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Abstract

We address several questions related to the association between average income per person and
a county’s economic, health and social well being. We examine data on countys’ demographic
information (Kutner et al.), using exploratory data analyses and a variety of techniques in linear
regression and optimal variable selection. We find that the total crime rate and region variables
are fairly related to per-capita income, and that the best model involves non-collinear variables like
number of doctors, percentage of bachelor degrees, percentage of unemployment as well as some
added interaction terms with region being significant predictors. The best model could be improved
further by exploring two-way interaction terms of quantitative variables, and obtaining additional
data for better cross-validation.

Introduction

There are numerous indicators that social economists use to measure prosperity and wealth across
the world, and one such widely used metric is the Per Capita Income, which measures the average
income per person in a given state or region. Income inequality across US counties is a widely known
issue (Sommeiller, et al. 2016), and it would be useful to understand the factors that might a↵ect this
disparity in income across the di↵erent counties. A county’s prosperity can be influenced by various
economic, health as well as social factors. The goal of this paper is to investigate the relationship
between average income per person and variables associated with a county’s economic, health and
social well-being, as well as find an optimal regression model that can explain the associations.

In particular, we will:

• Explore the relationship between each individual pair of variables.

• Examine how crime rates and region a↵ects per-capita income.

• Find the best model to predict per-capita income from the full list of variables.
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Data

The data is taken from Kutner et al. (2005): It provides selected county demographic information
(CDI) for 440 of the most populous counties in the United States. Each line of the data set has
an identification number with a county name and state abbreviation and provides information on
14 variables for a single county.Counties with missing data were deleted from the data set. The
information generally pertains to the years 1990 and 1992. The definitions of the variables are given
in Table 1. The total number of observations is 440, and there are no observed ”NA” values across
the dataset.

Table 1: Variable definitions for CDI data from Kutner et al. (2005)

The summary statistics of the quantitative variables are given in Table 2.
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Table 2: Summary statistics for quantitative variables

Figure 1 below shows a box plot of per-capita income across the di↵erent regions.

Figure 1: Per-capita income per region

The histogram distributions of each quantitative variable is shown in Figure 2. The figure shows
that our response variable per.cap.income is slightly skewed to the right, and most of the other
predictor variables are severely right-skewed as well.

Out of the 3 categorical variables county, state, and region, we only used the region variable.
The reason for this was because the combination of county and state represented one observation
of each unique county, adding up to 440, the total number of rows in the dataset. A large number
of unique values would not be useful for data analysis, and it was a reasonable decision to leave out
county and state from consideration.
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Figure 2: Histogram distributions of quantitative variables

Methods

We will address the methods used for each research questions defined in the introduction section.

1. Relationship between each individual pair of variables

A correlation heatmap was used to explore the correlation between all quantitative variables, and
deduce whether multicollinearity was an issue in the dataset. Box plots were also used to determine
the relationship between categorical and quantitative variables.
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2. Examine how crimes and region a↵ects per-capita income

In order to evaluate the theory that per-capita income should be related to crime rate, and that
this relationship may be di↵erent in di↵erent regions of the country, we built regression models to
predict per.cap.income from crimes and region. We considered regression models using logarithmic
transformations of the response variable per.cap.income and the quantitative predictor crimes, and
further considered models with and without the region additive term, as well as the interaction
terms between crimes and region.

We evaluated the validity of the models through residual diagnostic plots, as well as assessed the
significance of each coe�cients in order to come up with an optimal combination of the crimes and
region predictors. F tests (ANOVA) as well as the AIC and BIC values were used to compare the
fits of di↵erent models.

In addition, we also attempted to replace the crime rate variable with per-capita crime rate given
by crimes/pop to investigate if there was any change in model fit.

3. Finding the best model to predict per-capita income

The histogram plots for all 13 quantitative variables including the response and predictors, were
evaluated to assess whether they needed transformations or not. The variables that were highly
skewed and needed logarithmic transformations were:

• per.cap.income (Response)

• land.area

• pop

• doctors

• hosp.beds

• crimes

• pct.below.pov

• tot.income

Only logarithmic transformations were used, not only because some of the variables had slight
skewdness that were negligible, but also because logarithmic transformations tend to be easier to
interpret in terms of percentage-change concepts. Considering the audience of this analysis, the more
untransformed the variables are, the easier it will be to comprehend about the models presented in
this report.

Also note that the predictor variables log.pop and log.tot.income were dropped from the analysis,
since our response variable log.per.cap.income is a deterministic function of both predictors. More
specifically, per.cap.income = tot.income/pop.

We also looked at the Variance Inflation Factors (VIF) for each of the predictors to assess the
severity of multicollinearity when all predictor variables were considered. Consequently, variable
selection methods such as all-subsets, stepwise and LASSO regression were used to choose the
optimal subset of quantitative variables that produced the best fitting model. The ”best” model
was also one that satisfied key modeling assumptions as well as one that was interpretable in the
context of social science and economics.
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Thereafter, the categorical variable region was added back to determine its significance in pre-
dicting per-capita income. Both additive terms and interactions terms were considered, and we
observed the coe�cient summary to check if any indicators for region was statistically significant.
Here, if any indicator for a categorical variable or its interactions terms seemed important then we
chose to keep the whole categorical variable. If none seemed important, then we dropped the whole
variable.

Similar to the second research question, F tests (ANOVA) as well as the AIC and BIC values
were used to compare the fits of models containing di↵erent subsets of variables. We evaluated
the validity of the models through residual diagnostic plots, and assessed the significance of each
coe�cients through model summaries.

Results

Below are the results for each of the research questions defined in the introduction section.

1. Relationship between each individual pair of variables

The correlation matrix heatmap on page 7 of the Technical Appendix suggests that:

• tot.income and pop are highly correlated. This is expected because the response variable
per.cap.income is a deterministic function of pop and tot.income, where per.cap.income =
tot.income/pop.

• both tot.income and pop are also highly correlated with crimes, hosp.beds and doctors

• pct.hs.grad and pct.bach.deg have moderately high correlation, and this is expected because a
person is more likely to hold a bachelor’s degree if he/she also graduated from high school.

• Although not a very strong correlation, pct.hs.grad and pct.bach.deg are negatively correlated
to pct.unemp, which makes sense because people who graduated from high school as well as
those who hold a bachelor’s degree are less likely to be unemployed.

• hosp.beds and doctors are strongly correlated with one another. This is expected because the
more doctors / physicians you have in a county, the more hospital beds you would expect to
see.

These observations indicate that multicollinarity might be a problem we would need to address
in our analysis.

We further looked at the boxplot of per-capita income per region in Figure 2, and noticed that
the median and inter-quartile range of per-capita income was fairly di↵erent across the 4 regions.
This suggested that the categorical variable region could potentially be important to predicting
per-capita income.

2. Examine how crimes and region a↵ects per-capita income

We considered a total of 3 regression models using the log-transformed variables log.per.cap.income
and log.crimes, as well as the additive / interaction terms with the region categorical variable (details
in page 8 and 9 in Technical Appendix).
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2.1 Base model with only crimes variable

The base regression model involving log.per.cap.income and log.crimes had the estimated regression
coe�cients,

log.per.cap.income = 0.054 · log.crimes+ 9.29 (1)

As seen in page 8 of the Technical Appendix, both coe�cients were statistically significant with low
p values, and the R squared value was 0.079, meaning approximately 7.9% of the total variability in
the response variable was explained by the model. A unit percentage increase in total crimes led to
roughly a 0.054% increase in per-capita income.

2.2 Model with additive region variable

The regression model involving log.per.cap.income, log.crimes, and the additive region variable had
the estimated regression coe�cients,

log.per.cap.income = 0.067 · log.crimes+0.1 ·regionNE�0.09 ·regionS�0.06 ·regionW +9.19 (2)

Page 8 and 9 of the Technical Appendix shows us that all of the coe�cients were statistically
significant with low enough p values, and the R squared value increased significantly to 0.2032,
meaning approximately 20.3% of the total variability in the response variable was explained by the
model. A unit percentage increase in total crimes led to roughly a 0.067% increase in per-capita
income.

2.3 Model with additive region and interaction terms

Our third regression model added interaction terms between the variables region and log.crimes.
Page 9 of the Technical Appendix shows that only the coe�cient for log.crimes was statistically
significant, while all other variables had high p values. The R squared value was roughly similar
with a value of 0.2073. A unit percentage increase in total crimes led to roughly a 0.051% increase
in per-capita income.

The residual diagnostic plots for all three models (page 10, 11 and 12 of the Technical Appendix)
suggested that all models were fairly valid, conforming to the key assumptions of linear regression,
but they also had some minor limitations including normality of the residuals and a few existing
influential points that needed further inspection.

Introducing the region variable in the second and third model significantly increased the R
squared value, suggesting that region would be an important variable to keep. F test Analysis of
Variance (ANOVA) was performed on the models as seen in Table 3, to really justify whether the
interaction terms in the third model were e↵ective or not. The second model with the additive region
variable without interaction terms turned out to be doing the best with a very low p value.
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Table 3: F test (ANOVA)

2.4 Per-capita crimes

We also substituted the crimes variable with per-capita crimes and fit the three identical regression
models in 2.1, 2.2 and 2.3. Page 13 and 14 in the Technical Appendix shows that the R squared values
for all three models decreased significantly and the residual standard errors showed an overall increase
when compared to the models using the raw crimes variable. Further, the log.per.capita.crimes
predictor variable was no longer as significant in the three models as log.crimes was in the previous
three models.

