36-617: Applied Linear Regression

Causal Inference Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- Quizzes
 - None today!
 - Quiz next Monday on <u>Sheather</u> Ch 9
- Peer reviews for Project 01
 - Due Tue Oct 26 (tomorrow) at 11:59pm
 - Lorenzo and I are also writing comments, but the peer reviews will be better!
- HW07 Due Wed Oct 29 11:59pm
- Final Project 01 Paper Due Fri Oct 29 (Sat grace...)
- HW08 out today; due Wed Nov 3 11:59pm

Outline

- 18.1 Causal Inference [G&H Ch 9]
 - The Fundamental Problem
 - Confounders, and how Controlled Randomized Trials control them
 - Adjusting an analysis for pre-treatment covariates (but not posttreatment ones!)
- 18.2 More sophisticated tools for causal inference [G&H Ch 10]
 - Observational Studies
 - Instrumental Variables
 - Matching and propensity scores
 - Regression discontinuity designs

Causal Inference

- Want to test a new pain reliever for headaches
- Have 200 patients i=1,...,200.
 - \Box T_i=1 (patient gets drug) for i=1..100,
 - $T_i=0$ (patient gets nothing) for i=101..200.
- Suppose drug is worthless, but
 - i=1..100 are healthy and
 - i=101..200 all have flu, colds, etc.
 - How will the drug look?
- Suppose drug is effective, but
 - i=1..100 have colds & flu, and
 - i=101..200 are healthy.
 - How will the drug look now?
- What is wrong with these examples?

Causal Inference—The Fundamental Problem

We really would like to see the difference between pain level "with the drug" vs pain level "without", <u>for each individual patient.</u>

$$y_i^0 =$$
 outcome without treatment
 $y_i^1 =$ outcome with treatment
 $y_i^1 - y_i^0 =$ treatment effect for unit i

But we cannot try the drug, and then go back in time and try without the drug.

□ For each patient i, can see either y_i^0 or y_i^1 but not both!

Causal Inference—The Fundamental Problem

If we average the individual treatment effect over all patients, get the average causal effect (ACE):

$$\begin{aligned} \mathsf{ACE} &= \frac{1}{N} \sum_{i=1}^{N} (y_i^1 - y_i^0) = \frac{1}{N} \sum_{i=1}^{N} y_i^1 - \frac{1}{N} \sum_{i=1}^{N} y_i^0 \\ &= E[y^1] - E[y^0] \end{aligned}$$

- Most studies try to estimate ACE. A good way to do this would be:
 - □ Estimate E[y¹] ≈ y
 ¹ from unbiased sample y₁¹, ... y_{n₁}¹
 □ Estimate E[y⁰] ≈ y
 ⁰ from unbiased sample y₁⁰, ... y_{n₀}⁰

Causal Inference—The Fundamental Problem

- The problem with the examples we started with was that <u>the samples were not unbiased</u>.
- There are basically two ways to deal with bias
 - Design a study for which the samples are guaranteed to be unbiased
 - Do some statistical adjustment to account for the bias
- To understand how to design an "unbiased" study, we first consider how "bias" arises...

Causal inference - Confounders

• If some patients have $T_i = 1$ and others have $T_i = 0$, we know that $E[y^1] - E[y^0] \approx \hat{\beta}_1$ in the regression

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

However, if there is a "confounding" variable x_i, the correct Â₁ should come from

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$$

How bad can the bias be if we omit x_i?

Causal inference - Confounders

We suppose the correct model is

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i \tag{1}$$

but we fit instead

$$y_i = \beta_0^* + \beta_1^* T_i + \epsilon_i^* \tag{2}$$

Note that x_i also has some relationship with T_i that can be expressed as a linear regression:

$$x_i = \gamma_0 + \gamma_1 T_i + \nu_i \tag{3}$$

If we substitute (3) into (1) and do a little rearranging, we get

$$y_i = (\beta_0 + \beta_2 \gamma_0) + (\beta_1 + \beta_2 \gamma_1) T_i + (\epsilon_i + \beta_2 \nu_i)$$

$$\tag{4}$$

Equating coefficients in (2) and (4), we see

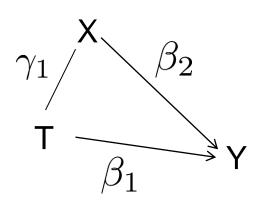
$$\beta_1^* = \beta_1 + \beta_2 \gamma_1 \tag{5}$$

Thus, estimating $E[y^1] - E[y^0] \approx \hat{\beta}_1^*$ will be biased, unless

- $\gamma_1 = 0$, i.e. x_i is independent of treatment assignment T_i
- $\beta_2 = 0$, i.e. x_i has no influence on y_i after considering T_i (x_i not really a confounder!)

