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Announcements
◼ Project 02 Schedule:

❑ Fri Nov 19: Draft Technical Appendix with HW 10.

❑ Mon Nov 29 (or earlier): Full IDMRAD paper first draft.

❑ Fri Dec 3: Peer reviews due.

❑ Fri Dec 10 (or earlier): Full IDMRAD paper final draft!

◼ Regular classes Nov 22, 29 & Dec 1

◼ No more graded hw’s or quizzes

❑ I may give one more ungraded hw, if I have time to set it up

❑ End of semester feedback for me Nov 29

◼ BJ’s remaining office hours will be in the MSP space in 
FMS – not in his office.
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Outline
◼ Today: 

❑ Shrinkage

❑ Review of MLE

❑ Crash course in Bayes 

❑ Normal-Normal Model & Shrinkage

❑ MLM’s and Shrinkage

◼ Mon:

❑ Multilevel glm’s (multilevel binomial, poisson, etc.)

◼ After Thanksgiving:

❑ Some ideas from nonparametric regression

311/17/2021
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An MLM phenomenon: Shrinkage
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lm(y ~ county.name)

lmer( y ~ 1 + ( 1 | county.name ) )

County

The fitted multilevel model
underpredicts high obs’s
and overpredicts low ones.

The distribution assumptions
underlying lmer() “smooth out”
extreme observations!

Multi-level models provide more
smoothing/shrinkage to groups
with smaller sample sizes (since
there is less evidence that their
values should be different from 
“grand mean”.)

We’ll talk about why today…
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Methods of Estimation – How can we 
systematically construct “good” estimators?
◼ Several methods have proven useful:

❑ Method of Moments (MoM): The kth moment of X is E[Xk].  MoM 
estimators combine unbiased estimates of moments of X.

❑ Least Squares (LS): Obtained by minimizing squared error 

.  Ordinary linear regression!

❑ Maximum likelihood (ML): The likelihood is the probability of the 
data we observed.  ML estimators (MLE’s) choose parameter 
values that maximize the likelihood.

❑ Bayesian Estimation (Bayes):  Treat the parameters as random 
variables, and use Bayes’ rule to pick the parameter value most 
likely, given the data (the “reverse” of ML!)
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Maximum Likelihood Estimators (MLE’s)
◼ Let X1, …,Xn be an iid sample from fX(x;µ), x1, …, xn are the 

observed values

◼ The likelihood of the sample is the joint density

◼ The maximum likelihood estimate maximizes L(µ):

◼ Strategy: It’s usually (but not always) easier to work with 
the log likelihood
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Florida, 2020 Pre-Election Poll
◼ Donald Trump (R) running for election to the presidency 

against Joe Biden (D)

◼ In a Suffolk University Poll (October 1-4, 2020):
❑ 451 of 500 voters expressed a preference for Trump or Biden.  

❑ Of those 451: 226 prefer Donald Trump.

◼ In most polling, weights are attached to each response, 
to adjust the “representativeness” of the response for 
things like 
❑ who is likely to be home when survey worker calls

❑ who refuses to answer

❑ etc

◼ We will ignore weights etc and treat the 451 as a simple 
random sample.
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Possible models for the data

◼ 451 individual Bernoulli coin flips, xi = 1 for 
Trump, xi = 0 for Biden

◼ 451 trials, 226 “successes” (Trump voters)

◼ What matters for MLE and SE is shape, not size!
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Binomial and Bernoulli Likelihoods



1011/17/2021

Finding the MLE…
◼ If we use the Bernoulli likelihood,

◼ If we use the Binomial likelihood

◼ Either way we want to maximize

with k = 226, n=451
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◼ Differentiating and setting to zero…

◼ so, clearly, 

MLE: Point Estimate
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Bayes’ Rule (a.k.a. Bayes’ Theorem)

◼ A very simple idea with very powerful 
consequences

◼ We often start with information like P[A|B] and 
what we really want is P[B|A].  Bayes’ Theorem 
lets us “turn the conditioning around”:

◼ See https://arbital.com/p/bayes_rule/ for lots of 
examples and proselytizing.

https://arbital.com/p/bayes_rule/
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Conditional probability & conditional 
density
◼ P[A|B] = P[A&B]/P[B]

◼ P[B] = P[B|A]P[A] + 
P[B|Ac]P[Ac]

◼ P[A & B] = P[B|A]P[A]

◼ Bayes’ Theorem:

◼ f(x|y) = f(x,y)/f(y)

◼

◼ f(x,y) = f(y|x) f(x)

◼ Bayes’ Theorem:
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Bayes’ Theorem for Data

◼ Bayes’ Theorem

◼ Let x = data, y = µ (parameter!); then

Dummy 

variable of 

integration
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Bayes’ Theorem for Data

