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Abstract

We address the question of how to identify the factors that are associated with the average
income per person in the United States. We examine data on selected county demographic
information (CDI) for 440 of the most populous countries in the United States collected by
Kutner et al. (2005), using exploratory data analyses to make preliminary findings. From
exploratory data analysis, it appears that both variable population and total income have
association with doctors, hosp.beds, and crimes. A simple linear regression analysis shows that
our best linear regression model should use “per-capita crime” as the measurement of our
predictor variable and the model should be performed without interaction term. In multiple
regression analysis, we perform the analysis through both subsets regression and stepwise
regression. By comparing the adjusted R-Squared Values, AIC, BIC, and case-wise diagnostic
plots, we conclude that the most suitable model would be the one selected from stepwise
regression and average income per person has association with land area, percent of
population aged 18-34, number of active physicians, percent below poverty level, percent high
school graduates, state of California, state of New Jersey, state of Nevada, state of Utah.

1 Introduction

The average income per person can be considered as an important factor of identifying the
economic and social aspects of a country. With the common understanding that the average
income per person is difficult to be measured based on only a single variable, how should the
average income per person be related to various kinds of variables on the country’s economic,
health, and social aspects.

This question is especially critical in the research area where social scientists would like to
gain first-hand information on the relationship between the average income per person and
other potential factors, and thus helping them understand the current situation of a well being’s
income status in the United States, but at the same time determine further directions on
understanding how the average income per person in the United States can reflect social and
economic problems.

In addition to answering the main question posed above, we will address the following
questions:

e Among all the variables that we’re considering from the dataset, which variables seem to
be related to which other variables closely in the data? Is there any practical meaning
with regards to findings on these variables?



e If we ignore all other variables, is per-capita income related to crime rate? If so, does the
relationship vary from region to region in the United States? Which expression of the
variable performs better in the model, using number of crimes or number of crimes
divided by population as the variable?

e How to find the best model predicting per-capita income from the other variables by
having both statistical and practical meaning?

2 Data

The data for this study come from Kutner et al. (2005) with providing selected county
demographic information (CDI) for 440 of the most populous counties in the United States. The
information generally pertains to the years 1990 and 1992. Counties with missing data were
deleted from the data set. Each line of the data set has an identification number with a county
name and state abbreviation and provides information on 14 variables for a single county.

In all, 440 observations are represented in the data available to us, and the following
variables were measured on each:

id = Identification number = 1-40

county = County = County Name

state = State = Two-letter state abbreviation

land.area = Land area = Land area (square miles)

pop = Total population = Estimated 1990 population

pop.18_34 = Percent of 1990 CDI population aged 18-34

pop.65_plus = Percent of 1990 CDI population aged 65 or older

doctors = Number of professionally active nonfederal physicians during 1990

hosp.beds =Total number of beds, cribs, and bassinets during 1990

crimes = Total number of serious crimes in 1990

pct.hs.grad = Percent of adult who are 25 years old or older who are high school graduates
pct.bach.deg =Percent of adult who are 25 years old or older who have bachelor's degree
pct.below.pov = Percent of 1990 CDI population with income below poverty level

pct.unemp = Percent of 1990 CDI population that is unemployed

per.cap.income = Average income per person of 1990 CDI population (in dollars)

tot.income = Total personal income of 1990 CDI population (in millions of dollars)

region = Geographic region classification used by the US Bureau of the Census, NE (northeast
region of the US), NC (north-central region of the US), S (southern region of the US), and W
(Western region of the US)

In Table 1 and Table 2, we show the summary statistics for continuous variables and
categorical variables, respectively.

Variables Obs Minimum Median Mean Maximum S.D.

land.area 440 15.0 656.5 1041.4 20062.0 1549.9




pop 440 100043 217280 393011 8863164 601987
pop.18_34 440 16.4 28.1 28.57 49.7 419
pop.65 plus 440 3 11.75 12.17 33.8 3.99

doctors 440 39 401 988 23677 1789.75
hosp.beds 440 92 755 1458.6 27700 2289.13
crimes 440 563 11820 27112 688936 58237.51
pct.hs.grad 440 46.6 77.7 77.56 92.9 7.02
pct.bach.deg 440 8.1 19.7 21.08 52.3 7.65
pct.below.pov 440 1.4 7.9 8.7 36.3 4.66
pct.unemp 440 2.2 6.2 7.5 21.3 2.34
per.cap.income 440 8899 17759 18561 37541 4059.19
tot.income 440 1141 3857 7869 184230 12884.32

Table 1: Summary Statistics for Continuous Variables of CDI Dataset

Region Frequency
NC 108

NE 103

S 152

W 77

Table 2: Summary Statistics for Categorical Variables Region of CDI Dataset

Maximum Frequency | Median Frequency Minimum Frequency
County Jefferson 7 1 1
State CA 34 7 1

Table 3: Summary Statistics for Categorical Variables County and State of CDI Dataset

In Figure 1 we show all histograms of all the continuous variables, except for variables
pop.18 34 and pop.65_ plus, we need to do data transformation on each variable.
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Figure 1: Histogram of all Continuous Variables for CDI Dataset

In Figure 2 we show the correlation plot of all the continuous variables. We can notice that the
darker colors and bigger size the circle is, the more connected the relationship, i.e. the bigger



correlation, that two variables have. Variable doctors, hosp.beds, and crimes are highly
correlated to both variable pop and variable tot.income.
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Figure 2: Correlation Plot of all Continuous Variables for CDI Dataset

In Figure 3 we show the boxplot for categorical variable region by plotting each region’s
boxplot. For the region is “S,” there are more outliers compared to other regions.
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Figure 3: Boxplot of all Continuous Variable Region for CDI Dataset
More details from an Exploratory Data Analysis (EDA) can be found in Appendix 1.



3 Methods

Our analysis consists of three parts. For the first part, in order to identify the different functions
that continuous variables and categorical variables could have on affecting the response
variable average income per person, we divide all variables into continuous and categorical
variables and examined raw data in cdi.dat. Then, we relied on visual observation of the
exploratory correlation plot to further investigate the closely related relationship between groups
of variables. This analysis can tell us how variables work in combination to affect the average
income per person. Detailed R analyses can be found in Appendix 1 and Appendix 2.

For the second part, we considered two simple linear regression models, also in R, predicting
average income per person from the variable crimes. The difference of these two linear
regression models is the expression use of the variable crimes. For one model, we used the
number of crimes as the predictor variable, but for the other model, we used the crime rate,
defined as the number of crimes divided by total population, to be the predictor variable. We
took the interaction term into consideration and examined the summary table of the linear
regression model and four case-wise residual diagnostic plots, including Residuals vs. Fitted
plot, Normal Q-Q plot, Scale-Location plot, and Residuals vs. Leverage plot, respectively, to
select the best model using each expression of crimes. Then, we compared those two
candidate models by putting them in real-world settings and choosing the one which has more
practical meanings.

For the third part, we considered two multiple regression models, also in R, by using subsets
regression and stepwise regression. They are able to help predict the per-capita income from
each of the potential variables in the dataset, since multiple regression can tell us about the
effect of each individual predictor variable, after controlling for all other predictor variables. For
using the subsets regression, we considered the criteria of picking the model with maximum
adjusted R-Squared, minimum Cp value, and minimum BIC value, respectively to choose the
best model for the method of subsets regression. For using the stepwise regression, we
considered the criteria of using forward selection on the minimum AIC value to choose the best
model fitting the prediction relationship. Then, we compare the two candidate models by
examining their summary table of statistics coefficients and case-wise diagnostic plots. Details
of these analyses in R can be found in the Appendices 3,4, and 5.

Analyses were carried out in R and RStudio (RStudio Team, 2020).

4 Results
4.1 Visual Observation of Exploratory Plots

We investigate the closely related relationship between groups of variables by plotting the
correlation plot between different variables and compare them one-to-one. From the correlation
plot, we can notice that the darker colors and bigger size the circle is, the more connected the
relationship, i.e. the bigger correlation, the two variables have. There are many groups of
correlation relationships in the dataset between two variables. To be more specific, the most
significant variables that are closely related to variable population are variable doctors,
hosp.beds, and crimes; the most significant variables that are closely related to variables



doctors are variable hosp.beds, crimes, and tot.income; the most significant variables that are
closely related to tot.income are variable pop, doctors, hosp.beds, and crimes. Later, we show
the boxplot for categorical variable region by plotting each region’s boxplot. From four boxplots
in the overall box plot graphs, we can observe that for region “S,” it has the most amount
numbers of outliers and for the region “NE,” it has the biggest value of median and for the region
“S,” it has the smallest value of median. Moreover, we can observe that for the region “NE,” data
points is evenly distributed but for the region “S” and “W,” data points have more dispersions
compared to data points in the region “NE.”

