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Quadratic forms

Cochran’s theorem,

degrees of freedom,

and all that…

Dr. Frank Wood
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Why We Care

• Cochran’s theorem tells us about the distributions of 

partitioned sums of squares of normally distributed 

random variables.

• Traditional linear regression analysis relies upon 

making statistical claims about the distribution of 

sums of squares of normally distributed random 

variables (and ratios between them)

– i.e. in the simple normal regression model

• Where does this come from?

SSE/σ2 =
∑
(Yi − Ŷi)

2 ∼ χ2(n− 2)
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Outline

• Review some properties of multivariate 
Gaussian distributions and sums of squares

• Establish the fact that the multivariate 
Gaussian sum of squares is χ(n) distributed

• Provide intuition for Cochran’s theorem

• Prove a lemma in support of Cochran’s 
theorem

• Prove Cochran’s theorem

• Connect Cochran’s theorem back to matrix 
linear regression
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Preliminaries

• Let Y1, Y2, …, Yn be N(µi,σi
) random 

variables.

• As usual define

• Then we know that each Zi ~ N(0,1) 

Zi =
Yi−µi
σi

From Wackerly et al, 306
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Theorem 0 : Statement

• The sum of squares of n N(0,1) random 
variables is χ distributed with n degrees of 

freedom

(
∑n

i=1 Z
2
i ) ∼ χ2(n)



Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 1, Slide 6

Theorem 0: Givens

• Proof requires knowing both
1.

2. If Y1, Y2, …., Yn are independent random variables with 
moment generating functions mY1

(t), mY2
(t), … mYn

(t), 
then when U = Y1 + Y2 + … Yn

and from the uniqueness of moment generating functions 
that mU(t) fully characterizes the distribution of U  

Z2i ∼ χ2(ν), ν = 1 or equivalently
Z2i ∼ Γ(ν/2, 2), ν = 1

mU (t) = mY1(t)×mY2(t)× . . .×mYn(t)

Homework, midterm ?
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Theorem 0: Proof

• The moment generating function for a χ(ν) 

distribution is (Wackerley et al, back cover)

• The moment generating function for 

is (by given prerequisite)

mZ2
i
(t) = (1− 2t)ν/2, where here ν = 1

V = (
∑n

i=1 Z
2
i )

mV (t) = mZ21
(t)×mZ22

(t)× · · · ×mZ2n
(t)
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Theorem 0: Proof

• But

is just

• Which is itself, by inspection, just the moment 
generating function for a χ(n) random variable 

which implies (by uniqueness) that

V = (
∑n

i=1 Z
2
i ) ∼ χ2(n)

mV (t) = mZ21
(t)×mZ22

(t)× · · · ×mZ2n
(t)

mV (t) = (1− 2t)
1/2 × (1− 2t)1/2 × · · · × (1− 2t)1/2

mV (t) = (1− 2t)
n/2
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Quadratic Forms and Cochran’s Theorem

• Quadratic forms of normal random variables 
are of great importance in many branches of 
statistics
– Least squares

– ANOVA

– Regression analysis

– etc.

• General idea
– Split the sum of the squares of observations into 

a number of quadratic forms where each 
corresponds to some cause of variation
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Quadratic Forms and Cochran’s Theorem

• The conclusion of Cochran’s theorem is that, 
under the assumption of normality, the 
various quadratic forms are independent and 
χ distributed.  

• This fact is the foundation upon which many 
statistical tests rest.
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Preliminaries: A Common Quadratic Form

• Let 

• Consider the (important) quadratic form that 
appears in the exponent of the normal density

• In the special case of µ = 0 and Λ = I this 
reduces to x’x which by what we just proved 
we know is χ

 
(n) distributed

• Let’s prove that this holds in the general case

x ∼ N(µ,Λ)

(x− µ)′Λ−1(x− µ)
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Lemma 1

• Suppose that x~N(µ, Λ) with |Λ| > 0 then 

(where n is the dimension of x)

• Proof: Set y = Λ-/(x-µ) then 

– E(y) = 0 

– Cov(y) = Λ-/ Λ Λ-/ = I

– That is y ~N(0,I) and thus

(x− µ)′Λ−1(x− µ) ∼ χ2(n)

(x− µ)′Λ−1(x− µ) = y′y ∼ χ2(n)

Note: this is sometimes called “sphering” data
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The Path

• What do we have?

