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o Two examples

Gaussian linear mixed models (LMM)

Diagnostic tools
o Residual analysis
o Global influence analysis
o Local influence analysis

Treatment

Fine tuning of the model

LMM with elliptically-symmetric random effects
LMM with skew-symmetric random effects
Generalized linear mixed models (GLMM)
Generalized estimating equations based models

Practical issues

Where do we go from here
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Ozone example

@ Ozone concentration: measured with expensive instruments
o Alternative: reflectance in passive filters / calibration curve
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Ozone example

e Experiment LPAE/FMUSP: predict period expected reflectance
(latent value) accounting for possible outliers

Period Reflectance Period Reflectance
1 27.0 6 47.9
1 34.0 6 60.4
1 17.4 6 47.3
2 24.8 7 50.4
2 29.9 7 50.7
2 32.1 7 55.9
3 35.4 8 54.9
3 63.2 8 43.2
3 27.4 8 52.1
4 51.2 9 38.8
4 54.5 9 59.9
4 52.2 9 61.1
5 7.7
5 53.9
5 48.2
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Ozone example

@ Linear mixed model:
yZ]:M+az+era izl:"'797j:15273

o a; ~ N(0,02) independent
o e;j ~ N(0,0?) independent
o a; and e;; independent

o Consequently
o V(y;j) =02+0?
o Cov(yij, yir) = 0F
o Cov(yy,yi) =0
o Reliability of the mean: p,, = 02/(c2 + 02/3)
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Kcal intake example

@ Study conducted at FMUSP
o Compare average daily kcal intake during pregnancy

Ap0s a exclusdo das gestantes com consumo maior que 4000 Kcal:
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Trimestre
Panel variable: IMC_C

Valores de estatisticas descritivas para Energia

Trimestre N Média Desvio padrdo Minimo Mediana Maximo
1 160 1973,2 689,5 584,4 1903,7 3905,0
2 146 2148,8 598,1 699,4 2107,0 37541
3 135 2124,8 649,4 509,2 2038,5 3820,2




Kcal intake example

@ Linear mixed model
Yijk = M + i + agji + e, a1 =0

o iindexes BMI (1 = BMI < 24.9kg/m?, 2 = BMI > 24.9kg/m?)
o j indexes period (1 = 1st trimester and 2 = 2nd or 3rd trimesters)
o k indexes women (k=1,...,n;)

bik = (ailk, a2k, aigk)T ~ Ng(O, G) independent

2
o1 012 013
_ 2
G=| o012 05 o023
2
013 023 O3

€ij = (€ik, €i2ks eisk) | ~ N3[0,02I3] independent

b; and e;; independent
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Preterm neonates example

Aorta diameter per unit weight (mm/kg)

Weeks post conception
Weight 27 28 29 30 31 32 33 34 35 36 37 38 39 40

AGA 9.4 10.3 8.7 8.2 6.7 6.1 5.6 51 4.9
AGA 6.1 6.1 6.2 54 52 4.9

AGA 5.8 6.3 5.8 51 4.9 4.6

AGA 9.7 9.2 9.5 73 6.1 5.4 4.8 4.5
AGA 6.4 5.8 52 4.7

AGA 5.4 4.9 4.6 4.3

AGA 8.3 8.5 8.6 7.9 6.2 55 4.2

AGA 7.7 8.6 7.9 6.6 5.7

AGA 5.9 6.1 54 4.1
AGA 7.0 6.5

AGA 5.2 4.8 4.2 4.1 3.7

AGA 6.2 6.1 6.2 6.0 53

SGA 7.2 6.8 55 4.7

SGA 7.1 8.0 7.7 6.5 5.6

SGA 7.4 8.3 9.4 10.0 9.2 8.0

SGA 7.7 6.6 55 4.6

SGA 6.5 4.4

SGA 7.6 8.6 9.3 8.0 6.6 5.0 4.7

SGA 6.6 8.4 8.2 7.6 6.6

SGA 7.1 6.3 6.1 59 57 4.8
SGA 8.5 8.4 4.9

SGA 8.3 7.4 6.2 4.6 3.8

SGA 9.8 9.1 7.3 53

SGA 8.5

SGA 10.9 10.7 9.4 8.0 5.8 4.9
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Preterm neonates example

Profile plots for the Preterm neonates example
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Preterm neonates example

@ Objective: evaluate evolution of aorta diameter of preterm neonates
from birth to 40-th week post conception

o Linear mixed model suggested via exploratory analysis (Rocha &
Singer, 2013, under revision)

