c) shows how to group ali the
intermediate terms in (1b) that are multiplied by 2. .

IR

A ¥ = flx)
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Figure 7.6 Approximating the area
3 - x under the curve y = 2 + sin(2,/x)
0 1 2 3 4 5 6 with the composite trapezoidal rule.

Approximating f(x} = 2+ sin(2,/x) with piecewise linear polynomials resuits in

places where the approximarion is close and plaves where itis ot Toachieve-accuracy

the composite trapezoidal rule must be applied with many subintervals. In the next
example we have chosen to numerically integrate this function over the interval [1, 6].
Investigation of the integral over [0, 1] is left as an exercise.

Example 7.5. Consider f(x) = 2 + sin(2y/x). Use the composite trapezoidal rule with
|1 sample points to compute an approximation to the integral of f(x) taken over [1, 6].

To generate 11 sample points, we use M = 10 and k = (6 ~ 1)/10 = 1/2. Using

formula (1¢), the computation is

1
T(, )= L+ F6)

+ %(f(%) + D+ I+ O+ D+ D+ D+ 1O+ FEN
i
1
+ 15(2.63&?;15764 +2.30807174 4 1.97931647 4 1.68305284 + 1.43530410
+1.24319750+ 1.10831775 + 1.02872220 + 1.00024140)

(2.90929743 + 1.01735756)

1
{3.92665499) + ‘5(14.42438165)
98166375 + 7.21219083 = 8.19385457. -

P

<

Theorem 7.3 (Composite Simpson Rule). Suppose that {a, b} is subdivide_d_irilo .
2 M subintervals [x;, x;+1] of equal width h = (b—a)/(2M) by using x; = a +kh tor
k=0,1,...,2M. The composite Simpson rule for 2M subintervals can be expressed
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in any of three equivalent ways:

L»J|2!"

M
(4a) S(f by = Z(f(m 2) +4f (1) + f(xg0))

or

h
S(f.h)= g(fn +4fi+2f2+4f3

+ - 4 2fom—2 +hfar—1 + Four)

(4b)

ar

]

M
i

h 4h
(40) S =z(f@+fEN+7 Z S + = Zf(IZk D
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'y
y = f(x)
- Figure 7.7 Approximating the area
| T T x under the curve y = 2 + sin(2./x)
2 3 4 5 6 with the composite Simpson rule.

Tlaa the comnnci

Exampie 7.6, Consider f{x) =2+ sin(2+/%). Use the composi
sample points to compute an approximation to the integral of f(x

This is an approximation to the integral of f(x) over [a, b), and we write

fb
() | f@dx s h,
a

Proof.  Apply Simpson’s nile over each subinterval [xx_2, x;] (see Figure 7,7). Use
the additive property of the integrai for subintervals:

f fix)dx = Z f(x)dx
(6) X2

~ Z g(f(XZk—z) +4f (a-1) + £ (x20))-

k=1

Since h/3 is a constant, the distributive law of addition can be applied to ob-
tain (4a). Formula (4b) is the expanded version of {(4a). Formula (4c) groups all
the intermediate terms in (4b) that are multiplied by 2 and those that are multiplied
by 4, L]

Approximating f(x) = 2 + sin(2,/x) with piecewise quadratic polynomials pro-
duces places where the approximation is close and places where it is not. To achieve

accuracy the composite Simpson rule must be applied with several subintervals. In

the next example we have chosen to numerically integrate this function over [1, 6} and
leave investigation of the integral over [0, 1] as an exercise.

To generate 11 sample points, we mustuse M =5and h =
formula (4c), the computation is

+ -1-(2430807 174 + 1.68305284 + 1.24319750 + 1.02872220)

L2

+ 5(2.63815764+ 1.97931647 + 1.43530410 4 1.10831775 + 1.00024140)

= %(3.92665499) + %(6.26304429) + %(8. 16133735)
= 0.65444250 + 2.08768143 + 5.44089157 = 8.18301550. -

Error Analysis

The significance of the next two resuils is to understand that the error terms E7(f, )
and Es(f, h) for the composite trapezoidal rule and composite Simpson ruie are of
the order O(A?%) and oY), respectively. This shows that the error for Simpson's
rule converges to zero faster than the error for the trapezoidal rule as the step size &
decreases to zero. In cases where the derivatives of f(x) are known, the formulas

~(b —a) [P ) —(b—a)f® ,;4
ET(f’h)=*—-'(b—agﬂ‘— and ES(ﬁh):_(__al)gfo_(Q_—
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can be used to estimate the number of subintervals required to achieve a specified
accuracy.

Corollary 7.2 (Trapezoidal Rule: Error Analysis). Suppose that [a, b] is subdi-
vided into M subintervals [xi, x Ak+|] of width4 = {b - a),r/tlvi' The CGﬁ'iPGSﬁE frape-
zoidal rule
B M—1
(7 T(fh) = 5(f @+ fB)+h Y fia)
k=1

b
®) [ FGydx = T b) + Er(f. b).

Furthc*rmore if f € C¥[a, b), there exists a va1m= c witha < ¢ < b so that the crror
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Now we are ready to add up the error terms for all of the intervals [xg, xg4+1]:

f roar=3" " e ax
k_ X

k—1

h h3 M 5
= Z 2D+ FG0) = 53 P,

k=1 k=]

The first sum is the composite trapezoidal rule 7( £, #). In the second term, one factor
of h is replaced with its equivalent & = (b — a}/M, and the result is

a)h‘ ( me(q‘))

The term in parentheses can be recognized as an average of values for the second
derivative and hence is replaced by £{¥(c). Therefore, we have established that

f fO)dx=T(f, h)—

= 3 1ETOTHY

&) Er(f. h)y=-

Fﬁ"m
b 2 2
(B—-a)fPc)h
d = T — —
—(b—a)f Pk _ o). ja Fydx=T(.h) 12 :
12 and the proof of Corollary 7.2 is complete. .

PR SRy RISy RUUT Nt I SRR LU RN JUS B
Pi‘GO_ﬁ We first determine the error term when the rule is appinca Over pxg, x1j. 1

grating the Lagrange polynomial P;(x) and its remainder yields

X X Xl foe —_ [¥3)]
(10 f If(x) " =f i Pyxydx +f {x — xo)(x ;)f {c(x)) dx
x0 ) X .

4]

The term (x — x¢)(x — x1) does not change sign on [xg, x11, and £ (c(x)) is contin-
uous. Hence the second Mean Value Theorem for integrals implies that there exists &
value ¢} so that

(x — xo0)(x — x1) d

(1n f f(x)dx—~—(fo+f1)+f‘2’<c1)[ >

0 X0

Use the change of variable x = xq -+ k7 in the integral on the right side of (11):

r"l £\ 1 hll' 1 LN f(Z)(Cl) [l Ay Nyl 7. 1VE Jo
Jjax=—{jo+r ji1)+ i —ujnii — ai
jxo 2 2 44
h @ Jh3
(12) =3+ fy+ L0 (’ /(t ~1)dt
h f f<2)rmh3
= 5o+ f) D

Corollary 7.3 (Simpson’s Rule: Error Analysis). Suppose that [a, b] is subdivided
into 2M subintervals [xz, x;+1] of equal width & = (b — a) /(2M). The composite
Simpson rule

4 ok )l 4h M,
a9 S¢h =30 @+ 6N+ 5 ; Flxg) + 7?;{ F o)
is an approximation to the integral
b
(15) j F)dx =S by + Es(f, k).

Furthermore, if f ¢ (?[a, b), there exists a value ¢ with @ < ¢ < b so that the error
term Es(f, k) has the form

2Pt

4
180 = 0.

(16) Es(f.h) =

Exampl<= 7.7.  Consider f(x) = 2 + sin(2,/x). Investigate the error when the compos-
iie traperoidal ruie is used over [i, 6} and the number of subintervals is 10, 20, 40, 80,
and 160.
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Table 7.2 The Composite Trapezoidal Ruie for
f(x) =2 +sin(2./x) over [1, 6]

M h T(f, k) Er{f h) = O(KY)
10| 05 8.19385457 —0.01037540
20 | 025 8.18604925 —0.00257006
40 | 0.125 8.1841201% —0.00064098
80 | 0.0625 8.18363936 —0.00016015
160 | 0.03125 | 8.18351924 —0.00004003

Tabie 7.2 shows the approximations 7 ( f, #). The antiderivative of f(x) is

sin(2./x
7

Fix) = 2x — J/xcos(2/%) +
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Table 7.3 The Composite Trapezoidal Rule for
f(x) = 2+ sin(2/x) over |1, 6]

M h S(f k) Es(f k) = O(h%)
5 0.5 $.18301540 0.00046371

10 0.25 8.18344750 0.00003171

20 0.125 8.18347717 0.00000204

40 0.0625 8.18347908 (.00000013

80 0.03125 8.18347920 0.00000001

The step size # and number M satisfy the relation 2 = 5/M, and this is used in (17) to get
the relation

125

10=2,

6
=6
]1 Fdx = Fol = 8.1834792077.
x=

This value was used to compute the values Er{f,f
ble 7.2. It is important to observe that when A is reduced by a factor of % the successive
errors E7 (f, k) are diminished by approximately }1. This confirms that the order is O (h?)

&

e 1217 A"]ﬂ’)n"l"I

. .
) = 8.1834792077 — T(f. k) in Ta

E;xample 7.8. Consider f(x) = 2 + sin{2./x). Investigate the error when the compusite
Simpson rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80, and 160.
Table 7.3 shows the approximations S(f, #). The true value of the integral is
8.1834792077, which was used to compute the values Es(f, h) = 8.1834792077 - S(f, k)
in Table 7.3, Itis irnportant to observe that when h is reduced by a factor of % the succéss!ive
errors Eg( f. k) are diminished by approximately %. This confirms that the order is O (h*).
n

Example 7.9. Find the number M and the step size h so thal the error E7(f, #) for the
composite trapezoidal rule is less than 5 x 10~ for the approxirnation f; dxjx =~ T(f, h).

(Z)The integr;md is f(x) = 1/x and its first two derivatives are f'(x) = —1/x? and
F®(x) = 2/x. The maximum value of | ¥ (x)| taken over [2, 7] accurs at the end point
x = 2, and thus we have the bound | f@(c)] < | f@(2)} = 1, for2 < ¢ < 7. This is used

with formula (9) to obtain

— (b —a) f R L0-2 ih? sk

(an IEx(f.h)| = I , -
12 - 12 48

= ¥ PEEEN g
718) Er(fimh =gz =2

Now rewrite (18) so that it is asier to solve for M:

(19 i—-?— % 10° M2,

IA

Solving (19), we find that 22821.77 < M. Since M must be an integer, we choose M =
22,822, and the corresponding step size is h = 5/22,822 = 0.000219086846. When the
composite trapezoidal rule is implemented with this many function evaluations, there is &

possibility that the rounded-off function evaluations will produce a significant amount of
error. When the computation was performed, the result was

5
* —_— = 1. 2069,
7 (f, 22,822) 1.252762969

which compares favorably with the true value f27 dx[x = l'n(x)lizg = 1.252762968. The
error is smaller than predicted because the bound 3 for | f ()| was used. Experimentation
shows that it takes about 10,001 function evaluations to achieve the desired accuracy cf
S x 10-2, and when the calculation is performed with # = 10,000, the result is

5
r(f = 1.252762973 .
! (f 10,000) >

The composite trapezoidal rule usually requires a large number of function eval-
P +

uations to achieve an accurate answer. This is contrasted in the next example with
Simpson’s rule, which will require significantly fewer evaluations.
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Example 7.10. Find the number M and the step size . so that the error Eg(f, A) for the
composite Simpson rule is less than 5 x 10~ for the approximation f; dx/x = S(f h).

