36-617: Applied Linear Models

Bayes, Shrinkage, and Multi-Level Models Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- Project 02 Schedule:
 - □ Fri Nov 19: Draft Technical Appendix with HW 10.
 - □ Mon Nov 29 (or earlier): Full IDMRAD paper first draft.
 - □ Fri Dec 3: Peer reviews due.
 - □ Fri Dec 10 (or earlier): Full IDMRAD paper final draft!
- Regular classes Nov 22, 29 & Dec 1
- No more graded hw's or quizzes
 - □ I may give one more *ungraded* hw, if I have time to set it up
 - End of semester feedback for me Nov 29
- BJ's remaining office hours will be in the MSP space in FMS – <u>not</u> in his office.

Outline

- Today:
 - Shrinkage
 - Review of MLE
 - Crash course in Bayes
 - Normal-Normal Model & Shrinkage
 - MLM's and Shrinkage
- Mon:
 - Multilevel glm's (multilevel binomial, poisson, etc.)
- After Thanksgiving:
 - Some ideas from nonparametric regression

An MLM phenomenon: Shrinkage

The fitted multilevel model underpredicts high obs's and overpredicts low ones.

The distribution assumptions underlying Imer() "smooth out" extreme observations!

Multi-level models provide more smoothing/shrinkage to groups with smaller sample sizes (since there is less evidence that their values should be different from "grand mean".)

We'll talk about <u>why</u> today...

Methods of Estimation – How can we systematically construct "good" estimators?

- Several methods have proven useful:
 - Method of Moments (MoM): The kth moment of X is E[X^k]. MoM estimators combine unbiased estimates of moments of X.
 - <u>Least Squares (LS)</u>: Obtained by minimizing squared error $\sum_{i=1}^{n} (Y_i E[Y_i])^2$. Ordinary linear regression!
 - <u>Maximum likelihood (ML)</u>: The likelihood is the probability of the data we observed. ML estimators (MLE's) choose parameter values that maximize the likelihood.
 - <u>Bayesian Estimation (Bayes)</u>: Treat the parameters as random variables, and use Bayes' rule to pick the parameter value most likely, given the data (the "reverse" of ML!)

Maximum Likelihood Estimators (MLE's)

- Let X₁, ..., X_n be an iid sample from f_x(x;θ), x₁, ..., x_n are the observed values
- The <u>likelihood</u> of the sample is the joint density

$$L(\theta) = f(x_1, \dots, x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$$
$$= \prod_{i=1}^n f(x_i; \theta)$$

 The maximum likelihood estimate \$\heta_{MLE}\$ maximizes L(\$\theta)\$: $L(\hat{\theta}_{MLE}) \ge L(\theta) \quad \forall \ \theta$
 Strategy: It's usually (but not always) easier to work with

the *log likelihood*

$$LL(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta) .$$

 \boldsymbol{n}

Florida, 2020 Pre-Election Poll

- Donald Trump (R) running for election to the presidency against Joe Biden (D)
- In a Suffolk University Poll (October 1-4, 2020):
 - □ 451 of 500 voters expressed a preference for Trump or Biden.
 - Of those 451: 226 prefer Donald Trump.
- In most polling, weights are attached to each response, to adjust the "representativeness" of the response for things like
 - who is likely to be home when survey worker calls
 - who refuses to answer
 - □ etc
- We will ignore weights etc and treat the 451 as a simple random sample.

Possible models for the data

- 451 individual Bernoulli coin flips, $x_i = 1$ for Trump, $x_i = 0$ for Biden $L_{ber}(p) = \prod_{i=1}^{451} p^{x_i} (1-p)^{1-x_i} = p^{226} (1-p)^{225}$
- 451 trials, 226 "successes" (Trump voters) $L_{bin}(p) = {\binom{451}{226}} p^{226} (1-p)^{225}$
- What matters for MLE and SE is <u>shape</u>, not <u>size</u>!

Binomial and Bernoulli Likelihoods

Finding the MLE...