Yijk = ; + 51 (tljk —26) + ’YQ(tij — 26)2 +a;; + bij(tijk —26) + Eijk

o i indexes group (1=AGA and 2=SGA)
o j indexes neonates (j = 1,...,n;)
o k indexes week (k =1,...,m;;)

o by = (aij,bij)" ~ Na(0,G;) independent

2
G — [ Oa; Oab; ]
;=

2
O-abi sz

@ € = (eijl, oo ,6ijmij)—|— ~ Nmij [0, U2Imij] independent
@ b;; and e;; independent
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Gaussian LMM

YZ:XZB+Zle+eZ7 i=1,...,n

i: (m; x 1) response profile for i-th unit
,8 (p x 1) (fixed effects)
Xi: (m; x p) fixed effects specification matrix
Z;: (m; x ¢) random effects specification matrix
b;: (¢ x 1) random effects, b; ~ Ny(0, G) independent
. (m; x 1) random errors, €; ~ Np,,(0,R;) independent
bi and e; independent
G = G(0) and R; = R;(0), 0: covariance parameters
Marginal variance: V(y;) = V; = Z;GZ] + R;

Usually R; = 02I,,,,: homoskedastic conditional independence model
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Gaussian LMM

Compactly
y=XB8+Zb+e
with
y:(YIv"' 7y7—|7,—)T (NX L, N:Zznzlmi)
X=X, X" (Nxp)
Z=0",Z; (N xngq)
b=(b/,---,b))T  (ngx1)
e:(eira"'7er—|z—)—r (NXl)

=1, G(0) (ngxnq)
S = o Ri(6) (N xN)
Consequently
V(y)=V=2ZIZ" + %
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Covariance matrix structure

@ Uniform
o2 T T
Ri(0),GO) =| 7 o T
T T o2

@® Unstructured

© AR(1)
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Inference for Gaussian LMM

Given 6 [I'(0), 3(0) and V(0)]

BLUEof B: B=(X'VIX) 'XTVv-ly

BLUPofb: b=TZ V1I-X X'V IX) "' XTV-ly
o Ozone example BLUP

Uij =7+ k(T —7)

e Shrinkage constant

2
Ogq

b= o2+ 02/3

Substituting T and £ in the expressions for ,@ and b we obtain
empirical BLUE and BLUP
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Inference for Gaussian LMM

Restricted maX|mum likelihood (REML) for o (T, X, V)
-3 Ztr{v / )} -3 Z[ Qi (0 )/603|e=§]

=1

- - Ztr{V )XV (O)Vi(0)V; 1 (0)X,;} =0,

Vi(6) = [0Vi(6)/06;]] 5
° Qi(0) =[y: — X:8(0)] "V (0)ly; — X:B(60)]

Newton-Raphson algorithm'
o) — =1

=Diu[et—N],1=1,2,...

e
e Score function: u(8) = [,@(9) 0]/00
o Hessian matrix: H(0 ) l[ﬂ( ),0]/0000"
o Stopping rule: ||0 O _ glt=1) || <ege>0

Fisher Scoring algorithm: H(0) replaced by its expectation
EM algorithm
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Statistical properties of estimators

o B(6) ~ N{B,V5(0)} with V5(0) = L)L, X[V, (6)X;] !

° O~ N{6,V4(0)} with V4(0) denoting an (m x m) matrix for which
the element (r,s),r,s =1,...,m, is
[Va(O)lrs = 5 i, tr{V; 1 (8)Vir(0) V1 (6) Vis(6)}

° B(6) ~ N{B,V;(0)}

° VE(O) and V(@) may be estimated by the inverse of Fisher's

information matrix

@ Asymptotic results hold even without normality provided n is

sufficiently large
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Types of residuals in Gaussian LMM

@ Three types of residuals that accommodate the extra source of
variability present in linear mixed models, namely:

i) Marginal residuals, E: y — X,@ predictors of marginal errors,
E=y-Elyl=y-XB=Zb+e

ii) Conditional residuals, € = y — X3 — Zb predictors of conditional
errorse=y — E[y|b] =y — X3 - Zb

iii) BLUP, ZB, predictors of random effects,
Zb = E[y|b] - Ely] = (y - X8~ Zb) — (y — XpB)
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Confounded Residuals