The integrand is f (x) = 1/x, and f® (x) = 24/x>. The maximurn value of | f¢*(c))
taken over {2, 7} occurs at the end point x == 2, and thus we have the bound | f®'(c)| <
[f®(2)| = 3 for2 < ¢ < 7. This is used with formula (16) to obtain

_l-b-af%ont _ 0-23*
(20) |Es(f. k) = 180 S~ @&

The step size h and number M satisfy the relation & = 5/(2M), and this is used in (20) to
get the relation
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(Program 7.1 (Composite Trapezoidal Rule). To approximate the intcgral
b h M:‘l

[ Sx)ydx~ "Z'(f(ﬂ) + ) +h 2_‘ Sxr)

va = k=1

by sampling f(x) at the M -+ 1 equally spaced points x; =a +kh,fork =0, 1, 2,
., M. Notice that xo = @ and xps = b.

function s=traprl(f,a,b,M}

%Input f is the integrand input as a string ’f’

% - a and b are upper and lower limits of integration
% -~ M is the number of subintervals
s

#0utput - s is the trapezoidal rule sum
. h={b-a)/M;
625 H
e - - & —9 Jr
@n ES( B S gpmms < 5% 10 5=0;
for k=1:(M-1)
o .. . x=a+hx*k;
Now rewrite (21) so that it is easier to solve for M: s=s+feval (£,%);
end

—
8]
wh

22) == x 10° < M.

--.J
::r

Solving (22), we find that 112.95 < M. Since M must be an integer, we chose M = 113
and the corresponding step size is & = 5/226 = 0.02212389381. When the composite

Simnson rule was nerformed, the resnlt was

=21Ip TUle was RETTOIMeq, Ine resll

5
S{f — ) = 1.252762969,
(f 226) ?

which agrees with f; dxfx = ]n(x)lij = 1.252762968. Experimentation shows that it
takes about 129 function evaluations 1o achieve the desired accuracy of 5 x 10~°, and when
the calculation is performed with M = 64, the resuit is

Vs AN
- y=12 .
S(f 128) 1.252762973 .

So we see that the composite Simpson rule using 229 evaluations of f(x) and
the composite trapezoidal rule using 22,823 evaluations of f ] (x) achieve the same ac-
curacy. In Example 7.10, Simpson’s rule required about _06 the number of function

evaluations,

s=h*(feval (f,a)+feval (f,b))/2+h*s;

Program 7.2 (Composite Simpson Rule). To approximate the integral

ny M=l

f flx)dx -(f(a)+f(b))+ f;" S_': flow) + 2 Y‘ fram)

by sampling f(x) at the 2M + 1 equally spaced points x; = a + kh, fork = 0, 1,

T2,...,2M. Notice that xg = a and xopy = b.

function s=simprl(f,a,b,M)

%Input - f is the integrand input as a string °'f’
% - @ and b are upper and lower limits of integration
% - M is the number of subintervals

% Output - 5 is the simpson rule sum

h=(b-a)/(2*M) ;

81=0;

82=0;

for k=1:M
! x=a+h (2¥k~1);
si=si+feval(£,x);

end

for k=1:(M-1)
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=a+h*2#*k ;
s2=s2+feval (f,x);
end .

s=h*(feval(f,a)+feval(f,b)+4*s81+2x52)/3;

Exercises for Composite Trapezoidal and Simpson’s Rule

1. (i) Approximate each integral using the composite trapezoidal rule with M = 10.
(ii) Approximate each integral using the composite Simpson rule with M = 5.

! 2y-1
(a) 2,0 +x%) X & '!"'Siu(zvl)) ax (C) 0.25 a'.r/'\/'f

4 — .
(d) ,‘; e X dx (e) q 2x cos(x) d 7 %r( in(2x)e=5d coefficients.

2, Penglh of acurve, The arc length of the curve y = f(x) aver the interval g < x < |
is -7

length = 4
a

(i) Approximate the arc length of each function using the composite trapezoidal
rule with M = 10.

(ii) A:nproximate the arc length of each function using the composite Simpson rule
with M = 5.
(@ flx)=x3 for 0=<x<l
(b} f(x)==sin(x) for 0=xx=<n/4
(© flx)=e"* for O0<x<x1

3. Surface area. The solid of revoiution obtained by rotating the region under the
¥ = f(x), where a < x < b, about the x-axis has surface area given by

b .
area = 2n f FEY1+ (F(x)? dx.

(i) Approximate the surface area using the composite trapezoidal rule with 4 —

10.
(i) Approximate the surface area using the composite Simpson rule with M = 5,
(a) flx)=x> for O0<x<|

M)  f(x) = sin{x) for O0<x<m/4
(€ fx)y=e~ for O0=<xx<|
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4. (a) Verify that the trapezoidal rule (M = 1, & = 1) is exact for polynomials of
degree < 1 of the form f(x) = cjx + cp over [0, 11
(b) Use the integrand f(x) = c2x? and verify that the error term for the trapezoidal
rule (M = 1, h = 1) over the interval [0, 1] is

—(b — a) fP (c)h?

Er(f h) = =

5. (a) Verify that Simpson’s rule (M == 1, & = 1) is exact for polynomials of degree
< 3 of the form f(x) = c3x® + c2x% + c1x + cg over [0, 2].
(b} Use the integrand f(x) = csx* and verify that the error term for Simpson’s rule
(M = 1, h = 1) over the interval [0, 2] is

—(b — a) f Y (e)n?
180 ’

ES(fa h) =

6. Derive the trapezoidal rule (M = 1, # = 1) by using the method of undetermined

(a) Find the constants wg and w) so that _[Ul g(t) dt = wog(0)+w g(1) is exact for
the two functions g(z) =l and g(t} = .

(b} Use the relation f(xp + At) = g(r) and the change of variable x = xg + h# and
dx = hdt to translate the trapezoidal rute over [0, 1] to the interval [xgp, x1].

Hint for part (a). You will get a linear system involving the two unknowns wg and u;;.

7. Derive Simpson’s rule (M = 1, & = 1) by using the method of undetermined coeffi-
cients.

(a) Find the constants wg, w;, and w2 so that fez gtyde = wog(0) + wig(l) +
wag(2) is exact for the three funciions g{¢) = 1, gt} = ¢, and g(#) = ¢~

(b) Use the relation f(xp + Af) = g(¢) and the change of variable x = x¢ + At and
dx = hdt to translate the trapezoida} rule over [0, 2] to the interval [xo, x2].

Hint for part (a). You will get a linear system involving the three unknowns wo, w,

and w;.

8. Determine the number M and the interval width % so that the composite trapezoidal
rule for M subintervals can be used to compute the given integral with an accuracy of
5% 1077,

/6 3 1 2
(a) cos{x)dx (b) [ dx () f xe tdx
—n/6 2 5-x 1]
Hint for part (c). f @ (x) = (x — 2)e™ .

9. Determine the number M and the interval width h so that the composite Simpson rule
for 2M subintervals can be used to compute the given integral with an accuracy of
5% 1077, 3 ,

w/6
(a) [ ! cos(x)dx (b) [ — ! dx (c) [ xe % dx
S Jr S—x Jo *
Hint for part (c). f™(x) = (x —4e™",
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10. Consider the definite integral /*; | cos(x)dx = 2sin(0.1) = 0.1996668333. The
following table gives approximations using the composite trapezoidal rule. Calcukate
Er{f, h) = 0.199668 — T( f, k) and confirm that the order is O (h%).

M k S(f ) ET(f h) = O(h?)
1102 0.1990008
2 0.1 0.1995004
4 0.05 0.1996252
8 0.025 0.19%6564
16 0.0125 0.1996642

11. Consider the definite integral {75 cos(x)dx = 2sin(0.75) = 1.363277520. The
following table gives approximations using the composite Simpson rule. Calcwulate
Es(f, h) = 1.3632775 — §(f, h) and confirm that the order is O (A%},
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Algorithms and Programs

1. (@) For each integral in Exercise 1, compute M and the interval width # so that the
composite trapezoidal nle can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.1 to approximate each integral.

(b) For each integral in Exercise 1, compute M and the interval width 4 so that the
composite Simpson’s rule can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.2 to approximate each integral.

)

. Use Program 7.2 to approximate the definite integrals in Exercise 2 with an accuracy
of 11 decimal places.

3. The composite trapezoidal rule can be adapted to integrate a function known only at

a set of points. Adapt Program 7.1 to approximate the integral of a function over

an interval [a, b] that passes through M given points. (Note. The nodes need not

be equally spaced.) Use this program to approximate the integral of a function that

passes through the points [(\/kz +1, k1/3) I}:o

M A S(f, i Es(f, by = O
1| 675 1.3658444
2 | 0375 1.3634298
4 | 01875 1.3632869
8 | 009375 | 13632781

12. Midpoint rule. The midpoint rule on [xg, x1 1 is

X 3
f ] Fxydx = hf (xo+ E) + -h—f(z)(m), where h =
o 2 24

X — X

(a) Expand F(x), the antiderivative of f(x), in a Taylor series about xy + 4/2 and

establish the midpoint rule on [xg, x1].

(b} Use part (a) and show that the composite midpoint rule for approximating the
integral of f(x) over [a, &]is

N
M(ﬁh):h;f(a+(k—%)k), where h = b;}“.

This is an approximation to the integral of f(x) over [a, #], and we write

b
/ fxydx =~ M(f, h).
o
(¢} Show that the error term E (£, k) for part (b) is

(&-a) [P

2
N O (h*).

B o)
EM(f,h)-_—éz;f (cx) =

13. Use the midpoint rule with M = 10 to approximate the integrals in Exercise 1,

14, Prove Corollary 7.3

4. The composite Simpson’s rule can be adapted to integrate a function known only at
a set of points. Adapt Program 7.2 to approximate the integral of a function over
an interval [a, b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program 1o approximate the integral of a function that

N . . [/ ——— _12\113
passes through the points [K\/k + 1,k ”k=0.
5. Modify Program 7.1 so that it uses the composite midpoint rule (Exercise 12} to
approximate the integral of f(x) over [a,&]. Use this program to approximate the
definite integrals in Exercise 1 with an accuracy of 11 decimal places.

6. Obtain approximations to each of the following definite integrals with an accuracy of
ten decimal places. Use any of the programs from this section.
\/ax L—1073 )
(@) sin(l/x)dx (b) ————dx
1/ &+1075 sin{1/x)
7. The following example shows how Simpson’s rule ¢an be used to approximate the
solution of an integral equation. The equation v(x) = x2+0.1 fol () di s to
be solved using Simpson’s rule with 1 = 1/2. Let 1 =0, #; = 1/2, and #; = 1; then

! 1
f (x? + Dty ds = gﬁ((xﬁ 4+ O)vp + 4(x2 + S+ 2 + D).
4]
Let
1
) v(xn) = x2 +o.1(%(cx£ + 0)vo + 4(x7 + S+ x2 + Dw)).

Substituting xo = 0, x; = 1/2, and x; = 1 into equation (1) yields the system of
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linear equations:
1
vo =0+ 66((0)1)0 + 2vy + v2)
—1- ! J'U 5
4-1-60\4vo+ 1+4v2)
=1+ @mﬂ.évl + 2u2)

(2) v =

Substituting the solution of system (2) (vg = 0.0273, v; = 0.2866, vy = 1.0646) into
equation (1) and simplifying yields the approximation

3) v{x) & 1.037305x2 + 0.027297.

(a} As acheck, substitute the solution into the right-hand side of the integral equa-
tion, integrate and simplify the right-hand side, and compare the result with the
approximation in (3).

(b) Use the composite Simpson rule with # = 0.5 to approximate the solution of
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/\ y =flx)

(&)

y=f(x}

the integral equation

7.3

3
v(x) =x? —0.1 f (x2 + Hu(r) dr.
0

Recursive Rules and Romberg Integration

In this section we show how to compute Simpson approximations with a special linear
combination of trapezoidal rules. The approximation will have greater accuracy if one
uses a larger number of subintervals. How many should we choose? The sequential
process helps answer this question by trying two subintervals, four subintervals, and
so on, until the desired accuracy is obtained. First, a sequence {T'(J)} of trapezoidal
rule approximations must be generated. As the number of subintervals is doubled, the
number of function values is roughly doubled, because the function must be evaluated
at all the previous points and at the midpoints of the previous subintervals (see Fig-
ure 7.8). Theorem 7.4 explains how to eliminate redundant function evaluations and
additions.

