36-617: Applied Linear Regression

Causal Inference Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- HW07 Due tonight, Oct 29, 11:59pm
- Final Project 01 Paper Due Fri Oct 29
 - Saturday grace if you need it!
- HW08 out already; due Wed Nov 3 11:59pm
 - □ Two problems from, essentially, Gelman & Hill Ch 9
 - One problem from Sheather Ch 9
- Reading for next week:
 - Sheather Ch 9
- Quiz next Mon (Sheather Ch 9) as usual...

Outline

- 18.1 Causal Inference [G&H Ch 9]
 - The Fundamental Problem
 - Confounders, and how Controlled Randomized Trials control them
 - Adjusting an analysis for pre-treatment covariates (but not post-treatment ones!)
- 18.2 More sophisticated tools for causal inference [G&H Ch 10]
 - Observational Studies
 - Instrumental Variables
 - Matching and propensity scores
 - Regression discontinuity designs

Causal inference - Confounders

• If some patients have $T_i = 1$ and others have $T_i = 0$, we know that $E[y^1] - E[y^0] \approx \hat{\beta}_1$ in the regression

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

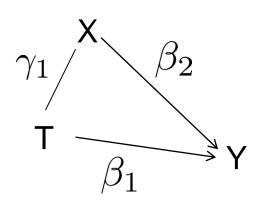
However, if there is a "confounding" variable x_i, the correct Â₁ should come from

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$$

How bad can the bias be if we omit x_i?

Causal inference - Confounders

If X is a confounder, the total effect of T on Y is $\beta_1 + \beta_2 \gamma_1$:



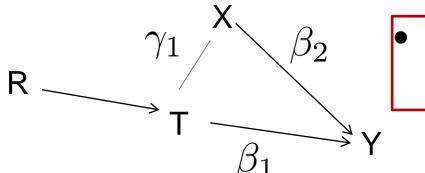
• $\beta_2 = 0$: X not really a confounder!

•
$$\gamma_1 = 0$$
: No selection effect!

• If we omit X (or it is hidden!) then we only get the right answer from $y = \beta_0 + \beta_1 T + \epsilon$, if β_2 or γ_1 is zero.

Causal inference – randomized trials

■ If R is a random treatment assignment (coin flip!), then γ_1 must equal zero!



•
$$\gamma_1 = 0$$
: No selection effect!

We can now get the right treatment effect from

$$y = \beta_0 + \beta_1 T + \epsilon.$$

It is still worth including X in the model if possible,

$$\mathsf{y} = \beta_{\mathrm{o}} + \beta_{\mathrm{1}} \,\mathsf{T} + \beta_{\mathrm{2}} \,\mathsf{X} + \epsilon$$

because including X will reduce SE(β_1) !

Causal inference – Estimating ACE

- We can get an unbiased estimate of ACE in any of the following ways
 - $\hfill \hfill \hfill$
 - □ If there are confounders, find them all, include them as x's, and then estimate β_1 in
 - $y_i = \beta_0 + \beta_1 T_i + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_K x_{Ki} + \epsilon_i$
 - <u>Design the experiment</u> so that all *confounders* x_i are *independent of treatment* assignment T_i and then estimate β₁ from

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

Observational Studies

- Often have the form of randomized trials
 - Treatment T_i
 - Covariate(s) x_i possible confounders
- Want to know causal effect of T_i...
 - Can run same regressions as before to estimate β_1 Generally should include all known confounders $y_i = \beta_0 + \beta_1 T_i + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_K x_{Ki} + \epsilon_i$
 - But since we do not have control over T_i there could be hidden confounders (lurking variables)
 - Often associated with selection effects (why does someone volunteer for the treatment?)
 - Usually cannot make causal statements

Observational Studies

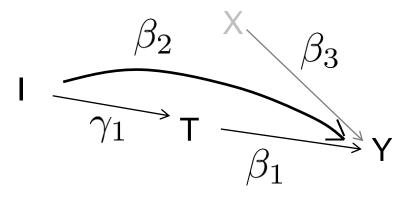
- Sometimes hard to say exactly what T_i is
 - Try to make an analogy from the observational study to the "ideal" randomized trial to see what T_i is (or even if there could be a T_i!)
 - If the ideal experiment involves randomly assigning classrooms to different math curricula, then T_i could be a cause
 - If the ideal experiment involves randomly assigning race or gender to people, then T_i probably is not a cause
 - The regression analyses can suggest whether a further randomized experiment is worth doing, but generally we cannot make causal inferences (lurking variables!)