The residual diagnostic plots in pages 16, 17 and 18 of the Technical Appendix showed little
di↵erences from the previous three models, suggesting that the new models with per-capita crimes
were fairly valid as well.

We also used AIC and BIC values to compare between each of the second models (with additive
region and no interactions) from the raw log.crime and log.per.capita.crime models. The results in
page 18 of the Technical Appendix shows that the model with raw crimes had smaller AIC and BIC
values (smaller the better).

3. Finding the best model to predict per-capita income

Figure 3 shows the histogram plots for the quantitative variables after the logarithmic transfor-
mations were applied. It could be observed that a lot of the skewing has improved. Further, the
correlation heatmap after logarithmic transformation shown in Page 21 of the Technical Appendix,
suggested that the correlations between transformed variables remained relatively similar, but a bit
stronger than that between un-transformed variables.
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Figure 3: Histogram distributions of quantitative variables after transformation

To start o↵, page 22 of the Technical Appendix shows the coe�cient summary of the full model
including all the quantitative variables plus the region categorical variable (note that id, county,
state, pop and tot.pop were excluded). The resulting R squared value was 0.8394, meaning that
83.94% of the total variability of the response variable could be explained by the model. It also
seemed like some predictors were statistically significant with low p values, while some were not.
Further, predictors like pct.hs.grad and pct.unemp even seemed to have the wrong coe�cients with
opposite sign.

Table 4 shows the VIF of each predictor variables. The full model (with all variables) suf-
fered from multicollinearity with some predictors having large VIFs that exceed 5. In particular,
log.doctors and log.hosp.beds had VIFs of 15.3 and 12.1 respectively, and this makes sense because
the more doctors you have in a county, the more hospital beds you would expect to see. log.crimes
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is also a predictor with a high VIF of 6.24.

Table 4: VIF for predictor variables

Variable selection - all-subsets

We now look at the results for the all-subsets variable selection method on the model.
In Figure 4, we can see a graphical summary of the variable subsets chosen by all-subsets method

and the corresponding BIC values. The dark squares indicate which variables are included in the
model that has the BIC value on the left. Eventually, the all-subsets method chose 6 variables that
gave the lowest BIC value of -747.68 (page 24 of Technical Appendix).

Figure 4: All-subsets graphical plot

In Table 5, we can see the coe�cient summary of the model using the variables chosen by the
all-subsets method. The R squared value turned out to be 0.834, meaning roughly 83.4% of the
total variability of our response variable could be explained by the model. All coe�cients were also
statistically significant with low p values. But at the same time, the coe�cient estimates seemed to
be quite small.
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Table 5: Coe�cient summary for all-subsets

In page 25 of the Technical Appendix, we could see that none of the chosen 6 predictor variables
had an excessively large VIF, signaling that multicollinearity was no longer an issue.

The residual diagnostic plots for the all-subsets model in page 26 of the Technical Appendix
suggested that the model was valid, except for a minor limitation that the left and right tails of the
Normal Q-Q plot were a little bit heavy.

The standardized residual plots against each of the predictors in page 27 of the Technical Ap-
pendix showed that the residuals for all plots were relatively randomly scattered, further suggesting
the validity of the model.

The added variable plots and marginal plots is shown in page 28 and 29 of the Technical Appendix
respectively. And they both further add to the fact that the chosen predictors were appropriate and
that the model was valid.

Variable selection - stepwise BIC

We now look at the results for the stepwise variable selection method on the model. Note that BIC
is the information criteria used.

The selection procedure as well as the BIC value at each step can be seen in page 32 and 33
of the Technical Appendix. Table 6 shows the coe�cient summary of the variables chosen by the
stepwise method.

Table 6: Coe�cient summary for stepwise

We can see that stepwise method chose the same subset of variables as the all-subsets method
did. All predictors had coe�cients that were statistically significant with low p values.

Variable selection - LASSO regression

We now look at the results for the LASSO regression method on the model. Figure 5 shows the
plot of Mean-Squared Error (MSE) vs Log(�), where the dotted lines show the optimal number of
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variables with the lowest MSE.

Figure 5: MSE vs Log�

Table 7 below shows the values for lambda.min, the best � value found by cross-validation, and
lambda.1se, the value of � that is 1 standard deviation larger than lambda.min. We chose to use the
� value of lambda.1se (0.0097), since it could protect against capitalization on chance.

Table 7: lambda.min and lambda.1se

Table 8 shows the variable subset chosen by LASSO regression and their coe�cient summaries.
All variables except pop.65 plus had statistically significant coe�cients with low p values. The full
summary table from Page 38 of the Technical Appendix shows that the R squared value was 0.829,
which was not too di↵erent from the all-subsets and stepwise models.

Table 8: lambda.min and lambda.1se
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The only di↵erence between the all-subsets method and LASSO regression was that all-subsets
chose to include pct.unemp rather than pop.65 plus which LASSO regression did. Page 39 of the
Technical Appendix shows the F test (ANOVA) result to determine which of the two variables is
significant, given the other 5 common variables are fixed. We can see that the all-subsets model
with pct.unemp turned out to be more significant with a low p value.

Adding the region variable

After figuring out the optimal subset of variables through the chosen variable selection methodologies,
the categorical variable region was brought back to be considered for an additive term as well as
interaction terms.

Page 30 of the Technical Appendix shows the coe�cient summary of adding the additive region
variable as well as all possible interaction terms with the existing quantitative variables. We decided
to keep the interaction terms and categoric variables if any of the indicators for the specific categorical
variable was statistically significant. If none were significant, we decided to drop the whole group of
interactions.

Table 9 below shows the resulting model with the added region dummy variables and selected
interaction terms. All the main e↵ects and interaction terms that involve region have at least one
significant term. The R squared value slightly increased to 0.851, and the coe�cients still remained
quite small in magnitude.

Table 9: Additive region and some interaction terms added to all-subsets model

To further justify the use of the region variable as well as the chosen interaction terms, the F test
(ANOVA) was performed on three models. Page 31 and 32 of the Technical Appendix suggested
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that the model with some region interaction terms added is statistically significant with a very low
p value, and was better than the base all-subsets model as well as the base model with only the
additive region variable. Furthermore, the AIC for the new model with some interaction terms
turned out to be lower than that of the base all-subsets model, while the BIC value was the opposite
in result. This is interpretable since BIC tends to favor simpler models , while AIC favors more
complex models in theory.

Interpreting the final model

The chosen final model was the base all-subsets model with an additive region and some interaction
terms added as shown in Table 9. Although more complex than the base model, the categorical
variable region was proven to be fairly important, as the median per-capita income was observed to
be fairly di↵erent across the 4 regions (Figure 2). The interaction terms are also not too di�cult to
interpret, given that they simply indicate the quantitative variables interacting with di↵erent parts
of the region (NC, NE, S, W). The F test, AIC and BIC values also suggested that the interaction
terms were valuable when predicting per-capita income.

Along with the final model’s coe�cient summary in Table 9, we also looked at diagnostic plots
produced in Figure 6 below, and saw that the model was fairly valid since it conformed to the
key assumption of constant error variance, but had heavy right and left tails similar to the base
all-subsets model.

Figure 6: Residual diagnostic plots for final model
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We also looked at the plot of Y (log.per.cap.income) vs the fitted values Ŷ produced in Figure
7. We could see that the straight-line fit to this plot (displayed as a dashed line) provides a fairly
good fit, although not perfect. This further suggests that the model is valid.

Figure 7: Plot of Y vs Ŷ

Finally, we attempted to interpret the resulting coe�cients of the final model (Table 9):

• For every 1% increase in a county’s land area, there is a 0.03% decrease in expected per-capita
income. (We might conjecture that this could be due to an urban-rural contrast: rural counties
tend to be biggerthan urban ones).

• For every 1% increase in the number of doctors in a county, the expected per-capita income in-
creases by about 0.06%. That makes sense; doctors are well-paid and could be big contributors
to the per-capita average income.

• For every 1 percentage point increase in the percent of the population aged 18–34, there is an
expected2% drop in per-capita income. (We might conjecture that this is because 18–34 year
olds are not at peak earning capacity yet and so perhaps their lower incomes drags down the
per-capita average).

• The percent of population that are high school graduates doesn’t have much e↵ect, except
in the South, where a one percentage point increase in hs graduates induces an expected 2%
decrease in per-capita income. It might depend on whether college graduates are counted as
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a subset of hs graduates rather than counting them separately, or it might have something to
do with some unique feature of economics in the southern region of the US.

• In the main e↵ect for region, and in several of the interactions for region, the West shows up
as deviating significantly from the North Central part of the US.

Discussion

1. Relationship between each individual pair of variables

From the correlation heatmap we found that there were several variables that were fairly correlated,
suggesting a potential problem of multicollinearity. We also found that per-capita income was quite
varied across the 4 di↵erent regions defined by the categorical variable region.