Theorem 7.4 (Successive Trapezoidal Rules). Suppose that J > | and the points
{xx = a + kh} subdivide [a, b] into 2/ = 2M subintervals of equal width h =
(b —a)/2’ . The trapezoidal rules T(f, k) and T (£, 2h) obey the relationship

T(f, 2h)

(H T(f.h)= —+th(x2k -

(c) (dh
Figure 7.8 (a) T(0) is the area under 20 =1 trapezoid. (b) T(1) is the area under
2! = 2 trapezoids. (¢) 7'(2) is the area under 2> = 4 trapezoids. (d) T(3) is the area
under 23 = 8 trapezoids.

Definition 7.3 (Sequence of Trapezoidal Rules). Define T(0) = (A/2)(f(a) +

f(b)). which is the trapezoidal rule with step size # == b — a. Then for each J > 1
dafine T'( f\ — T.ff lq‘l where T{ f i'a\ ig the tranezgoidal mle with sten gize h =

Qi = viiliT i apeiliuas Il Wikl SWp i

(b—a)/Zj' A

Corollary 7.4 (Recursive Trapezoidal Rule). Start with T(0) = (h/2)(f(a) +
(f(b)). Then a sequence of trapezoidal rules {7(J)} is generated by the recursive
formula

(2) T(J) = ZSJ—— hZf(ka D for J=1, 2,
where b = (b —a)/27 and {x; = a + kh}.

Proaf. For the even nodes xg < X2 < -+ < XaM—2 < X2, we use the trapezoidal

rule with step size 2h:
2h
() TU-D=Fo+2+2fs+  +2fm-a+2fam-2+ fam).

For all of the nodes xp < x1 < X3 < ++- < X2p—} < X2p, We use the trapezoidal rule
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with step size A:

h .
@) ST = —Z-(fo +20+2H+--+ 22+ 21 + fam).
Collecting the even and odd subscripts in (4} yields
A M
(5) TN = 5(fo+2fat - +2fm2+ fan) +h Y o,
k=1

Substituting (3) into (5) results in 7(J) = T(J — 1)/2+h 10| fox—1, and the proof
of the theorem is complete. "

Example 7.11.  Use the sequential trapezoidal rule to compute the approximations 7 (")
T(1), T(2), and T (3) for the integral fIS dx/x = In(5) — In(1) = 1.609437912.

Table 7.4 shows the nine values required to compute T (3) and the midpoints required
to compute T (1), T{2), and T (3). Details for obtaining the results are as follows:

Whenh=2: T(l)= &) + 2(0.333333)

= l.2000()0+ 0.666666 = 1.8366666.

Whenh=1: T(@2)=- ;" + 1(0.500000 + 0.250000)

=40. 933333 + 0.750000 = 1.683333.

T3 = i2) + = (O‘ 666667 + 0.400000

+ 0.2857] 4+ 0.222222)
= 0.841667+ 0.787302 = 1.628968. u

When h =

Ml —

Our next result shows an important relationship between the trapezoidal rule and
Simpson’s rule. When the trapezeidal rule is computed using step sizes 2h and A,
the result is T(f, 24} and T(f, h), respectively. These values are combined to obtain

Simpson’s rule:
AT(f, by — T(f,2h)

6) S(f.h)= 3

Theogrem 7.5 (Recursive Simpson Rules).  Suppose that [7(J)} is the sequence of
trapezoidal rules generated by Corollary 7.4. If J > 1 and $(J) is Simpson’s rule for
24 subintervals of [a. b, then $(J) and the trapezoidal rules 7(J — 1) and T(J) obey

the relationship

4aT(J)—-T({J -1 e
@) 5(J)= ()% for /=1, 2,....

The middle ierm
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Table 7.4  The Nine Points Used to Compute T'(3) and the Midpoints Required to C
(), T, and T(3) o Compue

1 End pc"ints for Midpeoints for Midpoints for Midpoints for

x | fix)= < computing T(0) | computing T(1) computing T(2) | computing T(3)
1.0 | 1.000000 1.000000
1.5 [ 0.666667 66666

0.
2.0 | 0.500000 0.500000 7
2.5 | 0.400000

0.400000
3.0 [ 0.333333 0.333333
3.5 10.285714 0285714
4.0 [0.250000 0.250000 T
4.5 10.222222 -
5.0 |0.200000 | 0.200000 0.2

{4 — 1) with step size 2/ produces
®) f FOdx S h(fo+2f+ -+ 2 a2+ for) = T(J — 1),
a
Multiplying relation (3) by 4 yields
b
4 f FO)dx % h@fot4fi+4f2 4+ 4 ammz + 4 st +2fs0)

=4T(J).
Meow subtract (9) from (10) and the resulf is

(10)

b
3/ fyde=h(fo+4fi+2fi+- -+ 2famz2+4fop1 + forr)
a

=4T(J)-T - 1).
“This can be rearranged to obtain

(1))

b =
b h
| r@ar = S+ 4h 425+ 2o 4o + S
_A4ATh-TJ -1)
= 3 .
in {(12) is Simpson’s ruie 5(J) = S(f, k) and hence the theorem is
proved. .

a2
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Example 7.12. Use the sequential Simpson rule to compute the approximations 5{1],
$(2), and S(3) for the integral of Example 7.11.
Using the results of Example 7.11 and formula (7) with J = 1, 2, and 3, we compute

4T(1) - T(0) _ 4(1.866666) — 2.400000

S = - = . = 1.688888,

5i2) = 4T(2);— (1) _ 4(1.68333353,— 1.866666 1622222,

S(3) = 4T(3)3— T(2) - 4(1.628968;— 1.683333 — 1.610846. .
In Section 7.1 the formula for Boole’s rule was given in Theorem 7.1. It was

noad An tha nodas

irema L.
casca O LIS TIUUCS Ay

obtained by integrating ihe Lagrange polynomial of degree 4
%1, X2, X3, and x4. An alternative method for establishing Boole’s rule is mentioned
in the exercises. When it is applied M times over 4M equally spaced subintervals of
[a, b] of step size h = (b — a)/(4M), we call it the composite Boole rule:

&

B(f,h)=—

(7 fai—a + 32 fak—3 + 12 far—2 + 32 farr + T fa0).
k=1
The next result gives the relationship between the sequential Boole and Simpson rules.

(13

Theorem 7.6 (Recursive Boole Rules). Suppose that {S(J)} is the sequence of
,,,,,,,,, les zenerated by Theorem 7.5. If J > 2 and B(J) is Boole’s rule for

.

\JllllPDUll O AUIVY pillwidiees Uy Lol oy Al

27 subintervals of [a, b], then B(J) and Simpson’s rules S(J — 1) and S(J) obey the
relationship

3S(J) — S(J — |
(14) B(J) = 185 — VoD g 7223,

Proof. The proof is left as an exercise for the reader. .

Example 7.13. Use the sequential Boole rule to compute the approximations B(2) and

B(3) for the integral of Example 7.11.
Using the results of Example 7.12 and formula (14) with J = 2 and 3, we compute

165(2) — S(1) _ 16(1.622222) — 1.688888

B(2y= 15 = 3 = 1.617778,
B3 = 165(3)15—- 5@ _ 16(1.61084?)5— 1.622222 _ | 610088 .

The reader may wonder what we are leading up to. We will now show that for

mulas (7) and (14) are special cases of the process of Romberg integration. Let us
announce that the next level of approximation for the integral of Example 7.11 is

64B(3) — B(2)  64(1.610088) — 1.617778
63 - 63

and this answer gives an accuracy of five decimal places.

= 1.609490,
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Romberg Integration

In Section 7.2 we saw that the error terms Er(f, #) and Es(f, h) for the composite
trapezoidal rule and composite Simpson rule are of order O(h%) and O (h%), respec-
tively. It is not difficult to show that the error term E( f, k) for the composite Boole
rule is of the order @ (h%). Thus we have the pattern

b
(15) f Flxydx = T(f. ) + O,
b
(16) f f)dx = S(f, )+ O(h*),
an j f(x)dx = B(f, h}+ O (h®).

The pattern for the remainders in (15} through (17) is extended in the following
sense. Suppose that an approximation rule is used with step sizes & and 24; then an al-
gebraic manipulation of the two answers is used to produce an improved answer. Each

. . . ol
to @(#2N*?). This process, called Remberg integration, has its strengths and weak-
nesses.

The Newton-Cotes rules are seldom used past Boole’s rule. This is because the
nine-point Newton-Cotes quadrature rule involves negative weights, and all the rules
past the ten-point rule involve negative weights, This could introduce loss of signif-
icance error due to round off. The Rormberg method has the advantages that all the
weights are positive and the equally spaced abscissas are easy to compute.

A computational weakness of Romberg integration is that twice as many function
evaluations are needed to decrease the error from {)(;,ZN\ to n(h2N+Z'\ . The use of the

sequential rules will help keep the number of computations down. The development
of Romberg integration relies on the theoretical assumption that, if f € CV[a, b]
for all N, then the error term for the trapezoidal rule can be represented in a series
iavolving only even powers of h; that is,

b

s / F(x)dx = T(f, k) + Erif, h).
a

where

(1% Er{finy=a B+ ﬁzr'l“ a3fi'5 + -

A derivation of formula {19) can be found in Reference [153].

Since only even powers of £ can cccur in {19), the Richardson improvement pro-
oess is used successively first to eliminate ay, next to eliminate a», then to eliminate a3,
and so on. This process generates quadrature formulas whose error terms have even
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orders O (hY), 0(h®), O(h®), and so on. We shall show that the first improvement is
Simpson’s rule for 2M intervals. Start with T (£, 2k) and T(f, k) and the equations
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The general pattern for Romberg integration relies on Lemma 7.1.

Lemma 7.1 (Richardson’s Improvement for Romberg Integration). Given two

b
20 Jf Fldx =T, 2R) + ai4h? + a3 1654 & a364h% + ... approximations R{2%, K — 1) and R(h, K — 1) for the quantity ( that satisfy
[
and °9) Q=Rh, K-+ C]th +C2h2K+2 T+
b 2 4 6 and
21) f fxydx =T{f, R}y +a1h* + azsh® +a3h° + - .-
a
. . 124 J = R(2h, K —~ 1)+ 452 4 cpgK+ip2k+z
Multiply equation (21) by 4 and obtain ¢=K Jt+a 2 +
b an improved approximation has the form
22) 4 [ F)dx =AT(f, h) + a14h> + axdh® + azdhS + . -
Ja AK pey, — 1y _ Py E_— 1)
L. . . X |.)\“) Q — = u('“, I3 ]) R\.zh. N 1} + 0(h2K+2)_
Eliminate @) by subtracting (20) from (22). The result is 4K

b
{23) 3[ Fydx =AT(f by — T(f, 2h) — az12h* — a360K% — ... .

Now divide equation (23) by 3 and rename the coefficients in the series:

_4T(f ) = T(f,2h)

b
eh [ rmax= . okt 4 bk
a

As noted in (6), the first quantity on the right side of (24) is Simpson’s rule S{f, /).
This shows that Eg(f, #) involves only even powers of k:

b
(25) f F dx =S(fLh) +bh* + byh® + b3h® ..

To show that the second improvement is Boole’s rule, start with (25) and write
down the formula involving S(f, 2h):

b
26) f ) dx = S(f, 2h) + b 160* + 5,64k + b3256K5 + ... .
a

When b; is eliminated from (25) and (26)

21 18C aiidioa

_165(f,n) = S(f,2h) _ bp48®  b3240h°

b
an /a fixydx 5 5 15
bod8H®  by240h8

The proof is straightforward and is left for the reader.