Observational Studies

- Sometimes <u>causal inferences</u> can be made from observational studies. Here are four methods:
 - Instrumental variables substitute for the coin flip in randomized trials to eliminate selection effects
 - <u>Propensity score matching</u> rearrange the data to eliminate selection effects
 - <u>Regression discontinuity designs</u> exploit random errors in selection effects
 - <u>Bounding the influence of confounders</u> sometimes the effect (ACE) of T_i is so big, that we can calculate that no reasonable set of confounders could be responsible for it. (This is basically how the link between smoking and lung cancer was made.)

Instrumental Variables

An instrumental variable I is another variable that "works like" randomization:



- Need
 - Monotonicity: $\gamma_1 \neq 0$
 - Ignorable assignment:
 - I affects Y only through T (β_2 =0)
 - I is independent of X

Instrumental Variables

The regression equations are

$$y = \beta_0 + \beta_1 T + \beta_2 I + \epsilon$$
(1)

$$T = \gamma_0 + \gamma_1 I + \nu$$
(2)

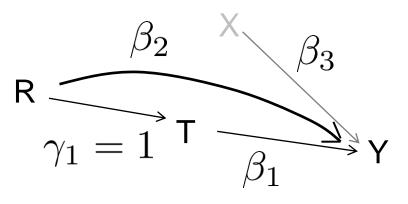
- Substituting (2) into (1), we get $y = (\beta_0 + \beta_1 \gamma_0) + (\beta_1 \gamma_1 + \beta_2)I + (\text{error terms})$
- And so if we fit the regressions

$$y = \delta_0 + \delta_1 \mathbf{I} + \epsilon$$
$$T = \gamma_0 + \gamma_1 \mathbf{I} + \nu$$

we find $\beta_1 = (\delta_1 - \beta_2)/\gamma_1 = \delta_1/\gamma_1$, since $\beta_2 = 0$.

Coin-Flip is the perfect instrument!

An instrumental variable I is another variable that "works like" randomization:



Fit

$$y = \delta_0 + \delta_1 \mathbf{I} + \epsilon$$
$$T = \gamma_0 + \gamma_1 \mathbf{I} + \nu$$

 $\beta_1 = (\delta_1 - \beta_2) / \gamma_1 = \delta_1 \text{ since } \beta_2 = 0 \& \gamma_1 = 1.$

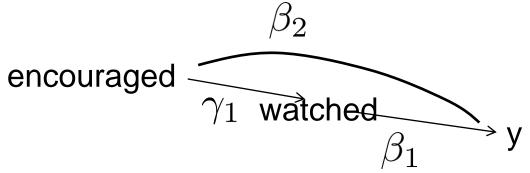
Example – just to give the flavor of instrumental variables

What is the effect of watching Sesame Street on childrens' letter-recognition skills?

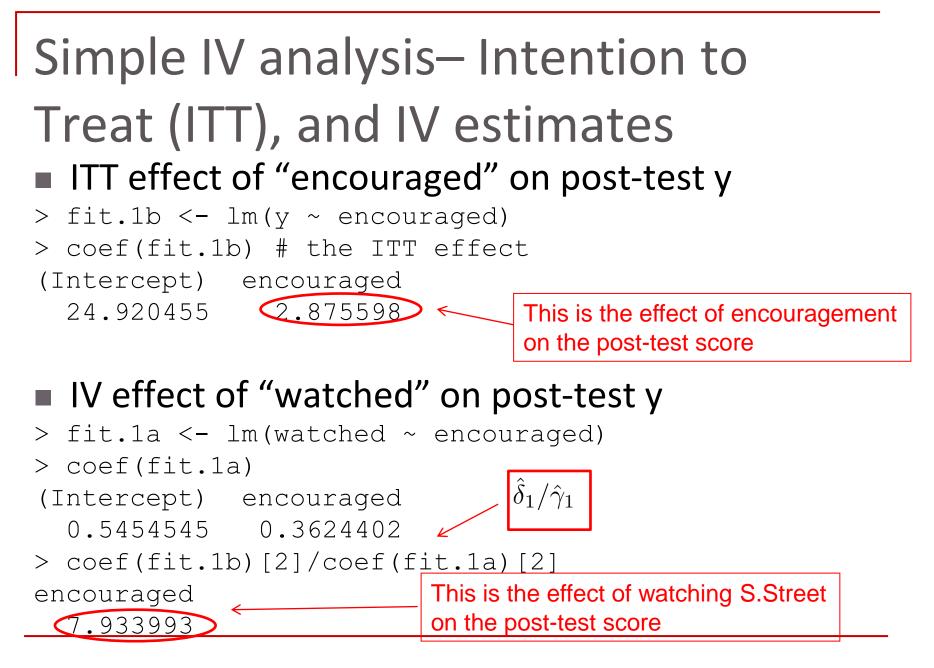
pretest	- letter skills test before experiment			
У	- letter skills test after experiment			
encouraged	- $1 = encouraged$ to watch; $0 = not$			
watched	- 1 = did watch Sesame Street; 0 = not			
site	- 1,2,3,4,5: combos of age, SES,			
	language, urbanicity			
setting	-1 = at home; 0 = at school			