2. Examine how crimes and region a↵ects per-capita income

In order to assess the theory that per-capita income is related to crime rate, and that this relationship
may be di↵er in di↵erent regions of the country, we looked at 3 di↵erent models including an additive
region and interaction terms with region.

Looking at the summaries of the three models (page 8 and 9 of the Technical Appendix) we were
able to recognize a positive correlation between per-capita income and total crimes percentage-wise.
Overall, the log transformations on the variables allowed us to interpret that a unit percentage
increase in total crime led to roughly a 0.06% increase in per-capita income. All three models were
also fairly valid, but in the end, the second model (base model plus additive region variable) turned
out to be the most significant according to the F test.

We also attempted to see if changing the crimes variable to per-capita crimes helped in any way,
because per-capita crimes would be in the same comparable scale as per-capita income, thereby
potentially leading to better interpretability. However, changing the variable this way resulted in a
significant decrease in R squared value, meaning that the model using per-capita crimes was not able
to explain the variability of per-capita income as well as the model using the raw total crimes. The
AIC and BIC values also seemed to increase, suggesting that the trade-o↵ between interpretability
and model fit was not equal in value when using per-capita crimes. As a result, we could see that
sticking to the raw crimes variable was the better choice.

Due to the fact that all the interaction terms in the third model did not turn out to be significant,
we could also conclude that the relationship between per-capita income and total crimes did not
di↵er significantly in di↵erent regions of the country. However, we were able to figure out that the
additive region variables themselves were significant enough to be valuable in the model when none
of the interaction terms were involved.

3. Finding the best model to predict per-capita income

In order to address and solve the problem of non-linearity and non-normality of the variables, we
performed logarithmic transformations on certain quantitative variables. This in turn improved a
lot of the problems of skewness, while keeping the correlation between variables roughly unchanged.
At the same time, we attempted to maintain easy interpretability of the variables by only applying
logarithmic transformations when absolutely needed, while keeping as many untransformed variables
as possible. This facilitates explaining the models to anyone who is interested in and knowledgeable
about the social science and economics field but less knowledgeable about technical matters.
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However, the problem of multicollinearity remained, and we used three di↵erent variable selection
methodologies - all subsets regression, stepwise regression and LASSO regression - to counter this.
All three methods produced similar optimal subsets of significant variables that gave a minimum
value of BIC when fitted into a model. But through an F-test of overall significance, we were able
to find out that the variable subset chosen by all-subset regression and stepwise regression produced
the best fitting valid model. It was understandable that the variable log.hosp.beds was eliminated
in all three methods due to its high collinearity with log.doctors.

All three methods also chose to exclude pop.65 plus, since it would probably have been highly
correlated to its counterpart variable pop.18 34. The one variable that was unexpectedly eliminated
from all three methods was log.crimes, because in our second research question we saw that the
variable was pretty significant in predicting per-capita income, given all other quantitative variables
were ignored. This implies that when other variables are involved, log.crimes becomes relatively
insignificant.

The final best model was chosen after adding back the region variable that was previously hy-
pothesized to be an important indicator of per-capita income. With the additive term and some
interaction terms added in, the final model gave an R squared value of 0.851, meaning that roughly
85.1% of the total variance of per-capita income was explained by the model.

Noticing the improvement in model fit through not only the R squared value but also the AIC
and BIC values, we were able to deduce that keeping some interaction terms were justifiable. We
figured that the resulting trade-o↵ of added complexity did not severely impact the interpretability
of the model, since the interaction terms simply corresponded to the di↵ering relationship between
the quantitative variable (in the interaction) and per-capita income in di↵erent regions.

The final model turned out to be moderately parsimonious, and most of the estimated coe�cients,
except for pct.unemp had the expected sign.

Limitations and future work

One of the evident limitations in a lot of the models explored in this analysis was that the residual
diagnostic plots were never perfect. The slight curves in the center of the residual plots as well as
the heavy right and left tails of the Q-Q plot suggests that further improvements in the model can
be made. In the future, we would look into the two-way interaction terms between quantitative
variables and more complex models that could improve the validity of the model. The usefulness
of some interactions terms including the region categorical variable is another evidence that there
could be unidentified interaction terms that could additionally enhance the model.

Another limitation that needs to be addressed is that only 440 counties (including those that
have duplicate county names in di↵erent states), were considered out of the total of approximately
3,000 counties in the US. Since we are only working with a certain sample of a population, there is
always the possibility that the data is biased and is not representative of the entire 3,000 counties
of population. However, this problem would be mitigated if the 440 samples in the dataset were
selected randomly. The entire analysis in this report is written with the assumption that random
sampling was performed on the data and that the presented results could be used to infer about
the population. If given additional time, we could possibly investigate further on how the CDI data
(Kutner et al. (2005)) was collected, focusing on the sampling methods for the selected counties. It
would also be wise to compare the summary statistics of the given dataset with that of the overall
population, or per state, to see if there are any large deviations in the summaries.

Another area we could look into further would be the state categorical variable, since some of
the relationship between these demographic variables and per-capita income might be explainable
in terms of varying economic policy from one state to the next. However, states are entirely nested
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within regions (perfect collinearity), and if we were to use state as a categorical variable in our
models, it would only make sense to exclude the region variable.

Finally, it would be useful to have additional data (more counties) to use as tests sets that could
compare some of the models we found. We are using reasonable methods for variable selection, but
since our entire data set is in fact our training sample, there is a big possibility for overfitting noise
in the data. Some of our inferences about which variables to leave in or take out may be based on
overly optimistic standard error estimates, for example. If we were able to cross-validate on some
new or hold-out data, we might be able to better distinguish the best models, at least in terms of
prediction error.
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Technical Appendix

Lee, Woo Chan

10/15/2021

Research question 1

Below are the summary statistics for all continuous variables in the dataset.

# Summary statistics of continuous variables

cdi_cat <- cdi %>%
dplyr::select(state, region, county)

cdi_con <- cdi[,-c(1,2,3,17)]## get rid of id, county, state and (for now)
apply(cdi_con,2,function(x) c(summary(x),SD=sd(x))) %>%

as.data.frame %>% t() %>%
round(digits=2) %>%
kbl(booktabs=T,caption=" ") %>%
kable_classic()

#summary(cdi_con)

Looking at the plot below showing how many unique values there are for each variables, county is a categorical

variable that has 373 values (almost equal to number of rows). state is another categorical variable that

has 48 values, which is a lot, so I would set this variable aside during my analysis. id of course is another

categorical variable that is just the same as the number of rows, so I will exclude it from my analysis.

apply(dplyr::select(cdi, id,county,state,region),2,function(x) {length(unique(x))}) %>%
kbl(booktabs=T,col.names="unique values",caption=" ") %>%
kable_classic(full_width=F)

Below is the summary statistics for the categorical variable region, which I will be using for my analysis. It

can be observed that most of the counties are in the South region, while the least are in the West region. The

low number of counties in the West region could be indicative of under-sampling or that the land is larger so

there are fewer counties to sample from. The high number of counties in the South region could be indicative

of over-sampling or perhaps the South has a lot of counties covering smaller land areas.

# Summary statistics for categorical variables

tmp <- rbind(with(cdi,table(region)))
row.names(tmp) <- "Freq"
tmp %>% kbl(booktabs=T,caption=" ") %>% kable_classic(full_width=F)

The table below indicates that there are no observed “NA” values in any of the columns. This is because the

data was cleaned beforehand by the instructor.
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Table 1:

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

land.area 15.0 451.25 656.50 1041.41 946.75 20062.0 1549.92

pop 100043.0 139027.25 217280.50 393010.92 436064.50 8863164.0 601987.02

pop.18_34 16.4 26.20 28.10 28.57 30.02 49.7 4.19

pop.65_plus 3.0 9.88 11.75 12.17 13.62 33.8 3.99

doctors 39.0 182.75 401.00 988.00 1036.00 23677.0 1789.75

hosp.beds 92.0 390.75 755.00 1458.63 1575.75 27700.0 2289.13

crimes 563.0 6219.50 11820.50 27111.62 26279.50 688936.0 58237.51

pct.hs.grad 46.6 73.88 77.70 77.56 82.40 92.9 7.02

pct.bach.deg 8.1 15.28 19.70 21.08 25.33 52.3 7.65

pct.below.pov 1.4 5.30 7.90 8.72 10.90 36.3 4.66

pct.unemp 2.2 5.10 6.20 6.60 7.50 21.3 2.34

per.cap.income 8899.0 16118.25 17759.00 18561.48 20270.00 37541.0 4059.19

tot.income 1141.0 2311.00 3857.00 7869.27 8654.25 184230.0 12884.32

Table 2:

unique values

id 440

county 373

state 48

region 4

Table 3:

NC NE S W

Freq 108 103 152 77
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# Find NA values

contains_any_na <- sapply(cdi, function(x) any(is.na(x)))
print(contains_any_na)

## id county state land.area pop
## FALSE FALSE FALSE FALSE FALSE
## pop.18_34 pop.65_plus doctors hosp.beds crimes
## FALSE FALSE FALSE FALSE FALSE
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## FALSE FALSE FALSE FALSE FALSE
## tot.income region
## FALSE FALSE

From the histogram below, we can see that our response variable per.cap.income is a little bit skewed to the

right, but still relatively normally distributed.

