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70 LINEAR REGRESSION: BEFORE AND AFTER FITTING THE MODEL
Ezxample: predicting the yields of mesquite bushes

We illustrate some ideas of model checking with a real-data example that is nonethe-
less somewhat artificial in being presented in isolation from its applied context.
Partly because this example is not a “success story” and our results are inconclu-
sive, it represents the sort of analysis a student might perform in exploring a new
dataset.

Data were collected in order to develop a method of estimating the total produc-
tion (biomass) of mesquite leaves using easily measured parameters of the plant, be-
fore actual harvesting takes place. Two separate sets of measurements were taken,
one on a group of 26 mesquite bushes and the other on a different group of 20
mesquite bushes measured at a different time of year. All the data were obtained in
the same geographical location (ranch), but neither constituted a strictly random
sample.

The outcome variable is the total weight (in grams) of photosynthetic material
as derived from actual harvesting of the bush. The input variables are:

diam1: diameter of the canopy (the leafy area of the bush)

in meters, measured along the longer axis of the bush
diam2: canopy diameter measured along the shorter axis
canopy.height:  height of the canopy
total.height: total height of the bush
density: plant unit density (# of primary stems per plant unit)
group: group of measurements (0 for the first group,

1 for the second group)

It is reasonable to predict the leaf weight using some sort of regression model.
Many formulations are possible. The simplest approach is to regress weight on all
of the predictors, yielding the estimates:

Im(formula = weight ~ diaml + diam2 + canopy.height + total.height +
density + group, data = mesquite)
coef.est coef.se

(Intercept) =729 147
diaml 190 113
diam2 371 124
canopy.height 356 210
total.height -102 186
density 131 34
group -363 100

n =46, k=7

residual sd 269, R-Squared = 0.85

To get a sense of the importance of each predictor, it is useful to know the range
of each variable:

min 925 median q75 max IQR
diaml 0.8 1.4 2.0 2.5 5.2 1.1
diam2 0.4 1.0 1.5 1.9 4.0 0.9
canopy.height 0.5 0.9 1.1 1.3 2.5 0.4
total.height 0.6 1.2 1.5 1.7 3.0 0.5
density 1.0 1.0 1.0 2.0 9.0 1.0
group 0.0 0.0 0.0 1.0 1.0 1.0
weight 60 220 360 690 4050 470

“IQR” in the last column refers to the interquartile range—the difference between
the 75" and 25" percentile points of each variable.
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But perhaps it is more reasonable to fit on the logarithmic scale, so that effects
are multiplicative rather than additive:

Im(formula = log(weight) ~ log(diaml) + log(diam2) + log(canopy.height) +
log(total.height) + log(density) + group, data = mesquite)
coef.est coef.se IQR of predictor

(Intercept) 5.35 0.17 -
log(diaml) 0.39 0.28 0.6
log(diam2) 1.15 0.21 0.6
log(canopy.height) 0.37 0.28 0.4
log(total.height) 0.39 0.31 0.4
log(density) 0.11 0.12 0.3
group -0.58  0.13 1.0
n = 46, k

7

residual sd 0.33, R-Squared = 0.89

Instead of, “each meter difference in canopy height is associated with an addi-
tional 356 grams of leaf weight,” we have, “a difference of 2% in canopy height
is associated with an (approximate) positive difference of 0.372% in leaf weight”
(evaluated at the same levels of all other variables across comparisons).

So far we have been throwing all the predictors directly into the model. A more
“minimalist” approach is to try to come up with a simple model that makes sense.
Thinking geometrically, we can predict leaf weight from the volume of the leaf
canopy, which we shall roughly approximate as

canopy.volume = diaml - diam?2 - canopy.height.

This model is an oversimplification: the leaves are mostly on the surface of a bush,
not in its interior, and so some measure of surface area is perhaps more appropriate.
We shall return to this point shortly.

It still makes sense to work on the logarithmic scale:

Im(formula = log(weight) ~ log(canopy.volume))
coef.est coef.se
(Intercept) 5.17 0.08
log(canopy.volume) 0.72 0.05
n =46, k = 2
residual sd = 0.41, R-Squared = 0.80

Thus, leaf weight is approximately proportional to canopy.volume to the 0.72
power. It is perhaps surprising that this power is not closer to 1. The usual expla-
nation for this is that there is variation in canopy.volume that is unrelated to the
weight of the leaves, and this tends to attenuate the regression coefficient—that is,
to decrease its absolute value from the “natural” value of 1 to something lower.
Similarly, regressions of “after” versus “before” typically have slopes of less than
1. (For another example, Section 7.3 has an example of forecasting congressional
elections in which the vote in the previous election has a coefficient of only 0.58.)

The regression with only canopy.volume is satisfyingly simple, with an impres-
sive R-squared of 80%. However, the predictions are still much worse than the model
with all the predictors. Perhaps we should go back and put in the other predictors.
We shall define:

canopy.area = diaml -diam?2

canopy.shape = diaml/diam2.

