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Announcements
◼ HW07 Due tonight, Oct 29, 11:59pm

◼ Final Project 01 Paper Due Fri Oct 29

❑ Saturday grace if you need it!

◼ HW08 out already; due Wed Nov 3 11:59pm

❑ Two problems from, essentially, Gelman & Hill Ch 9

❑ One problem from Sheather Ch 9

◼ Reading for next week:

❑ Sheather Ch 9

◼ Quiz next Mon (Sheather Ch 9) as usual…
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Outline
◼ 18.1 Causal Inference [G&H Ch 9]

❑ The Fundamental Problem 

❑ Confounders, and how Controlled Randomized Trials 
control them

❑ Adjusting an analysis for pre-treatment covariates (but not 
post-treatment ones!) 

◼ 18.2 More sophisticated tools for causal inference 
[G&H Ch 10]

❑ Observational Studies

❑ Instrumental Variables 

❑ Matching and propensity scores

❑ Regression discontinuity designs



410/27/2021

Causal inference - Confounders

◼ If some patients have Ti = 1 and others have Ti = 0, 
we know that                                in the regression

◼ However, if there is a “confounding” variable xi , 
the correct      should come from 

◼ How bad can the bias be if we omit xi?



◼ If X is a confounder, the total effect of T on Y is 

:

◼ If we omit X (or it is hidden!) then we only get the right 
answer from y = ¯0 + ¯1 T + ², if       or      is zero.

Causal inference - Confounders
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◼ If R is a random treatment assignment (coin flip!), 
then      must equal zero!

◼ We can now get the right treatment effect from 

y = ¯0 + ¯1 T + ².

◼ It is still worth including X in the model if possible, 

y = ¯0 + ¯1 T + ¯2 X + ²

because including  X  will reduce SE(¯1) !

Causal inference – randomized trials
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Causal inference – Estimating ACE

◼ We can get an unbiased estimate of ACE in any of 
the following ways
❑ If there are no confounders, estimate ¯1 in

❑ If there are confounders, find them all, include them 
as x’s, and then estimate ¯1 in 

❑ Design the experiment so that all confounders xi are 
independent of treatment assignment Ti  and then 
estimate ¯1 from 
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Observational Studies
◼ Often have the form of randomized trials

❑ Treatment Ti

❑ Covariate(s) xi – possible confounders

◼ Want to know causal effect of Ti…
❑ Can run same regressions as before to estimate ¯1 Generally 

should include all known confounders

❑ But since we do not have control over Ti there could be hidden 
confounders (lurking variables)

❑ Often associated with selection effects (why does someone 
volunteer for the treatment?)

❑ Usually cannot make causal statements
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Observational Studies

◼ Sometimes hard to say exactly what Ti is
❑ Try to make an analogy from the observational study 

to the “ideal” randomized trial to see what Ti is (or 
even if there could be a Ti!)
◼ If the ideal experiment involves randomly assigning 

classrooms to different math curricula, then Ti could be a 
cause

◼ If the ideal experiment involves randomly assigning race or 
gender to people, then Ti probably is not a cause

❑ The regression analyses can suggest whether a further 
randomized experiment is worth doing, but generally 
we cannot make causal inferences (lurking variables!)
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Observational Studies
◼ Sometimes causal inferences can be made from 

observational studies.  Here are four methods:
❑ Instrumental variables – substitute for the coin flip in 

randomized trials to eliminate selection effects

❑ Propensity score matching – rearrange the data to 
eliminate selection effects

❑ Regression discontinuity designs – exploit random 
errors in selection effects

❑ Bounding the influence of confounders – sometimes 
the effect (ACE) of Ti is so big, that we can calculate 
that no reasonable set of confounders could be 
responsible for it.  (This is basically how the link 
between smoking and lung cancer was made.)



Instrumental Variables

◼ An instrumental variable I is another variable that 
“works like” randomization:

◼ Need

❑ Monotonicity:

❑ Ignorable assignment:
◼ I affects Y only through T (¯2=0)

◼ I is independent of X
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Instrumental Variables

◼ The regression equations are

◼ Substituting (2) into (1), we get

◼ And so if we fit the regressions

we find 
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Coin-Flip is the perfect instrument!