@ Hilden-Minton (1995, PhD thesis, UCLA): residual is pure for an error
if it depends only on fixed components and on error it is supposed to

predict
@ Otherwise: confounded residuals
o Given that
3 I-XX'V X)XV g,
e = =Qe+3QZb,
Zb = ZTZ'QZb + ZTZ' Qe,

where @ = V-1 — V71X (XTVX) "' X7V~ we have
e @ is confounded with b

e Zb is confounded with &

@ Exception: columns of Z belong to the space generated by the
columns of X
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Marginal Residuals

@ Since y = X3 + &, plots of marginal residuals (EZJ) versus explanatory
variables or fitted values (y;; = :sz],/B\) to check for linearity

@ Index plots of Eij to detect outlying observations

o Lesaffre and Verbeke (1998, Biometrics): (unit) index plots of

R, = Vi_l/zﬁi useful to check appropriateness of the within-unit
covariance matrix

o When V; = ||L,., — R;R; ||? is small, within-units covariance matrix is
~~T N
acceptable for unit i [E(£,€, ) =V, 77]
o In lieu of \A/'Z we suggest using @,({) the i-th diagonal block of
V(E) = [V - XXV X)X ]

o Also, we suggest using (unit) index plots of Vi =V;/>""" | V; to allow
comparison among different models
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Conditional Residuals

o Conditional studentized residuals (Nobre and Singer, 2007,
Biometrical Journal): €. = €;;//Dij
o pi;: ij-th element of the main diagonal of \A/(A) = f]@f]
o We suggest &7 = [V;(8)]71/26; where V(@) is the i-th block of V(&)
o Index plot of e} €;; to detect outlying observations
o Plot of €}; versus predicted values (¥}; = x; ,5 +z; b ;) to check for
homoskedasticity of conditional errors: (R; = o Imi)
@ Check for normality of conditional errors

o Must take confounding into consideration
e € may not be adequate to check for normality of e

o When b is non-normal, € may not be normal even when e is
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Conditional Residuals

@ Hilden-Minton (1995, PhD thesis, UCLA): ability to check for
normality of e, using €, decreases as V[ZQZ 'b] = ZQZI'Z' QX
increases in relation to V[XQe] = XQXQX

e Fraction of confounding for the ij-th conditional residual e;;

0<F u;;EQZI‘ZTQZUij ) u;;ZQEQEuij -
=y = u;;ZQzuz‘j - u;.rjEQzuij a

where u;; is ij-th column of Iy
o Least confounded residuals: linear transformation Ce that maximizes
C;-;EQEQECZ']'
’LJ = TEQE o ) 1=
C;j Cij

@ Least confounded residuals: homoskedastic, uncorrelated, variance o2

@ QQ plots and histograms to check for normality of conditional
residuals
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EBLUP

o EBLUP: reflects the difference between the predicted expected

response (latent value) for i-th unit and population average
@ Unit index plots of M; = B:{@[Bl]}_lgz to detect outlying units
o We suggest (unit) index plots of M = M;/ >~ | M; to allow
comparison among different models
@ To assess normality of random effects:
o No confounding: x2 QQ plot of M;

o With confounding: 7
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Residual diagnostics for Gaussian LMM

Diagnostic for Residual Plot

Linearity of effects fixed (E[y] = X3) Marginal 5;- vs fitted values or
explanatory variables

Presence of outlying observations Marginal E; vs observation indices

Within-subjects covariance matrix (V) Marginal Vi vs unit indices

Presence of outlying observations Conditional  €j; vs observation indices

Homoskedasticity of conditional errors (e;)  Conditional  €; vs predicted values

Normality of conditional errors (e;) Conditional ~ Gaussian QQ plot for €7;
or ¢;;e"

Presence of outlying units EBLUP M; vs unit indices

Normality of the random effects (b;) EBLUP X QQ plot for M;

JM Singer (USP)
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Global influence analysis (leverage)

o Generalized leverage matrix (for fixed effects), y = X3
oy Tv-lvw) ' vTy-1
leay—T:X(X \% X> XV (L) =p
o High leverage unit: tr(Ly;)/m; > 2p/n where Ly; is i-th block of L;
o High leverage observation: Ly;j; > 2p/N where Ly;;; is j-th diagonal
element of Lj;
@ Since y* = X3 + Zb: Generalized joint leverage matrix
dy* 0y  0Zb
L = = =
oyT oy’ + dy T
o Ly =ZT'Z": variability explained by random effects
o Demidenko and Stukel (2005, SIM) suggest using Hy = ZT'Z' Q as
generalized leverage matrix for random effects
e Since Hy = LoV~ 1T, — L], Nobre and Singer (2011, JAS) argue for
L, =Z7ZTZ"

