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Announcements
◼ Project 01: I am grading them this week!  

◼ Project 02 will come out in a week or two.  
❑ The schedule may be a bit compressed compared to project 01

◼ Quiz on Sheather Chapter 9 today!

◼ HW08 Due Wednesday this week

◼ HW09 Due *Next* Wednesday

◼ On Wednesday I will begin talking about hierarchical mixed 
effects models (a.k.a. multilevel models [MLM], hierarchical 
linear models [HLM], linear mixed effects regression [LMER], 
etc…)
❑ Please start Sheather 10.1 (not 10.2) for Wednesday’s lecture.

◼ There is a brief description of 36-663 (Hierarch. Models) in 
the week09 folder.
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Outline

◼ Review ML -> OLS

◼ What happens to the theory when 

◼ Estimating

◼ Applications:

❑ WLS – unequal sample sizes

❑ Time series correlation: AR(1), etc.
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Review: ML/LS Estimates
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◼

◼

◼ The “residual SD” is the square root of

◼ Basic distribution properties on the next slide…



Review:                          for ML/LS
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Generalized Least Squares

◼ Suppose instead of                                                     ,
we have 

◼ Then                             , which by our earlier 
definition (week 4!) means that 

◼ More precisely, we will let S = s2W, where W is 
symmetric & positive definite, so there exists a 
lower-triangular matrix S such that1

and hence

611/1/2021 1This is called a “Cholesky decomposition”.



Generalized Least Squares, cont’d…
◼ Since                                           , we know

◼ So                                          is equivalent to

with solution

◼
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Not exactly what we 

want, if we want to 

predict y and not y*



To predict y from GLS estimates…

◼ Rather than                        , we could use                  

◼ Using the results from the previous slide, we get                       
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Aside: A recommendation…

◼ Base casewise diagnostic plots on 
from the model

◼ For prediction, better off using 
from the original 

model
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Estimating      …

◼ For 

◼ Want to estimate n(n+1)/2 parameters with n 
observations… need constraints… Applications!
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Application: Weighted Least Squares 
(WLS)
◼ In many situations we know S is diagonal, and we know the 

structure of S, up to a constant multiple ...   For example:
❑ The yi’s are averages of ni observations each, so that Var(yi) = s2 /ni; 

or…

❑ Var(yi) is proportional to the kth predictor: Var(yi) = s2 xki ; or…

❑ Etc…

◼ In cases like this, 

where wi = 1/ni, or wi=xki, etc., and we have just 1 parameter 
to estimate!
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WLS Example1

Following are data from an experiment to study the interaction of certain kinds of 
elementary particles on collision with proton targets. The experiment was designed to 
test certain theories about the nature of the strong interaction. The cross-section 
(crossx) variable is believed to be linearly related to the inverse of the energy 
(energy - has already been inverted). At each level of the momentum, a very large 
number of observations were taken so that it was possible to accurately estimate the 
standard deviation of the response (sd).

momentum energy crossx sd

1        4  0.345    367 17

2        6  0.287    311  9

3        8  0.251    295  9

4       10  0.225    268  7

5       12  0.207    253  7

6       15  0.186    239  6

7       20  0.161    220  6

8       30  0.132    213  6

9       75  0.084    193  5

10     150  0.060    192  5

1311/1/2021
1From http://www.biostat.jhsph.edu/~iruczins/teaching/jf/ch5.pdf



Fitting the WLS model
> strongx <-

+ read.table(stdin(),header=T)

0:   momentum energy crossx sd

1: 1        4  0.345    367 17

2: 2        6  0.287    311  9

3: 3        8  0.251    295  9

4: 4       10  0.225    268  7

5: 5       12  0.207    253  7

6: 6       15  0.186    239  6

7: 7       20  0.161    220  6

8: 8       30  0.132    213  6

9: 9       75  0.084    193  5

10: 10     150  0.060    192  5

11: 

> summary(wls.1 <- lm(crossx ~

+ energy, data=strongx, 

+ weights=sd^(-2)))

Call:

lm(formula = crossx ~ energy, data = strongx, 

weights = sd^(-2))

Weighted Residuals:

Min      1Q  Median      3Q     Max 

-2.3230 -0.8842  0.0000  1.3900  2.3353 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  148.473      8.079   18.38 7.91e-08

energy       530.835     47.550   11.16 3.71e-06

---

Residual standard error: 1.657 on 8 degrees of 

freedom

Multiple R-squared:  0.9397,    

Adjusted R-squared:  0.9321 

F-statistic: 124.6 on 1 and 8 DF,  

p-value: 3.71e-06

1411/1/2021

We give lm() the diagonal elements of W-1,

without the unknown residual variance s2

Estimate of

the residual

SD, s



Comparing with OLS…
> summary(ols.1 <- lm(crossx ~ energy, 

data=strongx))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   135.00      10.08    13.4 9.21e-07

energy        619.71      47.68    13.0 1.16e-06

[...]