As for relating the above two plots into the real-world setting, we can grasp that both variable
population and total income have association with doctors, hosp.beds, and crimes before doing
any model fitting on different groups of variables to select the optimal model. With this fact in
mind, we can have a preliminary direction of what variables should be included in the model at
the first glance. Moreover, with the boxplots, we can know that people who live in the region
“NE” tend to have very evenly distributed per capita income; however, people who live in the
region “S” tend to have the most extreme and not well dispersed per capita income.

4.2 Regression Analysis
4.2.1 Simple Linear Regression Analysis

With the question of investigating the relationship between the per-capita income and crime rate
and region of the country, we first do a linear regression model without adding any interaction
term on the original data. With the problem of having extremely low adjusted R-squared value
0.09288, the violation on both linearity and normality assumptions, and the appearance of
non-constant variance problem, we decide to make possible data transformation to solve the
non-linearity, non-normality, and non-constant variance problems.

Following that, we first observe the histogram of those variables to decide whether they need
any kind of transformation. From the histogram of per-capita income and crime rate respectively,
we can observe that the histogram of per-capita shows slightly right-skewed distribution, so we
decide to do log-transformation on the variable per-capita income. Also, from the histogram of
crime rates, we can clearly observe that it shows right-skewed distribution, so we decide to also
do log-transformation on crime rates as well. After doing the model of data transformation, we fit
the model again and get the result that the adjusted R-squared value improves a lot and the
linearity condition is satisfied. However, there are still problems regarding to violate the normality
assumption and cause non-constant variance problems. Then, we decide to check whether it is
necessary to include the interaction term in the model. We create the ANOVA table and
compare the model with transformed data added interaction term between crime rates and
regions to the model with only transformed data. From the ANOVA table, we can observe that
with the F-statistics=0.7434, there is not enough evidence against the reduced model in favor of
the full model. Also, given the p-value 0.5266, which is greater than 0.05, we conclude that we
cannot tell whether there is an association between the crime rates and the region of the
country, therefore we cannot reject the hypothesis that there is no difference on including the
interaction term. In other words, the interaction term can not be included in the model.
Therefore, as for using the log(crimes) as our predictor variables, we choose the model without



interaction term to be our final model, with the diagnostic plots and estimator coefficients
presented:
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Figure 4: Four Diagnostic Plots of Simple Linear Regression Chosen Model

Residuals:
Min 1Q Median 3Q Max
-0.68757 -0.10557 -0.01422 0.08905 ©.78946

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 9.188431 0.079812 115.125 < Ze-16 ***
log(crimes) ©.066695 0.008421 7.920 2.00e-14 ***

regionNE ©.104458 0.025531 4.091 5.11e-@5 ***
regionS -0.086983 0.023618 -3.683 0.00026 ***
regionW -0.055280 0.028167 -1.963 0.05033 .

Signif. codes: @ “*¥*’ 0.001 “**’ ©.01 “*’ 0.05 *.” 0.1 * ° 1

Residual standard error: ©.1854 on 435 degrees of freedom
Multiple R-squared: ©.2032, Adjusted R-squared: ©.1959
F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

Table 4: Summary of Coefficient Estimators of Linear Regression Chosen Model



To explain the coefficient estimator, we can state that for every one unit increase in the
number of crime cases, the per-capita income can increase 1.07 dollars.

Later, we would like to investigate whether using the number of crimes or using per-capita
crime (which is defined as number of crimes/population) will make any difference on choosing
the best model. First, we do model fitting with transformed data by replacing log(crimes) with
per-capita crime measure. From the summary of data with using per-capita crime, we can
observe that the adjusted R-squared is 0.1941, meaning that 19.41% of its variability can be
explained, and the adjusted R-squared value does not change a lot comparing to previous
model with using the number of crimes as the variable. Also, looking back to the four diagnostic
plots, they show that the model has a very similar performance compared to the previous model
with using the number of crimes as the variable. From the Residuals vs. Fitted plot, we can
clearly see that the linearity condition is satisfied since there is a horizontal line around 0. From
the Normal Q-Q plot, we can clearly observe that the normality assumption is not completely
satisfied because there is still an apparent outlier for example point 206. From the
Scale-Location plot, we can clearly observe that there is not a non-constant variance problem
with the nearly horizontal line around 1. From the Residuals vs. Leverage plot, we can clearly
observe that there are several outliers for example point 206 (greater or lower than the absolute
value of 2) and high leverage point appeared like point 1. Furthermore, we want to check
whether it is necessary to include the interaction term in the model using “per-capita crime” as
the predictor variable. We create the ANOVA table and compare the model with transformed
data added interaction term between “per-capita crime” and regions to the model with only
transformed data. From the above ANOVA table, we can observe that with the
F-statistics=0.8816, there is not enough evidence against the reduced model in favor of the full
model. Also, given the p-value 0.5082, which is greater than 0.05, we conclude that we cannot
tell whether there is an association between “per-capita crime” and the region of the country,
therefore we cannot reject the hypothesis that there is no difference on including the interaction
term. In other words, the interaction term can not be included in the model. Therefore, as for
using the log(crimes)/pop as our predictor variables, we choose the model without interaction
term to be our final model, and the diagnostic plots and estimator coefficients presented as:
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Figure 5: Four Diagnostic Plots of Simple Linear Regression Chosen Model (per person)

Residuals:
Min 1Q Median 3Q Max
-0.68786 -0.105592 -0.01417 0.08906 @.78930

Coefficients:
Estimate Std. Error t value Pr(ltl)
(Intercept) 9.183e+0@ 9.995e-02 91.869 < Z2e-16 ***

log(crimes) 6.739e-02 1.102e-02 6.118 2.12e-09 ***
regionNE 1.045e-01 2.557e-02 4.088 5.1%e-05 ***
regionS -8.731e-02 2.388e-02 -3.656 0.000287 ***
regionW -5.529%e-02 2.820e-02 -1.961 ©.0@50557 .
log(crimes):pop -1.466e-10 1.503e-09 -0.028 0.922344

Signif. codes: @ “**¥*’ @ @@1 ‘**’ ©.01 ‘*’ ©.05 ‘.” 0.1 * * 1
Residual standard error: ©.1856 on 434 degrees of freedom

Multiple R-squared: 0.2033, Adjusted R-squared: 0.1941
F-statistic: 22.14 on 5 and 434 DF, p-value: < 2.2e-16

Table 5: Summary of Coefficient Estimators of Linear Regression Chosen Model (per person)

To explain the coefficient estimator, we can state that for every one unit increase in the
per-capita crime cases, the per-capita income can increase 1.07 dollars.



To be concluded, from the above analysis, we can observe that whether using the number of
crimes or using the “per-capita income” as the predictor variable does not influence my final
picked model that much since the adjusted R-Squared, the four diagnostic plots, ANOVA table,
and F-statistics are pretty close comparing the model with “the number of crimes” and
“per-capita crime”. As for choosing the better model to answer the question, we need to
consider the real-world setting environment. Here, we want to investigate the model to predict
the per-capita income from crime rate and region of the country. Then, | prefer using the model
with the “per-capita crime” = number of crimes/population as the crime rate measure with two
following reasons. First, if we introduce the concept of “per-capita crime,” then we make an
accurate definition for per-capita crime and it is statistically cautious. Second, as we would like
to predict per-capita income, it would be better to use the concept of “per-capita crime” to have
a consistent unit as the analysis further goes.

Therefore, we prefer choosing the model using “per-capita crime” as the measure and without
interaction term to be our final model.

4.2.2 Multiple Regression Analysis

The first step of doing the multiple regression analysis is to identify the distribution of variables
and decide whether to make data transformation on all potential variables. So here, we plot the
histogram on each potential predictor variable again to make sure whether there is a need for
data transformation on each of them. The result turns out that for variables “Land Area,” “Total
Population,” “Number of Active Physician,” “Number of Hospital Beds,” “Percent Below Poverty
Level,” “Percent Bachelor’s Degrees,” “Percent Unemployment,” and “Total Income,” their
histograms look right-skewed and need log-transformation on the data. For variables “Percent of
Population Aged 18-34” and “Percent of Population Aged 65 or Older,” the distribution looks
normal and there is no need for data transformation. For variable “Percent High School
Graduates,” the histogram looks left-skewed and needs squared-transformation on the data.