L, +ZIZ'Q

JM Singer (USP) EMR 2013, Maresias, SP



Global influence analysis (case deletion)

° Impact of a unit on some characteristic (e.g., parameter estimate)

o B— 5(, (XTVv-IX)"IXTV-lU, (U] QU;)'U/ Qy

e Cook s distance

(B —Bm) (XTVIX)(B - Bp) _ - yn) 'V -3m)

Dy =
p p

e Conditional Cook distance (for R; = 02L,;,;)

Dcond Z (y" (J)) (?:‘ B ?:‘(]))

i(7) po o2(n+ p)
where §7 = XiB + Z:b, §i ;) = XiB() + Zibug))
@ Ratio of variance ellipsoids
\YE _ -
Py = | IYT(/(,%I)))} = ‘IN +X'v7'u; (UfQu)) ‘uivoix (x"v7'x) 1‘
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Global influence analysis

Diagnostic for effect on

Global influence measure

Index plot of

Fixed portion of
fitted value (X23)

Generalized marginal
leverage matrix L

Lli(jj) [tr(Lu)/mi] Vs
observations (units)

Random portion of
fitted value (Zb)

Generalized random component
marginal leverage matrix Lo

L2’L(]j) [t?“(LQl)/mz] VS
observations (units)

Regression coefficients (3)

Cook's distance Dy

Di(j) [Dz] Vs
observations (units)

Covariance matrix of
regression coefficients [V(3)]

Ratio of variance
ellipsoids p(1y

pig) lpil vs
observations (units)

Diagnostic for effect on

Index plot of

Regression coefficients (3)

~

Random effects (b)
Changes in covariance
between B8 and b

cond H
D”“}’i vs observations
con H
D2i(j) vs observations

Dg;’(’;‘)i vs observations

JM Singer (USP)
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Local influence analysis

@ Changes in the analysis resulting from small perturbations on the data
or on some element of the model
o Behaviour of likelihood displacement: LD(w) =2 {L(#) - L(t,|w)}

o L: likelihood for proposed model

e 1): parameter vector

o w: vector of perturbations

o % and 1/)w MLE of 9 based on L(1)) and L(v|w)

@ Usual perturbation schemes

Response variables: y;(w;) =y; + w;

o Explanatory variables: X;(W;) =X, + W;

o Random effects covariance matrix: G(w;) = w;G
o Error covariance matrix: R;(w;) = w;R;

o Index plots of normalized eigenvectors corresponding to the largest
eigenvalue of ~HF'~'H where F = [0*L(4) /09 " 94],,_ and
H= [82L(¢|w)/8¢T8w]w:wO,¢:@ suggest units or observations
with greater impact
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Treatment: fine tuning of model

@ Diagnostic tools depend on correct specification of covariance
structure
@ Examination of linear models fitted to individual profiles (or to rows

of within-unit covariance matrix when available) [Rocha and Singer
(2012, submitted)]

o Use of simple t-tests
o Coefficients significantly different from zero are candidates for random
effects

@ Plots of covariances and correlations versus lags (Grady and Helms
(1995, SIM): useful to identify auto-regressive structures

@ Modelling covariance structure as function of explanatory variables
[Singer and Curi (2006, Environ Ecol Stat)]

JM Singer (USP) EMR 2013, Maresias, SP



Treatment: heavy-tailed distributions

o Elliptically-symmetric distributions

Useful to accommodate outliers
Density function: f(y) = |[7/2g[(y — ) "= (y — p)]
@ g non-negative valued function
o E(y)=p V(y)=Q=aX
@ « convenient constant (= v/(v — 2),v > 2 for multivariate-t with v df)

Includes multivariate-¢, slash, contaminated normal etc
LMM may be defined hierarchically

° y1|bz ~ ESmi [X»Lﬁ + Z;b;, R1(0)7 a;, ’yi]

o b; ~ £54[0,G(6), o]

@ e; ~ ESmi [O,Ri(e),’yi]
Joint distribution of (y,, b, )T may not belong to the same class
Maximum likelihood estimation similar to Gaussian case (but more
problematic)

@ Asymptotic properties of estimators still deserves study
@ Local influence considered by Osorio et al. (2007, CSDA)

@ Residual analysis and global influence analysis ?
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Treatment: asymmetric distributions