Residual standard error: 12.69 on 8 degrees

of freedom

Multiple R-squared:  0.9548,    

Adjusted R-squared:  0.9491 

F-statistic: 168.9 on 1 and 8 DF,  

p-value: 1.165e-06

> with(strongx,

+ plot(energy, crossx, cex=sd/4))

> abline(wls.1); abline(ols.1, lty=2)

> legend(0.275,225,legend = 

+ c("WLS fit","OLS fit","sd (radius)"),

+ lty=c(1,2,NA), pch=c(NA,NA,1))

◼ OLS seems to follow the data 
better, but…

◼ WLS weights observations with 
lower variance more, in 
minimizing RSS* = 
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Application: serial correlation

◼ If the order in which the data came is important 
then it is worth checking to see if any typical time 
series models for S apply.
❑ confoods2.txt contains weekly sales data for 52 

weeks, for a canned food product (Sheather, Ch 3 & Ch 
9).  The goal is to understand how Price and 
Promotion (0/1 dummy) affect Sales

❑ Because the data come sequentially in time, and 
customers’ behavior in one week is unlikely to be 
independent of their behavior the next week, it is 
worth considering serial correlation in the data.
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Aside: Transformations

◼ The Box-Cox method suggests replacing Sales 
with (Sales)-1/2 and replacing Price with (Price)2. 

◼ However, this is harder to explain to consultee or 
collaborator, so we also try log transformations: 
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(Review: Interpreting log transform)

1811/1/2021
*These “approximate” statements can be made exact by taking expected values everywhere. 

See “log xform and percent interpretation.pdf” in the same folder as this lecture.



> summary(lm.1 <- lm(log(Sales) ~ log(Price))

[...]

Est      SE       t Pr(>|t|)    

(Intercept)  4.8029  0.1744   27.53  < 2e-16

log(Price)  -5.1477  0.5098  -10.10 1.16e-13 

[...]

Residual standard error: 0.4013 on 50 degrees 

of freedom

Multiple R-squared:  0.671,     

Adjusted R-squared:  0.6644 

F-statistic:   102 on 1 and 50 DF,  

p-value: 1.159e-13

> par(mfrow=c(2,2))

> plot(lm.1)

> r <- resid(lm.1)

> cor(r[-1],r[-length(r)])

[1] 0.717101

> acf(r)

Autocorrelation of residuals…

1911/1/2021

• First spike is 

always 1 

• Next spike 

is lag-1 

correlation

• Next is lag-2

• Etc.



AR(1) – Autoregressive order 1 
(the simplest autocorrelation model)
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Estimation Strategy 1: Plug in 
estimate of r.
> rho <- 0.717101 ## estimate of rho

> Sigma <- diag(length(Sales))

> Sigma <- rho^abs(row(Sigma)-col(Sigma))

> S <- chol(Sigma)

> St_inv <- solve(t(S))

> ystar <- St_inv %*% log(Sales)

> X <- model.matrix(lm.1)

> Xstar <- St_inv%*% X

> summary(lm.2 <- lm(ystar ~ Xstar - 1))

[…]

Est     SE       t

Xstar(Intercept)   4.5844 0.2090   21.93 

Xstarlog(Price)   -5.7976 0.4889  -11.86

[…]

Residual standard error: 0.3949 on 50 

degrees of freedom

> par(mfrow=c(2,2))

> plot(lm.2)

> par(mfrow=c(1,1))

> rr <- resid(lm.2)

> acf(rr)

2111/1/2021

Estimate of

the residual

SD, s



Estimation Strategy 2: Estimate r, b
together using maximum likelihood
> library(nlme)

> summary(gls.1 <- gls(log(Sales) ~ log(Price), correlation=corAR1(),method="ML"))

AIC    BIC    logLik

20.02102 27.826 -6.010511

Correlation Structure: AR(1)

Formula: ~1 

Parameter estimate(s):

Phi 

0.7406252 

Coefficients:

Value Std.Error   t-value p-value

(Intercept)  4.577421 0.2161245  21.17956       0

log(Price)  -5.815621 0.4882088 -11.91216       0

Standardized residuals:

Min         Q1        Med         Q3        Max 

-2.3476869 -0.4815969  0.1580394  0.6130209  2.9496345 

Residual standard error: 0.401166 

Degrees of freedom: 52 total; 50 residual

2211/1/2021

Was the parameter rho needed?
> logLik(lm.1)

'log Lik.' -25.2911 (df=3)

> logLik(gls.1)

'log Lik.' -6.010511 (df=4)

> (chisq <-

+ -2*(logLik(lm.1) - logLik(gls.1)))

[1] 38.56117 

> pchisq(chisq,df=1,lower.tail=F)

[1] 5.30641e-10

Estimate of

the residual

SD, s

ML Estimate of r



Summary

◼ Review ML -> OLS

◼ What happens to the theory when 

◼ Estimating

◼ Applications:

❑ WLS – unequal sample sizes

❑ Time series correlation: AR(1), etc.
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