Definition 7.4. Define the sequence (R(J, K): J > K 152, of quadrature formulus
for f{x) over [a, b] as follows

R(J,0) =T(J) forJ > 0, is the sequential trapezoidal rule.
(31 R(J.1)=S8(J) forJ =>1,isthe sequential Simpson rule.

DT

R{J,2y=B(J} forJ =2, isthe sequential Boole’s rule. A

The starting rules, {R(J, 0)), are used to generate the first improvement, {R(J, 1)},

which in turn is used to generate the second improvement, {R(J, 2)}. We have already
seen the patterns

4'R(J,0) = R{J —1,0)

’ R(J, 1) = i for J > 1
¢ LRI, D=-RJ ~1,1
R(J,2) = - (’212_—; “LD sz

which are the rules in (24) and (27) stated using the notation in (31). The general ruic
for constructing improvements is

K -
R(J.K) = 4*R(JLK-1)—RUJ—-1,K-1)
4K 1

a

(33)
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Table 7.5 Romberg Integration Tableau
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“Table 7.7 Romberg Error Tableau for Example 7.14

R(J.0) R(, 1) R R(J,3) R(J.4) J| & | EUO=0wd | EU D =00Y | EU.2) =005 | EU,3) =00
Trapezoidal Simpson’s Boole’s Third Fourth

J rule rule rule improvement improvement 0| b—a | —1.252799263670

0 R(©,0). 11272 | 0311384770309 |  0.002420060811

| R(L, 0} R(1. 1) 2 : e

2 R2.0)———— R(2 )= R(2.2) b-a )

- Tom— TT— 2 —0.077663260503 0.000243909432 0.000098832673

3 R(3.0) R(3, 1) R(3,2) RG.D_____ 4

4 R(4,0) R(4, 1) R(4,2) R(4,3) ~ R4, 4) b—a
3 3 —0.019403478989 0.000016448182 0.000001284099 | —0.000000264291
4 b ;}a —0.004850085262 0.000001045980 0.000000019167 | —0.000000000912

Table 7.6 Romberg Integration Tableau for Example 7.14 b—a
5 5 —{.001212472077 0.000000065651 0.000000000296 | —0.000000000003

R(J,0) R(J, 1) R(J.2) R(J.3)
Trapezoidal Simpson’s Boole's Third

S rule rule rule irprovement

] 0.785398163397 . .

: 1726812656758 2 040617487878 Theorem 7.7 (Precision of Romberg Integration). Assume that f € C?£+2[a, b].

2 1.960534 166564 2.038441336499 2.038206259740 Then the truncation error term for the Romberg approximation is given in the formula

3 2.018793948078 2.038213875249 2.038198711166 2.038197162776

4 2.033347341805 2.038198473047 2.038157446234 2.038197426156 (0 s e i p 1 2K42 fOK4AD .

5 2.036984954990 2.038197492719 2.038197427363 2.038197427064 (34) [, e s e R ERE J \eILKD

Trir mnrminaitatianal
rUr Computationai

Example 7.14. Use Romberg integration to find approximations for the definite integral

/2 7 7‘!’2
f (2 +x + ) cos(x)dx = -2+ 5 7 = 2038197427067 ...
0

The computations are given in Table 7.6. In each column the numbers are converging.

to the value 2.038197427067 . . .. The values in the Simpson’s rule column converge faste:
than the values in the trapezoidal rule column. For this example, convergence in column:
to the right is faster than the adjacent column to the left.

Convergence of the Romberg values in Table 7.6 is easier to see if we look at the errol
terms E(J, K) = —247/247%/4—R(J, K). Suppose that the interval widthish = b—c
and that the higher derivatives of f(x) are of the same magnitude. The error in column K
of the Romberg table diminishes by about a factor of 1/225%+2 = 1/4X+1 a5 one progresse:
down its rows. The errors E(J, ) diminish by a factor of 1/4, the errors E(J, 1) diminist
by a factor of 1/16, and so on. This can be observed by inspecting the entries {E(J, K)} in
Table 7.7. E

= R(J, K) + O(R¥+?,

where b = (b — a)/2”, by is a constant that depends on K, and ¢y ¢ € [a, b]; see
Rafaranca [153) naoce 126

ACICICHIT (122 ) pPagh 2=V

Example 7.15. Apply Theorem 7.7 and show that
2
[ 10x® dx = 1024 = R(4,4).
Jo

The integrand is f(x) = 10x°, and £U%(x) = 0. Thus the value K = 4 will make the
error term identically zero. A numerical computation will produce R(4, 4) = 1024. [

Program 7.3 (Recursive Trapezoidal Rule). To approximate

h

2!
5 g__“f(f(xk_l) + fxe))

jjf(x)dxm

by using the trapezoidal rule and successively increasing the number of subix;nervals
of [a, b]. The Jth iteration samples f{x) at 27 + | equally spaced points.

function T=rctrap(f,a,b,n)
%Input - f is the integrand imput as a string ’f’
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% - a and b are upper and lower limits of integration
% - n is the number of times for recursion

#0utput - T is the recursive trapezoidal rule list

M=1;

h=b-a;

T=zeros(1,n+1);
T(1)=h*(feval(f,a)+feval (£,b))/2;

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 379

% - h is the smallest step size used
M=1;
h=b-a;

e
J

rr=1;
=0;

R=zeros(4,4);

R

(1,1)=h*(feval (f,a)+feval (f, b)) /2;

while((err>tol)&(J<n) )| (J<4)

for j=il:n
M=2x%M; J=J+1;
h=h/2; h=h/2;
s=0; 5=0;
for k=1:M/2 for p=1:M
x=a+h*(2%k-1) ; X=a+h* (2%p-1);
s=s+feval (f,x); s=s+feval(f,x);
end end
T(j+1)=T(j}/2+h*s; R(J+1,1)=R(J,1)/2+h#s;
end M=2%M;
for K=1:J
Program 7.4 (Romberg Integration). To approximate the integral R(J+1,K+1)=R(J+1,K) +(R(J+1,K)-R(J K /(47K-1) ;
end

by generating a table of approximations R(J,X) for J > K and using
R(J + 1,7 + 1) as the final answer. The approximations R(J, K) are stored in
a special lower-triangular matrix. The elements R(J, 0) of column 0 are computed
using the sequential trapezoidal rule based on 2/ subintervals of [, &]; then R(J, K)
is computed using Romberg’s rule.

The elements of row J are

RUJLK—1)—RUJ—1,K-1)
4K ]

RULK)Y=R(J. K-1)+

]

for 1 <= K =< J. The program is terminated in the (J + 1)st row when
IR(J, Sy~ R(J+ 1,7+ 1) < tol.

function [R,quad,err,h]=romber{f,a,b,n,tol)

%Input - f is the integrand input as a string ’f’

% - a and b are upper and lower limits of integration
% - n is the maximum number of rows in the table

% - tol is the tolerance

#0utput - R is the Romberg table

of = pmeimsrd o Fha snnAdwadarea raleca

Ie \.1uau Ao [¥peL-g \.lua.\.u.a UL vaiue

% - err is the error estimate

err=abs(R{J,J)-R(J+1,K+1));

end
quad=R(J+1, J+1);

voerricoe far Dansssgtao Delac o 1 13 ¥ - .
SSSLAOLS IUE [ELUNSIVE NUIES and Romberg lntegratl()][l

1. For each of the following definite inte
grals, construct (by hand) a Romberg table
(Table 7.5) with three rows. Y ) OeTE fable
sin(2x)

3
a —_— =
@ fo o dx = 06717578646 ..

3
(b) / sin(4x)e™% dx = 0.1997146621 . ..
0

1

1
—dx =16
0.04 /X
@ [ =L 4

- =4,
/. g 4713993943
2

{c)

. f1
(&) sin (—) dx = 1.1140744942 . . .
1/(2m)

X

r2
® _/ﬂ V4 —x2dx =7 = 3.1415926535 . ..
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Assume that the sequential trapezoidal rule convergesto L (i.e., imyoc T(J) = L).
(a) Show that the sequential Simpson rule converges to L (L.e., imysoo 5(J) = L).
(b) Show that the sequential Boole rule convergesto L (i.e.,, imj oo B(J) = L).

. (a) Verify that Boole's rule (M = 1, 2 = 1) is exact for polynomials of degree < 3

of the form f(x) = c5x° + cax® 4 - + ¢1x + co over [0, 4].
(b) Use the integrand f(x) = cex® and verify that the error term for Boole's rule
(M = 1, h = 1) over the interval {0, 4] is

—2(b — a) O (c)h®
945 :

Eﬂ(f!h) =

Derive Boole’s rule (M = 1, & = 1} by using the method of urdetermined ccc1ti-
cients: Find the constants wg, W, w2, w3, and w4 so that

2(3) +wip)

10. I\UI.IIWI.E iiftCgration was usd
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9. Determine the smallest integer X' for which

(@ J78x7dx =256=R(K,K).
) J211x0dx = 2048 = R(K, K).

Dmicbnin (otanwatd e waad
E

et
+]

annravi
appavall

Jo 22 d1, and the results are given in the fo llowmg table:

Approximations for (i) | Approximations for (ii}

R(D, 0) = 0.5000000 R(0, 0) = 1.0000000
R(1, 1) =0.6380712 R(1, 1) =0.6666667
R(2,2) =0.6577566 R(2, 2) =0.6666667
R(3,3) =0.6636076 R(3, 3) =0.6666667
R(4, 4) =0.6655929 R(4, 4) =0.6666667

(a) Use the change of variable x = r? and dx = 2rdr and show that the two
integrals have the same numerical value. .
d

wn
h

is exact for the five functions g{t) = 1, ¢, 2, 13, and +*. Hint. You will get the  ear
system:

wp+wy+ wr+4 w3+ wq =

e Py
3

2u ws + 4ws

[y g\uii [ N N

.|_

Wi -+ i3
w]+ 4wy + w3+ 16ws =
wi + 8wy 4+ 27wy + 64wy =

24
wy + 16wy + 8lws 4 256wy = —-?

Establish the relation B(J) = (16S(J) — S(J — 1))/16 for the case J = 2 Use the
following information:

2k
S(1) = ?(fo +4f+ fa)
and

h
52y = g(fo +A4fi+22+454+ fa)

. Simpson’s % rule. Consider the trapezoidal rules over the closed interval {xg, Xa]

T(f,3h) = (3h/2)(fo + f3) with step size 34, and T(f, 4) = (B/2)(fo + 2f. +
2 f, + f3) with step size h. Show that the linear combination (97 (£, k) — T(f, 3r))/8
produces Simpson‘s—% rule.

7. Use equations (25) and (26) to establish equation (27).
8. Use equations (28) and (29) to establish equation (30).

Discuss whyconvergence of the Romberg sequenee is-slower forir 4]
faster for integral (ii).

,-,
g

11. Romberg integration based on the midpoint rule. The composite midpoint rule is

competitive with the composite trapezoidal rule with respect to efﬁc;ency and the
speed of convergence. Use the following facts about the midpoint rule: f_ flx)ydx =

spec ol con CE. UL

M(f, h)+EM(f k). The rule M (£, k) and the error term Ep(f, k) are given by

N
M(f,h)=h§f(a+(k—%)h). whereh:b;}

a

and

Eu(f, h) = a1l + aph* + ash® +

(a) Start with

M(0)=b;a (a;b)‘

Develop the sequential midpoint rule for computing

rad .
M) = M(fihy) = hy Zf(a+(k--;-)h;),
k=1

b—a
where hy = 77

(b) Show how the sequential midpoint rule can be used in place of the sequential
trapezoidal rule in Romberg integration.