(T [T

Since we know that the response variable per.cap.income is mathematically calculated by
tot.income divided by pop, then we remove two variables: tot.income and pop when fitting the
multiple regression model.

With all the above presented data transformation on each numerical variable, we fit the
multiple regression model and have both the adjusted R-Squared and the residual standard
error perform pretty well. With the adjusted R-Squared value of 0.87, meaning that 87% of its
variability can be explained. Also, the residual standard error is 0.07455, which means that the
model fits well for the dataset.

Then, we perform subsets regression analysis to observe the suitable multiple regression
model for the dataset and consider different criteria including choosing the model with maximum
adjusted R-Squared value, choosing the model with minimum Cp value, or choosing the model
with minimum BIC value in order to select the best model. From the summary table below, we
can observe that no matter whether we choose to use the criteria of adjusted R-Squared, Cp, or
BIC, we all should choose the model with 9 predictor variables to be our best model.



# with different criteria to select the best model
cdi_sum<-summary (mulreg_fit2)
data.frame(
which.max(cdi_sum$adjr2),
which.min(cdi_sum$cp),
which.min(cdi_sum$bic)

)

##  Adj_R2 CP BIC
## 1 9 9 9

Table 6: Summary Table of Choosing Model in Subsets Regression
Therefore, the best model would be:

log(per.cap.income)~log(land.area)+pop.18_34+log(doctors)
+log(pct.below.pov)+log(pct.bach.deg)+stateCA+stateNJ+stateNV+stateUT

Next, we would like to perform our model selection by using stepwise regression and create
the summary table. From the summary table, we can observe that if we choose to use the
criteria of AIC, then we should choose the model with smallest AIC values, which the best
model would be:

log(per.cap.income) ~ log(land.area) + pop.18_34 + pop.65_plus + log(doctors) +
log(pct.below.pov) + log(pct.bach.deg) + state;

With the fact that we have one best model both from the subset regression and the stepwise
regression, we tend to compare those two models by plotting their corresponding residual
diagnostic plots and summary table. By comparing the candidate models from subsets
regression and stepwise regression, we decide to choose the model selecting from subsets
regression as our final model. As for the value of adjusted R-Squared and Residual Standard
Error, both of the two models have pretty much the same performance. However, looking into
the variables, we believe that the model selecting from subsets regression has more specific
preference on influential states in doing the prediction. With the consideration to explain our
model to someone who is more interested in economic factors, the model with specific states
can be more convincing. Therefore, our preferred final model would be:

log(per.cap.income)~log(land.area)+pop.18_34+log(doctors)+log(pct.below.pov)+log(pct.bach.d
eg)+stateCA+stateNJ+stateNV+stateUT

5 Discussion



The study aims to help social scientists gain first-hand information on the relationship between
the average income per person and other potential factors, and thus helping them understand
the current situation of a well being’s income status in the United States and determine further
directions on understanding how the average income per person in the United States can reflect
social and economic problems.

In our correlation plot, both variable population and total income have association with
doctors, hosp.beds, and crimes. Moreover, with the boxplots, we can know that people who live
in the region “NE” tend to have very evenly distributed per capita income; however, people who
live in the region “S” tend to have the most extreme and not well dispersed per capita income.

With the question of investigating the relationship between the per-capita income and crime
rate and region of the country, we plot histograms and notice that there is a need to do data
transformation on both the per-capita income and crime rate. Later, we perform linear
regression model fitting and ANOVA table to show that as for using the log(crimes) as our
predictor variables, we choose the model without interaction term to be our final model, and the
mathematical association should be:

log(per.cap.income)~log(crimes)+region

Later, we investigate whether using the number of crimes or using per-capita crime (which is
defined as number of crimes/population) will make any difference on choosing the best model.
By changing the measure to per-capita crime and do linear regression model fitting, we find that
the model without interaction term to be our final model, and the mathematical association
should be:

log(per.cap.income)~(log(crimes)/pop)+region

Comparing the above two models in real-world settings, we decide to choose using per-capita
crime as our measure and the final model is:

log(per.cap.income)~(log(crimes)/pop)+region

Besides, we also use multiple regression analysis including subsets regression and stepwise
regression to output the best model for the dataset. Considering the summary table of the model
and the rule of choosing model with fewer variables, we decide to choose as our final model as
presented:

log(per.cap.income)~log(land.area)+pop.18_34+log(doctors)+log(pct.below.pov)+log(pct.bach.d
eg)+stateCA+stateNJ+stateNV+stateUT

If say, social scientists really want to explore more in the relationship between average
income per person and other potential variables that are associated with the country’s
economic, health, and social well-being, the first thing that social scientists should be aware of
is to better use the concept of per-capita income, which is defined as the total income divided by
total population as a measurement of the term “average income per person.” The second thing



is that as we go through deeply in the final model that we've selected from the multiple
regression model, those variables make sense in various aspects. At the beginning of the EDA,
we plot the correlation between different continuous variables in the dataset and notice that
variables total income and population are highly related to doctors, crimes, and hosp.beds. As
we’ve discussed and proved that there is an association between per-capita income and crime
rate, we focus on developing and proving that there is an association between per-capita
income and doctors. As for considering other variables included in our final model, they can be
well-explained by putting them in real-world context. For variable “pop.18_34,” they can be
considered as the most significant group of the population that can make huge contributions on
the average income per person since normally people in this age are in the development/peak
of their career. For variables “percent high school graduates” and “percent bachelor’s degrees,”
we can classify them as individuals’ education background information, and it can be related to
average income per person since the fact that people with higher education background are
more inclined to enter well-known and high level businesses, and thus earning more money. For
variables “land.area” and “stateCA, stateNJ, stateNV, and stateUT,” we can classify them as
having geographical location impact on average income per person. With many high-tech
companies located and plenty of landmass, state California can be an influential state factor.
With the fact that Las Vegas, located in the heart of Nevada, has countless casinos and can
make profitable money through running the casino business, so it can be explained as an
influential state factor as well. With lots of job opportunities and prestigious institutions located in
New Jersey, students who graduate from there might have jobs with an acceptable salary and
therefore, state New Jersey can be counted as an influential factor as well.

There is scope for establishing the final model to be in real-world settings; indeed, the dataset
is the 1990 CDI population. Therefore, if the social scientist want to use our model to predict the
current situation of the relationship between average income per person and other variables,
there might be bias and concerns since the variables “total population,” “percent of population
aged 18-34,” "percent of population 65 or older,” haven’t been updated for nearly 20 years. One
recommendation on solving this problem might be to first update or compare the real-time data
with the 1990 CDI population data. By doing time series analysis, we can investigate whether
there is a linear trend on the growth of the population and each sub-category population, then
we can do further research on our research question.

Our study was also limited by the fact that in the dataset, we only have 48 out of 51 total
states represented as the state level data and 373 out of 3000 total counties represented as the
county level data. It can be a concern since it is not known that for the countries that we are
missing, which state do those countries belong to since counties located in different states can
be considered as a potential influential factor on the average income per person. One
recommendation for this limitation is to collect more useful information and comprehensive
real-time data on more counties in the United States in order to provide an unbiased
characterization of the relationship between average income per person and other variables in
the United States now.

In summary, keeping the caveats of the last two paragraphs in mind, there is scope to
establish the relationship that there is an association between per-capita income and land area,



percent of population aged 18-34, number of active physicians, percent below poverty level and
percent bachelor;s degrees and state of California, New Jersey, Nevada, and Utah.
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Appendix 1. Initial Data Import & Exploration

cdi<-read.table('/Users/sifengli/Desktop/CMU/Fall 2021/Applied Linear Models/cdi.dat')

county
Length:440
Class :character
Mode :character

pop.18_34
Min. :16.40
1st Qu.:26.20
Median :28.10
Mean :28.57
3rd Qu.:30.02
:49.70
crimes
Min. :
1st Qu.: 6220
Median : 11820
Mean : 27112
3rd Qu.: 26280
Max. 1688936
pct.unemp
Min. : 2.200
1st Qu.: 5.100

Max.

