Appendix: Nonparametric Smoothing

In this book we make use of two nonparametric smoothing techniques, namely,
kernel density estimation and nonparametric regression for a single predictor. We
discuss each of these in turn next.

A.1 Kernel Density Estimation

In this section we provide a brief practical description of density estimation based
on kernel methods. We shall follow the approach taken by Sheather (2004).

Let X, X, ..., X, denote a sample of size n from a random variable with density
function f. The kernel density estimate of f at the point x is given by

A 1 & x—X,
f}z(x)_EgK( Y )

where the kernel, K satisfies [K(x)dx =1 and the smoothing parameter, 4 is known
as the bandwidth. In practice, the kernel K is generally chosen to be a unimodal
probability density symmetric about zero. In this case, K also satisfies the following
condition

[yK(ay=o.

A popular choice for K which we shall adopt is the Gaussian kernel, namely,

1 2
K()’) = \/gexp(_y?]

Purely for illustration purposes we shall consider a small generated data
set. The data consists of a random sample of size n = 20 from a normal mix-
ture distribution made up of observations from a 50:50 mixture of

N (,u =-1,0" = A)and N (u =10’ = %) The data can be found on the book

web site in the file bimodal.txt.
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Estimated & True Densities

Figure A.1 True density (dashed curve) and estimated density with & = 0.25 (solid curve)

Figure A.1 shows a kernel density estimate for these data using the Gaussian
kernel with bandwidth 7 = 0.25 (the solid curve) along with the true underlying
density (the dashed curve). The 20 data points are marked by vertical lines above
the horizontal axis. Centered at each data point is its contribution to the overall
x—=X
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(i.e.,— times a normal density with
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density estimate, namely, —K
nh n
mean X, and standard deviation /). The density estimate (the solid curve) is the

sum of these scaled normal densities. Increasing the value of 4 to 0.6 widens each
normal curve producing a density estimate in which the two modes are less appar-
ent (see Figure A.2).

Assuming that the underlying density is sufficiently smooth and that the kernel
has finite fourth moment, it can be shown that the leading terms in an asymptotic
expansion for the bias and variance of a kernel density estimate are given by

Bias,, {/,(x) } = % 1, (KY £7(x)

A 1
Var, 1,0 = — RO) ()
where

R(K) = [ K> (n)dy, p,(K) = [ Y’ K(»)dy
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Estimated & True Densities

Figure A.2 True density (dashed curve) and estimated density with 2 = 0.6 (solid curve)

(e.g., Wand and Jones, 1995, pp. 20-21). In addition to the visual advantage of
being a smooth curve, the kernel estimate has an advantage over the histogram in
terms of bias. It can be shown that the bias of a histogram estimator with bandwidth
h is of order h, compared to leading bias term for the kernel estimate, which is of
order /2. Centering the kernel at each data point and using a symmetric kernel
makes the bias term of order /& equal to zero for kernel estimates.

A widely used choice of an overall measure of the discrepancy between fAh and
fis the mean integrated squared error (MISE), which is given by

MISE(f,)=E {j (L= 1) dy }

- jBias (f‘h(y))zdwr JVW (f,, (y)) dy

Under an integrability assumption on f, the asymptotic mean integrated squared
error (AMISE) is given by

9 1 h4 2 Va
AMISE{/, } = — R+, (KY R(f)

The value of the bandwidth that minimizes AMISE is given by

5
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The functional R(f”) is a measure of the underlying curvature. In particular, the
larger the value of R(f”) the larger the value of AMISE (i.e., the more difficult it is
to estimate f) and the smaller the value of & Ay (i.e., the smaller the bandwidth
needed in order to capture the curvature in f).

There are many competing methods for choosing a global value of the band-
width A. For a recent overview of these methods see Sheather (2004).

A popular approach commonly called plug-in methods is to replace the unknown
quantity R(f”) in the expression for £, ,, .. given above by an estimate. This method
is commonly thought to date back to Woodroofe (1970) who proposed it for esti-
mating the density at a given point. Estimating R(f”) by R(f,") requires the user to
choose the bandwidth g for this estimate. There are many ways this can be done.
We next describe the “solve-the-equation” plug-in approach developed by Sheather
and Jones (1991), since this method is widely recommended (e.g., Simonoff, 1996,
p- 77; Bowman and Azzalini, 1997, p. 34; Venables and Ripley, 2002, p. 129) and
it is available in R, SAS and Stata.