382 CHAP.7 NUMERICAL INTEGRATION

Algorithms and Programs

I. Use Program 7.4 to approximate the definite integrals in Exercise 1 with an accuracy
of 11 decimal places.

2, Use Program 7.4 to approximate the following two definite integrals with an accuracy
of 10 decimal places. The exact value of each definite integral is 7. Explain any

apparent differences in the rates of convergence of the two Romberg sequences.
1

(a) f-v4x —xldx ()] —4— dx

o 14+ x2
3. The normal probability density function is £{1) = (1/v/27)e~72 anu the cumu a-

tive distribution is a function defined by the integral ®(x) = § + A [Fe™" 24

Compute values for $(0.5), ®(1.0), $(1.5), #(2.0), ®2.5), ¢(3. O), ¢'(3.5), and
¢ (4.0) that have eight digits of accuracy.

4. Modify Program 7.3 so that it will stop when consecutive values T(K — 1) and T{4)
for the sequential trapezoidal rule differ by less than 5 x 10~.
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where cx = 1(a + b) is the center of [a;, b] and h = (by — a;) /2. Furthermore. if
f € C*{ay, by}, then there exists a value dy € {ag, by} so that

by 4)
@ @ dx = Stay. by ~ w3 L9
Refinement

A composite Simpson tule using four subintervals of {ay, ] can be performed by
bisecting this interval into two equal subintervals [ay1, b¢1] and [ag2, byo] and applying
formuia (1) recursively over each piece, Only two additional evaluations of f{x) are

L£ELUISIVELY ol €alll PICCs,

needed, and the result is

h
5 SCagr, ber) + Slaka, biz) = E(f(akl) +4f(ck1) + fbrr))
) h
+ é(f(akz) +4f(cr2) + fb2)),

T4

5. Modify Program 7.3 so that it will also compute values for the sequential Simpson
and Boole rules.

6. Modify Program 7.4 so that it uses the sequential midpoint rule to perform Romberg
integration (use the results of Exercise 11). Use your program to approximate tl e

Am i I P

u.luuwiﬁg integrals with an accuracy of 10 decimal places.
sm(x)
(@) f © [ i
-1

7. In Program 7.4 the approximations to a given definite integral are stored on the main
diagonal of a lower-triangular matrix. Modify Program 7.4 so that the rows of the
Romberg integration tableau are sequentially computed and stored in a n x 1 matrix R
hence it saves space. Test your program on the integrals in Exercise 1,

Adaptive Quadrature

The composite quadrature rules necessitate the use of equally spaced points. Typically,
a small step size 4 was used uniformly across the entire interval of integration to ensure
the overall accuracy. This does not take into account that some portions of the curve
may have large functional variations that require more attention than other portions of
the curve. It is useful to introduce a method that adjusts the step size to be smailer
over portions of the curve where a iarger functional variation occurs. This technique is
called adaptive quadrature. The method is based on Simpson’s rule.
Simpson’s rule uses two subintervals over [ay, bzl

(1) Stax. by) = g(f(ak)+4f(ck) + FBO).

where ay) = ay, bey = arz = ¢k, bra = by, ¢y is the midpoint of [ax), #x1], and ¢z is
the midpoint of {ax2, br2]. In formula (3) the step size is h/2, which accounts for the
factors /6 on the right side of the equation. Furthermore, if f € C*[a, &), there exists
a value dy € [ay, by] so that

b B F @y
4 f(x)dx = S{ag1, bry) + S(ara, br2) — —*f—(—z).
” 16 90

Assume that f®(d)) & f@ (dy); then the right sides of equations (2) and (4) are
used to obtain the relation

FOdy) h> f D (dy)
5 Sar, by) — b —=l b Vb)) — —
5) (k. by) 30 Slaw, biy) + Stawa, bya) % o0 "

which can be written as

5f( )(dz)
90

Then (6) is substituted in (4) to obtain the error estimate:

® (S(alzl; by + S(azz. br2) — Stag, b)),

% o g — s
|

o,
j Jix)ax = Slagy, ogr) — b’(akz,bkz)[
&

N
1
A 5 1S aky. bry) + S{ar, bxa) — Siar, b))l .

it idy o Y

Because of the assumption f @id)y =~ A {d>), the fraction 15 is replaced with ]ﬁ on
the right side of (7) when implementing the method. This justifies the following test.
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Accuracy Test

Assume that the tolerance €, > 0 is specified for the interval [ag, by ]. If

. 1
{#) T0 I5Caks. brt) + Starz, br2) — S(ay, bi)| < €,

we infer that

by

(9 F(x)dx — Sap1, b)) — S{ag2, bi2)| < €.

a

Thus the composite Simpson rule (3) is used to approximate the integral
b

(10) fxrdx = S(agi, b)) + S(aga. bi2),

@
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Table 7.8  Adaptive Quadrature Computations for f(x) = 13(x — x2)e~3%/2

and the error bound for this approximation over [a;, b, ] is e,

Adaptive quadrature is implemented by applying Simpson’s rules (1) and (3). Start
with {[ao. bol, €0}, Where €p is the tolerance for numerical quadrature over [ag, bp).
The interval is refined into subintervals labeled [ag;, bp1] and [ag, bg2]. If the accu-
racy test {8) is passed, quadrature formula (3) is applied to [ag. bg) and we are done. If
the test in {8) fails, the two subintervals are relabeled {a1. b(] and [ay, b>], over which
we use the tolerances ¢; = %eo and €2 = 5'-60, respectively. Thus we have two in-
tervals with their associated tolerances to consider for further refinement and testing:
{lai. &), €1} and {[a;. b2), €2}, where €] + €3 = €g. If adaptive quadrature must be
continued, the smaller intervals must be refined and tested, each with its own associated
tolerance.

In the second step we first consider {[a;, #,], ¢;} and refine the interval [a1, b)] into
le11. bri] and [ay2. by2). If they pass the accuracy test (8) with the tolerance €1, quadra-
ture formula (3) is applied to [y, 5] and accuracy has been achieved over this interval,
If they fail the test in (8) with the tolerance €, zach subinterval [a11, b1¢] and [a;2, b12]
must be refined and tested in the third step with the reduced tolerance %e 1. Moreover,
the second step involves looking at {[az, b2], €2} and refining (a2, b3] into [az1, b21]
and [aap, b2o]. If they pass the accuracy test (8) with tolerance €;, quadrature formula
(3) is applied to [ar2, b2) and accuracy is achieved over this interval. If they fail the test
in (8) with the tolerance €2, each subinterval a3, b721] and [a22, b22] must be refined
and tested in the third step with the reduced tolerance %ez; Therefore, the second step
produces either three or four intervals, which we relabel consecutively. The three inter-
vals would be relabeled to produce {{[a;, b1], €}, {[a2, b2], €2}, {[a3, b3], £3}), where
€1 + €2 + €3 = €. In the case of four intervals, we would obtain [{[«, b1, €1},
{laz. b2]), €2}, {[a3. b], €3}, {las. 4], €a}}, where €| + €3 + €3 + €4 = €g.

If adaptive quadrature must be continued, the smaller intervals must be tested,
each with its own associated tolerance. The error term in (4} shows that each time a
refinement is made over a smaller subinterval there is a reduction of error by about

Error bound on Tolerance ;.

ag by Slagy, bry )+ Slags, bi2) the left side of (8) for oy, B ]
0.0 0.0625 0.02287184840 0.00000001522 0.00000015625
0.0625 | 0.125 0.05948686456 0.00000001316 0.00000015625
0.125 0.1875 0.08434213630 0.00000001 137 0.00000015625
0.1875 | 0.25 . 0.09969871532 0.00000000981 0.00000015625
0.25 0.375 0.21672i36781 0.00000025055 0.0000003125
0.375 0.5 0.20646391592 0.0000001 8402 0.0000003125
0.5 0.625 0.17150617231 0.00000013381 0.0000003125
0.625 0.75 0.12433363793 0.0000G00961 1 0.0000003125
0.75 0.875 0.07324515141 0.00000006799 0.0000003125
0.875 1.0 0.02352883215 6.00000004718 0.0000003125
1.0 1.125 —0.02166038952 0.00000003192 0.0000003125
i.i25 1.25 —0.06065079384 0.000600002084 0.0000003125
1.25 L5 —0.21080823822 0.00000031714 0.000000625
1.5 20 —0.60550965007 0.00000003195 0.00000125
2.0 2.25 ~0.31985720175 0.00000008106 0.000000625
2,25 2.5 —0.30061749228 0.00000008301 0.000000625
2.5 2,75 —0.27009962412 0.00000007071 0.000000625
275 3.0 —0.23474721177 0.00000005447 0.000000625
3.0 3.5 —0.36389799695 0.00000103699 0.00000125
35 4.0 —0.24313827772 0.00000041708 0.00060125

Totals | —1.54878823413 0.00000296809 0.00001

a factor of 1—15. Thus the process will terminate after a finite number of steps. The
bookkeeping for implementing the method includes a sentinel variable which indicates
if a particular subinterval has passed its accuracy test. To avoid unnecessary additional
evaluations of f (x), the function values can be included in a data list corresponding to
each subinterval. The details are shown in Program 7.6.

Example 7.16. Use adaptive quadrature to numerically approximate the value of the
definite integral f¥ 13(x — x?)e~3%/2 dx with the starting tolerance eg = 0.00001

ImpleméntaiiBn of the method revealed that 20 subintervals are needed. Table 7.8 lists
each interval [ag. &;], composite Simpson rule S{ag1. be1)+S(ax;, bya), the error bound for
this approximation, and the associated tolerance ¢,. The approximate value of the integral
is obtained by summing the Simpson rule approximations to get

4
an f 130x —x2e 2 dx ~ —1.54878823413.
0
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Figure 7.9 The subintervals of [0, 4] used in adaptive
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' Program 7.5 (Simpson’s Rule). To approximate the integral

50
f fx)dx =~ g(f(a0)+4f(c'0)+f(b0))
a0

\ by using Simpson's rule, where ¢0 = {a0 + 50}/2.
function Z=srule(f,al,b0,to0l0)

%Input - f is the integrand input as a string °f’
A - a0 and b0 are upper and lower limits of integration
% - tol0 is the tolerance

% Output - Z is a 1x6 vector [a0 b0 S5 52
h={b0-20)/2;
=zeros(1,3);

1]
Hi

—_ a4
tollj

guadrature. C=feval(f, [a0 (a0+b0)}/2 bOl);
S=h*(C(1)+4*C(2)+C(3))/3;
§2=5;
18I1=tal0;
The true value of the integral is err=tol0;

4 41089 - 52
f 13(r — x%e= 372 gy = 1108 " =32
o 27

= —1.5487883725279481333.

(12)

Therefore, the error for adaptive quadrature is
(13) | — 1.54878837253 — (—1.54878823413)| = 0.00000013840,

which is smaller than the specified tolerance g = 0.00001. The adaptive method nvolves
20 subintervals of [0, 4], and 81 function evaluations were used. Figure 7.9 shows the grarh
of y = f(x) and these 20 subintervals. The intervals are smaller where a larger functional
variation occurs near the origin.

In the refinement and testing process in the adaptive method, the first four intervals
were bisected into eight subintetvals of width 0.03125, If this uniform spacing is contin-
ued throughout the interval [0, 4], M = 128 subintervals are required for the composite
Simpson rule, which yields the approximation —1.54878844029, which is in error by the
amount 0.00000006776. Although the composite Simpson method contains half the error
of the adaptive quadrature method, 176 more function evaluations are required. This gain
of accuracy is negligibie; hence there is a considerable saving of computing effort with the
adaptive method. ]

Program 7.5, srule, is a modification of Simpson’s rule from Section 7.1. The
output is a vector Z that contains the results of Simpson’s rule on the interval (a0, bul.
Program 7.6 calls srule as a subroutine to carry out Simpson’s rule on each of the
subintervals generated by the adaptive quadrature process.

Z=[a0 b0 S S2 err tolill;

Program 7.6 produces a matrix SRmat, quad (adaplive quadrature approximation
to definile integral} and err (the error bound for the approximation). The rows of
SRmat consist of the end points, the Simpson’s rule approximation, and the error bound

on each subinterval generated by the adaptive quadrature process.

f’-'rogram 7.6 (Adaptive Quadrature Using Simpson’s Rule). To approximate
the integral

b M
f FO dx ) (f (akma) +4F (caimd) + 2 (xak-2)
e k=1

+ 4 f (xap—1) + f(xar)).