Causal inference - Confounders

If X is a confounder, the total effect of T on Y is $\beta_1 + \beta_2 \gamma_1$:



• $\beta_2 = 0$: X not really a confounder!

•
$$\gamma_1 = 0$$
: No selection effect!

• If we omit X (or it is hidden!) then we only get the right answer from $y = \beta_0 + \beta_1 T + \epsilon$, if β_2 or γ_1 is zero.

Causal inference – Estimating ACE

- We can get an unbiased estimate of ACE in any of the following ways
 - $\hfill \hfill \hfill$
 - □ If there are confounders, find them all, include them as x's, and then estimate β_1 in

 $y_i = \beta_0 + \beta_1 T_i + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_K x_{Ki} + \epsilon_i$

<u>Design the experiment</u> so that all *confounders* x_i are *independent of treatment* assignment T_i and then estimate β₁ from

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

Causal inference – randomized trials

- In a <u>randomized experiment</u>, each unit i is assigned T_i = 1 (treatment) or T_i = 0 (no tx) randomly (e.g. by random coin toss!).
 - This forces every potential confounder x_i to be independent of T_i, whether we "discover" x_i or not!
 (γ₁ = 0)
 - From a randomized experiment we can always estimate ACE by estimating β_1 in

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

Causal inference – randomized trials

- In many settings you can't completely randomize
 - A study of effectiveness of a new math curriculum might involve several schools.
 - Can't put all math classes in all schools together in one "pot" and randomly assign some to new math curriculum
 - Instead assign ½ the classes to the new math program and ½ to the old math program <u>within each school</u>
 - Since schools contain other factors that affect math performance, school becomes an x_i and we can estimate the ACE for the new math program from

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$$

A lot of experimental design is like this...

Causal inference – pre-treatment covariates in randomized trials

- Even in a randomized experiment, if we can identify a confounder x_i, it is good to include it in the model.
- Estimating ACE = $\hat{\beta}_1$ from $y_i = \beta_0 + \beta_1 T_i + \epsilon_i$

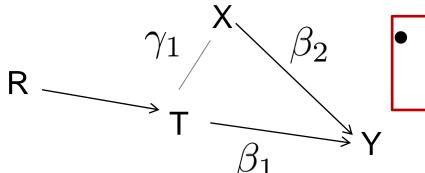
is unbiased, but not efficient (more uncertainty) Estimating ACE = $\hat{\beta}_1$ from

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$$

will be more efficient (less uncertainty).

Causal inference – randomized trials

■ If R is a random treatment assignment (coin flip!), then γ_1 must equal zero!



•
$$\gamma_1 = 0$$
: No selection effect!

We can now get the right treatment effect from

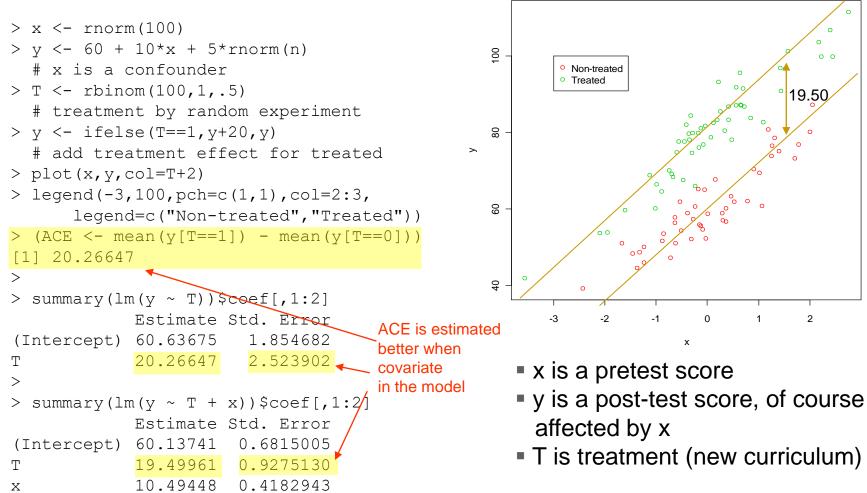
$$\mathbf{y} = \beta_{\mathbf{o}} + \beta_{\mathbf{1}} \mathbf{T} + \epsilon.$$