Histogram for Income Per Capita
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We can also explore if there are any major di�erences in per capita income in the 4 regions. Upon looking at

the plot below, we can deduce that the median from the North East region is the highest, and also has the

largest Interquartile Range. Overall, there seems to be some minor di�erence in median per capita income

between all 4 regions.

cdi$region <- factor(cdi$region)
boxplot(cdi$per.cap.income ~ cdi$region, ylab = "Per Capita Income", xlab="Region", main="Boxplot for Per Capita Income per Region")
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We can also look below at the histogram distribution of other predictor variables. We can observe that there

are severely skewed variables like land.area, pop, doctors, hosp.beds, crimes and tot.income. The rest of the

predictors are not perfectly normal, but rather seem to be slightly skewed either to the right or left.
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Next, we can look at a scatter plot matrix to identify overall relationships between the variables. Our

response variable per.cap.income seems to be relatively linearly related to some of the predictors including
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pct.back.grad and pct.hs.grad while some predictors show a curved relationship like pct.below.pov and

pct.unemp. The rest of the predictors show a skewed or random relationship.
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We can also take a look at the correlation matrix heatmap to understand if there are any correlations between

the predictors.

We can make the following conclusions from the correlation matrix:

• tot.income and pop are highly correlated. This is expected because the response variable per.cap.income
is a deterministic function of pop and tot.income, where per.cap.income = tot.income / pop.

• both are reasonably highly correlated with crimes, hosp.beds and doctors
• pct.hs.grad and pct.bach.deg have moderately high correlation, and this is expected because a person is

more likely to hold a bachelor’s degree if he/she also graduated from high school.
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• Although as strong a correlation as others, pct.hs.grad and pct.bach.deg are negatively correlated to

pct.unemp, and this makes sense because people who graduated from high school as well as those who

hold a bachelor’s degree are less likely to be unemployed.

• the three variables crimes, hosp.beds and doctors seem strongly correlated with one another. Although

not obvious for crime, doctors and host.beds would be expected to be correlated because the more

doctors/physicians you have in a county, the more hospital beds you would expect to see.

These observations suggest that we may run into multi-collinearity problems when we start fitting models.

## Warning in type.convert.default(X[[i]], ...): �as.is� should be specified by the
## caller; using TRUE

## Warning in type.convert.default(X[[i]], ...): �as.is� should be specified by the
## caller; using TRUE
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Research question 2

Interaction term vs additive term (region variable)

I will build a regression model that predicts per-capita income from the crime rate and region of the

country. I will be exploring models with and without the interaction term. Note that I will apply a log

transformation to the crimes variable as it is severely right skewed. I will be applying a log transformation

to both the response variable per.cap.income and our predictor crimes to make them more normally distributed.

income_fit1 <- lm(log(per.cap.income) ~ log(crimes), cdi)
income_fit2 <- lm(log(per.cap.income) ~ log(crimes) + region, cdi)
income_fit3 <- lm(log(per.cap.income) ~ log(crimes)*region, cdi )

Let us first look at the summaries of both models:

summary(income_fit1)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.75042 -0.11569 -0.02976 0.09597 0.74498
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.295146 0.083764 110.97 < 2e-16 ***
## log(crimes) 0.053858 0.008758 6.15 1.75e-09 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1986 on 438 degrees of freedom
## Multiple R-squared: 0.07948, Adjusted R-squared: 0.07738
## F-statistic: 37.82 on 1 and 438 DF, p-value: 1.752e-09

summary(income_fit2)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) + region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***
## log(crimes) 0.066695 0.008421 7.920 2.00e-14 ***
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## regionNE 0.104458 0.025531 4.091 5.11e-05 ***
## regionS -0.086983 0.023618 -3.683 0.00026 ***
## regionW -0.055280 0.028167 -1.963 0.05033 .
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

summary(income_fit3)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) * region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68552 -0.10418 -0.01444 0.08302 0.79755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.33677 0.14579 64.044 < 2e-16 ***
## log(crimes) 0.05064 0.01566 3.233 0.00132 **
## regionNE -0.18407 0.21515 -0.856 0.39272
## regionS -0.19717 0.21211 -0.930 0.35312
## regionW -0.31439 0.24465 -1.285 0.19947
## log(crimes):regionNE 0.03122 0.02311 1.351 0.17749
## log(crimes):regionS 0.01211 0.02228 0.544 0.58696
## log(crimes):regionW 0.02727 0.02523 1.081 0.28028
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1855 on 432 degrees of freedom
## Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945
## F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

For model 1 (without region nor interaction terms), we can see that the R squared value is 0.079, meaning

that 7.9% of the total variability in our response variable can be explained by the model. All coe�cients are

also statistically significant, with very low p values.

For model 2 (with region and without interaction terms), the R squared value increased to 0.2032. All

coe�cients are also statistically significant, with very low p values except for the coe�cient for regionW,

which has a p value of 0.05.

For model 3 (with interaction terms), the R squared value increased slightly to 0.2073. Only the coe�cient

for log(crimes) is statistically significant with a low p-value. The rest of the coe�cients including all the

interactions terms have a high p value.

There seems to be a fairly positive correlation between log(per.cap.income) and log(crimes). For a unit

percentage increase in crimes, you would get approximately a 0.07% increase in the per.cap.income. This

interpretation is possible since we decided to log transform both the response and predictor variable.
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Let us now take a look at the residual diagnostic plots for the three models, to see if the models are valid.
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Starting from the top-left plot of Residuals vs Fitted, we can observe that the residuals are not too far

from 0. Also, the residuals do not seem to have a distinct shape along the fitted values, and is approximately

equally and randomly spread out around the dashed line. This provides enough evidence that the residuals

have a relatively constant variance.

The top-right Normal Q-Q plot shows that the residuals seem to follow a straight line without much

deviations, except that it has a heavy right tail and a heavy left tail. We can say that the residuals do not

deviate heavily from a normal distribution.

The bottom-left plot of


|Standardized Residuals| vs Fitted, shows that the residuals are spread

approximately equally along the ranges of the predictor. The line is relatively horizontal and does not show

any specific shape. The residuals are also fairly randomly spread out, suggesting constant error variance.

Finally, the bottom-right plot of Residuals vs Leverage shows that there are no points that lie outside the
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dashed Cook’s distance line, suggesting that there are no highly influential points that strongly a�ect the

model. But we do see a few points with standardized residuals absolute value of 2 or higher, suggesting that

there are some outliers that we may need to look at closer. I would particularly take a closer look at data

point 6, as it is a high leverage point and an outlier.

Below is the residual diagnostic plot for the model with the interaction terms.
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Model with additive region

The residual diagnostic plots do not show much of a di�erence compared to that of the model with-

out interaction terms. Residuals seem to have relatively constant variance, QQ plot shows that the

residuals are fairly normal around the center but is has quite a heavy right tail and a slightly heavy

left tail. Finally, we see a few outliers where the standardized residuals have values larger than the ab-

solute value of 2, but in general we do not see any extreme/highly influential points outside the Cook’s distance.

Now lets look at the residual diagnostic plot for the model with the interaction terms.
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Model with additive region and interaction terms

Overall, all three models seem to be fairly valid especially since they conform to the key

assumption for linear regression of constant error variance, but they do have some limitations

as well. To really justify the use of the additive and interaction terms, I will be taking a look at the F-tests

to compare the models.

Below is the result of the F-test. It looks like Model 2 (“additive” model with no interaction terms) is

statistically significant with low p-value, and is doing the best. As a result, I will not be using the interaction

terms in my model, but will still use region as an additive term.

## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(crimes)
## Model 2: log(per.cap.income) ~ log(crimes) + region
## Model 3: log(per.cap.income) ~ log(crimes) * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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Using model 2 as our optimal model, we can interpret the following: * All across the U.S, for every 1%

increase in crimes, we expect an increase in 0.07% increase in per capita income. * Di�erent regions of

the country have di�erent baselines for per capita income. NC region has exp(9.19) = $9798.65, NE has

exp(9.19 + 0.010) = $10829.18, and so forth. S has $8955.29, and W has $9228.02. All of the region baselines

are, according to the model, significantly di�erent from the NC baseline.

