36-617: Applied Linear Models

Lmer estimation and model selection Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- HW10 due Fri (updated!)*
 - I will post some guidance about calculating ICC's for part 2 of the project / technical appendix later today
- No Quiz today; no reading this week
- Project 02 Schedule:
 - □ **Fri Nov 19*:** Draft Technical Appendix with HW 10.
 - □ Mon Nov 29 (or earlier): Full IDMRAD paper first draft.
 - □ Fri Dec 3: Peer reviews due.
 - □ Fri Dec 10 (or earlier): Full IDMRAD paper final draft!

Plan for rest of semester

- M Nov 15 estimation and model selection
- W Nov 17 shrinkage, crash course on Bayes
- M Nov 22 catch-up, or multilevel glm's
- W Nov 24 Thanksgiving break!
- M Nov 29 ?? Likely spline smoothing
- W Dec 1 ?? Likely spline smoothing

Outline

- Estimation
 - ML: Full maximum likelihood
 - REML: Restricted or Residual maximum likelihood
 - Sheather's recommendations
- AIC, BIC
 - MLE vs REML for AIC, BIC
- DIC
- Variable selection: Practical Advice
- An improved model for the London Schools data
- Automatic and Exact Methods...

Estimation: Maximum Likelihood

Consider the general Laird-Ware formulation

$$Y = X\beta + Z\eta + \varepsilon$$

Assume β is constant over subjects, ε is iid between subjects, and the variance-covariance matrix $\Psi = Var(\eta)$ depends on only a few free parameters ω : $\Psi = \Psi(\omega)$. Assuming $Cov(\eta, \varepsilon) = 0$,

$$\begin{array}{rcl} Y & \sim & N(X\beta,\Sigma(\omega)) \\ \text{where} & \Sigma(\omega) & = & \mathsf{Var}(\varepsilon) + Z\Psi(\omega)Z^T \end{array}$$

so $-2\log(likelihood)$ is¹ (proportional to)

$$(Y - X\beta)^T \Sigma^{-1}(\omega)(Y - X\beta) + \log |\Sigma(\omega)| \qquad (*)$$

To find MLE's we can iterate² between minimizing in ω given β , and minimizing in β given ω ; the latter is generalized least-squares (GLS)...

¹Here we define |A| = det(A).

²(an example of a Gauss-Seidel algorithm) ⁵

Estimation: REML

To reduce the amount of iteration for ML, we can compute a linear transformation AY whose distribution is independent of β , e.g.¹ $AY = (I - H_{OLS})Y = Y - X\hat{\beta}_{OLS}.$

Since we have changed the data (from Y to AY) we also change the likelihood from (*) to

$$(Y - X\hat{\beta})^T \Sigma^{-1}(\omega)(Y - X\hat{\beta}) + \log|\Sigma(\omega)| + \log|X^T \Sigma(\omega)X| \quad (**)$$

REML (REstricted or REsidual Maximum Likelihood) obtains $\hat{\omega}_{REML}$ by minimizing (**) and then re-estimating $\hat{\beta}_{REML}$ by GLS as in (*).

It can be shown that:

- $\Sigma(\hat{\omega}_{MLE})$ is biased, but $\Sigma(\hat{\omega}_{REML})$ is unbiased
- $-\frac{1}{2}(**)$ is (proportional to) a legitimate likelihood for ω
- $\hat{\beta}_{REML}$ are not maximum likelihood estimates

1

¹Indeed,
$$AY = A(X\beta + Z\eta + \epsilon) = 0 + A(Z\eta + \epsilon)$$

~ $N(0, A\Sigma(\omega)A^T)$ does not depend on β !

6

Sheather's Recommendations

- The best estimates of
 - **a** Fixed effects β come from full maximum likelihood (MLE)
 - Variance components (τ^2 's and σ^2) come from REML
- To compare models with <u>nested fixed effects</u> but <u>same random effects</u>, use LRT with MLE.

□ lagree!

 To compare nested models with <u>same fixed effects</u> but <u>nested random effects</u>, use LRT with REML.

I disagree!

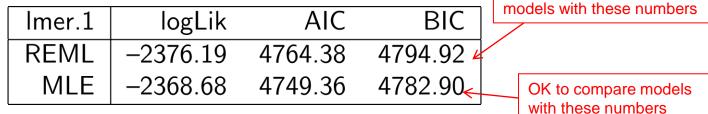
Problem: H₀: τ²=0 occurs at the edge of the parameter space where LRT may not be chi-squared¹ under H₀.

AIC, BIC....

- In order to properly use AIC or BIC in R, <u>must</u> calculate the true maximum log-likelihood.
 - Does not depend on chi-squared distribution
 - Works for nested or non-nested models
- Still need to be sure you are working with the same data and model family!
 - For this reason, we tend to work on fixed effects and random effects separately...
- By default, Imer() calculates REML estimates.
 For AIC(), BIC(), logLik() functions in R, need full MLEs!