563

#cda
#install.packages('plyr')
library(plyr)
summary (cdi)

## id

## Min. : 1.0
## 1st Qu.:110.8
## Median :220.5
## Mean :220.5
## 3rd Qu.:330.2
## Max. :440.0
## pop

## Min. : 100043
## 1st Qu.: 139027
## Median : 217280
## Mean : 393011
## 3rd Qu.: 436064
## Max. 18863164
## hosp.beds

## Min. : 92.0
## 1st Qu.: 390.8
## Median : 755.0
## Mean 1458.6
## 3rd Qu.: 1575.8
## Max. :27700.0
## pct.below.pov
## Min. 1.400
## 1st Qu.: 5.300
## Median : 7.900

Median : 6.200

state land.area
Length:440 Min. : 15.
Class :character 1st Qu.: 451.
Mode :character Median : 656.
Mean 1041.
3rd Qu.: 946.
Max. :20062.
pop.65_plus doctors
Min. : 3.000 Min. : 39.0
1st Qu.: 9.875 1st Qu.: 182.8
Median :11.750 Median : 401.0
Mean :12.170 Mean 988.0
3rd Qu.:13.625 3rd Qu.: 1036.0
Max. :33.800 Max. :23677.0
pct.hs.grad pct.bach.deg
Min. :46.60 Min. : 8.10
1st Qu.:73.88 1st Qu.:15.28
Median :77.70 Median :19.70
Mean :77.56 Mean :21.08
3rd Qu.:82.40 3rd Qu.:25.32
Max. :92.90 Max. :52.30
per.cap.income tot.income
Min. : 8899 Min. 1141
1st Qu.:16118 1st Qu.: 2311
Median :17759 Median : 3857

O 00> TN O



## Mean : 8.721 Mean : 6.597 Mean

## 3rd Qu.:10.900 3rd Qu.: 7.500 3rd Qu
## Max. :36.300 Max. :21.300 Max.
## region

## Length:440

## Class :character
## Mode :character
#it

##

##

sd(cdi$land.area)
## [1] 1549.922
sd(cdi$pop)

## [1] 601987
sd(cdi$pop.18_34)

## [1] 4.191083
sd(cdi$pop.65_plus)

## [1] 3.992666
sd(cdi$doctors)

## [1] 1789.75
sd(cdi$hosp.beds)

## [1] 2289.134

sd(cdi$crimes)

## [1] 58237.51
sd(cdi$pct.hs.grad)

## [1] 7.015159
sd(cdi$pct.bach.deg)

## [1] 7.654524
sd(cdi$pct.below.pov)

## [1] 4.656737
sd(cdi$pct.unemp)

## [1] 2.337924

sd(cdi$per.cap.income)

## [1] 4059.192

sd(cdi$tot.income)

## [1] 12884.32

118561
. 120270
: 37541

Mean

7869

3rd Qu.: 8654

Max.

1184230



count(cdi, 'region')

##  region freq

## 1 NC 108
## 2 NE 103
## 3 S 152
## 4 w 77

count (cdi, 'state')

## state freq

## 1 AL 7
## 2 AR 2
## 3 AZ 5
## 4 CA 34
## 5 co 9
## 6 CT 8
## 7 DC 1
## 8 DE 2
## 9 FL 29
## 10 GA 9
## 11 HI

#it 12 ID 1
## 13 IL 17
## 14 IN 14
## 15 KS 4
## 16 KY 3
## 17 LA 9
## 18 MA 11
## 19 MD 10
## 20 ME 5
## 21 MI 18
## 22 MN 7
##t 23 MO 8
## 24 MS

## 25 MT 1
## 26 NC 18
## 27 ND 1
## 28 NE

## 29 NH 4
## 30 NJ 18
## 31 NM 2
## 32 NV 2
## 33 NYy 22
## 34 OH 24
## 35 0K 4
## 36 OR 6
## 37 PA 29
## 38 RI 3
## 39 SC 11
## 40 SD 1
## 41 TN

## 42 X 28
## 43 UT 4



## 44 VA 9
## 45 VT 1
## 46 WA 10
## 47 WI 11
## 48 WV 1

county_freq<-data.frame(summary(as.factor (cdi$county)))
transform(county_freq, ave (seq(nrow(county_freq)),cdi$county, length))

#it summary.as.factor.cdi.county.. County_Frequency
## Jefferson
## Montgomery
## Washington
## Cumberland
## Jackson

## Lake

## Clark

## Hamilton
## Kent

## Madison

## Marion

## Middlesex
## Monroe

## Orange

## Wayne

## York

## Allen

## Bay

## Butler

## Calhoun

## Clay

## Davidson
## Delaware
## E1_Paso

## Erie

## Essex

## Fairfield
## Fayette

## Franklin
## Greene

## Hillsborough
## Kings

## Lancaster
## Mercer

## Richland
## St._Clair
## St._Louis
## Suffolk

## Winnebago
## Ada

## Adams

## Aiken

## Alachua

## Alamance
## Alameda
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Albany
Alexandria_City
Allegheny
Anderson
Androscoggin
Anne_Arundel
Arapahoe
Arlington_County
Atlantic
Baltimore
Baltimore_City
Barnstable
Beaver

Bell

Benton
Bergen
Berks
Berkshire
Bernalillo
Berrien
Bexar

Bibb

Blair

Boone
Boulder
Brazoria
Brazos
Brevard
Bristol
Broome
Broward
Brown

Bucks
Buncombe
Burlington
Butte

Caddo
Calcasieu
Cambria
Camden
Cameron
Carroll

Cass

Catawba
Centre
Champaign
Charles
Charleston
Charlotte
Chatham
Chautauqua
Chesapeake_City
Chester
Chittenden

B R R R R R RR R R R RRRRRRRRRR R B B B B B RRRRRRRRRB B B B BB BRBRBRRRBRBRBRBRBRB B B
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## (Other) 274 2

median(county_freq$summary.as.factor.cdi.county..)

## [1] 1
state_freq<-data.frame(summary(as.factor(cdi$state)))
transform(state_freq, ave (seq(nrow(state_freq)),cdi$state, length))
## summary.as.factor.cdi.state.. State_Frequency
## AL 7 9
## AR 2 2
## AZ 5 4
## CA 34 9
## CO 9 9
## CT 8 5
## DC 1 1
## DE 2 2
## FL 29 5
## GA 9 4
## HI 2
## 1D 1 1
## IL 17 9
## IN 14 9
## KS 4 3
## KY 3 1
## LA 9 2
## MA 11 5
## MD 10 5
## ME 5 9
## MI 18 5
## MN 7 4
## MO 8 9
## MS 4
## MT 1 2
## NC 18 9
## ND 1 1
## NE 1
## NH 4 5
## NJ 18 3
## NM 2 1
## NV 2 5
## NY 22 3
## OH 24 5
## OK 4 3
## OR 6 5
## PA 29 1
## RI 3 5
## SC 11 3
## SD 1 1
## TN 8 2
## TX 28 1
## UT 4 3
## VA 9 9
## VT 1 1



## WA 10 2
## WI 11
## WV 1 1

N

median(state_freq$summary.as.factor.cdi.state..)

## [11 7

For the Data Description, please refer to the end of the homework document (last page) Sorry for any
inconvenience!

which(is.na(cdi))

## integer(0)

As for checking missing values before processing further analysis, we’ve noticed that there is no missing data
in this dataset.

Next, we make some appropriate descriptive EDA plots as the following presented:

library(psych)
hist(cdi$per.cap.income)

Histogram of cdi$per.cap.income
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Histogram of cdi$crimes
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cdi$crimes
par ( c(2,2))
hist(cdi$land.area)
hist(cdi$pop)

hist(cdi$pop.18_34)
hist(cdi$pop.65_plus)



Histogram of cdi$land.area
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hist(cdi$doctors)
hist(cdi$hosp.beds)
hist(cdi$pct.hs.grad)
hist(cdi$pct.below.pov)

Histogram of cdi$doctors

Frequency
200

[ I I I I
0 5000 15000

cdi$doctors

Histogram of cdi$pct.hs.grad

60 120

Frequency

0

[
50

I
60

I
70

I
80

cdi$pct.hs.grad

I
90

Frequency

Frequency

Frequency

Frequency

Histogram of cdi$pop

o
o
(aV]
© 7 T ]
Oe+00 4e+06 8e+06
cdi$pop
Histogram of cdi$pop.65_plus
o
To]
]
S T T T
0O 5 10 15 20 25 30 35
cdi$pop.65_plus
Histogram of cdi$hosp.beds
o
[Tp)
(ep]
o
To]
© 7 T T T T ]
0 5000 15000 25000
cdi$hosp.beds
Histogram of cdi$pct.below.pov
o
o
—1
© 7 T T T |
0 10 20 30 40

cdi$pct.below.pov



hist(cdi$pct.bach.deg)
hist(cdi$pct.unemp)
hist(cdi$tot.income)

