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Outline
◼ Summary of Casewise Diagnostic Plots

◼ Transformations -- Why & How for X and Y

◼ Substantive (investigator-driven) considerations

◼ Variance Stabilization for Y

◼ Box-Cox for X or Y: Fix distribution(s)

◼ Inverse Response Plot for Y

❑ Perspective and recommendations

◼ Reading

❑ For next week Ch 5  (Skip Ch 4 for now)

◼ HW 03 out on Canvas – Due Mon 1159pm
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Casewise Diagnostics and Patterns
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• Constant variance?

• Vertical patterns?

• Outliers?

• Functional depen-

dence on     ?

• Normal?

• Outliers?

• Large enough sample?

• Mean zero?

• Vertical patterns?

• Outliers?

• Functional depen-

dence on     ?

• NE & SE corners:

• High leverage

• High std resid

• Di > 0.5 or so?

• Generally these are conversation points

• Could reveal things investigator cares about!

• Otherwise, look for data collection/recording errors

• Delete data only with a good justification!



Transformations
◼ Why to transform

❑ Substantive (investigator-driven) reasons

❑ Improving fit of data to modelling assumptions; makes formal (and 
informal) inference more valid

◼ Why not to transform
❑ Substantive (investigator-driven) reasons!

◼ What to transform
❑ X: often trying to reduce leverage; normality is an informal target

❑ Y: really trying to improve distribution of       , but access is indirect

❑ X and/or Y: linearity wrong; improve functional form y= f(x)

◼ How to transform
❑ We will concentrate on power-function methods for now

❑ Nonparametric function estimation (e.g. gam() in R) provides another 
approach
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Transformations of X
◼ If X is discrete or a design variable, there is 

usually no sensible transformation to make!

◼ If X is continuous, it has an (empirical) 
distribution.  We might want to transform X for 
any of three reasons

❑ Substantive: we know Y is a nonlinear function of X, or 
we want a particular interpretation

❑ Leverage: bring the (empirical) distribution of X closer 
to normality; reduces high-leverage points 

❑ Functional: y = f(X) is not linear and we want to find a 
better functional form for f()
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Substantive Transformation of X
◼ There might be substantive knowledge.  

❑ E.g. in physics if Y is the intensity of an effect at 
distance X, often an inverse-square law applies, so we 
might replace X with X’ = 1/X2

.

◼ A better interpretation might be available 

❑ Recenter X so that the intercept      is interpretable

❑ Rescale X to change units of slope      (e.g. to SD’s of X)

◼ Percent change in X matters more than additive 
change: logarithms…
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A Substantive reason for log transform: 
effect of percent change
◼ For the model                              :

◼ For the model                                       :

(0.01)     is the change in E[y] for a 1% change in x
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(*)

(*) Since log(1+x) = x – x2/2 +/- … (Taylor series)

See also “log xform and percent interpretation.pdf”

We consider a small 

change in x, instead 

of a 1 unit change



Reducing leverage – power transforms
◼ In regression, we are conditioning on X:

so “officially” the distribution of X doesn’t matter

◼ However, if the (empirical) distribution of X is 
skewed, many X’s will have high leverage.  

◼ Helps to make empirical distribution of X more 
symmetric – pull tails in

❑ If X is skewed left (long left tail), Xl, l>1, pulls in tail

❑ If X is skewed right (long right tail), Xl, l <1, pulls in tail

◼ Since                                , useful to think “x0 = log(x)”                
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Aside: Reminder of distribution shapes
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Transform back

to symmetry: ?                     ?                     ?                     ?                    ?

Short right tail
Long right tail

Short left tail

Long left tail



Effect of positive & negative powers: 
l  (-2,-1,-1/2, -1/4, 0*, 1/4, 1/2, 1, 2)
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Reducing Leverage: Powers of X 

◼ Check for symmetry after trying simple powers

◼ More formally, try to maximize likelihood

❑ Box-Cox: Likelihood simplifies if  we replace       with

❑ Usually suggests awkward values (l = 0.33453) that 
should be “rounded” to a simpler power (l = 1/3)

❑ x is assumed to be positive!
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Implementing Box-Cox for X in R

◼ library(car) 

(“Companion to Applied Regression(*)”)
❑ boxCox(): show Box-Cox likelihood as a function of 

l (“profile likelihood”)

❑ powerTransform(): compute optimal l using the 
Box-Cox likelihood
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> z <- rnorm(100,4,1)

> x <- z^3

> boxCox(x~1)

> powerTransform(x~1)

Estimated transformation parameter 

x 

0.390494 

(*) for Weissberg’s Applied Linear Regression text.