REML vs MLE

- Can use Imer() or update() function to get MLE fit
 - Imer.1 <- Imer(Y ~ 1 + LRT + (1 + LRT|school), data=school.frame, REML=F)
 - Imer.1 <- update(Imer.1, . ~ ., REML=F)</p>
- Can produce substantial differences in likelihood
 - Use AIC(), BIC(), logLik() to extract these values directly from fitted model
 Not valid to compare



anova() always refits using MLEs so that comparisons are valid

DIC (Deviance Information Criterion)

We know

- $\Box AIC = -2logLik(M) + 2 k$
- $\square BIC = -2logLik(M) + k log(n)$
- DIC = -2logLik(M) + 2 k_{eff}
- In <u>multilevel models</u> k is not always obvious. For example:

$$\begin{array}{rcl} y_i &=& \alpha_{j[i]} + \epsilon_i, \ \epsilon_i \sim N(0,\sigma^2) \\ \alpha_j &=& \beta_0 + \eta_j, \ \eta_j \sim N(0,\tau_0^2) \\ \hline & \tau_0^2 \ \text{large} \ \Rightarrow \ \text{one-way} \ \text{ANOVA with J cells (df=J)} \\ \hline & \tau_0^2 \ \text{small} \ \Rightarrow \ \text{fitting grand mean only (df=1)} \\ \hline & 1 \leq k_{\text{eff}} \leq \text{J, depending on size of } \tau_o^2 \end{array}$$

Spiegelhalter et al. (2002). Bayesian measures of model complexity and fit. *JRSSB, 64,* 583-639.

Variable Selection: Practical Advice

- Start with multilevel model that represents your initial guesses about group structure in the data
- Do variable selection on all the fixed effects first, using AIC, BIC or DIC
 - AIC will result in *bigger models* that predict better
 - □ BIC will result in *smaller models* that interpret better
 - DIC usually results in models between AIC and BIC sizes...
 - LRT only valid if models have nested fixed effects and same random effects
- Then go back and use AIC, BIC or DIC (or parametric boostrap¹) to do selection on random effects

Back to the London Schools Data

- Student (1..1978)
 - □ Gender (0=Female, 1=Male), per student
 - VR = verbal reasoning level (High/Med/Low)
 - LRT = London Reading test (at beginning of year)
 - Y = end-of-year test
- School (1..38)
 - School.gender (All.Boy, All.Girl, Mixed)
 - School.denom (Other,CofE,RomCath,State)
- So far, we have fitted the model

 $Y \sim 1 + LRT + (1 + LRT|school)$

Our initial model...

> display(lmer.1

+ <- lmer(Y ~ 1 + LRT +

+ (1 + LRT|school), data=school.frame)) -2-

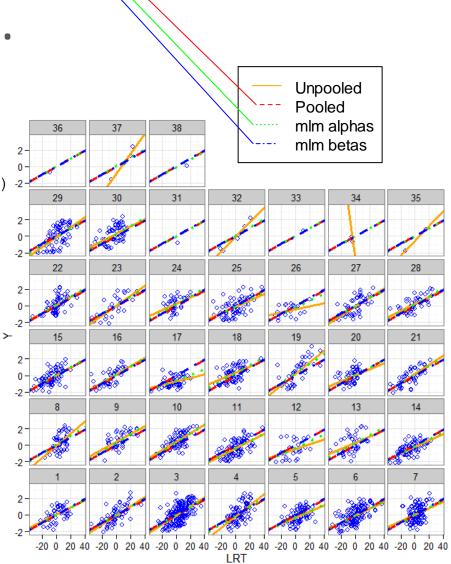
coef.est coef.se (Intercept) 0.01 0.05 LRT 0.05 0.00

```
Error terms:
```

Groups Name Std.Dev. Corr school (Int) 0.23 LRT 0.01 0.56 Residual 0.79 --number of obs: 1978, groups: school, 38

AIC = 4764.4, DIC = 4722.4

deviance = 4737.4



The London Schools Data – Variable Selection

- How can we improve the model?
- We have a bunch of other variables lying around:
 Unit-level (student): Gender, VR
 Group-level (school): School.denom, School.gender
- Which ones to include? Fixed effects or random effects? Interactions? Etc.

Back to London Schools Data

> names(tmp) # main variabes in school.frame... # [1] "Y" "LRT" "Gender" "School.gender" # [5] "School.denom" "VR" > lmer.2 <- update(lmer.1, . ~ . + Gender)</pre> > anova(lmer.1,lmer.2) # refitting model(s) with ML (instead of REML) AIC BIC logLik deviance Chisq Df Pr(>Chisq) # npar # lmer.1 6 4749.4 4782.9 -2368.7 4737.4 # lmer.2 7 4738.2 4777.3 -2362.1 4724.2 13.202 1 0.0002797 *** # --> AIC, BIC prefer lmer.2 > lmer.3 <- update(lmer.2, . ~ . + School.gender)</pre> > anova(lmer.2,lmer.3) # refitting model(s) with ML (instead of REML) npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) # # lmer.2 7 4738.2 4777.3 -2362.1 4724.2 # lmer.3 9 4736.4 4786.7 -2359.2 4718.4 5.7284 2 0.05703 . # --> AIC, BIC disagree; LR test weakly in favor of lmer.3

Ftc!