• Where are we going?
– (Cochran’s Theorem) Let X1, X2, …, Xn be 

independent N(0,σ)-distributed random 
variables, and suppose that

Where Q1, Q2, …, Qk are positive semi-definite 
quadratic forms in the random variables X1, X2, 
…, Xm, that is,

(x− µ)′Λ−1(x− µ) = y′y ∼ χ2(n)

∑n
i=1X

2
i = Q1 +Q2 + . . .+Qk

Qi = X
′AiX, i = 1, 2, . . . , k
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Cochran’s Theorem Statement

Set Rank Ai = ri, i=1,2,…, k.  If

• Then 

1. Q1, Q2, …, Qk are independent

2. Qi ~ σχ(ri)

r1 + r2 + . . .+ rk = n

Reminder: the rank of a matrix is the number

of linearly independent rows / columns in the matrix,

or, equivalently, the number of its non-zero eigenvalues
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Closing the Gap

• We start with a lemma that will help us prove 
Cochran’s theorem

• This lemma is a linear algebra result

• We also need to know a couple results 
regarding linear transformations of normal 
vectors

– We attend to those first. 
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Linear transformations

• Theorem 1: Let X be a normal random vector.  
The components of X are independent iff they 
are uncorrelated.

– Demonstrated in class by setting Cov(Xi, Xj) = 0 

and then deriving product form of joint density
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Linear transformations

• Theorem 2: Let X ~ N(µ, Λ) and set Y = C’X 

where the orthogonal matrix C is such that 
C’Λ C = D.  Then Y ~ N(C’µ, D); the 

components of Y are independent; and Var Yk

= λk, k =1…n, where λ, λ,…, λn are the 
eigenvalues of Λ

Look up singular value decomposition.
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Orthogonal transforms of iid N(0,σ) variables

• Let X ~ N(µ, σ I ) where σ > 0 and set Y = 

CX where C is an orthogonal matrix.  Then 
Cov{Y} = CσIC’ = σ I

• This leads to

• Theorem 2: Let X ~ N(µ, σ I ) where σ > 0, 

let C be an arbitrary orthogonal matrix, and 
set Y=CX.  The Y ∼ N(Cµ, σI); in particular, 

Y1, Y2, …, Yn are independent normal random 
variables with the same variance σ.
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Where we are

• Now we can transform N(µ, ∑) random 

variables into N(0,D) random variables.

• We know that orthogonal transformations of a 
random vector X ~ N(µ,σI) results in a 

transformed vector whose elements are still 
independent

• The preliminaries are over, now we proceed 
to proving a lemma that forms the backbone 
of Cochran’s theorem.
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Lemma 1

• Let x1, x2, …, xn be real numbers.  Suppose 

that ∑ xi
2 can be split into a sum of positive 

semidefinite quadratic forms, that is,

where Qi = x’Aix and (rank Qi = ) rank Ai = ri, 

i=1,2,…,k.  If ∑ ri = n then there exists an 
orthogonal matrix C such that, with x = Cy we 
have…

∑n
i=1 x

2
i = Q1 +Q2 + . . .+Qk
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Lemma 2 cont.

• Remark: Note that different quadratic forms contain 

different y-variables and that the number of terms in 

each Qi equals the rank, ri, of Qi

Q1 = y21 + y22 + . . .+ y2r1

Q2 = y2r1+1 + y2r1+2 + . . .+ y2r1+r2

Q3 = y2r1+r2+1 + y2r1+r2+2 + . . .+ y2r1+r2+r3
...