Per capita crimes

I will now attempt to see whether my answer changes when I change the crimes variable to “per-capita

crimes” (number of crimes / population). I will first make a new column describing “per-capita crimes”.

cdi <- cdi %>%
mutate(

per.cap.crimes = crimes / pop
)

Next, I will fit the 3 models (with additive, with interaction terms ) again:

income_fit4 <- lm(log(per.cap.income) ~ log(per.cap.crimes), cdi)
income_fit5 <- lm(log(per.cap.income) ~ log(per.cap.crimes) + region, cdi)
income_fit6 <- lm(log(per.cap.income) ~ log(per.cap.crimes)*region, cdi )

Similar to before, let us start by looking at the summaries of both models:

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.cap.crimes), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7058 -0.1242 -0.0221 0.1066 0.7210
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.73510 0.05908 164.765 <2e-16 ***
## log(per.cap.crimes) -0.02417 0.01959 -1.233 0.218
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.2066 on 438 degrees of freedom
## Multiple R-squared: 0.003461, Adjusted R-squared: 0.001186
## F-statistic: 1.521 on 1 and 438 DF, p-value: 0.2181

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.cap.crimes) + region,
## data = cdi)
##

13



## Residuals:
## Min 1Q Median 3Q Max
## -0.65832 -0.11431 -0.01548 0.10838 0.75657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.93628 0.06934 143.303 < 2e-16 ***
## log(per.cap.crimes) 0.04243 0.02148 1.975 0.04885 *
## regionNE 0.11457 0.02760 4.151 3.99e-05 ***
## regionS -0.07456 0.02624 -2.841 0.00471 **
## regionW -0.02426 0.03002 -0.808 0.41952
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1974 on 435 degrees of freedom
## Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814
## F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.cap.crimes) * region,
## data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65410 -0.11829 -0.01708 0.10399 0.76628
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.91177 0.10503 94.367 <2e-16 ***
## log(per.cap.crimes) 0.03454 0.03327 1.038 0.300
## regionNE 0.21007 0.17165 1.224 0.222
## regionS -0.10137 0.16072 -0.631 0.529
## regionW 0.07689 0.26753 0.287 0.774
## log(per.cap.crimes):regionNE 0.02924 0.05232 0.559 0.577
## log(per.cap.crimes):regionS -0.01104 0.05554 -0.199 0.843
## log(per.cap.crimes):regionW 0.03495 0.09268 0.377 0.706
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.198 on 432 degrees of freedom
## Multiple R-squared: 0.09773, Adjusted R-squared: 0.08311
## F-statistic: 6.685 on 7 and 432 DF, p-value: 1.575e-07

Overall, the R squared values decreased significantly compared to the models using the raw crimes predictor

variable. We also notice that for the second model (with additive), the coe�cient for the log(per.cap.crimes)
variable was very close to being not statistically significant. This suggests that the model became more

reliant on the dummy variables rather than the crime rate variable. For the third model (with interaction

terms), we see that none of the coe�cients are statistically significant. The residual standard error for

the models also show an overall increase when compared to the previous 3 models using the raw crimes variable.

Now, lets look at the residual diagnostic plots for the three models to assess their validity:
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Model with interaction terms

All three models have similar residual diagnostic plots. Starting from the top-left plot of Residuals vs

Fitted, we can observe that the residuals are not too far from 0. Also, the residuals are approximately

equally and randomly spread out around the dashed line. But we do see that the residuals are shaped into 3

distinct groups. This provides enough evidence to question the validity of the model although the residuals

have constant variance.

The top-right Normal Q-Q plot shows that the residuals seem to follow a straight line except for the heavy

right tail. This suggests that the residuals show no big departures from normality.

The bottom-left plot of


|Standardized Residuals| vs Fitted, shows that the standardized residuals are

spread approximately equally along the ranges of the predictor. But similar to before, we can observe a

distinct shape of the standardized residual, seemingly grouped into 3 distinct categories (probably due to the

region dummy variables being significant).

Finally, the bottom-right plot of Residuals vs Leverage shows that there are no points that lie outside the

dashed Cook’s distance line, suggesting that there are no highly influential points that strongly a�ect the

model. But we do see several points with standardized residuals absolute value of 2 or higher, suggesting

that there are some outliers that we may need to look at closer.

To conclude, the three new models do not show a significant change in terms of the residual diagnostic plots

(except for the 3 groups shown in the residual plots), and could be considered fairly valid due to its constant

error variance. The coe�cient for per.cap.crimes seem to be no longer highly significant as before and the

residual standard error has increased when compared to the model using the raw crimes variable. Changing
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crimes to per.cap.crimes is not a good idea. But I would actually use the human intuition that using Per

Capita Crimes could be better, since our response variable is Per Capita Income. It would make sense to be

consistent with the response variable and use Per Capita Crimes, and this would especially be easier to

interpret when explaining to clients or collaborators. Also, since we are only looking at two variables right

now (crimes and region), I would be more willing to accept the tradeo� and follow what the statistical result

is telling me.

Let us use AIC and BIC to compare between Model 2 and Model 5 to see if this is true.

AIC(income_fit2, income_fit5)

## df AIC
## income_fit2 6 -227.4746
## income_fit5 6 -172.1347

BIC(income_fit2, income_fit5)

## df BIC
## income_fit2 6 -202.9539
## income_fit5 6 -147.6140

It turns out that model 2 is still better with smaller AIC and BIC values.

My final model would use per.cap.crimes and not include any interaction terms.

Research question 3

I will be dropping the id, county and state column and will be focusing on the rest of the 13 predictor

variables. id column is just an incremented number from 1 to 440, county also has 373 unique values, which

makes it not desirable to have when doing regression analysis. I also chose to exclude state for now as it has

48 unique values and thought it wouldn’t add much to explaining the variability of our response variable as

much as the other predictors could.

cdi_new <- read.table("/Users/lee14257/Desktop/CMU MSP/Applied Linear Models/HW/hw06/cdi.dat") %>%
as_tibble() %>%
dplyr::select(c(-id, -county, -state)) %>%
dplyr::select(per.cap.income, everything())

Transformations of variables

Let us revisit the histograms I generated for non-dummy variables in Research question 1
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A lot of the variables seem to be skewed to the right, while some seem to be either slightly skewed or

relatively normally distributed. I will be performing log transformations for those variables that are skewed,

but will leave the others as is. It is easier to explain logarithmic transformations to a social scientist in terms

of percentage-change concepts. The more untransformed the variables are, the easier it will be for the social

scientist to think about the models I present. I will perform log transformations on the variables below:

* per.cap.income * land.area * pop * doctors * hosp.beds * crimes * pct.below.pov * tot.income

# Transform the variables

cdi_transformed <- cdi_new

skewed.vars <- c("per.cap.income","land.area", "pop", "doctors", "hosp.beds", "crimes", "tot.income","pct.below.pov")

for (tmp in skewed.vars) {
loc <- grep(paste("ˆ",tmp,"$",sep=""),names(cdi_transformed))
cdi_transformed[,loc] <- log(cdi_transformed[,loc])
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names(cdi_transformed)[loc] <- paste("log.",names(cdi_transformed)[loc],sep="")
}

Let us take another look at the histogram plot for the variables below. It seems like a lot of the

skewings have been improved except for log.pop and log.tot.income. Note that I will not be using log.pop
nor log.tot.income, since our response variable per.cap.income is a deterministic function of pop and tot.income.
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Let us quickly check the correlation matrix heatmap again to see if anything changed. The correlations seem

to be similar, but a bit stronger than the correlations for untransformed variables.
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Fitting best model

Let us now fit a full model including all the variables including the region categorical variable (changed

to factor). Note that I have excluded the log.pop and log.tot.income variables since log.per.cap.income is a

deterministic function of the two variables, and we won’t be able to learn about anything associated with

log.per.cap.income with these predictors included. The summary can be seen below. We can see that the R

squared value is 0.8394, meaning that 83.94% of the total variability of the response variable can be explained

by the model. It also seems like some predictors are statistically significant with low p values, while some are

not significant. Predictors like pct.hs.grad and pct.unemp seem to have the wrong coe�cients with opposite

signs. These are signs that variable selection methodologies would help.
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cdi_transformed <- cdi_transformed %>%
dplyr::select(-log.pop, -log.tot.income)

full_cdi_model1 <- lm(log.per.cap.income ~ ., data = cdi_transformed)
summary(full_cdi_model1)

##
## Call:
## lm(formula = log.per.cap.income ~ ., data = cdi_transformed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36144 -0.04299 -0.00126 0.04709 0.30283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.190127 0.117672 86.598 < 2e-16 ***
## log.land.area -0.036627 0.005606 -6.533 1.84e-10 ***
## pop.18_34 -0.011184 0.001430 -7.823 4.11e-14 ***
## pop.65_plus 0.001334 0.001427 0.934 0.35060
## log.doctors 0.036404 0.013732 2.651 0.00833 **
## log.hosp.beds 0.024767 0.013912 1.780 0.07575 .
## log.crimes 0.006864 0.009263 0.741 0.45913
## pct.hs.grad -0.002179 0.001130 -1.927 0.05462 .
## pct.bach.deg 0.012531 0.001097 11.424 < 2e-16 ***
## log.pct.below.pov -0.206448 0.013262 -15.566 < 2e-16 ***
## pct.unemp 0.005502 0.002432 2.262 0.02418 *
## regionNE -0.002301 0.013158 -0.175 0.86128
## regionS -0.027867 0.012760 -2.184 0.02952 *
## regionW 0.007510 0.016292 0.461 0.64507
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.08409 on 426 degrees of freedom
## Multiple R-squared: 0.8394, Adjusted R-squared: 0.8345
## F-statistic: 171.3 on 13 and 426 DF, p-value: < 2.2e-16

Multicollinearity and VIF

My initial hypothesis is that there would be highly collinear predictor variables in our full model, and that

some of them would have to be dropped. Let us first look at the Variance Inflation Factors (VIF) for each of

the predictors below.
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## log.land.area pop.18_34 pop.65_plus log.doctors
## 1.4826 2.2287 2.0155 15.3220
## log.hosp.beds log.crimes pct.hs.grad pct.bach.deg
## 12.0950 6.2380 3.9041 4.3764
## log.pct.below.pov pct.unemp regionNE regionS
## 3.0729 2.0074 1.9315 2.2908
## regionW
## 2.3844

Looking at the VIF’s, the model seems to su�er from multicollinearity with some predictors having large

variance inflation factors. A number of these variance inflation factors exceed 5, the cut-o� often used, and so

the associated regression coe�cients are poorly estimated due to multicollinearity.