Example – Simple IV Estimate

What we can actually manipulate is "encouraging" kids to watch

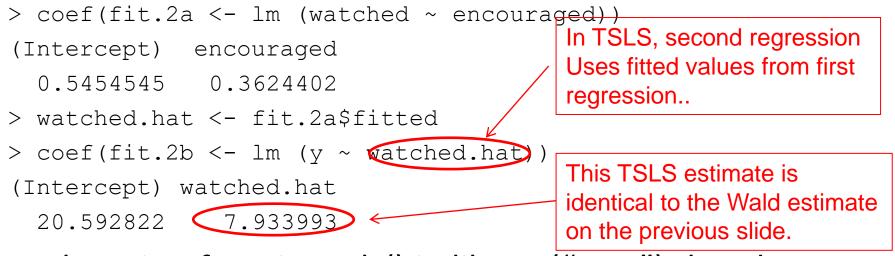


- We might be interested in two things:
 - The effect of "encouraged" on post-test score y
 - (the "intention to treat", ITT, analysis)
 - □ The effect of actually watching, on post-test score y
 - (the "instrumental variables", IV, analysis)

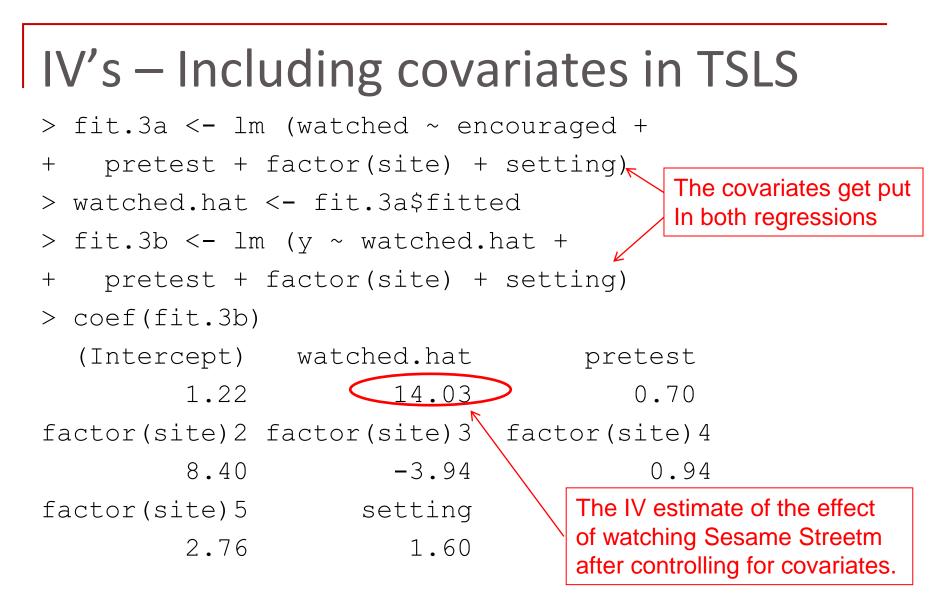


IV's – Two-stage least-squares

- The "Ratio" estimate $\hat{\delta}_1/\hat{\gamma}_1$ is the "Wald Estimate".
- A more popular method is called "Two-stage leastsquares" (TSLS):



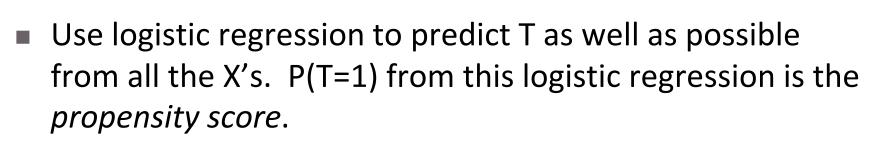
 There is a function tsls() in library("sem") that does tsls estimates automatically.



SE's are more work; see G&H or use tsls() function...

Causal inference – Propensity Scores

• The propensity score P is used to rearrange the data so that $\gamma_1 \approx 0$.