Qk = y2n−rk+1 + y2n−rk+2 + . . .+ y2n
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What’s the point?

• We won’t construct this matrix C, it’s just 
useful for proving Cochran’s theorem.  

• We care that

– The yi
2’s end up in different sums – we’ll use this 

to prove independence of the different quadratic 

forms.
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Proof

• We prove the n=2 case.  The general case is 
obtained by induction. [Gut  95]

• For n=2 we have 

where A1 and A2 are positive semi-definite 
matrices with ranks r1 and r2 respectively and 
r1 + r2 = n

Q =
∑n

i=1 x
2
i = x

′A1x+ x
′A2x (= Q1 +Q2)
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Proof: Cont.

• By assumption there exists an orthogonal matrix C 

such that

where D is a diagonal matrix, the diagonal elements 
of which are the eigenvalues of A1; λ, λ, …, λn.

• Since Rank(A1) =r1 then r1 eigenvalues are positive 

and n-r1 eigenvalues equal zero.

• Suppose without restriction that the first r1

eigenvalues are positive and the rest are zero.

C′A1C = D
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Proof : Cont

• Set

and remember that when C is an orthogonal 
matrix that

then

x = Cy

x′x = (Cy)′Cy = y′C′Cy = y′y

Q =
∑

y2i =
∑r1

i=1 λiy
2
i + y

′C′A2Cy
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Proof : Cont

• Or, rearranging terms slightly and expanding 
the second matrix product

• Since the rank of the matrix A2 equals 

r2 ( = n-r1) we can conclude that

which proves the lemma for the case n=2.

∑ri
i=1(1− λi)y

2
i +

∑n
i=r1+1

y2i = y
′C′A2Cy

λ1 = λ2 = . . . = λr1 = 1

Q1 =
∑r1

i=1 y
2
i and Q2 =

∑n
i=r1+1

y2i
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What does this mean again?

• This lemma only has to do with real numbers, 
not random variables.  

• It says that if ∑ xi
2 can be split into a sum of 

positive semi-definite quadratic forms then 
there is a orthogonal (projection) matrix x=Cy 
(or C’x = y) that makes each of the quadratic 
forms have some very nice properties, 
foremost of which is that

– Each yi appears in only one resulting sum of 

squares. 
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Cochran’s Theorem
Let X1, X2, …, Xn be independent N(0,σ)-distributed 
random variables, and suppose that

Where Q1, Q2, …, Qk are positive semi-definite quadratic 
forms in the random variables X1, X2, …, Xm, that is,

Set Rank Ai = ri, i=1,2,…, k.  If

then 

1. Q1, Q2, …, Qk are independent

2. Qi ~ σχ(ri)

∑n
i=1X

2
i = Q1 +Q2 + . . .+Qk

Qi = X
′AiX, i = 1, 2, . . . , k

r1 + r2 + . . .+ rk = n
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Proof [from Gut 95]

• From the previous lemma we know that there exists 

an orthogonal matrix C such that the transformation 

X=CY yields

• But since every Y2 occurs in exactly one Qj and the 
Yi’s are all independent N(0, σ) RV’s (because C is 

an orthogonal matrix) Cochran’s theorem follows.

Q1 = Y 2
1 + Y 22 + . . .+ Y 2

r1

Q2 = Y 2
r1+1 + Y 2

r1+2 + . . .+ Y 2r1+r2

Q3 = Y 2
r1+r2+1

+ Y 2
r1+r2+2

+ . . .+ Y 2
r1+r2+r3

...

Qk = Y 2
n−rk+1

+ Y 2
n−rk+2

+ . . .+ Y 2
n
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Huh?