The predictors log.doctors and log.hosp.beds also have fairly high VIF values of 15.3 and 12.1 respectively. This

also makes sense because the more doctors you have in a county, the more hospital beds you would expect to see.

The model su�ers from multicollinearity, but is not too bad as originally thought. It would however make

sense to carry out variable selection methodologies to select the best variables for the model. Note that the

categorical predictor region is not considered for now, because none of our variable selection methods are

capable of dealing with the group of indicator variables associated with a categorical variable. I will come

back to this variable later.

Variable Selection - All Subsets

After removing region from the data, we end up with 10 total predictor variables along with the response

variable log.per.cap.income.

region_var <- cdi_transformed$region

cdi_transformed <- cdi_transformed %>%
dplyr::select(-region)

names(cdi_transformed)

## [1] "log.per.cap.income" "log.land.area" "pop.18_34"
## [4] "pop.65_plus" "log.doctors" "log.hosp.beds"
## [7] "log.crimes" "pct.hs.grad" "pct.bach.deg"
## [10] "log.pct.below.pov" "pct.unemp"

# Fit new model with the existing variables

full_cdi_model2 <- lm(log.per.cap.income ~ ., data=cdi_transformed)

All subsets

I will first try out the all subsets method. In the plot, the dark squares indicate which variables are in the

model that has the BIC values on the left. The darker the squares, the better the model.
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all_subsets_1 <- regsubsets(log.per.cap.income ~ ., data=cdi_transformed,nvmax=10)
plot(all_subsets_1)
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Below we can see that the all subsets method chose 6 variables that gave the lowest BIC. We can see the

coe�cients for each of the variables chosen.

all_subsets_1.summary <- summary(all_subsets_1)
all_subsets_1.summary$bic

## [1] -284.6733 -593.3658 -624.5119 -697.5023 -739.1367 -747.6815 -746.1704
## [8] -741.1124 -735.3797 -729.2930

tmp <- cdi_transformed %>% dplyr::select(-log.per.cap.income)
min(all_subsets_1.summary$bic)

## [1] -747.6815

print(best.model <- which.min(all_subsets_1.summary$bic))

## [1] 6

coef(all_subsets_1,best.model)

## (Intercept) log.land.area pop.18_34 log.doctors
## 10.095545110 -0.036212594 -0.012026824 0.067772351
## pct.bach.deg log.pct.below.pov pct.unemp
## 0.010523423 -0.197474797 0.008109587

cdi_transformed_allsubsets <- tmp[,all_subsets_1.summary$which[best.model,][-1]]

Let us explore the summary for these coe�cients when fit to a new model below. All coe�cients seem to be

statistically significant with low p values. The coe�cient estimates themselves are quite small, and pct.unemp
still seems to have the wrong sign.
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all_subsets_model <- lm(log.per.cap.income ~ log.land.area + pop.18_34 +
log.doctors + pct.bach.deg + log.pct.below.pov +
pct.unemp, data=cdi_transformed)

summary(all_subsets_model)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.095545110 0.0516863528 195.323225 0.000000e+00
## log.land.area -0.036212594 0.0048198661 -7.513195 3.336311e-13
## pop.18_34 -0.012026824 0.0011883729 -10.120413 9.445833e-22
## log.doctors 0.067772351 0.0041934269 16.161567 2.586913e-46
## pct.bach.deg 0.010523423 0.0008860605 11.876641 2.352204e-28
## log.pct.below.pov -0.197474797 0.0100936858 -19.564191 1.560595e-61
## pct.unemp 0.008109587 0.0021194105 3.826341 1.492036e-04

Let us take another look at the VIF for each variables. None of the variables seem to have an excessively

large value.

vif(all_subsets_model)

## log.land.area pop.18_34 log.doctors pct.bach.deg
## 1.0778 1.5145 1.4052 2.8085
## log.pct.below.pov pct.unemp
## 1.7505 1.4990

Now lets look at the residual diagnostic plots. Except for the fact that the normal Q-Q plot shows that the

left and right tails are a little bit heavy, the rest of the plots seem to be ok.
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Next, let us take a look at the standardized residual plots against each of the predictor variables below.We

notice that the residuals for all the of the plots are relatively randomly scattered. This is good evidence that

the model is valid.

## The following objects are masked from cdi_transformed (pos = 3):
##
## log.crimes, log.doctors, log.hosp.beds, log.land.area,
## log.pct.below.pov, log.per.cap.income, pct.bach.deg, pct.hs.grad,
## pct.unemp, pop.18_34, pop.65_plus
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Next, let us look at the added variable plot below. The added variable plots indicate that linear models would

be appropriate and all the predictors are important, when adjusted for the e�ects of the other predictors.

This further indicates that the model is valid.

## The following objects are masked from cdi_transformed (pos = 3):
##
## log.crimes, log.doctors, log.hosp.beds, log.land.area,
## log.pct.below.pov, log.per.cap.income, pct.bach.deg, pct.hs.grad,
## pct.unemp, pop.18_34, pop.65_plus

## The following objects are masked from cdi_transformed (pos = 4):
##
## log.crimes, log.doctors, log.hosp.beds, log.land.area,
## log.pct.below.pov, log.per.cap.income, pct.bach.deg, pct.hs.grad,
## pct.unemp, pop.18_34, pop.65_plus
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We can also take a look at the marginal plots. The plots all look good, as we can see the blue curved lines

tend to line up well with the red dashed model-based curves.
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Lastly, we can check if adding back the region variable helps in any way. We will be keeping the categorical

variable if any indicators for the categorical variable is statistically significant. If none is significant, I will be

dropping the whole variable. As a result:

* Keep: region, region:pct.below.pov, region:pct.unemp

• Drop: region:log.land.area, region:pop.18_34, region:log.doctors, region:pct.bach.deg

cdi_transformed_allsubsets <- cbind(cdi_transformed_allsubsets, log.per.cap.income = cdi_transformed$log.per.cap.income)
tmp <- cbind(cdi_transformed_allsubsets,region=cdi$region)
all_subsets_model_with_region <- lm(log.per.cap.income ~ .*region,data=tmp)
summary(all_subsets_model_with_region)

##
## Call:
## lm(formula = log.per.cap.income ~ . * region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33212 -0.04534 -0.00384 0.04414 0.34554
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.9858194 0.1251014 79.822 < 2e-16 ***
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## log.land.area -0.0230428 0.0153531 -1.501 0.13416
## pop.18_34 -0.0127476 0.0028646 -4.450 1.11e-05 ***
## log.doctors 0.0537441 0.0091796 5.855 9.77e-09 ***
## pct.bach.deg 0.0112314 0.0023924 4.695 3.64e-06 ***
## log.pct.below.pov -0.1554738 0.0250420 -6.209 1.31e-09 ***
## pct.unemp 0.0146486 0.0050548 2.898 0.00396 **
## regionNE 0.1183333 0.1870451 0.633 0.52732
## regionS 0.3339204 0.1555420 2.147 0.03239 *
## regionW -0.1049334 0.1831194 -0.573 0.56694
## log.land.area:regionNE -0.0198535 0.0197240 -1.007 0.31474
## log.land.area:regionS -0.0182742 0.0178437 -1.024 0.30638
## log.land.area:regionW -0.0007866 0.0187013 -0.042 0.96647
## pop.18_34:regionNE -0.0012844 0.0040299 -0.319 0.75010
## pop.18_34:regionS -0.0025245 0.0033247 -0.759 0.44811
## pop.18_34:regionW 0.0044403 0.0044363 1.001 0.31746
## log.doctors:regionNE 0.0068329 0.0133119 0.513 0.60802
## log.doctors:regionS 0.0105406 0.0116884 0.902 0.36769
## log.doctors:regionW 0.0209585 0.0130712 1.603 0.10961
## pct.bach.deg:regionNE 0.0031476 0.0032855 0.958 0.33862
## pct.bach.deg:regionS -0.0012692 0.0027056 -0.469 0.63923
## pct.bach.deg:regionW 0.0003701 0.0032104 0.115 0.90827
## log.pct.below.pov:regionNE -0.0211976 0.0366029 -0.579 0.56282
## log.pct.below.pov:regionS -0.0067038 0.0297971 -0.225 0.82210
## log.pct.below.pov:regionW -0.0914301 0.0412887 -2.214 0.02735 *
## pct.unemp:regionNE -0.0036546 0.0077360 -0.472 0.63688
## pct.unemp:regionS -0.0313720 0.0066655 -4.707 3.44e-06 ***
## pct.unemp:regionW 0.0018297 0.0062413 0.293 0.76954
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.08054 on 412 degrees of freedom
## Multiple R-squared: 0.8576, Adjusted R-squared: 0.8482
## F-statistic: 91.87 on 27 and 412 DF, p-value: < 2.2e-16
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Thus we arrive at the following model. All the main e�ects and interaction terms that involve region have at

least one significant term and the R squared (0.85) and residual standard error did not change too much.