Different versions of the plug-in approach depend on the exact form of the esti-
mate of R(f”). The Sheather and Jones (1991) approach is based on writing g, the
bandwidth for the estimate R(f”), as a function of 4, namely,

g(h)= C(K)IR(S")/ R(f")V W

and estimating the resulting unknown functionals of f using kernel density esti-
mates with bandwidths based on a normality assumption on f. In this situation, the
only unknown in the following equation is 4.

I
(K’ R(f.,)

&)

h=

The Sheather-Jones plug-in bandwidth, %, is the solution to this equation. For
hard-to-estimate densities (i.¢., ones for which | f” ( x) | varies widely due, for example,
to the existence of many modes) the Sheather—Jones plug-in bandwidth tends to
over-smooth and the method known as least squares cross-validation (Bowman and
Azzalini, 1997, p. 32) can be recommended. However, in settings in which para-
metric regression models are appropriate, the Sheather—Jones plug-in bandwidth
appears to perform well.

A.2 Nonparametric Regression for a Single Predictor

In this section we provide a brief practical description of nonparametric regression
for a single predictor, which is sometimes called scatter plot smoothing. In this sec-
tion we are interested in nonparametric estimates of the regression function, m(.)
under the assumption of iid errors with constant variance. Thus, in symbols, we
assume the following model fori=1, ..., n
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Y, =m(x)+e, =E(Y | X =x)+e,

We shall consider two classes of estimators, namely, local polynomial kernel estimators
and penalized linear regression splines.

A.2.1 Local Polynomial Kernel Methods

Local polynomial kernel methods (Stone, 1977; Cleveland, 1979) are based on the
idea of approximating m(x) by a low-order polynomial putting highest weight on
the values of y corresponding to x’s closest to x. According to Cleveland (1979),
the idea of local fitting of polynomials to smooth scatter plots of time series, meas-
ured at equally spaced time points, dates back to at least the 1930s. The local poly-
nomial estimator mp (x) is the value of b, that minimizes

g{)’; —bo—bl(x,. —x)—bz (xi—x)Z—-“bp (xi—xf }Z%K(xi;x)

where once again the kernel, K satisfies | K(x)dx=1 and the smoothing parameter,
h is known as the bandwidth.

The local constant estimator is obtained by setting p = 0 in the last equation.
Thus, in this case we seek to minimize

B 21 X, —x
St-nd ()

Differentiating with respect to b, and setting the result to zero gives

B 1 X, —Xx
-2 —b,  —K|— =0

Solving this equation for b, gives the local constant estimator 1, (x) where
YK (x" - x)
A i=1 h
N )
()
i=1 h

This estimator is also known as the Nadaraya-Watson estimator, as they were the
first to propose its use (Nadaraya, 1964; Watson, 1964). It is also possible to derive
an explicit regression for the local linear estimator 772 (x) (see, e.g., Wand and Jones,
1997, pp. 119, 144).

Choosing a higher degree polynomial leads in principle to a better approxi-
mation to the underlying curve and hence less bias. However, it also leads to
greater variability in the resulting estimate. Loader (1999, p. 22) provides the
following advice:
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It often suffices to choose a low degree polynomial and concentrate on choosing the
bandwidth to obtain a satisfactory fit. The most common choices are local linear and
local quadratic. ... a local constant fit is susceptible to bias and is rarely adequate. A
local linear estimate usually performs better, especially at boundaries. A local quadratic
estimate reduces bias further, but increased variance can be a problem, especially at
boundaries. Fitting local cubic and higher orders rarely produces much benefit.

Based on their experience, Ruppert, Wand and Carroll (2003, p. 85) recommend
p =1 if the regression function is monotonically increasing (or decreasing) and p = 2
otherwise.

For illustration purposes we shall consider a generated data set. The data con-
sists of n = 150 pairs of points (x, y,) where y=m(x)+e, with x, equally spaced
from O to 1, e, ~ N(0,6°=4) and

m(x,) =151+ x, cos(47x,))

The data can be found on the book web site in the file curve.txt.