Histogram of cdi$pct.bach.deg
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library(corrplot)
cdi_corr<-cdil[,-c(1:3,17)]
C <- cor(cdi_corr)
corrplot(C, "circle")
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From the correlation plot, we can notice that the darker colors and bigger size the circle is, the more connected
relationship, i.e. the bigger correlation, the two variables have.

library(tidyverse)
ggplot(cdi,aes(x=region,y=per.cap.income,fill=region)) + geom_boxplot(color="blue",alpha=0.5) + theme_c
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Appendix 2. Simple Linear Regression Analysis

o E
0

# linear regression model with no interaction term on the original data

region<-as.factor(cdi$region)
cdi_fitl<-1lm(per.cap.income~crimes+region, cdi)
summary (cdi_fit1)

##

## Call:

## lm(formula = per.cap.income ~ crimes + region, data = cdi)
##

## Residuals:

## Min 1Q Median 3Q Max

## -9661.0 -2260.7 -618.3 1650.0 19492.6

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 1.811e+04 3.784e+02 47.846 < 2e-16 **x*
## crimes 8.915e-03 3.188e-03 2.797 0.00539 =**

## regionNE 2.286e+03 5.325e+02 4.293 2.17e-05 **x*
## regionS -8.606e+02 4.868e+02 -1.768 0.07782 .

## regionW -1.428e+02 5.796e+02 -0.246 0.80548

## ——-

## Signif. codes: O '**kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
##

## Residual standard error: 3866 on 435 degrees of freedom
## Multiple R-squared: 0.1011, Adjusted R-squared: 0.09288
## F-statistic: 12.24 on 4 and 435 DF, p-value: 1.946e-09
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par ( c(2,2))
plot(cdi_fitl)
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# linear regresstion model with mo interaction term on the transformed data
region<-as.factor(cdi$region)
cdi_fit2<-1m(log(per.cap.income)~log(crimes)+region, cdi)

summary (cdi_£fit2)

##

## Call:

## 1lm(formula = log(per.cap.income) ~ log(crimes) + region, data = cdi)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68757 -0.10557 -0.01422 0.08905 0.78946

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

## (Intercept) 9.188431 0.079812 115.125 < 2e-16 *x*x

## log(crimes) 0.066695 0.008421  7.920 2.00e-14 *x**

## regionlNE 0.104458 0.025531 4.091 5.11e-05 **x*

## regionS -0.086983 0.023618 -3.683 0.00026 **x*

## regionW -0.055280 0.028167 -1.963 0.05033 .

#H# -

## Signif. codes: O 'x*kx' 0.001 's*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16
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par ( c(2,2))
plot(cdi_fit2)
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# linear regression model with the interaction term on the transformed data
region<-as.factor(cdi$region)
cdi_fit3<-1m(log(per.cap.income)~log(crimes)+region+log(crimes)*region, cdi)
summary (cdi_£it3)

##

## Call:

## lm(formula = log(per.cap.income) ~ log(crimes) + region + log(crimes) *
#it region, data = cdi)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68552 -0.10418 -0.01444 0.08302 0.79755

##

## Coefficients:

## Estimate Std. Error t value Pr(>Itl)

## (Intercept) 9.33677 0.14579 64.044 < 2e-16 *xxx
## log(crimes) 0.05064 0.01566  3.233 0.00132 *x
## regionNE -0.18407 0.21515 -0.856 0.39272

## regionS -0.19717 0.21211 -0.930 0.35312

## regionW -0.31439 0.24465 -1.285 0.19947

## log(crimes):regionNE 0.03122 0.02311 1.3561 0.17749

## log(crimes) :regionS 0.01211 0.02228 0.544 0.58696

## log(crimes):regionW  0.02727 0.02523 1.081 0.28028

## ——-

## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 0.1855 on 432 degrees of freedom
## Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945
## F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

par( c(2,2))
plot(cdi_£fit3)
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# compare whether is the need to interaction term on the transformed data
anova(cdi_fit2,cdi_fit3)

## Analysis of Variance Table

##

## Model 1: log(per.cap.income) ~ log(crimes) + region

## Model 2: log(per.cap.income) ~ log(crimes) + region + log(crimes) * region
##  Res.Df RSS Df Sum of Sq F Pr(OF)

## 1 435 14.949

## 2 432 14.872 3 0.076778 0.7434 0.5266

# model with per-capita crime measure with no interaction term on transformed data
region<-as.factor(cdi$region)

cdi_fit4<-1lm(log(per.cap.income) ~(log(crimes)/pop)+region, cdi)

summary (cdi_fit4)

##

## Call:

## 1m(formula = log(per.cap.income) ~ (log(crimes)/pop) + region,
# data = cdi)

##
## Residuals:
## Min 1Q Median 3Q Max
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## -0.68786 -0.10559 -0.01417 0.08906 0.78930

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

## (Intercept) 9.183e+00 9.995e-02 91.869 < 2e-16 **x*
## log(crimes) 6.739e-02 1.102e-02 6.118 2.12e-09 **x*
## regionlNE 1.045e-01 2.557e-02 4.088 5.19e-05 *x**
## regionS -8.731e-02 2.388e-02 -3.656 0.000287 *x**
## regionW -5.529e-02 2.820e-02 -1.961 0.050557 .
## log(crimes) :pop -1.466e-10 1.503e-09 -0.098 0.922344

## ——-

## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.1856 on 434 degrees of freedom
## Multiple R-squared: 0.2033, Adjusted R-squared: 0.1941
## F-statistic: 22.14 on 5 and 434 DF, p-value: < 2.2e-16

par ( c(2,2))
plot(cdi_fit4)
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# model with per-capita crime measure with an interaction term on transformed data
region<-as.factor(cdi$region)
cdi_fitb<-1m(log(per.cap.income)~(log(crimes)/pop)+region+(log(crimes)/pop)*region, cdi)
summary (cdi_£fit5)

##

## Call:

## 1lm(formula = log(per.cap.income) ~ (log(crimes)/pop) + region +
#it (log(crimes)/pop) * region, data = cdi)

##
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Residuals

Residuals:
Min 1Q Median 3Q Max
-0.67743 -0.10319 -0.01547 0.08266 0.80046
Coefficients:
Estimate Std. Error t value Pr(>[t])
(Intercept) 9.384e+00 1.824e-01 51.451 <2e-16 **x*
log(crimes) 4.499e-02 2.045e-02 2.200 0.0284 *
regionNE -5.089e-01 3.317e-01 -1.534 0.1257
regionS -6.599e-02 3.020e-01 -0.218 0.8272
regionW -4.766e-01 3.169e-01 -1.504 0.1333
log(crimes) :pop 1.421e-09 3.306e-09 0.430 0.6675
log(crimes) :regionNE 7.111e-02 3.864e-02 1.840 0.0664 .
log(crimes) :regionS -2.627e-03 3.343e-02 -0.079 0.9374
log(crimes) :regionW 4.551e-02 3.391e-02 1.342 0.1803
log(crimes) :pop:regionNE -1.115e-08 8.623e-09 -1.293  0.1965
log(crimes) :pop:regionS  4.083e-09 6.599e-09 0.619 0.5364
log(crimes) :pop:regionW -2.805e-09 3.878e-09 -0.723 0.4698
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1857 on 428 degrees of freedom
Multiple R-squared: 0.213, Adjusted R-squared: 0.1928
F-statistic: 10.53 on 11 and 428 DF, p-value: < 2.2e-16
par( c(2,2))
plot(cdi_fit5h)
0
. . <
Residuals vs Fitted 3 Normal Q-Q
0 | 8 <
o S —
] @ |
2] s
I {g ﬂ-
g
97 98 99 10.0 10.1 o -3 -2 -1 O 1 2 3
Fitted values Theoretical Quantiles
0
. <
Scale-Location 3
o S
N e -
o ©
= 7] & ©
7 B
e ] g Y
S 2
8
(5}

JIStandardized residualsl

Fitted values

# compare whether is the need to interaction term on
anova(cdi_fit4,cdi_fith)
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## Analysis of Variance Table

##

## Model 1: log(per.cap.income) ~ (log(crimes)/pop) + region

## Model 2: log(per.cap.income) ~ (log(crimes)/pop) + region + (log(crimes)/pop) *
## region

##  Res.Df RSS Df Sum of Sq F Pr(OF)

## 1 434 14.949

##t 2 428 14.766 6 0.1825 0.8816 0.5082

Appendix 3. Multiple Regression Analysis

par( c(2,2))
hist(cdi$land.area)
hist (cdi$pop)
hist(cdi$pop.18_34)
hist(cdi$pop.65_plus)

Histogram of cdi$land.area Histogram of cdi$pop

Frequency
0 200

Frequency
0 200
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cdi$land.area cdi$pop
Histogram of cdi$pop.18_34 Histogram of cdi$pop.65_plus
> >
2 2
g B3 g 3
g — g
TR [ . TR 1
1 1T T 1 1T T 1 1 T T 1 1T T 1
15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35
cdi$pop.18_34 cdi$pop.65_plus
hist(cdi$doctors)

hist(cdi$hosp.beds)
hist(cdi$pct.hs.grad)
hist(cdi$pct.below.pov)
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Histogram of cdi$doctors

Histogram of cdi$hosp.beds
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cdi$tot.income The
first step of doing the multiple regression model is to identify the distribution of variables and decide whether
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to make data transformation on them.