all_subsets_model_with_some_region <- update(all_subsets_model_with_region,
. ~ . - region:log.land.area -

region:pop.18_34 - region:log.doctors -
region:pct.bach.deg)

summary(all_subsets_model_with_some_region)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.bach.deg + log.pct.below.pov + pct.unemp +
## region + log.pct.below.pov:region + pct.unemp:region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37137 -0.04631 -0.00436 0.04248 0.35086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.001e+01 6.595e-02 151.841 < 2e-16 ***
## log.land.area -3.423e-02 5.498e-03 -6.227 1.15e-09 ***
## pop.18_34 -1.295e-02 1.167e-03 -11.095 < 2e-16 ***
## log.doctors 6.597e-02 4.133e-03 15.960 < 2e-16 ***
## pct.bach.deg 1.079e-02 8.874e-04 12.157 < 2e-16 ***
## log.pct.below.pov -1.668e-01 1.944e-02 -8.579 < 2e-16 ***
## pct.unemp 1.569e-02 4.266e-03 3.678 0.000265 ***
## regionNE 1.172e-01 5.038e-02 2.326 0.020509 *
## regionS 1.503e-01 4.669e-02 3.218 0.001388 **
## regionW 1.525e-01 6.177e-02 2.468 0.013972 *
## log.pct.below.pov:regionNE -3.723e-02 2.658e-02 -1.401 0.162087
## log.pct.below.pov:regionS -1.069e-05 2.294e-02 0.000 0.999628
## log.pct.below.pov:regionW -7.733e-02 3.459e-02 -2.235 0.025919 *
## pct.unemp:regionNE -7.459e-03 6.964e-03 -1.071 0.284734
## pct.unemp:regionS -2.835e-02 5.543e-03 -5.114 4.78e-07 ***
## pct.unemp:regionW -5.860e-04 5.418e-03 -0.108 0.913929
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.08119 on 424 degrees of freedom
## Multiple R-squared: 0.851, Adjusted R-squared: 0.8457
## F-statistic: 161.5 on 15 and 424 DF, p-value: < 2.2e-16

Now lets compare the original model with 6 variables generated from all subsets, and our model with region

interaction terms involved. We will use ANOVA F test, AIC and BIC values. The F test suggests that the

model with some region interaction terms is statistically significant, and is worth to add these terms rather

than the base model.

# ANOVA

all_subsets_model_add_region <- lm(log.per.cap.income ~ log.land.area + pop.18_34 +
log.doctors + pct.bach.deg + log.pct.below.pov +
pct.unemp + region, data=tmp)
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anova(all_subsets_model, all_subsets_model_add_region, all_subsets_model_with_some_region)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp + region
## Model 3: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp + region + log.pct.below.pov:region +
## pct.unemp:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 3.1134
## 2 430 3.0760 3 0.03739 1.8905 0.1305
## 3 424 2.7952 6 0.28082 7.0994 3.2e-07 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

# AIC comparison

AIC(all_subsets_model, all_subsets_model_add_region, all_subsets_model_with_some_region)

## df AIC
## all_subsets_model 8 -913.7973
## all_subsets_model_add_region 11 -913.1134
## all_subsets_model_with_some_region 17 -943.2351

# BIC comparison

BIC(all_subsets_model, all_subsets_model_add_region, all_subsets_model_with_some_region)

## df BIC
## all_subsets_model 8 -881.1031
## all_subsets_model_add_region 11 -868.1589
## all_subsets_model_with_some_region 17 -873.7599

We can see that ANOVA (F test) and AIC favor the model with the additive region and some inter-

actions included. But BIC favors the first model without region, because BIC tends to favor simpler

models (it goes for parsimonious explanatory model rather than predictive model). I would say that

all_subsets_model_with_some_region is the optimal choice here.

Variable Selection - Stepwise Regression

Now, I will attempt to carry out Stepwise Regression in both directions (backward elimination and forward

selection) using BIC as the information criterion.

# Stepwise

n=dim(cdi)[1]
stepwise_BIC_cdi <- stepAIC(full_cdi_model2, direction = "both", k=log(n))
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## Start: AIC=-2117.47
## log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + log.hosp.beds + log.crimes + pct.hs.grad +
## pct.bach.deg + log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## - log.crimes 1 0.00000 3.0715 -2123.6
## - pop.65_plus 1 0.00228 3.0738 -2123.2
## - pct.hs.grad 1 0.00693 3.0785 -2122.6
## - log.hosp.beds 1 0.02872 3.1003 -2119.5
## <none> 3.0715 -2117.5
## - log.doctors 1 0.08411 3.1557 -2111.7
## - pct.unemp 1 0.08441 3.1560 -2111.6
## - log.land.area 1 0.31856 3.3901 -2080.1
## - pop.18_34 1 0.46483 3.5364 -2061.6
## - pct.bach.deg 1 0.88030 3.9518 -2012.7
## - log.pct.below.pov 1 2.23344 5.3050 -1883.1
##
## Step: AIC=-2123.55
## log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + log.hosp.beds + pct.hs.grad + pct.bach.deg +
## log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## - pop.65_plus 1 0.00247 3.0740 -2129.3
## - pct.hs.grad 1 0.00693 3.0785 -2128.7
## - log.hosp.beds 1 0.02908 3.1006 -2125.5
## <none> 3.0715 -2123.6
## - pct.unemp 1 0.08492 3.1565 -2117.6
## + log.crimes 1 0.00000 3.0715 -2117.5
## - log.doctors 1 0.10550 3.1770 -2114.8
## - log.land.area 1 0.32228 3.3938 -2085.7
## - pop.18_34 1 0.46596 3.5375 -2067.5
## - pct.bach.deg 1 0.88809 3.9596 -2017.9
## - log.pct.below.pov 1 2.26551 5.3371 -1886.5
##
## Step: AIC=-2129.29
## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## log.hosp.beds + pct.hs.grad + pct.bach.deg + log.pct.below.pov +
## pct.unemp
##
## Df Sum of Sq RSS AIC
## - pct.hs.grad 1 0.00720 3.0812 -2134.3
## - log.hosp.beds 1 0.03324 3.1073 -2130.6
## <none> 3.0740 -2129.3
## + pop.65_plus 1 0.00247 3.0715 -2123.6
## + log.crimes 1 0.00020 3.0738 -2123.2
## - pct.unemp 1 0.08620 3.1602 -2123.2
## - log.doctors 1 0.10338 3.1774 -2120.8
## - log.land.area 1 0.32972 3.4037 -2090.5
## - pop.18_34 1 0.70581 3.7798 -2044.4
## - pct.bach.deg 1 0.88757 3.9616 -2023.8
## - log.pct.below.pov 1 2.26830 5.3423 -1892.2
##
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## Step: AIC=-2134.34
## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## log.hosp.beds + pct.bach.deg + log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## - log.hosp.beds 1 0.03221 3.1134 -2135.9
## <none> 3.0812 -2134.3
## + pct.hs.grad 1 0.00720 3.0740 -2129.3
## + pop.65_plus 1 0.00274 3.0785 -2128.7
## + log.crimes 1 0.00018 3.0810 -2128.3
## - log.doctors 1 0.10822 3.1894 -2125.2
## - pct.unemp 1 0.11531 3.1965 -2124.3
## - log.land.area 1 0.37266 3.4539 -2090.2
## - pop.18_34 1 0.71435 3.7956 -2048.7
## - pct.bach.deg 1 0.99368 4.0749 -2017.4
## - log.pct.below.pov 1 2.67750 5.7587 -1865.3
##
## Step: AIC=-2135.86
## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## <none> 3.1134 -2135.9
## + log.hosp.beds 1 0.03221 3.0812 -2134.3
## + pop.65_plus 1 0.00694 3.1065 -2130.8
## + pct.hs.grad 1 0.00617 3.1073 -2130.6
## + log.crimes 1 0.00000 3.1134 -2129.8
## - pct.unemp 1 0.10527 3.2187 -2127.3
## - log.land.area 1 0.40588 3.5193 -2088.0
## - pop.18_34 1 0.73646 3.8499 -2048.5
## - pct.bach.deg 1 1.01423 4.1277 -2017.9
## - log.doctors 1 1.87809 4.9915 -1934.3
## - log.pct.below.pov 1 2.75216 5.8656 -1863.3

anova(all_subsets_model, stepwise_BIC_cdi)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 3.1134
## 2 433 3.1134 0 0

Below are the predictor variables that the stepwise procedure selected. We can see that stepwise regression

using BIC chose the same variables as the all subsets method did. All predictors are statistcally significant

with low p values.