It is still worth including X in the model if possible,

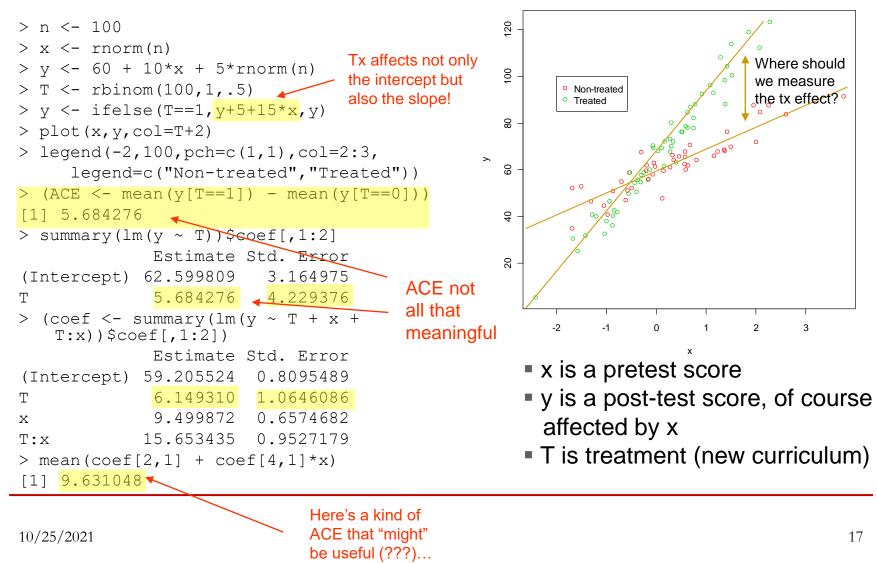
$$\mathsf{y} = \beta_{\mathrm{o}} + \beta_{\mathrm{1}} \,\mathsf{T} + \beta_{\mathrm{2}} \,\mathsf{X} + \epsilon$$

because including X will reduce SE(β_1) !

Randomized trials – pre-treatment covariates – uniform tx effect



Randomized trials – pre-treatment covariates – nonuniform tx effect



Randomized trials – *do not include* post-treatment covariates!

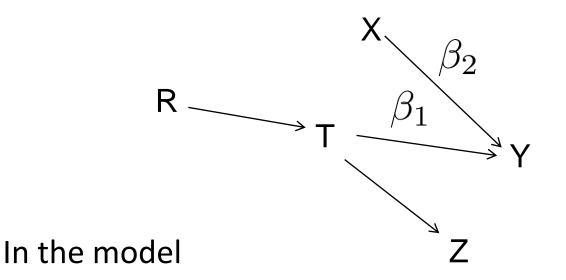
```
> n < -100
> x < - rnorm(n)
> v < -60 + 10*x + 5*rnorm(n)
> T < - rbinom(100, 1, .5)
> y <- ifelse(T==1,y+20,y)
                                               Т
> z <- ifelse(T==1, rnorm(100, 3),</pre>
                                               Х
   rnorm(100, -3))
> plot(x, y, col=T+2)
> legend(-2,100,pch=c(1,1),col=2:3,
    legend=c("Non-treated", "Treated"))
> (ACE <- mean(y[T==1]) -
   mean(y[T==0]))
                                               Т
[1] 22.43931
                                               Х
> summary(lm(y ~ T))$coef[,1:2]
                                               Ζ
             Estimate Std. Error
(Intercept) 58.11903
                         1.660045
             22.43931
                        2.347659
Т
                         Including z in the model
                         completely dilutes the
                         effect of T that we are
                        trying to estimate!
```

```
> summary(lm(y ~ T +
 x))$coef[,1:2]
Estimate Std. Error
(Intercept) 59.85651 0.7068169
T 20.78911 0.9959064
x 10.58185 0.4983279
> summary(lm(y ~ T + x +
 z))$coef[,1:2]
Estimate Std. Error
(Intercept) 64.884033 1.9499540
T 10.505663 3.8573971
x 10.416234 0.4859765
z 1.608895 0.5843686
```

- x is a pretest score
- y is a post-test score, of course affected by x
- T is treatment (new curriculum)
- z is a secondary effect of T

Causal inference – Post-tx covariates

■ If R is a random treatment assignment (coin flip!), then γ_1 must equal zero!



$$\mathbf{y} = \beta_{0} + \beta_{1} \mathbf{T} + \beta_{2} \mathbf{X} + \beta_{3} \mathbf{Z} + \epsilon$$

the estimate of β_1 will only include the influence of the part of T not explained by Z... That might not be much!

Summary

- 18.1 Causal Inference [G&H Ch 9]
 - The Fundamental Problem
 - Confounders, and how Controlled Randomized Trials control them
 - Adjusting an analysis for pre-treatment covariates (but not posttreatment ones!)
- 18.2 More sophisticated tools for causal inference [G&H Ch 10]
 - Observational Studies
 - Instrumental Variables
 - Matching and propensity scores
 - Regression discontinuity designs