For variable “Land Area”: right-skewed, need to do log transformation

For variable “Total Population”: right-skewed, need to do log transformation

For variable “Percent of Population Aged 18-34” and “Percent of Population Aged 65 or Older”, the
distribution looks normal and there is no need on data transformation

For variable “Number of Active Physician”: right-skewed, need to do log transformation

For variable “Number of Hopsital Beds”: right-skewed, need to do log transformation

For variable “Percent High School Graduates”: left-skewed, need to do squared transformation
For variable “Percent Below Poverty Level”: right-skewed, need to do log transformation

For variable “Percent Bachelor’s Degrees”: right-skewed, need to do log transformation

For variable “Percent Unemployment”: right-skewed, need to do log transformation

For variable “Total Income”: right-skewed, need to do log transformation

Since we know that the response variable per.cap.income is mathematically calculated by tot.income divided
by pop, then we remove two variables: tot.income and pop when fitting the multiple regression model.

With all the above presented data transformation on each numerical variable, we fit the multiple regression
model as the following equation:

mulreg_fitl<-1lm(log(per.cap.income)~log(land.area)+pop.18_34+pop.65_plus
+log(doctors)+log(hosp.beds)+log(crimes)/pop
+pct.hs.grad**2+log(pct.below.pov)+log(pct.bach.deg)
+log(pct.unemp)+region+state, cdi)

summary (mulreg_fit1)

##

## Call:

## lm(formula = log(per.cap.income) ~ log(land.area) + pop.18_34 +
#it pop.65_plus + log(doctors) + log(hosp.beds) + log(crimes)/pop +
#Hit pct.hs.grad”2 + log(pct.below.pov) + log(pct.bach.deg) +
#it log(pct.unemp) + region + state, data = cdi)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.267982 -0.040635 -0.002401 0.037440 0.296768

##

## Coefficients: (3 not defined because of singularities)

## Estimate Std. Error t value Pr(>lt|)

## (Intercept) 9.590e+00 1.386e-01 69.179 < 2e-16 **x*
## log(land.area) -3.753e-02 6.160e-03 -6.093 2.72e-09 *x*x*
## pop.18_34 -1.246e-02 1.435e-03 -8.681 < 2e-16 **x*
## pop.65_plus 3.047e-03 1.629e-03 1.871 0.062173 .
## log(doctors) 3.523e-02 1.377e-02 2.559 0.010890 *
## log(hosp.beds) 1.550e-02 1.368e-02 1.132 0.258145

## log(crimes) 5.139e-03 9.446e-03 0.544 0.586713

## pct.hs.grad -2.581e-04 1.220e-03 -0.212 0.832540

## log(pct.below.pov) -1.720e-01 1.464e-02 -11.744 < 2e-16 **x*
## log(pct.bach.deg) 2.586e-01 2.671e-02 9.683 < 2e-16 ***
## log(pct.unemp) 1.216e-03 2.430e-02 0.050 0.960107

## regionNE -1.932e-02 7.917e-02 -0.244 0.807301

## regionS -1.114e-03 3.806e-02 -0.029 0.976668

## regionW -2.353e-02 3.484e-02 -0.675 0.499889

## stateAR -5.267e-02 6.001e-02 -0.878 0.380680

## stateAZ -5.151e-02 4.301e-02 -1.198 0.231726

## stateCA 1.169e-01 2.829e-02 4.132 4.42e-05 *xx
## stateCO 3.227e-02 3.483e-02 0.926 0.354913
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

stateCT
stateDC
stateDE
stateFL
stateGA
stateHI
statelD
statell
statelIN
stateKS
stateKY
statelLA
stateMA
stateMD
stateME
stateMI
stateMN
stateMO
stateMS
stateMT
stateNC
stateND
stateNE
stateNH
stateNJ
stateNM
stateNV
stateNY
stateOH
stateOK
stateOR
statePA
stateRI
stateSC
stateSD
stateTN
stateTX
stateUT
stateVA
stateVT
stateWA
stateWI
stateWV
log(crimes) :pop

Signif. codes:

.813e-02
.361e-02
.862e-02
.595e-02
.271e-02
.659e-02
.250e-03
.525e-02
.393e-02
.785e-02
.963e-03
.920e-03
.424e-02
.655e-02
.486e-02
.470e-02
.710e-02
.211e-03
.129e-02
.451e-02
.224e-03
.535e-02
.244e-02

2.922e-02

.077e-01
.753e-02
.186e-01

3.113e-02

-7.
-6.

.143e-02
.836e-02
.067e-02
.086e-03
.157e-02
.054e-02
.675e-02
.491e-02
.753e-02
.543e-01
.287e-02

NA
NA
NA
792e-03
685e-11

"sxx' 0.001

B WWNWOONWPHENNOTOT N O WNOTWWwwWwOodd NWO e WwWwNOww oo o

.002e-02
.260e-02
.232e-02
.487e-02
.881e-02
.270e-02
.871e-02
.000e-02
.055e-02
.397e-02
.233e-02
.826e-02
.947e-02
.014e-02
.257e-02
.046e-02
.656e-02
.533e-02
.209e-02
.919e-02
.463e-02
.010e-02
.136e-02
.439e-02
.821e-02
.896e-02
.968e-02
.716e-02
.760e-02
.769e-02
.874e-02
.694e-02
.768e-02
.667e-02
.970e-02
.894e-02
.209e-02
.510e-02
.242e-02

NA
NA
NA

.016e-02
.447e-10

"xx' 0.01

-0

-0.

l*l

.226
.133
.418
.318
.585
.074
.029
.509
.456
.406
171
.155
.808
.412
.301
.124
.741
.119
.369
.436
.151
.566
.800
.346
377
.485
.662
.403
.414
.433
.050
.027
.588
.287
.210
.383
.546
.639
.303

NA
NA
NA

.097

104

0.05

O WO OOODODODODODODODODODODODODODODODODODODODODODODODO0ODODOOOOOOOOOOOO

Residual standard error: 0.07455 on 381 degrees of

Multiple R-squared:
F-statistic: 51.64 on 58 and 381 DF,

par( c(2,2))
plot(mulreg_fit1)
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0.8872, Adjusted R-squared:

p-value: < 2.

.220816
.257817
.675955
.188386
.5568802
.283615
.977204
.132242
.648713
.685057
.864092
.877108
.419398
.680441
. 763495
.034332
.458991
.905176
.171920
.663226
.880157
.571620
.072680 .
. 729359
.169320
.138502
.000286
.686888
.679083
.152570
.294504
.978388
.556787
. 774058
.833674
.702046
.5856233
.33e-08
.761798

NA
NA
NA

.922616
.917469

. o.1 !

freedom
0.87
2e-16

* % %

* % %
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From the summary of table, we can obserce that the adjusted R-Squared performs pretty well, with the value
of 0.87 meaning that 87% of its variability can be explained. Also, the residual standard error is 0.07455,
which is pretty small.