◼ We call 

❑ f(µ) the prior distribution

❑ f(data|µ) = L(µ) the likelihood

❑ f(µ|data) the posterior distribution

◼ So Bayes’ Theorem says

◼ Slogan: (posterior) / (likelihood)£(prior)
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Back to 2016 Florida pre-election poll

◼ The likelihood is the same as before:

L(p) / pk (1-p)n-k

◼ We need a prior distribution.  One good choice is 
a beta distribution, with

◼ Some graphs of beta densities appear on the next 
slide
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Some Beta Densities
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Some Beta Densities
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Choosing prior parameters…

◼ The likelihood is the same as before:

L(p) / pk (1-p)n-k = p226(1-p)225

◼ The prior distribution is a beta distribution

❑ ® = 1, ¯ = 1 gives a uniform distribution – no 
preference for one p over another!

❑ Suppose that in a previous poll, 942 prefer Trump and 
1008 prefer Biden.  Could set ®=942, ¯=1008



◼ (posterior) / (likelihood)£(prior):

◼ Since f(p|data)=L(p),

posterior mode = MLE

= 226/451 = 0.5011086

◼ Since f(p|data) is a beta

with ®=227, ¯=226,

E[p|data] = 227/453 = 0.5011038

2011/17/2021

If ®=1 and ¯=1…



◼ (posterior) / (likelihood)£(prior):

◼ Since f(p|data) =

beta(p,1168,1233),

E[p|data] = 1168/2401

= 0.486 vs MLE=0.501

2111/17/2021

If ®=942, ¯=1008… “shrinkage”: 

posterior between

prior & likelihood
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Normal Model: Estimate ¹, with ¾2

Known, One Observation y » N(¹,¾2)

◼ For our prior distribution, we’ll assume m»
N(¹0,t0

2):

◼ Posterior must be normal for ¹ (quadratic in ¹!); 
to identify it, complete the square…
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◼ The exponent of f(¹|y) looks like -1/2 times

so that ¹|y » N(¹1, ¿1
2), where
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◼ The exponent of f(¹|y) looks like -1/2 times

so that ¹|y » N(¹1, ¿1
2), where
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n Observations yi » N(¹,¾2)

◼ Since

we can apply the results for one observation

❑ p(y1, …, yn|¹) / N(y|¹, ¾n
2),  ¾n

2 = ¾2/n

❑ p(¹) = N(¹|¹0, ¿0
2)

❑ p(¹|data) = N(¹|¹n , ¿n
2) where
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Normal Mean, Example
◼ Suppose we know ¾=12, we look at n=169 IQ 

scores, and we find y = 100.

◼ We use as prior N(¹0, ¿0
2) with ¹0=90, ¿0

2 = 4

◼ Shrinkage determined by

◼ is the reliability

◼ n larger )

reliability larger )

less shrinkage 90 100 110

0
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“shrinkage”: 

posterior between

prior & likelihood
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Minnesota Radon Example
◼ Emphasize Distribution Structure

◼ Emphasize Bayesian point of view 

◼ Emphasize two-stage (multistage) sampling
Mean radon across MN

County-level differences

from grand mean

individual house levels
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Minnesota Radon Example

◼ In each county i with ni houses, the posterior

mean radon level 𝐸[𝜇𝑖|𝑦𝑖1, … , 𝑦𝑖𝑛𝑖
] will be

❑ When ni large, ¹i
post ¼ yi

❑ When ni small, ¹i
post ¼ ¹0

Mean radon across MN

County-level differences

from grand mean

individual house levels
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Minnesota Radon Example

◼ In the figure, the grand 
mean is ¹0

◼ In each county i with ni

houses, posterior mean is

❑ When ni large, ¹i
post ¼ yi

❑ When ni small, ¹i
post ¼ ¹0
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lmer( y ~ 1 + ( 1 | county.name ) )

County



MLM’s and Shrinkage
◼ The random effect “estimates” that lmer produces 

with ranef()are a form of posterior means 
E[h|data] for each h.

◼ The posterior means E[h|data] are always shrunk 
toward the prior mean 0, so that the random effects 
a are always shrunk toward the corresponding 
level-2 fixed effects b.

◼ The Bayesian pov not only provides insights, but also 

❑ Novel ways to expand the multi-level model framework

❑ Simulation-based methods of estimation (MCMC with jags, 
Hamiltonian MC with stan, etc.)

(all for a different course focusing on MLM’s & Bayes!)
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Summary
◼ Today: 

❑ Shrinkage

❑ Review of MLE

❑ Crash course in Bayes 

❑ Normal-Normal Model & Shrinkage

❑ MLM’s and Shrinkage

◼ Mon:

❑ Multilevel glm’s (multilevel binomial, poisson, etc.)

◼ After Thanksgiving:

❑ Maybe a little practical Bayes / MCMC
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