 The composite Simpson rule is applied to the 4M subintervals [x4i—4, x4z ], where
fe, b) = [x0, xam) and Xgg_a4; = Xaia + jhy, foreachk =1,... . Mand j = 1,

function [SRmat,quad,err]=adapt(f,a,b,tol)
%fnput - f is the integrand inmput as a string ’f’

% - a and b are upper and lower limits of integration
% - tol is the tolerance

%Output - SRmat is the table of values

% - quad is the gquadrature value

% - err is the error estimate
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%Initialize values
SRmat = zeros(30,6);
iterating=0;

done=1;
SRvec=zeros(1,6);
SRvec=srule(f,a,b,tol);
SRmat(1,1:8)=3Rvec;

mel ;
state=iterating;
while{state==iterating)
n=m;
for j=n:-1:1

pP=ji

SROvec=8Rmat (p,:);
err=SR0vec(5);
tol=SROvec(6);
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end
end
end
quad=sum{SRmat (:,4));
err=sum(abs (SRmat (:,5)));
SRmat=SRmat(1:m,1:6);

1. Use Program 7.6 to approximate the value of the definite integral. Use the starting
tolerance ¢o = 0.00001.

(@ [>snQx) ® [ sn@near @ [' L
—_— sinl4ax je X —
jo 1+x5 jo !004

if (tol<=err)
%Bisect interval,apply Simpson’s rule
%recursively, and determine error
state=done;
SRivec=3R0vec;
SR2vec=SROvec;
a=SROvec(1);
b=SROvec(2);
c=(at+b) /2;
err=SROvec(5);
tol=SROvec(6);
tol2=tol/2;
SRivec=srule(f,a,c,tol2);
SR2vec=srule(f,c¢,b,t0l2);

err=abs (SROvec(3)-SR1lvec{3)-SR2vec(3))/1

%Accuracy test
if (err<tol)
SRmat (p, : )=SR0vec;

SRmat (p,4)=SR1vec(3)+5R2vec(3);
SRmat(p,5)=err;

else
SRmat (p+1:m+1,:)=SRmat(p:m,:);
m=m+1 ;
SRmat {p, :)=SRlvec;
SRmat (pt+1, : )=8R2vec;
state=iterating;

end

Pl 1 2
@) / ——dx (e) [ sm( )dx ® f Viax — x?dx
0 X2+ 3 1/(2rr)

2. For each of the definite integrals in Problem 1 construct a graph analogous to Fig-
ure 7.9. Hint. The first column of SRmat contains the end points (except for &)
of the subintervals from the adaptive quadrature process. If T=SRmat(:,1) and
Z=zeros (length(T))’, then plot(T,Z,’.?) will produce the subintervals (ex-
cept for the right end point ).

3. Modify Program 7.6 so that Boole’s rule is used in each subinterval [ay, by ].

4, Use the modified program in Probiem 3 to compute approximations and construct
graphs analogous to Figure 7.9 for the definite integrals in Problem 1.

1.5 Gauss-Legendre Integration (Optional)

We wish to find the area under the curve
y=fx), -—-l=sx=l.

What method gives the best answer if only two function evaluations are to be made?
We have already seen that the trapezoidal rule is a method for finding the area under
the curve and that it uses two function evaluations at the end points {(—1. f(—1)), and
(1, f(1)). But if the graph of y = f(x) is concave down, the error in approximation
is the entire region that lies between the curve and the line segment joining the pomts
(see Figure 7.10(a)).

If we can use nodes x| and x that lie inside the interval [—1, 1], the line through
the two points (x1, f(x1)) and {x2, f(x2)) crosses the curve, and the area under the tine
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R
-

-1 0 v Po-l g 0 % 1
(a) (®)
Figure 7.10  (a) Trapezoidal approximation using the abscissas —1 and 1. (b) Trapezoidal
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to require that (3) be exact for the four functions f(x) = 1, x, x2, x*. The four integrai
conditions are

1
fxy=1: [ ldx=2=wi+un

1
S(x)=x: f xdx =0=wx; + wrxz
Q] ‘l' )
f(x)=x2: f x2dx =:§—_—w]x]2+wa§
—t
1

2 ' . " N
f(x)=x": jlxadx:():wle-i—]pzx;_

Now solve the system of nonlinear equations

approximation using the abscissas x| and xa. (5) wytw, =2
(6) WiX] = —waxy

2 12

, : - % wix} +wpxf = 2

more closely approximates the area under the curve (see Figure 7.10(b)). The equation 1 273
of the line is (8) wlx? = —wzxg

(= x){f ) — F(x1)

x2 — X1

and the area of the trapezoid under the line is

(2) A _2xz Flxy) —

J

X2 —x) X2 — x|

Ej
]

Notice that the trapezoidal rule is a special case of (2). When we choose x4 = -1,
x> =1,and h = 2, then

2 -2
T(fh)y=5fn) - ?f(xz) =S+ f(x2).

We shall use the method of undetermined coefficients to find the abscis-.~ xy, x2
and weights wy, w7 so that the formula

3) -[1 Flxydx = wy f(x1) + wa f(x2)

is exact for cubic polynomials (i.e., f(x) = a3x> + @2x2 + ayx + ap). Since four
coefficients wy, wy, x1, and x3 need to be determined in eguation (3), we can select

four conditions to be satisfied. Using the fact that integration is additive, it will suffice

‘We can divide (8) by {6) and the resuit is

(¢)] x12 = x% or x| = —x3.

Use (9) and divide (6) by x on the left and —x, on the right to get
ao w] = wo.

Substituting (10) into (5) results in w; + w; = 2. Hence

(11) w =w2=1.

Now using (11) and (9) in (7), we write

12) wixftwaxd=xi+xi=> or = 3

—x; = x2 = 1/3Y2 % 05773502692,

We have found the nodes and weights that make up the two-point Gauss-Legendre

rule. Since the formula is exact for cubic equations, the error term will invoive the
fourth derivative. A discussion of the error term can be found in Reference [41].



392 CHAP.7 NUMERICAL INTEGRATION

Theorem 7.8 (Gauss-Legendre Two-Point Rule). If f is continuous on [-1, 1].
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Table 7.9 Gauss-Legendre Abscissas and Weights

then
i . . 1 N
- dx = E
(13) [ f(x)dx%G;(f):f(__/_)+f(__f__). f—r Flx)dx gwmf(xn.k)+ NN
v \v3/ \v3/
. Truncation error,
Tt;he Gauss-Legendre rule G2(f) has degree of precision n = 3. If f € C%[—1.1]. Abscissas, xy & Weights, wy En(f)
the £
n —0.5773502692 1.0000000000 e
i -1 1 0.5773502692 1.0000000000 135
(14) f F@dz=f ( E) +f (73;) + E2(f), +0.7745966692 0.5555555556 1)
- Y Y2 0.0000000000 0.8888838888 15,750
where +0.8611363116 0.3478548451 ®
@ +0.3399810436 0.6521451549 3.472.875
(15) =19 £0.9061798459 0.2369268851 10
135 +0.5384693101 0.4786286705 1.237.732.650
_ Example 7.17. Use the two-point Gauss-L.egendre rule to approxi 0.0000000009 0.5688888558
- - proximatc 49324695142 01713244924 Hay2ent
U odx +0.6612093865 0.3607615730 L‘_L_(msm
j x_-}-—Z = In(3) — In(1) = 1.09861 +0.2386191861 0.4679139346
-1
+0.9491079123 0.1294849662 92
and compare the result with the trapezoidal rule T'(f, k) with # = 2 and Simpson’s rule +0.7415311856 0.2797053915 (149315}
S(f hywithh = 1. ) +0.4058451514 0.3818300505
Let G2( f) denote the two-point Gauss-Legendre rule; then 0.0000000000 04179591837
+0.9602898565 0.1012285363 FUO (217 (8t
Ga(f) = f(—0.57735) + f(0.57735) +0.7966664774 0.2223810345 Q6031
= 0.70291 + 0.38800 = 1.09091. +0.5255324009 0.3137066459
+0.1834346425 0.3626837834

T(f,2) = F{—1.00000) + f(1.00000)
= 1.00000 + 0.33333 = 1.33333,

FED+4fO + () _ 1+2+43
3 -3

The errors are 0.006770, ~0.23472, and —0.01250, respectively, so the Gauss-Legendre

rule is seen to be best. Notice that the Gauss-Legendre rule required only two function

evaluations and Simpsen’s rule required three. In this example the size of the error (or
G2(f) is about 61% of the size of the etror for S(f, 1). "

(A=

= 111111

The general N-point Gauss-Legendre rule is exact for polynomial functions of
degree < 2N — 1, and the numerical integration formula is

(16) Chu(f)=wy 1 flanv ) +wy2fxnz) +- +wnn fxNN).

The abscissas xy  and weights wy k to be used have been tabulated and are easily
available: Table 7.9 gives the values up to eight points. Also included in the table is
the form of the error term Ey(f) that corresponds to Gy (f), and it can be used to
determine the accuracy of the Gauss-Legendre integration formula.

The values in Table 7.9 in general have no easy representation. This fact makes the

method iess attractive for humans to use when hand calculations are required. But once
the values are stored in a computer it is easy to call them up when needed. The nodes
are actuaily roots of the Legendre polynomials, and the corresponding weights must
be obtained by solving a system of equations. For the three-point Gauss-Legendre rule
the nodes are —(0.6)1/2, 0, and (0.6)'/2, and the corresponding weights are 5/9, 8/9,
and 5/9
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Theorem 7.9 (Gauss-Legendre Three-point Rule). If f is continuous on [ -1, ! .

then
5F(=+/3/5) + 8£(0) +5£(/37/5)

1
on f fwdrxGan=

The Gauss-Legendre rule G3(f) has degree of precisionn = 5. If f € CS[—1, |].

then
l —
(18) [ﬁ@ﬂ=ﬂ(ﬁm+?©“Wﬂm+&m,
where
)
19 =
(19) E3(f} 15.750"

Example 7.18. Show that the three-point Gauss-Legendre rule is exact for
1
f Sxtdx =2 = Gs(f).
-1

nee the integrand is f(x) = 5x* and f©(x) = 0, we ca
iy 1, o o .

i
Yy—=1} Rut it is instructivi
/ . But 1Siruc

Gi(f) =

9 = F = 2‘ -]
The next result shows how to change the variable of integration so that the Gauss-
Legendre rules can be used on the interval [a, &).

Theorem 7.10 (The Gauss—Legendre Translation). Suppose that the abscissas
[xn ;[}k , and weights {wy, k}k , are given for the N-point Gauss-Legendre rule over
{—1, 1]. To apply the rule over the interval {a, b}, use the change of variable

a+b b-a b—a

2+2xandd12

Il

20) f= dx.

Then the relationship

@ fb i = f/a_l_b-r-b_ax\b_aa'x
BFARAN J

2 2 2

is used to obtain the quadrature formula
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Example 7.19. Use the three-point Gauss-Legendre rule to approximate
54t
f 7= In(5) — In(1) = 1.609438
1

and compare the result with Boole’s rule B(2) with h = 1.

Herea = 1 and b = 5, so the rule in (22) yields
57(3—2(0.6)/) +8f(3+0)+5f(3 + 2(0.6)'/%)

6= ;
3.446359 + 2.666667 + 1.099096

9

In Example 7.13 we saw that Boole’s rule gave B(2) = 1.617778. The errors are
0.006744 and —0.008340, respectively, so that the Gauss-Legendre rule is slightly better
in this case. Notice that the Gauss-Legendre rule requires three function evaluations and
Boole’s rule requires five. In this example the size of the two errors is about the same. =

= 1.602694.

=2

Gauss-Legendre integration formulas are extremely accurate, and they should be

this case, proceed as follows chk a few representative mtegrals 1nclud1ng some w1th
the worst behavior that is likely to occur. Determine the number of sample points
N that is needed to obtain the required accuracy. Then fix the value N, and use the
Gauss-Legendre rule with NV sample points for all the integrals.