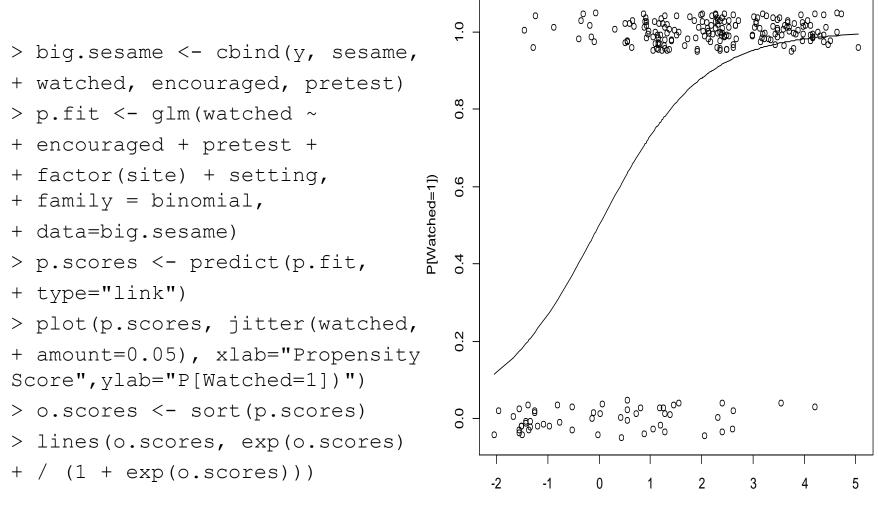


 For each unit in with T=1, match it to a unit with T=0 with the same (or similar) propensity score.

Discard non-matching units at the end of the process

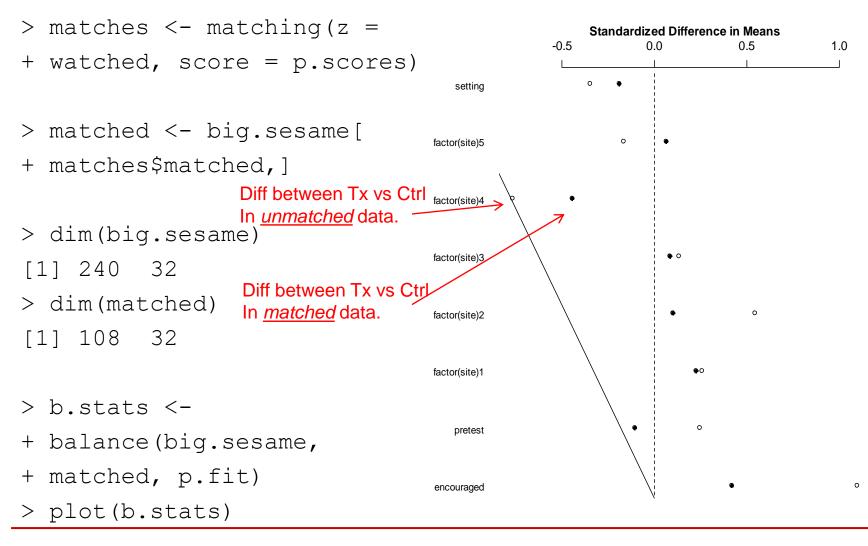
0: No selection

Making the propensity scores



Propensity Score

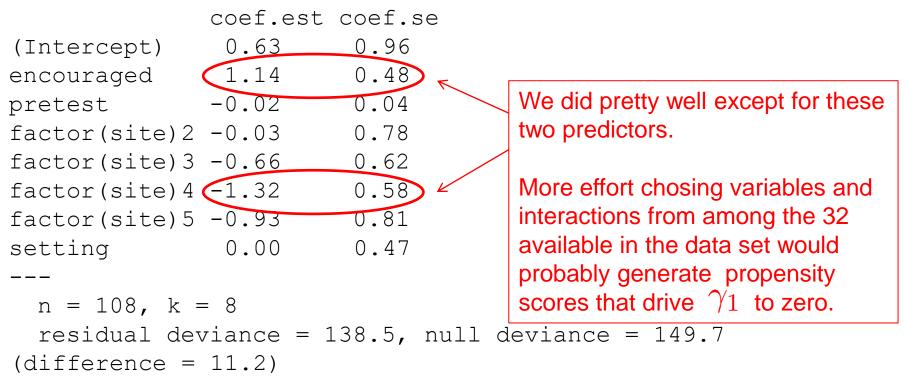
Making the matched data set



(The matching() and balance() functions are from library(arm).)

Is $\gamma_1 \approx 0$ in the Matched Data Set?