The set (canopy.volume, canopy.area, canopy.shape) is then just a different param-
eterization of the three canopy dimensions. Including them all in the model yields:
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Im(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +
log(canopy.shape) + log(total.height) + log(density) + group)
coef.est coef.se

(Intercept) 5.35 0.17
log(canopy.volume) 0.37 0.28
log(canopy.area) 0.40 0.29
log(canopy.shape) -0.38 0.23
log(total.height) 0.39 0.31
log(density) 0.11 0.12
group -0.58 0.13

n =146, k=17
residual sd = 0.33, R-Squared = 0.89

This fit is identical to that of the earlier log-scale model (just a linear transfor-

mation of the predictors), but to us these coefficient estimates are more directly
interpretable:

Tt

Canopy volume and area are both positively associated with weight. Neither is
statistically significant, but we keep them in because they both make sense: (1)
a larger-volume canopy should have more leaves, and (2) conditional on volume,
a canopy with larger cross-sectional area should have more exposure to the sun.

The negative coefficient of canopy.shape implies that bushes that are more
circular in cross section have more leaf weight (after controlling for volume and
area). It is not clear whether we should “believe” this. The coefficient is not
statistically significant; we could keep this predictor in the model or leave it out.

Total height is positively associated with weight, which could make sense if the
bushes are planted close together—taller bushes get more sun. The coefficient is
not statistically significant, but it seems to make sense to “believe” it and leave
it in.

It is not clear how to interpret the coefficient for density. Since it is not statis-
tically significant, maybe we can exclude it.

For whatever reason, the coefficient for group is large and statistically significant,
so we must keep it in. It would be a good idea to learn how the two groups differ
so that a more relevant measurement could be included for which group is a
Proxy.

1is leaves us with a model such as
Im(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +
group)
coef.est coef.se
(Intercept) 5.22 0.09
log(canopy.volume) 0.61 0.19
log(canopy.area) 0.29 0.24
group -0.53 0.12
n = 46, k

4

residual sd 0.34, R-Squared = 0.87

or

Im(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +
log(canopy.shape) + log(total.height) + group)
coef.est coef.se
(Intercept) 5.31 0.16
log(canopy.volume) 0.38 0.28
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log(canopy.area) 0.41 0.29
log(canopy . shape) -0.32 0.22
log(total.height) 0.42 0.31
group -0.54 0.12

n =146, k=6

residual sd 0.33, R-Squared = 0.88

We want to include both volume and area in the model, since for geometrical reasons
we expect both to be positively predictive of leaf volume. It would also make sense
to look at some residual plots to look for any patterns in the data beyond what has
been fitted by the model.

Finally, it would seem like a good idea to include interactions of group with
the other predictors. Unfortunately, with only 46 data points, it turns out to be
impossible to estimate these interactions accurately: none of them are statistically
significant.

To conclude this example: we have had some success in transforming the outcome
and input variables to obtain a reasonable predictive model. However, we do not
have any clean way of choosing among the models (or combining them). We also
do not have any easy way of choosing between the linear and log-transformation
models, or bridging the gap between them. For this problem, the log model seems
to make much more sense, but we would also like a data-based reason to prefer it,
if it is indeed preferable.

4.7 Fitting a series of regressions

It is common to fit a regression model repeatedly, either for different datasets or to
subsets of an existing dataset. For example, one could estimate the relation between
height and earnings using surveys from several years, or from several countries, or
within different regions or states within the United States.

As discussed in Part 2 of this book, multilevel modeling is a way to estimate
a regression repeatedly, partially pooling information from the different fits. Here
we consider the more informal procedure of estimating the regression separately—
with no pooling between years or groups—and then displaying all these estimates
together, which can be considered as an informal precursor to multilevel modeling.*

Predicting party identification

Political scientists have long been interested in party identification and its changes
over time. We illustrate here with a series of cross-sectional regressions modeling
party identification given political ideology and demographic variables.
We use the National Election Study, which asks about party identification on a 1—
7 scale (1 =strong Democrat, 2 =Democrat, 3 =weak Democrat, 4 = independent,
.., T=strong Republican), which we treat as a continuous variable. We include
the following predictors: political ideology (1 = strong liberal, 2 =liberal, ..., 7=
strong conservative), ethnicity (0=white, 1=Dblack, 0.5 =other), age (as categories:
18-29, 3044, 45-64, and 65+ years, with the lowest age category as a baseline),
education (1 = no high school, 2 = high school graduate, 3 = some college, 4 =

4 The method of repeated modeling, followed by time-series plots of estimates, is sometimes called
the “secret weapon” because it is so easy and powerful but yet is rarely used as a data-analytic
tool. We suspect that one reason for its rarity of use is that, once one acknowledges the time-
series structure of a dataset, it is natural to want to take the next step and model that directly.
In practice, however, there is a broad range of problems for which a cross-sectional analysis is
informative, and for which a time-series display is appropriate to give a sense of trends.