London Schools Data

- Tried Gender, School.gender, School.denom, and VR as <u>fixed effects</u>, found that Gender, School.gender and VR seem to improve the model.
- Trying to convert School.gender and VR to <u>random effects</u> does not improve AIC enough to keep them, so the final model we obtain is

```
> formula(lmer.5)
```

```
Y ~ LRT + Gender + School.gender + VR + (1 + LRT | school)
```

London Schools Data – "final" model

```
> display(lmer.5)
lmer(formula = Y \sim LRT + Gender +
                                        number of obs: 1978, groups: school,
School.gender + VR + (1 + LRT |
                                        38
    school), data = school.frame)
                                        AIC = 4599, DIC = 4509.8
                                       deviance = 4543.4
                      coef.est coef.se
(Intercept)
                       0.47
                                0.09
ЪRТ
                       0.03
                                0.00
                                        > anova(lmer.1,lmer.5)
                       0.16
Gender1
                                0.05
                                        refitting model(s) with ML (instead
                                        of REML)
School.genderAll.Girl
                      0.04
                                0.13
                                                      AIC BIC loqLik
                                               npar
School.genderMixed
                      -0.17
                                0.09
                                        lmer.1 6 4749.4 4782.9 -2368.7
                      -0.92
                                0.07
VRLow
                                        lmer.5 11 4565.4 4626.9 -2271.7
                      -0.57
                                0.05
VRMed
                                        > 2271.7-2368.7
                                        [1] -97
Error terms:
                                        > pchisq(-2*(-97),5,lower=F)
                     Std.Dev. Corr
 Groups
         Name
                                        [1] 5.453246e-40
 school
         (Intercept) 0.23
                      0.01
                              0.75
          LRΤ
 Residual
                      0.75
```

Some Automatic & Exact Methods

- There are a number of R packages that will do variable selection for Imer models, including:
 - LMERConvenienceFunctions automates
 backwards selection of fixed effects and forward
 selection of random effects, using AIC, BIC, etc.
 - fitLMER.fnc() is general-purpose function for this
 - RLRsim provides simulation-based exact likelihood ratio tests for random effects
 - exactLRT() performs exact LRT test for true ML fits
 - exactRLRT() performs exact LRT test for REML fits

Automated Variable Selection...

```
> library(LMERConvenienceFunctions) # for fitLMER.fnc() function...
# start with a "big fixed effects" model
> lmer.10 <- lmer(Y ~ LRT + VR + Gender + School.gender +School.denom +</pre>
+ (1+LRT|school), data=school.frame)
> lmer.11 <- fitLMER.fnc(lmer.10,</pre>
+ ran.effects=c("(School.gender|school)",
                                                 fitLMER.fnc:
+ "(School.denom|school)"), method="BIC")
                                                  1. Backwards elimination of F.E's
> anova(lmer.5,lmer.10,lmer.11)
                                                 2. Forward selection of R.E.'s
refitting model(s) with ML (instead of REML)
                                                  Backwards elimination of F.E.'s
Data: school.frame
Models:
lmer.11: Y ~ LRT + VR + Gender + (1 + LRT | school)
lmer.5: Y ~ LRT + School.denom + VR + (1 + LRT | school)
lmer.10: Y ~ LRT + VR + Gender + School.gender + School.denom + (1 + LRT |
lmer.10:
             school)
              AIC
                  BIC logLik deviance Chisq Chi Df Pr(>Chisq)
        Df
lmer.11 9 4566.9 4617.2 -2274.4
                                  4548.9
lmer.5 11 4577.2 4638.7 -2277.6 4555.2
                                                      2
                                               0
                                                                  1
lmer.10 14 4618.9 4697.2 -2295.5 4590.9
                                               0
                                                       3
                                                                  1
```

Exact Test of Random Effect..

library(RLRsim)

formula(m0) # formula under H0: no random slopes for LRT
formula(lmer.11a) # model under HA: yes random slopes for LRT
formula(lmer.LRT.only) # model with *only* random slopes for LRT

```
exactRLRT(lmer.LRT.only,lmer.11a,m0)
```

#		simulated finite sample distribution of RLRT.
#		
#		(p-value based on 10000 simulated values)
#		
#	data:	
#	RLRT =	6.2561, p-value = 0.0055

Summary

- Estimation
 - ML: Full maximum likelihood
 - REML: Restricted or Residual maximum likelihood
 - Sheather's recommendations
- AIC, BIC
 - MLE vs REML for AIC, BIC
- DIC
- Variable selection: Practical Advice
- An improved model for the London Schools data
- Automatic and Exact Methods...