- > display(glm(formula = watched ~ encouraged + pretest +
- + factor(site) + setting, family = binomial, data =
- + matched))



Now we estimate of effect of watching Sesame Street just using matched dataset

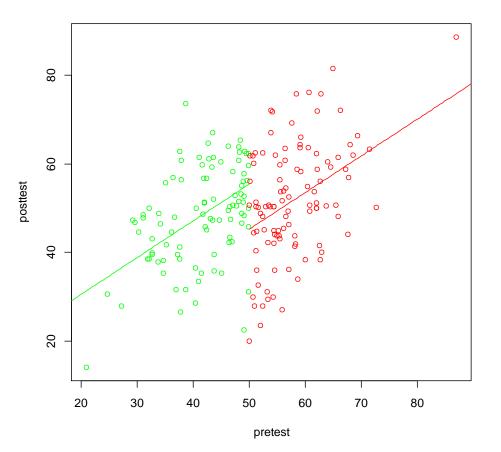
> coef(lm(y ~ watched + encouraged + pretest + factor(site) +					
+ setting,date=big.sesame)					
(Intercept)	watched	encouraged	pretest		
factor(site)2				Upmotobod	
4.52	9.04	1.71	0.73	Unmatched	
8.55				Tx Effect Est.	
factor(site)3	factor(site)4	factor(site)5	setting		
-4.52	-0.78	1.29	1.33		
> coef(lm(y ~ watched + encouraged + pretest + factor(site) +					
+ setting,data=matched))					
(Intercept)	watched	encouraged	pretest		
factor(site)2				Matched	
3.06	10.47	0.25	1.04	Tx Effect Est.	
9.02					
factor(site)3	factor(site)4	factor(site)5	setting		
-5.43	-3.71	-1.20	0.68		

Propensity Scores: How did we do?

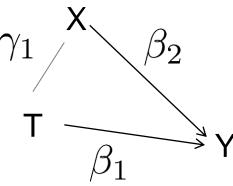
- The estimate of the effect of watching Sesame Street is a bit bigger for the matched data than for the non-matched data.
- It is not as big as the IV estimate, in part because the matching isn't very good yet. More effort needed to build a good logistic regression for the propensity scores!
- SE's are again problematic (we are using the data twice). See Gelman & Hill for details & solutions.

- In the case of IV and Propensity Scores, we were looking for ways to break the relationship between X (covariates) and T (treatment)
- What if X is intimately tied up with T?
 - <u>Example</u>: Kids with low test scores (X low) get remedial math (T=1); Kids with high test scores (X high) get regular math (T=0).
 - Can we still assess whether T causes a change in the end of year test scores (Y)?

- Is the treatment effect the size of the jump?
- For most of the data we can't make causal claim, because X is a confounder of T and Y.
- *IF* we can argue that people just either side of the cutoff are similar to each other,
 THEN the jump can represent a causal effect.

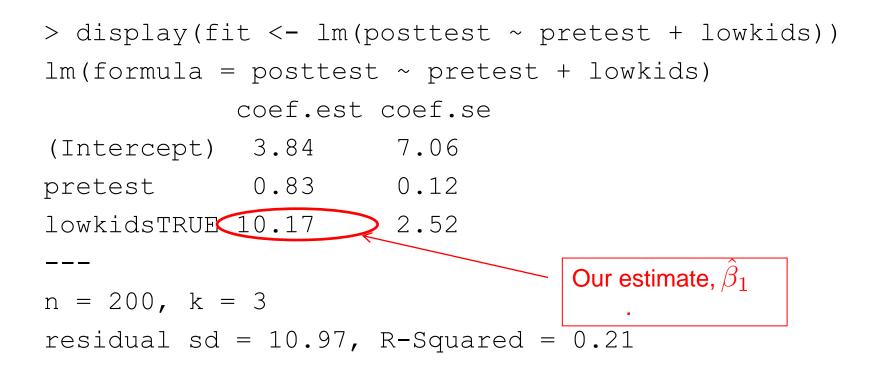


What does the RD design look like in terms of our regression diagram?



- All of the data can be used to get a really good estimate of β₂. This also improves SE's for β₁.
- For subjects near the jump, $\gamma_1 \approx 0$, so β_1 represents a causal effect for them.
- How far can we generalize β_1 away from the jump?

Estimation is very straightforward:



Summary

- 18.1 Causal Inference [G&H Ch 9]
 - The Fundamental Problem
 - Confounders, and how Controlled Randomized Trials control them
 - Adjusting an analysis for pre-treatment covariates (but not posttreatment ones!)
- 18.2 More sophisticated tools for causal inference [G&H Ch 10]
 - Observational Studies
 - Instrumental Variables
 - Matching and propensity scores
 - Regression discontinuity designs