Functional: y = f(x) is not linear 

◼ We can replace 

with

◼ This is also a good idea, and one you were asked 
to try in HW02!

◼ N.b., model (2) still assumes equal additive errors!
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(1)

(2)



Transformations of Y

◼ We might want to transform Y for either of three 
reasons:

❑ Substantive: we know Y is a nonlinear function of X, or 
we want a particular interpretation

❑ Improve residuals: bring the (empirical) distribution of 
ei closer to normality; makes inferences more valid 

❑ Functional: y = f(X) is not linear and we want to find a 
better functional form for f()
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Substantive Transformation of Y
◼ There might be substantive knowledge.  

❑ If we know 0< Y<100 (e.g. a test or hw score) we may 
need to transform Y before building a linear predictor 
for it:  e.g. replace Y with log  Y/(100-Y) ….

◼ Percent change in Y :

❑ For                                     , let                       ,  then 

= expected pct change in y per unit change in 
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(*)

(*) Since log(1+x) = x – x2/2 +/- … (Taylor series)

See also “log xform and percent interpretation.pdf”



Improve Error (residual) Distribution
◼ We want to replace

with 

to improve the distribution of         (or        ).

◼ Can do “by hand” or by applying Box-Cox to

again, replace        with                   …
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Implementing Box-Cox for Y in R
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◼ library(car) 

(“Companion to Applied Regression”)
❑ boxCox(): show Box-Cox likelihood as a function of 

l (“profile likelihood”)

❑ powerTransform(): compute optimal l using the 
Box-Cox likelihood

> z <- rnorm(100,4,1)

> y <- (1 + 3*z + rnorm(100,0,.25))^(1/2)

> lm.1 <- lm(y ~ z)

> boxCox(lm.1,lambda=seq(-3,3,.1))

> powerTransform(lm.1)

Estimated transformation parameter 

Y1 

1.922959 



Improve Error (residual) Distribution: 
Variance-stabilizing Transformations 
◼ Suppose E[Y] = m, and Var(Y) = h(m).  We want a 

transformation Y*=g(Y) such that Var(Y*)=Const

◼ Taylor’s Theorem says

◼ Therefore 

◼ We want this to be constant, i.e.
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Variance-Stabilizing Transform 
Example
◼ If Y ~ Poiss(m), then we know E[Y]=m and Var(Y)=m

◼ So h(m)=m, and 

◼ Therefore will have approximately 
constant variance (not depending on E[Y]).

◼ Nonconstant variance in a scale-location plot 
consider a variance-stabilizing transformation.
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“is proportional to”



Functional form of Y: Inverse 
Response Plot
◼ Suppose 

then of course

◼ It turns out1 that if x has an elliptically symmetric 
distribution, then g can be estimated from a plot 
of      vs     , where       are predicted values from
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1Li and Duan (1989), Cook and Weisberg (1994)



◼ library(car) 

(“Companion to Applied Regression”)
❑ invResPlot(): show inverse response plot (     vs.    ) and 

calculate the power      for        by nonlinear least-squares(*)

Implementing Inverse Response Plots 
In R
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> z <- rnorm(100,4,1)

> y <- (1 + 3*z + rnorm(100,0,.25))^(1/2)

> lm.1 <- lm(y ~ z)

> invResPlot(lm.1)

lambda      RSS

1  2.300377 1.711786

2 -1.000000 2.711177

3  0.000000 2.211967

4  1.000000 1.874950

y’ = y^(2.3)

y’ = 1/y

y’ = log(y)

y’ = y

(*) Specify particular lamdas to try with

the lambda=c(…) argument.



Perspectives and Recommendations
◼ Substantive (investigator-driven) considerations 

always come first

◼ Power transforms of X to reduce leverage &
Power transforms of Y to improve distribution of

❑ By hand, or Box-Cox rounded to a simple power

◼ Inverse response plot for power transform of Y

❑ Visually appealing, but Box-Cox probably better (directly 
addresses distribution of      )

◼ There does not always exist a “perfect” transform!

◼ Transform for fcn form – depends on resid. plots!
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x <- rnorm(100,0,1)

y1 <- 1 + 3*x^2 + rnorm(100,0,4)

y2 <- (1 + 3*x + rnorm(100,0,4))^2

lm.1 <- lm(y1~x)

lm.2 <- lm(y2~x)

par(mfrow=c(2,2))

plot(x,y1); abline(lm.1)

plot(x,y2); abline(lm.2)

par(mfrow=c(2,2))

plot(lm.1)

plot(lm.2)

Functional Forms y(1) = b0 + b1x2 + e,
vs. y(2) = (b0 + b1x + e)2
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