Figure A.3 shows a local linear regression estimate for these data using the
Gaussian kernel with bandwidth 7 = 0.026 (the solid curve) along with the true
underlying curve (the dashed curve). The value of the bandwidth was chosen using
the plug-in bandwidth selector of Ruppert, Sheather and Wand (2005). Marked as
a dashed curve on Figure A.3 is the weight function for each x, used to estimate the

curve at x = (.5, namely, lK ()6’705) (i.e., a normal density with mean 0.5 and
standard deviation /). h

Decreasing the value of # fivefold to 0.005, shrinks each normal curve so that each
straight line is effectively fit over a very small interval. This produces a curve estimate
which is much too wiggly (see the top panel of Figure A.4). On the other hand,
increasing the value of £ fivefold to 0.132 widens each normal curve so that each
straight line is effectively fit over a very large interval. This produces a curve estimate
which is clearly over-smoothed, missing the bottom or the top of the peaks in the
underlying curve (see the bottom panel of Figure A.4). As the bandwidth / approaches
infinity the local linear regression estimate will approach a straight line.

Thus far, in this section we have considered an example based on equally spaced
x’s. In settings in which parametric regression models are generally appropriate it
is common for the x’s not to be equally spaced. In particular, outliers, and sparse
regions in the x values are common when the distribution of x is skewed. In such
situations using a fixed value of the bandwidth / can be problematic, since there
may be very few (sometime even no) points in certain regions of the x-axis so that
it is not possible to fit a local polynomial for certain values of x. One way of solving
this problem is to adjust the bandwidth with the value of x so that the number of
points used to estimate m(x) effectively remains the same for all values of x. This
is achieved using the concept of the nearest neighbor bandwidth.

Fori=1,2, ..., n, let di(x) denote the distance X, is away from x, then

d(x) = |x—x|



Appendix: Nonparametric Smoothing 377

35 | R

30

25—

20

15

Estimated & True Curves

10

X

Figure A.3 True curve (dashed) and estimated curve with 4 = 0.026 (solid)
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Figure A.4 True curve (dashed) and estimated curves (solid) with 4 = 0.005 (upper panel) and
h = 0.132 (lower panel)
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The nearest neighbor bandwidth, h(x) is defined to be the kth smallest d(x) . In
practice, the choice of k is based on what is commonly called the span o, namely,

k= LnaJ.

Thus, the span plays the role of a smoothing parameter in nearest neighbor
bandwidths.

Cleveland (1979) proposed the use of local linear regression estimators based on
nearest neighbor bandwidths with the tricube kernel function

k= (-p")1(bf<1).

Cleveland (1979) also incorporated a robustness step in which large residuals were
down weighted. This estimator is typically referred to as lowess. Cleveland and
Devlin (1988) studied the properties of local linear regression estimators based on
nearest neighbor bandwidths with the tricube kernel without a robustness step. This
estimator is typically referred to as loess.

Figure A.5 shows the loess estimate based on p = 2 (i.e., local quadratic) with
span o = 1/3 (the solid curve), along with the true underlying curve (the dashed
curve). This value of the span was chosen by eye as the value that gave a curve that
seemed to best match the data.

The loess estimate with span o = 1/3 in Figure A.5 fits the data well. Increasing the
span to ot =2/3, produces a curve estimate which is slightly over-smoothed, missing

Estimated & True Curves
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Figure A.5 True curve (dashed) and estimated curve (solid) with span = 1/3
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Estimated & True Curves

Estimated & True Curves

Figure A.6 True curve (dashed) and estimated curves (solid) with span = 2/3 (upper panel) and
span = 0.05 (lower panel)

the bottom or the top of the peaks in the underlying curve (see the top panel of
Figure A.6). On the other hand, decreasing the value of the span to o. = 0.05 produces
a curve estimate which is much too wiggly (see the bottom panel of Figure A.6).

Nearest neighbor bandwidths do not perform well if the x-space is sparse when
the curve is wiggly and/or the x-space is dense when the curve approximates a
straight line. Fortunately, this is a highly unusual situation.

The marginal model plot method, proposed by Cook and Weisberg (1997) and
described in Chapters 6 and 8, is based on loess fits. This is a natural choice for
regression with continuous predictor and outcome variables due to the ability of
loess to cope with sparse regions in the x-space. However, its use for binary out-
come variables can be questioned, since it seems that no account is taken of the fact
that binary data naturally have nonconstant variance. In this situation one could
consider a local likelihood estimator, which takes account of the binomial nature of
the data (see, e.g., Bowman and Azzalini, 1997, p. 55).