If we use the Bernoulli likelihood,

 $LL_{ber}(p) = \log L_{ber}(p)$ $= \log p^k (1-p)^{n-k} = k \log p + (n-k) \log(1-p)$

• If we use the Binomial likelihood $LL_{bin}(p) = \log L_{bin}(p)$

 $= \log \binom{n}{k} p^k (1-p)^{n-k} \propto k \log p + (n-k) \log(1-p)$

Either way we want to maximize

$$k \log p + (n - k) \log(1 - p)$$

with k = 226, n=451

MLE: Point Estimate

Differentiating and setting to zero...

$$0 = LL'(p) = \frac{d}{dp} \left[k \log p + (n-k) \log(1-p) \right]$$
$$= \frac{k}{p} - \frac{n-k}{1-p} = \frac{k-pn}{p(1-p)}$$

so, clearly,

$$\hat{p} = \frac{k}{n} = \frac{226}{451} = 0.501$$

Bayes' Rule (a.k.a. Bayes' Theorem)

- A very simple idea with very powerful consequences
- We often start with information like P[A|B] and what we really want is P[B|A]. Bayes' Theorem lets us "turn the conditioning around":

$$\mathbf{P}[\mathbf{B}|\mathbf{A}] = \frac{P[A\&B]}{P[A]} = \frac{\mathbf{P}[\mathbf{A}|\mathbf{B}]P[B]}{P[A]}$$

See <u>https://arbital.com/p/bayes_rule/</u> for lots of examples and proselytizing.

Conditional probability & conditional density

- P[A|B] = P[A&B]/P[B]
- P[B] = P[B|A]P[A] + P[B|A^c]P[A^c]
- P[A & B] = P[B|A]P[A]
- Bayes' Theorem:
- $P[B|A] = \frac{P[A\&B]}{P[A]} = \frac{P[A|B]P[B]}{P[A]}$ $= \frac{P[A|B]P[B]}{P[A|B]P[B] + P[A|B^c]P[B^c]}$

- f(x|y) = f(x,y)/f(y)
- $\bullet f(y) = \int f(y|x)f(x)dx$
- f(x,y) = f(y | x) f(x)
- Bayes' Theorem: $f(y|x) = \frac{f(x,y)}{f(x)} = \frac{f(x|y)f(y)}{f(x)}$ $= \frac{f(x|y)f(y)}{\int f(x|y^*)f(y^*)dy^*}$

Bayes' Theorem for Data

Bayes' Theorem $f(y|x) = \frac{f(x,y)}{f(x)} = \frac{f(x|y)f(y)}{f(x)}$ $= \frac{f(x|y)f(y)}{\int f(x|y^*)f(y^*)dy^*} \longleftarrow$ Dummy variable of integration Let x = data, y = θ (parameter!); then $\begin{array}{lll} f(\theta | {\rm data}) & = & \displaystyle \frac{f({\rm data}, \theta)}{f({\rm data})} \ = \ \displaystyle \frac{f({\rm data} | \theta) f(\theta)}{f({\rm data})} \end{array}$ $f(\mathsf{data}|\theta)f(\theta)$ $\int f(\mathsf{data}|\theta^*) f(\theta^*) d\theta^*$

Bayes' Theorem for Data

We call

- **\Box** f(θ) the *prior distribution*
- □ $f(data | \theta) = L(\theta)$ the *likelihood*
- $f(\theta | data)$ the *posterior distribution*

So Bayes' Theorem says

$\begin{array}{lll} f(\theta | {\rm data}) & = & \displaystyle \frac{f({\rm data} | \theta) f(\theta)}{f({\rm data})} & \propto & f({\rm data} | \theta) f(\theta) \end{array}$

Slogan: (posterior) \propto (likelihood)imes(prior)

Back to 2016 Florida pre-election poll

- The <u>likelihood</u> is the same as before: $L(p) \propto p^k (1-p)^{n-k}$
- We need a <u>prior distribution</u>. One good choice is a beta distribution, with
 - Density $f(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1-p)^{\beta-1}$
 - $\circ \ {\sf Mean} \qquad E[p] = \tfrac{\alpha}{\alpha + \beta}$
 - Variance $Var(p) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Some graphs of beta densities appear on the next slide

Some Beta Densities

Choosing prior parameters...