From the previous understanding, we perform subsets regression analysis to observe the suitable multiple
regression model for the dataset:

library(leaps)
library(car)
library(MASS)
library(glmnet)

# variable selection - subsets regression
mulreg_fit2<-regsubsets(log(per.cap.income)~log(land.area)+pop.18_34
+pop.65_plus+log(doctors)+log(hosp.beds)
+(log(crimes) /pop)+pct.hs.grad**2+log(pct.below.pov)
+log(pct.bach.deg)+log(pct.unemp)+region
+state, cdi, T)

## Reordering variables and trying again:

summary (mulreg_fit2)

## Subset selection object
## Call: regsubsets.formula(log(per.cap.income) ~ log(land.area) + pop.18_34 +

## pop.65_plus + log(doctors) + log(hosp.beds) + (log(crimes)/pop) +
#it pct.hs.grad™2 + log(pct.below.pov) + log(pct.bach.deg) +

#Hit log(pct.unemp) + region + state, data = cdi, really.big = T)

## 61 Variables (and intercept)

## Forced in Forced out

## log(land.area) FALSE FALSE
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

pop.18_34
pop.65_plus
log(doctors)
log(hosp.beds)
log(crimes)
pct.hs.grad
log(pct.below.pov)
log(pct.bach.deg)
log(pct.unemp)
regionNE
regionS
regionW
stateAR
stateAZ
stateCA
stateCO
stateCT
stateDC
stateDE
stateFL
stateGA
stateHI
statelD
statell
statelIN
stateKS
stateKY
statelLA
stateMA
stateMD
stateME
stateMI
stateMN
stateMO
stateMS
stateMT
stateNC
stateND
stateNE
stateNH
stateNJ
stateNM
stateNV
stateNY
stateOH
stateOK
stateOR
statePA
stateRI
stateSC
stateSD
stateTN
stateTX
stateUT

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

stateVA
stateWV

log(crimes) :pop

stateVT
stateWA
stateWI
1 subsets of each size up to 9
Selection Algorithm: exhaustive
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n n n n
n n n n
n n n n
n n n n
n.n "non
n n n n
n n n n
n n n n
n n n n
log(pct.unemp)
n n

n n

n n

n n

n n

n.n

n n

n n

n n

stateCO stateCT
n.n non

n n n n

n n n n
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n n n n
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n n n n

n n n n

n n n n
statelIl statelIN
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n.n non
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FALSE
FALSE
FALSE
FALSE
FALSE
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n.n n.n n n non
n.n n.n II*II n.n
n.n n.n II*II n.n
Il*ll n.n II*" "non
Il*ll n.n II*II non
Il*ll n.n II*II non
II*II n.n II*II n.n
Il*ll n.n II*II n.n
Il*ll n.n ll*" non
.hs.grad log(pct.below.pov) log(pct.bach.deg)
II*II n n
II*II n n
II*II n n
n * n n * n
n * n n * n
n * n n * n
n * n n * n
n * n n * n
n * n n * n
regionNE regionS regionW stateAR stateAZ stateCA
n.n non n n n.n non n n
n.n non n n n.n non n n
n.n non n n n.n n n n n
n.n non n n n.n n n n n
non non n n n.n nn n n
n.n non non n.n n.n non
n.n non n n n.n non n *ll
n.n non n n n.n n n n *ll
n.n non n n n.n n n n *ll
stateDC stateDE stateFL stateGA stateHI stateID
n.n n.n non n.n n.n "non
n.n non n n n.n non n n
n.n non n n n.n non n n
n.n non n n n.n n n n n
n.n non n n n.n n n n n
n.n n.n non n.n n.n non
n.n non n n n.n non n n
n.n non n n n.n non n n
n.n non n n n.n n n n n
stateKS stateKY stateLA stateMA stateMD stateME
n.n non n n n.n non n n
n.n n.n non n.n n.n non
n.n non n n n.n non n n
n.n non n n n.n non n n
n.n non n n n.n n n n n

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
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#6 (1) " " e
## 7 ( 1 ) non n n n.n
## 8 ( 1 ) non "non non
##9 (1) " e
## stateMI stateMN stateMO
## 1 (1) " " e
#t 2 (1) " " "
## 3 ( 1 ) non "non non
## 4 (1 )" " e
## 5 (1) " e
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# with different criteria to select
cdi_sum<-summary(mulreg_£fit2)
data.frame(
which.max(cdi_sum$adjr2),
which.min(cdi_sum$cp),
which.min(cdi_sum$bic)

)

## Adj_R2 CP BIC
## 1 9 9 9

n n n n n n
non n n n.n
non n n n.n
n n n n n n
stateMS stateMT stateNC
n n n n n n
n n n n n n
non n n n.n
n n n n n n
n n n n n n
n n n n n n
n n n n n n
non n n n.n
n n n n n n
stateNV stateNY stateOH
n n n n n n
n n n n n n
n n n n n n
non n n n.n
n n n n n n
n n n n n n
n n n n n n
n n n n n n
ll*ll n n n.n
stateSD stateTN stateTX
n n n n n n
n n n n n n
n n n n n n
non n n n.n
n n n n n n
n n n n n n
n n n n n n
n n n n n n
n n n n n n
stateWV log(crimes) :pop
n n n n

n n n n

n n n n

n n n n

non n n

n n n n

n n n n

n n n n

n n n n

the best model
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n n
stateND
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non
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n n
non
stateUT
n n
n n
n n
non
n n
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II*II
ll*ll



From the above summary table, we can observe that no matter we choose to use the criteria of adjusted
R-Squared, Cp, or BIC, we all should choose the model with 9 predictor variables to be our best model.

Therefore, the best model would be:

log(per.cap.income)~log(land.area)+pop.18_ 34+log(doctors)
~+log(pct.below.pov)+log(pct.bach.deg)+stateCA+stateNJ+stateNV+stateUT

Next, we would like to perform our model selection by using stepwise regression:

# vartable selection - stepwise regression
income_stepmod<-stepAIC(1m(log(per.cap.income)~log(land.area)+pop.18_34
+pop.65_plus+log(doctors)+log(hosp.beds)
+log(crimes) /pop+pct.hs.grad**2+log(pct.below.pov)
+log(pct.bach.deg)+log(pct.unemp)+region
+state, cdi), "both", FALSE)
summary (income_stepmod)

##

## Call:

## lm(formula = log(per.cap.income) ~ log(land.area) + pop.18_34 +
# pop.65_plus + log(doctors) + log(pct.below.pov) + log(pct.bach.deg) +
#t state, data = cdi)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.267293 -0.039773 -0.002899 0.037594 0.293303

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

## (Intercept) 9.646673 0.087940 109.696 < 2e-16 **x
## log(land.area) -0.037470 0.006051 -6.193 1.51e-09 *x*x*
## pop.18_34 -0.012447 0.001402 -8.880 < 2e-16 *x*x
## pop.65_plus 0.003106 0.001530 2.030 0.04304 *
## log(doctors) 0.053373 0.004180 12.769 < 2e-16 **x
## log(pct.below.pov) -0.166261 0.012019 -13.834 < 2e-16 **x
## log(pct.bach.deg)  0.244320 0.019657 12.429 < 2e-16 **x*
## stateAR -0.052290 0.059598 -0.877 0.38082

## stateAZ -0.082270 0.045604 -1.804 0.07201 .
## stateCA 0.086381 0.031541 2.739 0.00646 x*x*
## stateCO 0.001609 0.037688 0.043 0.96598

## stateCT 0.071273 0.040130 1.776 0.07651 .
## stateDC 0.090587 0.081144 1.116 0.26496

## stateDE 0.014682 0.060159 0.244 0.80732

## stateFL -0.047778 0.033505 -1.426 0.15468

## stateGA 0.021186 0.038222 0.554 0.57971

## stateHI 0.024836 0.051613 0.481 0.63065

## statelD -0.031016 0.079600 -0.390 0.69701

## statelL 0.047108  0.034062 1.383 0.16746

## stateIN -0.016526 0.035392 -0.467 0.64081

## stateKS -0.023147 0.047144 -0.491 0.62372

## stateKY -0.013390 0.051899 -0.258 0.79655

## statelA -0.009165 0.037895 -0.242 0.80901

## stateMA 0.037652  0.037123 1.014 0.31109

## stateMD 0.006623 0.038723 0.171 0.86428

## stateME 0.001426 0.044013 0.032 0.97417
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## stateMI 0.063008 0.033814 1.863 0.06317 .
## stateMN -0.033165 0.040313 -0.823 0.41119
## stateMO -0.001327 0.039345 -0.034 0.97311
## stateMS -0.078030 0.051394 -1.518 0.12977
## stateMT 0.003968 0.079819 0.050 0.96038
## stateNC -0.010597  0.034057 -0.311 0.75585
## stateND -0.053140 0.079898 -0.665 0.50639
## statelNE -0.088663 0.051960 -1.706 0.08874 .
## stateNH 0.008170 0.047859 0.171 0.86454
## stateNJ 0.088985  0.035351 2.517 0.01223 *
## statelNM -0.1191556 0.060086 -1.983 0.04807 *
## stateNV 0.192661 0.061625 3.126 0.00190 *x*
## stateNY 0.008028 0.033150 0.242 0.80878
## stateOH 0.006344 0.032786 0.194 0.84666
## statelK -0.069977 0.046661 -1.500 0.13451
## stateOR -0.073557 0.041770 -1.761 0.07903 .
## statePA -0.026585 0.033076 -0.804 0.42203
## stateRI -0.074835 0.052832 -1.416 0.15744
## stateSC -0.013347 0.036033 -0.370 0.71128
## stateSD -0.018598 0.079897 -0.233 0.81606
## stateTN -0.017699  0.038710 -0.457 0.64778
## stateTX -0.018621 0.031521 -0.591 0.55503
## stateUT -0.283266 0.046930 -6.036 3.71e-09 *xx
## stateVA 0.002370 0.040768 0.058 0.95368
## stateVT -0.033379 0.080124 -0.417 0.67721
## stateWA -0.031058 0.036956 -0.840 0.40121
## stateWIl -0.004460 0.037281 -0.120 0.90483
## stateWV -0.012768 0.079580 -0.160 0.87262
## ———