For a given value of N, Program 7.7 requires that the abscissas and weights from
Table 7.9 be saved in 1 x N matrices 4 and W, respectively. This can be done in
the MATLAB command window or the matrices can be saved as M-files. It would
be expedient to save Table 7.9 in a 35 x 2 matrix G. The first column of G would
contain the abscissas and the second column the corresponding weights. Then, for a

given value of N, the matrices A and W would be submatrices of G. For example, if
N = 3, then A=G(3:5,1)? and W=G(3:5,2) °.

Program 7.7 (Gauss-Legendre Quadrature). To approximate the integral
b b—a &
[ rwrax =252 unasann
a k=1

by sampling f (x) at the N unequally spaced points {tN,k}le. The changes of vari-
able
a+b b-a b-a

t = 5 + 2.t and dtf=

dx

are used. The abscissas {xn k}f ; and the corresponding weights {wN_k],’L] must

- R . [ P

DU OD[dl]'lUu roma I.d.UI.C U1 KIIOWil vaLuca

function quad=gauss(f,a,b,A4,W)
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%Input - f is the integrand input as a string 'f’

4 - a and b are upper and lower limits of integration
% - A is the 1 x N vector of abscissas from Table 7.9
b -~ W is the 1 x N vector of weights from Table 7.9
%Output - quad is the quadrature value

N=length(A);

T=zeros(1,N);

T=((a+b) /2)+((b-a) /2)*A;
quad={(b-a)/2)*sum(W.*feval (f,T)};

Exercises for Gauss-Legendre Integration (Qptional)

In Exercises 1 through 4, show that the two integrals are equivalent and calculate Ga( f).
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40. The truncation error term for the three-point Gauss-Legendre rule on the interval
[—1, 1] is f®(c;)/15,750. The truncation error term for Boole's rule on [a, b} is
—8h7 £6)(c2) /945, Compare the error terms when [a, ] = [1, 1]. Which method
is better? Why?

m
—
=
m
oy
(=]
-

Derive the threa_noint Gauss-Lesendre rule using the following steps. Us

. Derive the three-point Ga g ule using the following steps. U
r

that the abscissas are the roots of the Legendre polynomial of degree 3.

b
-

xi=—(0672 x=0 x3=06

Find the weights w, w2, w3 so that the relation
i
f Floydx ~ wy f(—0.6)7%) + wa f (0) + w3 £((0.6)1/%)
-1

is exact for the functions f(x) = 1, x, and x2. Hint. First obtain, and then solve the
linear system of equations

2 ! 2 1
L [ 65 de = [ 6(x + 1V dx 2. [ sin(i)dr = [ sin(x + D dx
Jo J=1 Jo J-
! s I 1 1 .= k*“”z
3. / ELIC. [ MO DD g 4 A f YA Y LN,
o ! -1 x+1 Var Jo J2m Jo 2
T 1
5. L f cos(D.6sin(t)) dt = 0.5 r cos -{065"-. {fx + DE“ dx
x Jy Joo\ \v 2/
6. Use Ex(f) in Table 7.9 and the change of variable given in Theorem 7.10 to find the

smallest integer N so that Ey (f) = O for

@ fZ8x7dx =256 =Gn(f).

() I 11x9dx = 2048 = Gn(f).

Find the roots of the following Legendre polynomials and compare them with the
abscissa in Table 7.9.

(@) Pyx)= (x>~ 1)/2

(b) Py(x) = (5x3 - 3x)/2

(€} Py(x) = (35x* - 30x2 +3)/8

. The truncation error term for the two-point Gauss-Legendre rule on the closed in-

terval [—1, 1]is f®(c;)/135. The truncation error for Simpson’s rule on [a, 5] is
—h3 %} (¢2)/90. Compare the truncation error terins when [a, b] = [~1, 1]. Which
method do you think is best? Why?

. The three-point Gauss-Legendre rule is

] - 172 12
]fmdm”‘ (0.6 )+3£(03+5f((0.6) )
-1

Show that the formula is exact for f(x) = 1, x, x%, x3, x*, x5, Hint. I f is an odd
function (i.e., f(—x) = f(x)), the integral of f over [—1, 1] is zero.

L3 L a4} s |
Wy T wiy==+«

—(0.6)"?w| + (0.6)4w3 =0

2

0.6w; + 0.6w3 = 3-
12. In practice, if many integrals of a similar type are evaluated, a preliminary analysis is
made to determine the number of function evaluations required to obtain the desired

accuracy. Suppose that 17 function evaluations are to be made. Compare the Romberg
answer R(4, 4) with the Gauss- Legendre answer G17(f).

Algorithms and Programs

1. For each of the integrals in Exercises ! through 5, use Program 7.7 to find Ge(f).
Gy(f}, and Gg(f).
2.-(a) Modify Program 7.7 so that it will compute G1(f), G2(f), ..., Gg( f) and stop
when the relative error in the approximations G y—; (f) and Gy (f) is less than
the preassigned value tol, that is

2GN_1(f) — GN(f) < tol.
[Gn-1(f) + Gu{NI

Hint. As discussed at the end of the section, save Table 7.9 in an M-file G as a
35 x 2 matrix G. .

(b) Use your program from part (a) to approximate the integrals in Exercises 1
through 5 with an accuracy of five decimal places.
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3. (a) Use the six-point Gauss-Legendre rule to approximate the solution of the inte
gral equation

3
vix) = x%+0.1 jr (Jc2 + Hu(t)dt.
0

Substitute your approximate solution into the right-hand side of the integral
equation and simplify.
(b) Repeat part (a) using an eight-point Gauss-Legendre rule.




Numerical
Optimization

The two-dimensional wave equation is used in mechanical engineering to model vi-

| POV S SUR R RN, PRI 0 B D e L I S D, DU (T I S
OIatiolns 1 Ictiangulal plalcs. 11 UIC Plalcs 11ave dll 10Ur Cages Cld.l'npe(l, Ui€ sinusoidal

vibrations are described with a double Fourier series. Suppose that at a certain instant

(@) )]

Figure 8.1 (a) The displacement z = f(x, ¥} of a vibrating plate. (b) The contour plot »
fx, yy = C for a vibrating plate.

399
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of time the height z = f(x, ¥} over the point (x, y) is given by the function
2= f{x, y) = 0.02sin{x) sin(y) — 0.03 sin(2x) sin(y)
+ 0.04 sin(x) sin(2y) + Q.08 sin(2x) sind2y}.

Where are the points of maximum deflection located? Looking at the three-dime;
sional graph and the companion contour plot in Figure 8.1(a} and (b), respectively, w
see that there are two local minima and two local maxima over the square 0 < x <1z
0 < y < m. Numerical methods can be used to determine their approximate location

F(0.8278,2.3322) = —0.1200 and  f(2.5351,0.6298) = ~0.0264
are the local minima, and

F(0.9241,0,7640) = 0.0998 and  f(2.3979, 2.2287) = 0.0853

are the local maxima.

In this chapter we give a brief inttoduction to some of the basic methods for locat
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Theorem 8.3 (First Derivative Test). Assume that f(x) is continuouson [ = fa. b}.
Furthermore, suppose that f’(x) is defined for all x € (a, b), except possibly at x = p.
(i} If f'(x) < Oon{a, p)and f'(x) > Oon {p, b), then f(p) is a local minimum.
(i) ¥ f'(x} > Oon (a, p) and f'(x) < Oon (p, b),then f(p) is a local maximum.

Theorem 8.4 (Second Derivative Test). Assume that f is continuous on [a, b} and
fand f " are defined on (a, b). Also, suppose that p € (a, b) is a critical point where
fl(p)y=
I f”(p) > 0, then f{p) is a Jocal minimum of f.
{i) If f”({p) < 0, then f(p) is a local maximum of f.
(iii) If f”(p) = 0, then this test is inconclusive.

Example 8.1. Use the second derivative test to classify the local extrema of f(x) =
134+ x2 — x + 1 on the interval [~2, 2].

The first derivative is 7/(x) = 3x2 + 2x — 1 = (3x — I)(x + 1), and the secon
detivative is £"(x) = 6x + 2. There are two points where f'(x) = 0(.e., x = 1/3, -1}

g extrema of functions of one or several variables.

Minimization of a Function

Definition 8.1 (Local Extremum). The function f is said to have a local minimum
value at x = p, if there exists an open interval / containing p so that f(p) < fix) for
all x € /. Similarly, f is said to have a local maximum value at x = p if f(x) < f(p)
for all x € I. i f has either a local minimum or maximum value at x = p, it is said
to have a local extremum at x = p. A

Definition 8.2 (Increasing and Decreasing). Assume that f(x) is defined on the
interval /.
(i) If x; < xo implies that £(x1) < f(x2) forall xy, x2 € {, then f is said to be
increasing on [.

(i) If x; < xp implies that f(x)} > f(x) forall x|, x2 € {, then f is said to be
decreasing on 1. s

Theorem 8.1. Suppose that f(x) is continuous on / = [a. b] and is differentiable on
(a.b).

(i) If f'(x) » Qforall x € (a, b), then f(x) is increasing on J.

(i) If f'{x) < Oforall x € {a, b}, then f(x) is decreasing on {.

I ot Lo | P R,

Theorem 8.Z. Assume that f{x) is defined on { = {a, &} and has a local extremiim
at an interior point p € (a, b). If f(x) is differentiable at x = p, then f'(p} = 0.

Case (i) Atx = 1/3 we find that f'(1/3) = O and f"(1/3) =4 > 0, so that f(x) has
alocal minimum at x = 1/3.

Case (ii): Atx = —1 we find that f'(—1) = 0 and f"(—1) = —4 < 0, so that f(x)
has a local maximum at x = —1. »

Search Method
Another method for finding the minimum of f(x) is to evaluate the function many

times and search for a loca! minimum. To reduce the number of function evaluations,
famartant ta hova a onnd strategy for determinins where ffr‘l is evaluated. One

,u. 15 iMIPOIant ¢ Nave a gU00 SUAWEY 100 SOISIRIRRANE Waslt EE uateda

of the most efficient methods is ca[led the golden ratio search, Wthh is named for the
ratio’s involvement in selecting the points.

'The Golden Ratio
Let the mmal interval be 0,11 If05 <r < 1, then 0 < 1 —r < 0.5 and the interval
is divided into three subintervals [0, 1 -~ r], [1 — r, 7], and [r. 1]. A decision process

is used to either squeeze from the right and get the new interval [0, r] or squeeze from

‘the left and get {1 — r, 1]. Then this new subinterval is divided into three subintervais

in the same ratio as was [0, 1].

We want to choose r so that one of the old points will be in the cormect position
with respect to the new interval as shown in Figure 8.2, This implies that the ratio
(1~ r): r be the same as r : 1. Hence r sansﬁes the equation 1 — r = r2, which
can be expressed as a quadratic equation rf+ 7 —1 = 0. The solution r satisfying

05<r <lisfoundiober = (ﬁ— 1)[2.

To use the golden search for finding the minimum of f(x), a special condition
must bemet to ensure that there is a proper minimum in the interval.
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0 1-r r 1 0 1-r r 1
E | 1 E { : j
C T U ol | =

rt 1-,2
—t—t 5 E — 3
0 l-r 1-r r 1

Squeeze from the left and

Squeeze from the right and :
the rew interval is [1 — r. 1].

the new interval is [0, r].

Figure 8.2 The intervals involved in the golden ratio search.