◼ An instrumental variable I is another variable that 
“works like” randomization:

◼ Fit

◼
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Example – just to give the flavor of 
instrumental variables
◼ What is the effect of watching Sesame Street 

on childrens’ letter-recognition skills?

pretest - letter skills test before experiment

y - letter skills test after experiment

encouraged - 1 = encouraged to watch; 0 = not

watched - 1 = did watch Sesame Street; 0 = not

site - 1,2,3,4,5: combos of age, SES,

language, urbanicity

setting - 1 = at home; 0 = at school
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Example – Simple IV Estimate

◼ What we can actually manipulate is 
“encouraging” kids to watch

◼ We might be interested in two things:

❑ The effect of “encouraged” on post-test score y

◼ (the “intention to treat”, ITT, analysis)

❑ The effect of actually watching, on post-test score y

◼ (the “instrumental variables”, IV, analysis)
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Simple IV analysis– Intention to 
Treat (ITT), and IV estimates
◼ ITT effect of “encouraged” on post-test y
> fit.1b <- lm(y ~ encouraged)

> coef(fit.1b) # the ITT effect

(Intercept)  encouraged 

24.920455    2.875598

◼ IV effect of “watched” on post-test y
> fit.1a <- lm(watched ~ encouraged)

> coef(fit.1a)

(Intercept)  encouraged 

0.5454545   0.3624402 

> coef(fit.1b)[2]/coef(fit.1a)[2]

encouraged 

7.933993 
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This is the effect of encouragement

on the post-test score

This is the effect of watching S.Street

on the post-test score



IV’s – Two-stage least-squares

◼ The “Ratio” estimate             is the “Wald Estimate”. 

◼ A more popular method is called “Two-stage least-
squares” (TSLS):

> coef(fit.2a <- lm (watched ~ encouraged))

(Intercept)  encouraged 

0.5454545   0.3624402 

> watched.hat <- fit.2a$fitted

> coef(fit.2b <- lm (y ~ watched.hat))

(Intercept) watched.hat

20.592822    7.933993 

◼ There is a function tsls() in library(“sem”) that does 
tsls estimates automatically. 
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This TSLS estimate is 

identical to the Wald estimate

on the previous slide.

In TSLS, second regression 

Uses fitted values from first

regression..



IV’s – Including covariates in TSLS
> fit.3a <- lm (watched ~ encouraged +

+   pretest + factor(site) + setting)

> watched.hat <- fit.3a$fitted

> fit.3b <- lm (y ~ watched.hat +

+   pretest + factor(site) + setting)

> coef(fit.3b)

(Intercept)   watched.hat pretest  

1.22         14.03          0.70 

factor(site)2 factor(site)3  factor(site)4 

8.40         -3.94           0.94

factor(site)5       setting 

2.76          1.60 

◼ SE’s are more work; see G&H or use tsls() function…
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The covariates get put

In both regressions

The IV estimate of the effect

of watching Sesame Streetm

after controlling for covariates.



◼ The propensity score P is used to rearrange the data 
so that  

◼ Use logistic regression to predict T as well as possible 
from all the X’s.  P(T=1) from this logistic regression is the 
propensity score.

◼ For each unit in with T=1, match it to a unit with T=0 
with the same (or similar) propensity score.  

❑ Discard non-matching units at the end of the process

Causal inference – Propensity Scores
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Making the propensity scores

> big.sesame <- cbind(y, sesame,

+ watched, encouraged, pretest)

> p.fit <- glm(watched ~

+ encouraged + pretest +

+ factor(site) + setting,             

+ family = binomial, 

+ data=big.sesame)

> p.scores <- predict(p.fit,

+ type="link")

> plot(p.scores, jitter(watched,

+ amount=0.05), xlab="Propensity 

Score",ylab="P[Watched=1])")

> o.scores <- sort(p.scores)

> lines(o.scores, exp(o.scores)

+ / (1 + exp(o.scores)))
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Making the matched data set
> matches <- matching(z =

+ watched, score = p.scores)

> matched <- big.sesame[

+ matches$matched,]

> dim(big.sesame)

[1] 240  32

> dim(matched)

[1] 108  32

> b.stats <-

+ balance(big.sesame, 

+ matched, p.fit)

> plot(b.stats)
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(The  matching() and  balance() functions are from library(arm).)