A.2.2 Penalized Linear Regression Splines

Another increasingly popular method for scatter plot smoothing is called penalized
linear regression splines, which we discuss in this section. However, we begin by
discussing linear regression splines.
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Linear regression splines are based on the inclusion of the following term as a
predictor

_ x—c ifx>c
(x=c), ={0 " ifree

The inclusion of (x — ¢), as a predictor produces a fitted model which resembles a
broken stick, with the break at ¢, which is commonly referred to as a knot. Thus,
this predictor allows the slope of the line to change at c. (See Figure 10.16 for
details.) In order to make the model as flexible as possible, we shall add a large
number of knots c , ....,c, and hence consider the following model

K
y=[30+,31x+2b”(x—ci)++e (A1)
i=l
We shall see that two approaches are possible for choosing the knots, corresponding to
whether the coefficients b, in (A.1) are treated as fixed or random effects. If the coef-
ficients are treated as fixed effects, then a number of knots can be removed leaving only
those necessary to approximate the function. As demonstrated in Chapter 10, this is
feasible if there are a relatively small number of potential knots. However, if there are a
large number of potential knots, removing unnecessary knots is a “highly computation-
ally intensive” variable selection problem (Ruppert, Wand and Carroll, 2003, p. 64).
We next investigate what happens if the coefficients b, in (A.1) are treated as random
effects. In order to do this we consider the concept of penalized regression splines.
An alternative to removing knots is to add a penalty function which constrains
their influence so that the resulting fit is not overfit (i.e., too wiggly). A popular

K
penalty is to ensure that the 5, in (A.1) satisfy Z b, < C. for some constant C, which
i=1
has to be chosen. The resulting estimator is called a penalized linear regression
spline. As explained by Ruppert, Wand and Carroll (2003, p. 66) adding this pen-
alty is equivalent to choosing 3 B,,b,, b,,, .. b, to minimize

1 n K
=~ 2 (i =B =Bx) + A2 0, (A2)
i=l i=I

for some number A > 0, which determines the amount of smoothness of the result-
ing fit. The second term in (A.2) is known as a roughness penalty because it penal-
izes fits which are too wiggly (i.e., too rough). Thus, minimizing (A.2) shrinks all
the b,, toward zero. Contrast this with treating the b, as fixed effects and removing
unnecessary knots, which reduces some of the b ; to zero.

The concept of random effects and shrinkage is discussed in Section 10.1. In view of
the connection between random effects and shrinkage, it is not too surprising that there
is a connection between penalized regression splines and mixed models. Put briefly, the
connection is that fitting model (A.1) with B and j3, treated as fixed effects and b, ¢ Bz
... b treated as random effects is equivalent to minimizing the penalized linear spline
criterion (A.2) (see Ruppert, Wand and Carroll, 2003; Section 4.9 for further details).

Speed (1991) explicitly made the connection between smoothing splines and
mixed models (although it seems that this was known earlier by a number of the
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proponents of spline smoothing). Brumback, Ruppert and Wand (1999) made
explicit the connection between penalized regression splines and mixed models.

An important advantage of treating (A.1) as a mixed model is that we can then
use the likelihood methods described in Sect. 10.1 to obtain a penalized linear
regression spline fit.

Finally, one has to choose the initial set of knots. Ruppert, Wand and Carroll
(2003, p. 126) recommend that the knots be chosen at values corresponding to
quantiles of x, while other authors prefer equally spaced knots. Ruppert, Wand and
Carroll (2003, p. 126) have found that the following default choice for the total
number of knots K “usually works well”:

1
K = min (Z x number of unique x,.,35)

Figure A.7 shows a penalized linear regression spline fit obtained by fitting (A.1)
using restricted maximum likelihood or REML (the solid curve) along with the
true underlying curve (the dashed curve). The equally spaced knots, which are
0.02 apart, are marked by vertical lines on the horizontal axis. Notice this is many
more knots than is suggested by the rule above and it does not have any adverse
effects on the fit. Increasing the spacing of the knots to 0.15 produces a curve
estimate which is jagged, missing the bottom or the top of the peaks in the under-
lying curve and thus illustrating the problems associated with choosing too few
knots (see Figure A.8).
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Figure A.7 True curve (dashed) and estimated curve (solid) with knots 0.02 apart
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Estimated & True Curves

Figure A.8 True curve (dashed) and estimated curve (solid) with knots 0.15 apart

Recently, Krivobokova and Kauermann (2007) studied the properties of penal-
ized splines when the errors are correlated. They found that REML-based fits are
more robust to misspecifying the correlation structure than fits based on general-
ized cross-validation or AIC. They also demonstrated the simplicity of obtaining
the REML-based fits using R.