• Best to work an example to understand why 
this is important

• Let’s consider the distribution of a sample 
variance (not regression model yet).  Let Yi, 
i=1…n be samples from Y ~ N(0, σ).  We can 

use Cochran’s theorem to establish the 
distribution of the sample variance (and it’s 
independence from the sample mean).   
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Example

• Recall form of SSTO for regression model 
and note that the form of SSTO = (n-1) s2{Y} 

• Recognize that this can be rearranged and 
the re-expressed in matrix form

SSTO =
∑
(Yi − Ȳ )2 =

∑
Y 2
i −

(
∑

Yi)
2

n

∑
Y 2
i =

∑
(Yi − Ȳ )2 +

(
∑

Yi)
2

n

Y′IY = Y′(I− 1
nJ)Y +Y

′( 1nJ)Y



Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 1, Slide 32

Example cont.

• From earlier we know that

but we can read off the rank of the quadratic 
form as well (rank(I) = n)

• The ranks of the remaining quadratic forms 
can be read off too (with some linear algebra 
reminders)

Y′IY ∼ σ2χ2(n)

Y′Y = Y′(I− 1
nJ)Y +Y

′( 1nJ)Y
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Linear Algebra Reminders

• For a symmetric and idempotent matrix A, 
rank(A) = trace(A), the number of non-zero 
eigenvalues of A.

– Is (1/n)J symmetric and idempotent?

– How about (I-(1/n)J)?

• trace(A + B) = trace(A) + trace(B)

• Assuming they are we can read off the ranks 
of each quadratic form

Y′IY = Y′(I− 1
nJ)Y +Y

′( 1nJ)Y
rank: n rank: n-1 rank: 1
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Cochran’s Theorem Usage

• Cochran’s theorem tells us, immediately, that

because each of the quadratic forms is χ

distributed with degrees of freedom given by 
the rank of the corresponding quadratic form 
and each sum of squares is independent of 
the others.

Y′IY = Y′(I− 1
nJ)Y +Y

′( 1nJ)Y
rank: n rank: n-1 rank: 1

∑
Y 2
i ∼ σ2χ2(n),

∑
(Yi − Ȳ )2 ∼ σ2χ2(n− 1),

(
∑

Yi)
2

n ∼ σ2χ2(1)
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What about regression?

• Quick comment: in the preceding, one can 
think about having modeled the population 
with a single parameter model – the 
parameter being the mean.  The number of 
degrees of freedom in the sample variance 
sum of squares is reduced by the number of 
parameters fit in the linear model (one, the 
mean)

• Now – regression.
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Rank of ANOVA Sums of Squares

• Slightly stronger version of Cochran’s 
theorem needed (will assume it exists) to 
prove the following claim(s).  

SSTO = Y′[I−
1

n
J]Y

SSE = Y′(I−H)Y

SSR = Y′[H−
1

n
J]Y

Rank

n-1

n-p

p-1

good 

midterm

question
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Distribution of General Multiple Regression ANOVA Sums of Squares

• From Cochran’s theorem, knowing the ranks 
of

gives you this immediately

SSTO ∼ σ2χ2(n− 1)

SSE ∼ σ2χ2(n− p)

SSR ∼ σ2χ2(p− 1)

SSTO = Y′[I−
1

n
J]Y

SSE = Y′(I−H)Y

SSR = Y′[H−
1

n
J]Y
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F Test for Regression Relation

• Now the test of whether there is a regression 
relation between the response variable Y and 
the set of X variables X1, …, Xp-1 makes more 
sense

• The F distribution is defined to be the ratio of 
χ distributions that have themselves been 

normalized by their number of degrees of 
freedom.
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F Test Hypotheses

• If we want to choose between the alternatives 
– H0 : β = β = β … = βp- = 0

– H1 : not all βk k=1…n equal zero

• We can use the defined test statistic

• The decision rule to control the Type I error at 
α is

F ∗ = MSR
MSE ∼

σ2χ2(p−1)
p−1

σ2χ2(n−p)
n−p

If F ∗ ≤ F (1− α; p− 1, n− p), conclude H0

If F ∗ > F (1− α; p− 1, n− p), conclude Ha