Is             in the Matched Data Set?
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> display(glm(formula = watched ~ encouraged + pretest + 

+ factor(site) + setting, family = binomial, data =

+ matched))

coef.est coef.se

(Intercept)    0.63     0.96  

encouraged     1.14     0.48  

pretest       -0.02     0.04  

factor(site)2 -0.03     0.78  

factor(site)3 -0.66     0.62  

factor(site)4 -1.32     0.58  

factor(site)5 -0.93     0.81  

setting        0.00     0.47  

---

n = 108, k = 8

residual deviance = 138.5, null deviance = 149.7 

(difference = 11.2)

We did pretty well except for these

two predictors.  

More effort chosing variables and 

interactions from among the 32

available in the data set would 

probably generate  propensity

scores that drive         to zero.



Now we estimate of effect of watching 
Sesame Street just using matched dataset

> coef(lm(y ~ watched + encouraged + pretest + factor(site) +

+            setting,data=big.sesame))

(Intercept)       watched    encouraged       pretest 

factor(site)2 

4.52          9.04          1.71          0.73          

8.55 

factor(site)3 factor(site)4 factor(site)5       setting 

-4.52         -0.78          1.29          1.33 

> coef(lm(y ~ watched + encouraged + pretest + factor(site) +

+            setting,data=matched))

(Intercept)       watched    encouraged       pretest 

factor(site)2 

3.06         10.47          0.25          1.04          

9.02 

factor(site)3 factor(site)4 factor(site)5       setting 

-5.43         -3.71         -1.20          0.68 
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Propensity Scores: How did we do?

◼ The estimate of the effect of watching Sesame 
Street is a bit bigger for the matched data than 
for the non-matched data.

◼ It is not as big as the IV estimate, in part because 
the matching isn’t very good yet.  More effort 
needed to build a good logistic regression for the 
propensity scores!

◼ SE’s are again problematic (we are using the data 
twice).  See Gelman & Hill for details & solutions.
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Regression Discontinuity Designs

◼ In the case of IV and Propensity Scores, we were 
looking for ways to break the relationship 
between X (covariates) and T (treatment)

◼ What if X is intimately tied up with T?

❑ Example: Kids with low test scores (X low) get 
remedial math (T=1); Kids with high test scores (X 
high) get regular math (T=0).

❑ Can we still assess whether T causes a change in the 
end of year test scores (Y)?
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Regression Discontinuity Designs

◼ Is the treatment effect the 
size of the jump?

◼ For most of the data we 
can’t make causal claim, 
because X is a confounder 
of T and Y.

◼ IF we can argue that people 
just either side of the cutoff 
are similar to each other, 
THEN the jump can 
represent a causal effect.
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◼ What does the RD design look like in terms of our 
regression diagram?

◼ All of the data can be used to get a really good estimate 
of ¯2.  This also improves SE’s  for ¯1.

◼ For subjects near the jump,               , so ¯1 represents 
a causal effect for them.

◼ How far can we generalize ¯1 away from the jump?

Regression Discontinuity Designs
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Regression Discontinuity Designs

◼ Estimation is very straightforward:

> display(fit <- lm(posttest ~ pretest + lowkids))

lm(formula = posttest ~ pretest + lowkids)

coef.est coef.se

(Intercept)  3.84     7.06  

pretest      0.83     0.12  

lowkidsTRUE 10.17     2.52  

---

n = 200, k = 3

residual sd = 10.97, R-Squared = 0.21
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Our estimate, 

.
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Summary

◼ 18.1 Causal Inference [G&H Ch 9]

❑ The Fundamental Problem 

❑ Confounders, and how Controlled Randomized Trials control 
them

❑ Adjusting an analysis for pre-treatment covariates (but not post-
treatment ones!) 

◼ 18.2 More sophisticated tools for causal inference 
[G&H Ch 10]

❑ Observational Studies

❑ Instrumental Variables 

❑ Matching and propensity scores

❑ Regression discontinuity designs