Skew-elliptical distributions

e Fitting of general case is difficult in practice [Jara et al. (2008,
CSDA)]
o In general: Bayesian methods
o Alternative: skew-normal hierarchical LMM
L YiH/B,bi; Rz(a)?Ael] ~ Sle [XZ/B + Zzbz; R2(0)7 Aei]
° bi|[G(0), Ay] ~ SNy[0,G(6), Ay
o A, and A, are asymmetry parameters

@ Asymptotic properties of estimators still deserves study

@ Local influence based on EM algorithm considered by Bolfarine et al.
(2007, Sankhya)

@ Residual analysis and global influence analysis ?
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Treatment: GLMM models

GLMM allow non-normal distributions and non-linear models

Models may be defined in a two-stage approach

f(yizIbi) = exp{olyi;i; — a(Viz)] + c(yiz, )}

a and c¢: known functions and ¢: scale parameter
E(yi;|bi) = pij = da(di;)/ds;

V(yijbi) = ¢~ d?(9s;)/dv3;

9(pi) = nij = %58 + ;b

Second stage, usually: b; ~ N[0, G(0)]

Fitting is complicated (usually based on EM algorithm)

Interpretation of parameters is not straightforward
Residual analysis?
Case deletion analysis [Xu et al. (2006, CSDA)]
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Treatment: GEE based models

GEE-based models focus on marginal distributions: not mixed model
No need to specify form of underlying distribution

o E(yi;) = pij and V(yi;) = ¢~ v(uij)

o v(u;;): known function of the mean and ¢: scale parameter.

o Relation between response mean and explanatory variables:

9(pig) = mij = x;

o Working correlation matrix: Vy;(6) = <;5A141/2RW(0)A;/2

o A; =@ v(uij)

o Ry (0): known positive-definite matrix
Generalized estimating equations

> X AVwi(0)] yi — (X B)] =0
i=1
,@ asymptotically normal even if working covariance matrix
misspecified
Residual analysis: Venezuela et al. (2007, JSCSimulation)
Local influence: Venezuela et al. (2011, CSDA)
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Computation

Random effects G or Ry Error R;
Library Function Fits distribution matrix distribution matrix
Ime4 Imer LMM gaussian unstructured G gaussian azlmi
nlmer NLMM gaussian unstructured G gaussian structured
glmer GLMM gaussian unstructured G exponential
family
nlme Ime LMM gaussian structured G gaussian structured
nlme NLMM gaussian structured G gaussian structured
gls LM NA NA gaussian structured
gee gee GEE-based NS structured Ry exponential NA
model family or NS
geepack geeglm GEE-based NS structured Ry exponential NA
model family or NS
heavy heavyLme ES-LMM elliptically unstructured G elliptically NA
symmetric symmetric NA

NA: not applicable
NS: not specified

@ Functions for diagnostic available only from authors
@ Difficult to use in more complicated problems

@ First version of functions for residual diagnostic based on Ime4 and nlme
being developed

EMR 201:



Ozone example - standard model (A)

Results (standard model): i = 46.1, 52 = 100.4, 52 = 104.8, k = 0.75

Standardized marginal residuals - Ozone standard model
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Ozone example - standard model (B)

Standardized Mahalanobis distance - Ozone standard model
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Ozone example standard model (C)

QQ plot for Mahalanobis distance - Ozone standard model

Mahalanobis distance
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Ozone example standard model (D)

Standardized LeSaffre-Verbeke measure - Ozone standard model
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Ozone example standard model (E)

Standardized conditional residuals - Ozone standard model
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Ozone example standard model (F)

Standardized least confounded conditional residuals - Ozone

Standardized least confounded residuals

standard model
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Ozone example heteroskedastic model (A)

Suggested (heteroskedastic) model

Yij = 1+ a; + e;; with e;; ~ N(O,a?)

@ For parsimony: 012 = 7'2,1' = 3,5, a? = 02, otherwise

o Shrinkage constant: k; = 02/(02 + 02/3)

@ Results heteroskedastic model: i = 46.4, 83 = 114.3, 52 = 49.6,
72 = 274.0, kizs5 = 0.87, ki=35 = 0.56

o Results homoskedastic model): i = 46.1, 52 = 100.4, 2 = 104.8,
k=0.75

o Predicted latent values

o Heteroskedastic model: 3, = 43.8, ¥s. = 53.9
o Standard model: Y3« = 42.8, Y5 = 56.4
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Ozone example heteroskedastic model (B)

Standardized Mahalanobis distance - Ozone heteroskedastic model
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Ozone example heteroskedastic model (C)