The <u>likelihood</u> is the same as before:

 $L(p) \propto p^k (1-p)^{n-k} = p^{226} (1-p)^{225}$

The <u>prior distribution</u> is a beta distribution

$$f(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

- $\alpha = 1, \beta = 1$ gives a uniform distribution no preference for one p over another!
- □ Suppose that in a previous poll, 942 prefer Trump and 1008 prefer Biden. Could set α =942, β =1008

If α =1 and β =1...

- (posterior) \propto (likelihood)×(prior): $f(p|\mathsf{data}) \propto L(p) \times 1 = p^{226}(1-p)^{225}$
- Since f(p|data)=L(p), 5 --- Prior Posterior = Likelihood posterior mode = MLE 0 = 226/451 = 0.5011086 10 Since f(p|data) is a beta with α =227, β =226, 0.40 0.45 0.55 0.50 p $E[p|data] = (227/453 \neq 0.5011038)$

0.60

Normal Model: Estimate μ , with σ^2 Known, One Observation y $\sim N(\mu, \sigma^2)$

• For our prior distribution, we'll assume $\mu \sim N(\mu_0, \tau_0^{-2})$: $f(y|\mu) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$

$$f(\mu) = \frac{1}{\sqrt{2\pi\tau_0}} e^{-\frac{1}{2\tau_0^2}(\mu - \mu_0)^2}$$

 $f(\mu|y) \propto f(y|\mu)f(\mu) \propto \exp\left\{-\frac{1}{2}\left\lfloor\frac{(y-\mu)^2}{\sigma^2} + \frac{(\mu-\mu_0)^2}{\tau_0^2}\right\rfloor\right\}$ • Posterior must be normal for μ (quadratic in μ !); to identify it, complete the square...

• The exponent of f(μ |y) looks like -1/2 times

$$\begin{aligned} \frac{(y-\mu)^2}{\sigma^2} + \frac{(\mu-\mu_0)^2}{\tau_0^2} &= \frac{\tau_0^2 + \sigma^2}{\tau_0^2 \sigma^2} \left[\mu^2 - \frac{2y\mu\tau_0^2 + 2\mu\mu_0\sigma^2}{\tau_0^2 + \sigma^2} + \frac{y^2\tau_0^2 + \mu_0^2\sigma^2}{\tau_0^2 + \sigma^2} \right] \\ &= \frac{\tau_0^2 + \sigma^2}{\tau_0^2 \sigma^2} \left[\left(\mu - \frac{y\tau_0^2 + \mu_0\sigma^2}{\tau_0^2 + \sigma^2} \right)^2 + \operatorname{junk}(y, \sigma^2, \mu_0, \tau_0^2) \right] \\ &= \frac{1}{\tau_1^2} (\mu - \mu_1)^2 + (\operatorname{known junk}) \end{aligned}$$

so that μ | y \sim N($\mu_{\scriptscriptstyle 1}$, $au_{\scriptscriptstyle 1}$ ^2), where

$$\begin{aligned} \tau_1^2 &= \frac{\tau_0^2 \sigma^2}{\tau_0^2 + \sigma^2} &= \frac{1}{1/\sigma^2 + 1/\tau_0^2} \\ \mu_1 &= \frac{y\tau_0^2 + \mu_0 \sigma^2}{\tau_0^2 + \sigma^2} &= \left(\frac{\tau_0^2}{\tau_0^2 + \sigma^2}\right) y + \left(\frac{\sigma^2}{\tau_0^2 + \sigma^2}\right) \mu_0 \end{aligned}$$

The exponent of f(μ |y) looks like -1/2 times

n Observations y_i \sim N(μ , $\sigma^{_2}$)