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 0.07426 on 386 degrees of freedom
## Multiple R-squared: 0.8865, Adjusted R-squared: 0.871
## F-statistic: 56.91 on 53 and 386 DF, p-value: < 2.2e-16

From the above summary table, we can observe that if we choose to use the criteria of AIC, then we should
choose the model with smallest AIC values, which the best model would be:

log(per.cap.income) ~ log(land.area) + pop.18_ 34 + pop.65_plus + log(doctors) + log(pct.below.pov) +
log(pct.bach.deg) + state;

#compare candidate modell

cdi["stateCA"]<-ifelse(cdi$state=="CA",1,0)

cdi["stateNJ"]<-ifelse(cdi$state=="NJ",1,0)

cdi["stateNV"]<-ifelse(cdi$state=="NV",1,0)

cdi["stateUT"]<-ifelse(cdi$state=="UT",1,0)

can_modell<-1m(log(per.cap.income)~log(land.area)+pop.18_34
+log(doctors)+log(pct.below.pov)+log(pct.bach.deg)
+stateCA+stateNJ+stateNV+statelUT, cdi)

par( c(2,2))

plot(can_modell)
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summary (can_modell)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

Im(formula = log(per.cap.income)
log(doctors) + log(pct.below.
stateNJ + stateNV + statelUT,

Residuals:

Min 1Q Median
-0.269816 -0.045495 -0.004464 O.
Coefficients:

Estimate Std.

(Intercept) 9.826000 O

log(land.area) -0.046640 O

pop.18_34 -0.013034 0

log(doctors) 0.058378 0

log(pct.below.pov) -0.179521 0

log(pct.bach.deg) 0.218856 0

stateCA 0.099027 O

stateNJ 0.084771 0

statelNV 0.208425 0

stateUT -0.283781 0

Signif. codes: O '**x' 0.001

Uk !

~ log(land.area) + pop.18_34 +

pov) +
data

cdi)

Max
0.295412

3Q
044270

Error t value Pr(>|t|)

.0567502 170.880 < 2e-16
.004781 -9.756 < 2e-16
.001091 -11.951 < 2e-16
.004041 14.446 < 2e-16
.009267 -19.373 < 2e-16
.017251 12.686 < 2e-16
.014814 6.685 7.21e-11
.019385 4.373 1.54e-05
.066236 3.706 0.000238
.038851 -7.304 1.36e-12

0.01 'x' 0.05 '.' 0.1

ok k
*kkok
*kkk
*k %k
*k ok k
ok k
*okk
*kkok
*kkok
*k ok k

Residual standard error: 0.0771 on 430 degrees of freedom

Multiple R-squared:

0.8637, Adjusted R-squared:

0.8609
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## F-statistic: 302.9 on 9 and 430 DF, p-value: < 2.2e-16

#compare candidate modelZ2

can_model2<-1m(log(per.cap.income) ~ log(land.area) + pop.18_34
+ pop.65_plus + log(doctors) + log(pct.below.pov)
+ log(pct.bach.deg) + state, cdi)

par ( c(2,2))

plot(can_model?2)
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summary (can_model2)
##
## Call:
## 1m(formula = log(per.cap.income) ~ log(land.area) + pop.18_34 +
#Hit pop.65_plus + log(doctors) + log(pct.below.pov) + log(pct.bach.deg) +
#i# state, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.267293 -0.039773 -0.002899 0.037594 0.293303
##
## Coefficients:
## Estimate Std. Error t value Pr(>|tl)
## (Intercept) 9.646673 0.087940 109.696 < 2e-16 **x
## log(land.area) -0.037470 0.006051 -6.193 1.51e-09 **x
## pop.18_34 -0.012447 0.001402 -8.880 < 2e-16 **x
## pop.65_plus 0.003106 0.001530 2.030 0.04304 x*
## log(doctors) 0.053373  0.004180 12.769 < 2e-16 *x**
## log(pct.below.pov) -0.166261 0.012019 -13.834 < 2e-16 **x
## log(pct.bach.deg) 0.244320 0.019657 12.429 < 2e-16 **x
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

stateAR
stateAZ
stateCA
stateCO
stateCT
stateDC
stateDE
stateFL
stateGA
stateHI
statelD
statell
stateIN
statekKS
stateKY
stateLA
stateMA
stateMD
stateME
stateMI
stateMN
stateMO
stateMS
stateMT
stateNC
stateND
stateNE
stateNH
stateNJ
stateNM
stateNV
stateNY
stateOH
stateOK
stateOR
statePA
stateRI
stateSC
stateSD
stateTN
stateTX
stateUT
stateVA
stateVT
stateWA
stateWIl
stateWV

Signif. codes: 0O '¥¥x!'

.062290
.082270
.086381
.001609
.071273
.090687
.014682
.047778
.021186
.024836
.031016
.047108
.016526
.023147
.013390
.009165
.037652
.006623
.001426
.063008
.033165
.001327
.078030
.003968
.010597
.063140
.088663
.008170
.088985
.119155
.192661
.008028
.006344
.069977
.073557
.026585
.074835
.013347
.018598
.017699
.018621
.283266
.002370
.033379
.031058
.004460
.012768

0.001

O OO OO OO OO ODODODODOODODODODODODODODODODODODODODODODODODODODOODOOOOODOOOOOOO

.059598
.045604
.031541
.037688
.040130
.081144
.060159
.033505
.038222
.0561613
.079600
.034062
.035392
.047144
.051899
.037895
.037123
.038723
.044013
.033814
.040313
.039345
.051394
.079819
.034057
.079898
.051960
.047859
.035351
.060086
.061625
.033150
.032786
.046661
.041770
.033076
.062832
.036033
.079897
.038710
.031521
.046930
.040768
.080124
.036956
.037281
.079580

"xx' 0.01

| |
= O

OO, Ok, ~r ON

l*l

.877
.804
.739
.043
.T76
.116
.244
.426
.554
.481
.390
.383
.467
.491
.258
.242
.014
.171
.032
.863
.823
.034
.518
.050
311
.665
.706
.171
.517
.983
.126
.242
.194
.500
.761
.804
.416
.370
.233
.457
.591
.036
.058
.417
.840
.120
.160

0.05

O O OO OO OO ODODODODODODODODODODODODODODODODODODODODODODODODOOOOOOOOOOOOO

.38082
.07201
.00646
.96598
.07651

%k x

.26496

.80732
.15468
.57971
.63065
.69701
.16746
.64081
.62372
.79655
.80901
.31109
.86428
.97417

.06317 .

.41119
.97311
.12977
.96038
. 75585
.50639

.08874 .

.86454
.01223
.04807
.00190
.80878
.84666
.13451

* %

.07903 .

.42203
.16744
.71128
.81606
.64778
.55503

3.71e-09

O O O OO

.956368
.67721
.40121
.90483
.87262

.1 0.1

k% %

Residual standard error: 0.07426 on 386 degrees of freedom

Multiple R-squared:
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0.8865, Adjusted R-squared:
F-statistic: 56.91 on 53 and 386 DF,

0.871
p-value: < 2.2e-16

1



By comparing the candidate models from subsets regression and stepwise regression, we decide to choose
the model selecting from subsets regression as our final model. As for the value of adjusted R-Squared and
Residual Standard Error, both of two models have pretty much the same performance. However, looking into
the variables, we believe that the model selecting from subsets regression has more specific preference on
influential states in doing the prediction. With the consideration to explain our model to someone who is
more interested in economic factors, the model with specific states can be more convincing. Therefore, our
preferred final model would be:

log(per.cap.income)~log(land.area)+pop.18_ 34+log(doctors)
+log(pct.below.pov)+log(pcet.bach.deg)+stateCA+stateNJ+stateNV+-stateUT
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