Standardized Lesaffre-Verbeke measure - Ozone heteroskedastic
model

Standardized Lesaffre-Verbeke measure

Units
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Ozone example heteroskedastic model (D)

Standardized conditional residuals - Ozone heteroskedastic model
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Ozone example heteroskedastic model (E)

Standardized least confounded conditional residuals - Ozone
heteroskedastic model
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Ozone example heteroskedastic model (F)

Period Reflectance Period Reflectance
1 27.0 6 47.9
1 34.0 6 60.4
1 17.4 6 47.3
2 24.8 7 50.4
2 29.9 7 50.7
2 321 7 55.9
3 35.4 8 54.9
3 63.2 8 432
3 27.4 8 52.1
4 51.2 9 38.8
4 54.5 9 59.9
4 52.2 9 61.1
5 7.7
5 53.9
5 48.2

JM Singer (USP) EMR 2013, Maresias, SP



Kcal intake example (A)

o Model: yijr, = pj + i + ajji + ey, a1 =0

2
01 012 013
G = 012 O'% 0923 s R=(7'213
2
013 023 O3

@ Results:

fi1 = 2085 =+ 62
[ = 2246 £ 52
Gy = —290 =+ 84

JM Singer (USP) EMR 2013, Maresias, SP



Kcal intake example (B)

Standardized conditional residuals
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Kcal intake example (C)

Standardized least confounded conditional residuals
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Kcal intake example (D)

@ Residual analysis suggests inadequacy of correlation structure for
conditional errors

@ Alternative model:

2
01 po102 pPo103
G = 7'213, R=| poioo O'% pO203

2
pPo103  pPo203 o3

@ Results:

fi1 = 2083 £ 62

[y = 2244 £ 52

Gp = —287 + 84
5=0.36

JM Singer (USP) EMR 2013, Maresias, SP



Kcal intake example (E)

Standardized conditional residuals
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Kcal intake example (F)

Standardized least confounded conditional residuals
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Preterm neonates example

o Model:
Yijk = Q; + 51 (tljk — 26) + ’YQ(tij — 26)2 +a;; + bij(tijk — 26) + €ijk

o 7 indexes group (1=AGA and 2=SGA)
o j indexes neonates (j = 1,...,n;)
o k indexes week (k =1,...,m;;)

bij = (aij7bij)T ~ N3(0, G;) independent

2
g,. Oab;
(;Z:|: ai al:|

2
Uabi O-bl

€;; = (eiﬂ, ce ;eijmij)—r ~ Nmij [0, O'QImij] independent

b;; and e;; independent

JM Singer (USP) EMR 2013, Maresias, SP



Preterm neonates example (A)

Standardized marginal residuals
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Preterm neonates example (B)

Standardized Mahalanobis’s distance
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Preterm neonates example (C)

QQ plot for Mahalanobis’s distance

12

Mahalanobis distance

Chi-squared quantiles

JM Singer (USP) EMR 2013, Maresias, SP



Preterm neonates example (D)

Standardized conditional residuals
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Preterm neonates example (E)

QQ plot and histogram for conditional least confounded residuals
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Preterm neonates example (F)

) _ T
@ Recall: W(Yij) = Z”Glzw
@ Alternative model: examine balance between random effects and
errors

Yijk = & + B1(t1jk — 26) + Yo (tojn — 26)% + aij +cij(tijn — 26)% + Eijk

e b;j = (ajj,cij)T ~ Na(0,G;) independent

2
G, = |: Oa;  Oagy ]
i =

2
Oac; O,

JM Singer (USP) EMR 2013, Maresias, SP



Preterm neonates example (A)

Standardized marginal residuals
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Preterm neonates example (B)

Standardized Mahalanobis’s distance
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Preterm neonates example (C)

QQ plot for Mahalanobis’s distance
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Preterm neonates example (D)

Standardized conditional residuals
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Preterm neonates example (E)

QQ plot and histogram for conditional least confounded residuals
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Preterm neonates example (F)

e To accommodate possible “outliers”: t (df=4) distribution for
random effects and errors

@ 15 units eliminated because of limitations in "heavy"” function

@ No available residual diagnostic tools

Gaussian t (df=4) Change in
Parameter Estimate  SE Estimate SE Estimate SE
1 8.08 0.29 8.48 0.29 5% 0%
Q9 8.27 0.22 8.15 0.24 0% 0%
51 -0.28 0.03 -0.28 0.03 -1.5%  9.1%
Y2 -0.02 0.002 -0.2 0.002 0% 0%

JM Singer (USP) EMR 2013, Maresias, SP