Since

$$p(y_{1},...,y_{n}|\mu) = N(y_{1},...,y_{n}|\mu,\sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^{2}}(y_{i}-\mu)^{2}}$$

$$\propto N(\overline{y}|\mu,\sigma^{2}/n) \equiv \frac{1}{\sqrt{2\pi\sigma^{2}/n}} e^{-\frac{1}{2\sigma^{2}/n}(\overline{y}-\mu)^{2}}$$
we can apply the results for one observation

$$p(y_{1},...,y_{n}|\mu) \propto N(\overline{y}|\mu,\sigma_{n^{2}}), \ \sigma_{n^{2}} = \sigma^{2}/n$$

$$p(\mu) = N(\mu|\mu_{0},\tau_{0}^{2})$$

$$p(\mu|\text{data}) = N(\mu|\mu_{n},\tau_{n^{2}}) \text{ where}$$

$$\tau_{n}^{2} = \frac{1}{1/\sigma_{n}^{2}+1/\tau_{0}^{2}} = \frac{1}{n/\sigma^{2}+1/\tau_{0}^{2}}$$

$$\mu_{n} = \frac{\overline{y}/\sigma_{n}^{2}+\mu_{0}/\tau_{0}^{2}}{1/\sigma_{n}^{2}+1/\tau_{0}^{2}} = \left(\frac{\tau_{0}^{2}}{\tau_{0}^{2}+\sigma^{2}/n}\right)\overline{y} + \left(\frac{\sigma^{2}/n}{\tau_{0}^{2}+\sigma^{2}/n}\right)\mu_{0}$$

Normal Mean, Example

"shrinkage": posterior between prior & likelihood

- Suppose we know σ=12, we look at n=169 IQ scores, and we find y
 = 100.
- We use as prior N(μ_0 , τ_0^2) with μ_0 =90, τ_0^2 =4
- Shrinkage determined by

$$\mu_n = \left(\frac{\tau_0^2}{\tau_0^2 + \sigma^2/n}\right) \bar{y} + \left(\frac{\sigma^2/n}{\tau_0^2 + \sigma^2/n}\right) \mu_0$$

$$= \frac{\tau_0^2}{\tau_0^2 + \sigma^2/n} \text{ is the } reliability}$$

$$\tau_0^2 + \sigma^2/n$$
 n larger \Rightarrow
 reliability larger \Rightarrow
 less shrinkage

- In each county i with n_i houses, the posterior mean radon level $E[\mu_i | y_{i1}, ..., y_{in_i}]$ will be $\mu_i^{post} = \left(\frac{\tau_0^2}{\tau_0^2 + \sigma^2/n_i}\right) \bar{y}_i + \left(\frac{\sigma^2/n_i}{\tau_0^2 + \sigma^2/n_i}\right) \mu_0$
 - When n_i large, $\mu_i^{post} \approx \overline{y}_i$ When n_i small, $\mu_i^{post} \approx \mu_o$

Minnesota Radon Example

- In the figure, the grand mean is $\mu_{\rm o}$
- In each county i with n_i houses, posterior mean is

$$\mu_i^{post} = \left(\frac{\tau_0^2}{\tau_0^2 + \sigma^2/n_i}\right) \bar{y}_i + \left(\frac{\sigma^2/n_i}{\tau_0^2 + \sigma^2/n_i}\right) \mu_0$$

When n_i large, $\mu_i^{post} \approx \overline{y_i}$ When n_i small, $\mu_i^{post} \approx \mu_o$

MLM's and Shrinkage

- The random effect "estimates" that lmer produces with ranef() are a form of posterior means E[η|data] for each η.
- The posterior means E[η|data] are always shrunk toward the prior mean 0, so that the random effects α are always shrunk toward the corresponding level-2 fixed effects β.
- The Bayesian pov not only provides insights, but also
 - Novel ways to expand the multi-level model framework
 - Simulation-based methods of estimation (MCMC with jags, Hamiltonian MC with stan, etc.)

(all for a different course focusing on MLM's & Bayes!)

Summary

- Today:
 - Shrinkage
 - Review of MLE
 - Crash course in Bayes
 - Normal-Normal Model & Shrinkage
 - MLM's and Shrinkage
- Mon:
 - Multilevel glm's (multilevel binomial, poisson, etc.)
- After Thanksgiving:
 - Maybe a little practical Bayes / MCMC