1.\ v=flx) \)’ =f(x)
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Table 8.1  Secant Method for
Solving f'(x} = 2x — cos(x) = 0

Pk 2pp — cos(py)

0.000000¢ | —1.00000000
1.0000000 1.45969769
0.4065540 | —0.10538092
0.4465123 | —0.00893398
0.4502137 0.00007329
0.4501836 | —0.00000005

bW S| -

‘Table 82 Goiden Search for the Minimum of F)=x2~ sin(x)

a % dy by fler) fldy)
0.0000000 | 0.3819660 | 0.6180340 1 —~0.22684748 =0.19746793

5-:0006000——0:2360680 | 0:3819660 | 06180330 | —U.I78I5339 | —0.22684748

If f{d) < f(c) then squeeze

If f(c} = f(d) then squeeze
from the left and use [c, b}

from the right and use [a, 4]

Figure 8.3 The decision process for the golden ratio search.

Definition 8.3 (Unimodal Function). The function f{x) is unimodalon I = [a 6],
if there exists a unique number p € [ such that

(1) f{x) is decreasing on [a, p]
(2) f{x) is increasing on {p, b]. 4

If £(x) is known to be unimodal on [a, b], it is possible to replace the interval v'ti*a"\
a subinterval on which f(x) takes on its minimum value. The golden search requires
that two interior points ¢ = a + (1 — r){b —a) andd = a 4+ r(b — a) be used, v:rhg,re
r is the goiden ration mentioned above. This resuits ina < ¢ < & < b. The conaitien
that f(x) is unimodal guarantees that the function values f(c) and f(d) are less than
max{ f(a), f(b)}. We have two cases to consider (sec Figure 8.3).

If f(c) = f(d),the minimum must occur in the subinterval [a, 4] and we re_place b
wirh 4 and continue the search in the new subinterval. §If f(d) < f(c), the minimum
must occur in [¢, b] and we replace a with ¢ and continue the search. The next example
compares the root-finding method with the golden search method.

k

\ / \ / Y

1

\ S— 2

P . P | 3

: : : 3 |- T T z 4
a c d b a I d h 5
6

0.2360680 | 0.3819660 | 0.4721360 | 0.6180340 | —0.22684748 | —0.23187724
03819660 | 0.4721360 | 0.5278640 | 0.6180340 | —0.23187724 —=0.22504882
0.3819660 | 0.4376941 | 0.4721360 | 0.5278640 | —0.23227504 —0.22187724
0.3819660 | 04164079 | 0.4376941 | 0.4721360 | —0.23108238 | —0.23227594

0.4164079 | 04376041 | 04508497 | 04721360 | —0.23227594 | —0.23246503

21 | 04501574 | 04501730 | 0.4501827 | 04501983 | —0.23246558 | —0.23246558
22 | 04501730 | 0.4501827 | 0.4501886 | 0.4501983 | —0.23246558 | —0.23246558
23 | 0.4501827 | Q4501886 | 0.4501923 | 0.4501983 | —0.23246558 | —0.23246558

Example 8.2. Find the minimum of the unimodal function f(x) = x? — sin(x) on [0, 1.

Solution by solving f’(x) = 0. A root-finding method can be used to determine where
the derivative f'(x) = 2x — cos(x) is zero. Since f/(0) = —1 and S = 1.4596977,
arootof f'(x) lies in the interval [0, 1]. Starting with pg = 0 and p; = 1, Table 8.1 shows
the iterations.

The conclusion from applying the secant method is that f '(0.4501836) = 0. The
second derivative is £ (x) = 24 sin(x) and we compute £”(0.4561836) = 2.435131 > 0.
Hence the minimum value is £(0.4501836) = —0.2324656.

Sclution using the golden search. At each step, the function values f(c) and f(d)
are compared and a decision is made as to whether to continue the search in [a,d])or{c, b].
Some of the computations are shown in Table 8.2.

At the twenty-third iteration the interval has been narrowed down to lazs, ba3] =
(o 4501827, 0.4501983). This interval has width 0.0000156. However, the computed func-
tion values at the end points agree to eight decimal places (i.e., f{an) =~ —0.23246558 ~
£ (523)); hence the algorithm is terminated. A problem in using search methods is that the
function may be flat near the minimum, and this limits the accuracy that can be obtained.
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The secant method was able to find the more accurate answer ps = 0.4501836.
Although the golden search is slower in this example, it has the desirable feature 1hat
it can be applied in cases where f(x) is not differentiable. E

Finding Extreme Values of f(x, y)

Definition 8.1 is easily extended to functions of several variables. Suppose that f(x. 1)
is defined in the region

2 2
< reh.

3) _R_:{(x,v\;(x—n\z_l_fuwn\
/ P AS 4 LN ¥ 4 97

The function f(x, y) has a local minimum at (p, g) provided that
4 f(p.q) = f(x,y) foreach point (x, y) € R.
The function f(x, y) has a local maximum at (p, q) provided that
(5 flx,¥) =< f(p,q) foreachpoint (x, y) € R,
The second derivative test for an extreme value is an extension of Theorem 8.4

Theorem 8.5 (Second Derivative Test). Assume that f(x, y) and its first- and
second-order partial derivatives are continuous on a region R. Suppose that ( p.g)e R
Is a critical point where both f, (p, ¢) = O and £,(p. ¢) = 0. The higher-order partial
derivatives are nsed to determine the nature of the critical point,

() If fux(p.q)fiylp. q) — ffy(p,q) > 0and fi (p,q) > 0, then f(p,g)i>a
local minirnum of f.

(i} I fex(p,q) fyp(p.q) — fxzy(p, g) > Oand fix(p.q) < O, then f(p,q)is a
local maximum of f.

(i) ¥ fir(p.q) fyp(p.q) — ffy(p. q) < 0, then f(x, y) does not not have a locul
extremum at (p, g).

V) If fer(p, @) fyy(p.g) — f_fy (p. g) = 0, this test is inconclusive.

Example 8.3. Find the minimum of f(x, y) = x% —4x 4+ y2 — y — Xy.

The first-order partial derivatives are

(6) fixy)=2x=4—y and fy(x,y)=2y-1-x
Setting these partial derivatives equal to zero yields the linear system

2x —y=4

(N
—x+2y =1
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The solution to (7) is {x, y} = (3, 2). The second-order partial derivatives of f(x, y) are
Fxlx,yy=2,  fipx,y)=2, and foy(x,y) =1
1t is easy to see that we have case (i) of Theorem 8.5, that is
(3.2 £33, - fA3.2=3>0 and fx(3.2)=2>0.

Hence f(x, y) has a local minimum f(3, 2) == ~7 at the point (3, 2). »

The Nelder-Mead Method

A simplex method for finding a local minimum of a function of several variables has
been devised by Nelder and Mead. For two variables, a simplex is a triangle, and
the method is a pattern search that compares function values at the three vertices of a
triangle. The worst vertex, where f(x, y) is largest, is rejected and replaced with a new
vertex. :
a sequence of triangles (which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of the triangles is reduced and
the coordinates of the minimum point are found.

The algorithm is stated using the term simplex (a generalized triangle in N di-
mensions) and will find the minimum of a function of N variables. It is effective and
computationally compact.

The Initial Triangle BGW

Let f(x, ¥) be the function that is to be minimized. To start, we are given three vertices
of a triangle: V¢ = (xz, y&). k = 1, 2, 3. The function f(x, y) is then evaluated at each
of the three points z; = f{(xx, yx) for k = 1, 2, 3. The subscripts are then reordered so
that z; < zp < z3. We use the notation

(8) B=(x,y1), G=1(xz2,y)., and W =(x3,y3)
io help remember that B is the best vertex, G is good (next to best), and W is the worst

vertex.

Midpoint of the Good Side

“The construction process uses the midpoint of the line segment joining B and G . It is
found by averaging the coordinates:

) M=B+G:(I|+xz y1+yz)’

2 2 72
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Figure 84 The triangle ABGW

R for the Nelder-Mead method.

and midpoint M and reflected point;

SEc. 8.1 MINIMIZATION OF A FUNCTION a7

Figure 8.6 The contraction point
C) or €3 for Nelder-Mead method.

Figure 8.5 The triangle ABGW and point R and extended point E.

Reflection Using the Point R

The function decreases as we move along ihe side of the triangle from W to B, and it
decreases as we move along the side from W to G. Hence it is feasible that f(x, v)
takes on smaller values at points that lie away from W on the opposite side of the line
between B and G. We choose a test point R that is obtained by “reflecting” the triangle
through the side BG. To determine R, we first find the midpoint M of the side B( ;.
Then draw the line segment from W to M and call its length d. This last segment i<
extended a distance d through M to locate the point R (see Figure 8.4). The vector
formuia for R is

(10) R=M+M-W)=2M—-W

Expansion Using the Point E

If the function value at R is smaller than the function value at W, then we have moved
in the correct direction toward the minimum. Perhaps the minimum is just a bit fapther

1 3 h h Af A Pt~ ih P~
than the point R. So we extend the line segment through M and R to the point E

This forms an expanded triangle 3G E. The point E is found by moving an additior: |
distance d along the line joining M and R (see Figure 8.5). If the function value at £

is less than the function value at R, then we have found a better vertex than R. The
vector formula for E is

(11) E=R+(R-M)=2R-M.

Contraction Using the Point C

If the functien values at R and W are the same, another point must be tested. Perhaps
the function is smaller at M, but we cannot replace W with M because we > we musl have
a triangle. Consider the two midpoints C; and C> of the line segments WA and MR,
respectively (see Figure 8.6). The point with the smaller function value is called C,
and the new triangle is BGC. Note: the choice between €| and C, might seem
inappropriate for the two-dimensional case, but it is important in higher dimensions.

Shrink toward B

H the funca n value at € is not less than the value at W

shrunk towar: e Figure 8.7). The point G is rcplaccd with M, and W is replaced

ralu , the points G and W must be
B (see
with S, Wth 1s the midpoint of the line segment joining B with W.



408 CHAP. 8 NUMERICAL OPTIMIZATION

Table 8.3 Logical Decisions for the Nelder-Mead Algorithm

IF f(R) < f(G), THEN Perform Case (i) {either reflect or extend|
ELSE Perform Case (ii) {either contract or shrink}

BEGIN {Case (ii).}
IF f(B) < f{R) THEN IF f(R) < f(W) THEN

replace W with R L replace W with R
ELSE Compute C = (W + M)/2
or C = (M + R)/2and f(C)
IF f(C) < f(W) THEN

replace W with C

BEGIN {Case (i).}

Compute E and f(E)
IF f(E) < f(B) THEN

replace W with E ELSE
ELSE Compute S and f(S$)
replace W with R replace W with §
ENDIF replace G with M
ENDIF ENDIF
END {Case (i).} END {Case (ii).}
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-t

1T // T4

< T, Ty \
_—

Logical Decisions for Each Step

A computationally efficient algorithm should perform function evaluations only i:
needed. In each step, a new vertex is found, which replaces W. As soon as it i+
found, further investigation is not needed, and the iteration step is completed. The

caitzallol

logical details for two-dimensional cases are explained in Table 8.3.

Example 8.4. Use the Nelder-Mead algorithm to find the minimum of f(x,y) = x* —
4x + y2 — v — xv. Start with the three vertices

Vi = (0,0, Vy = (1.2,0.0}, Vi3 = (0.0,0.8).
The function f(x, ¥) takes on the values
f(0.0)=00, f(1.2,00)=-336. f(0.0,08)=-0.]6.
The function values must be compared to determine B, G, and W;
B =(1.2,0.0), G = (0.0,0.8), W = (0,0).

The vertex W = (0, 0) will be replaced. The points M and R are

M=Z ; G 06,04 and R=2M-W=(1208).

The function value f(R) = f(1.2,0.8) = —4.48 is less than f(G), so the situation {s
case (i). Since f(R) < f(B), we have moved in the right direction, and the vertex E must

he constructed:

oL consinicied,

E=2R-M=2(1.2,08)—(0.6,04)=(1.8,1.2).

PN/

1 2 3

Figure 8.8 The sequence of triangles {7} converging to the point (3,2) for the

Nelder-Mead method.

The function value f(E) = f(1.8,1.2) = —5.88 is less than f(B), and the new triangle
has vertices

Vi =(18,12), V2=(1200), Vi3=(00,0.8).

The process co