summary(stepwise_BIC_cdi)

##
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## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.bach.deg + log.pct.below.pov + pct.unemp,
## data = cdi_transformed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36433 -0.04268 -0.00228 0.04802 0.29399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.0955451 0.0516864 195.323 < 2e-16 ***
## log.land.area -0.0362126 0.0048199 -7.513 3.34e-13 ***
## pop.18_34 -0.0120268 0.0011884 -10.120 < 2e-16 ***
## log.doctors 0.0677724 0.0041934 16.162 < 2e-16 ***
## pct.bach.deg 0.0105234 0.0008861 11.877 < 2e-16 ***
## log.pct.below.pov -0.1974748 0.0100937 -19.564 < 2e-16 ***
## pct.unemp 0.0081096 0.0021194 3.826 0.000149 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.0848 on 433 degrees of freedom
## Multiple R-squared: 0.8341, Adjusted R-squared: 0.8318
## F-statistic: 362.7 on 6 and 433 DF, p-value: < 2.2e-16

cat("\nR2 = ",summary(stepwise_BIC_cdi)$r.squared)

##
## R2 = 0.8340571

cat("\nR2adj = ",summary(stepwise_BIC_cdi)$adj.r.squared)

##
## R2adj = 0.8317576

Now lets look at a model using stepwise BIC with two way interaction terms considered, and compare the

results with the all subsets and previous stepwise BIC we explored. It seems like the AIC and BIC for the

stepwise BIC with interaction terms is the lowest.

stepwise_BIC_cdi_interactions <- stepAIC(full_cdi_model2,scope=list(lower = ~ 1, upper = ~ .ˆ2),
k=log(dim(cdi_transformed)[1]), ## BIC penalty.
trace=F)

comparison <- cbind(
AIC(all_subsets_model,stepwise_BIC_cdi,stepwise_BIC_cdi_interactions),
BIC(all_subsets_model,stepwise_BIC_cdi,stepwise_BIC_cdi_interactions))
comparison <- comparison[,-3]
names(comparison) <- c("df","AIC","BIC")
comparison %>% kbl(booktabs=T) %>% kable_classic()
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df AIC BIC

all_subsets_model 8 -913.7973 -881.1031

stepwise_BIC_cdi 8 -913.7973 -881.1031

stepwise_BIC_cdi_interactions 18 -1067.1890 -993.6271

Lets now look at the stepwise BIC model with two way interaction to see if it is actually worth to include

two way interaction terms.

round(summary(stepwise_BIC_cdi_interactions)$coef,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.78 0.36 32.35 0.00
## log.land.area 0.10 0.03 3.03 0.00
## pop.18_34 -0.03 0.01 -5.24 0.00
## pop.65_plus -0.03 0.00 -10.01 0.00
## log.doctors -0.05 0.03 -1.68 0.09
## log.hosp.beds 0.00 0.02 0.04 0.97
## pct.hs.grad -0.02 0.00 -8.38 0.00
## pct.bach.deg 0.02 0.00 5.02 0.00
## log.pct.below.pov -0.65 0.12 -5.21 0.00
## pct.unemp 0.01 0.00 5.12 0.00
## pop.65_plus:pct.bach.deg 0.00 0.00 9.71 0.00
## pct.hs.grad:log.pct.below.pov 0.01 0.00 8.02 0.00
## pct.bach.deg:log.pct.below.pov 0.00 0.00 -4.03 0.00
## log.land.area:log.pct.below.pov -0.04 0.01 -3.86 0.00
## log.land.area:pct.bach.deg 0.00 0.00 -2.61 0.01
## pop.18_34:log.doctors 0.00 0.00 2.61 0.01
## log.hosp.beds:log.pct.below.pov 0.02 0.01 2.47 0.01

cat("\nR2 = ",summary(stepwise_BIC_cdi_interactions)$r.squared)

##
## R2 = 0.8881038

cat("\nR2adj = ",summary(stepwise_BIC_cdi_interactions)$adj.r.squared)

##
## R2adj = 0.8838713

Although there is a decrease in AIC and BIC as well as increase in R squared value, I woul still be disinclined

to include the interaction terms, since the improvement is pretty small compared to all the variables and

interaction terms added to the model. It would be worth to discuss this with the social scientist, but would

also be hard to explain the meaning behind these interaction terms.

Since the stepwise BIC regression came up with the same predictors as all subsets did, we will get the same

results when considering the region categorical variable. We would end up with the all subsets model with

some significant region interaction terms involved (all_subsets_model_with_some_region).
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Variable Selection - LASSO regression

Let us try another variable selection method called LASSO regression. Note that the variable region was

removed since LASSO cannot make use of categorical variables.

set.seed(1000)
#cdi_transformed_num <- cdi_transformed %>%

#dplyr::select(-region)

#mutate(region = as.numeric(region))

x.full_cdi <- as.matrix(cdi_transformed[,-1])
y.full_cdi <- as.matrix(cdi_transformed[,1])
fit.lasso_cdi <- glmnet(x.full_cdi, y.full_cdi)

The plot shows how many non-zero variables are in the model at the top. So at a log Lambda of -4, the

model has 5 variables.

plot(fit.lasso_cdi, xvar="lambda", label=T)
abline(h=0, lty=2)
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Below is the plot of MSE vs Log Lambda.

result_cdi <- cv.glmnet(x.full_cdi, y.full_cdi)
plot(result_cdi)
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lambda.min, the best value found by cross-validation and lambda.1se, which is the value of lambda that is

one SE larger than lambda.min, is seen below. I will be using lambda.1se of 0.0097 since it can protect

against capitalization on chance.

c(lambda.1se = result_cdi$lambda.1se, lambda.min = result_cdi$lambda.min)

## lambda.1se lambda.min
## 0.009740676 0.002003182

Below we can see the variable selection results using LASSO and the lambda value I chose (lambda.1se) vs

lambda.min.

tmp <- cbind(coef(result_cdi, s=result_cdi$lambda.min), coef(result_cdi, s=result_cdi$lambda.1se))
dimnames(tmp)[[2]] <- c("lambda(minMSE)","lambda(minMSE+1se)")
tmp

## 11 x 2 sparse Matrix of class "dgCMatrix"
## lambda(minMSE) lambda(minMSE+1se)
## (Intercept) 10.0271525139 10.0272981586
## log.land.area -0.0325044714 -0.0242271305
## pop.18_34 -0.0107392687 -0.0081926462
## pop.65_plus 0.0007238627 0.0001013881
## log.doctors 0.0506163765 0.0629713628
## log.hosp.beds 0.0180587422 .
## log.crimes . .
## pct.hs.grad . .
## pct.bach.deg 0.0105312491 0.0078837697
## log.pct.below.pov -0.2003705751 -0.1885968546
## pct.unemp 0.0063668044 .

38



Below is the summary of the resulting model using variables selected from LASSO. It looks like the R squared

value is still high with a value of 0.833, and the residual standard error is relatively small. All predictor

coe�cients except for pop.65_plus is statistically significant with low p values.

full_cdi_model_lasso <- lm(log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus + log.doctors +
pct.bach.deg + log.pct.below.pov, data = cdi_transformed)

summary(full_cdi_model_lasso)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## pop.65_plus + log.doctors + pct.bach.deg + log.pct.below.pov,
## data = cdi_transformed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36564 -0.04698 -0.00367 0.04932 0.30155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1116202 0.0628428 160.903 < 2e-16 ***
## log.land.area -0.0337191 0.0049006 -6.881 2.10e-11 ***
## pop.18_34 -0.0116315 0.0014289 -8.140 4.24e-15 ***
## pop.65_plus 0.0014938 0.0013571 1.101 0.272
## log.doctors 0.0673303 0.0043416 15.508 < 2e-16 ***
## pct.bach.deg 0.0096519 0.0008668 11.135 < 2e-16 ***
## log.pct.below.pov -0.1911802 0.0100990 -18.931 < 2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.0861 on 433 degrees of freedom
## Multiple R-squared: 0.8289, Adjusted R-squared: 0.8266
## F-statistic: 349.7 on 6 and 433 DF, p-value: < 2.2e-16

Let us now compare the predictors selected from stepwise method and LASSO.

## # A tibble: 10 x 3
## Variables stepwise_final LASSO
## <chr> <int> <int>
## 1 log.land.area 1 1
## 2 pop.18_34 1 1
## 3 pop.65_plus 0 1
## 4 log.doctors 1 1
## 5 log.hosp.beds 0 0
## 6 log.crimes 0 0
## 7 pct.hs.grad 0 0
## 8 pct.bach.deg 1 1
## 9 log.pct.below.pov 1 1
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## 10 pct.unemp 1 0

allsubset_lasso_common_model<-lm(log.per.cap.income ~ log.land.area + pop.18_34 +
log.doctors + pct.bach.deg +

log.pct.below.pov, cdi_transformed)

We can notice that the all subsets and LASSO regression chose the same 5 variables (log.land.area, pop.18_34,
log.doctors, pct.bach.deg, log.pct.below.pov), except for the fact that LASSO chose to additionally include the

predictor pop.65_plus, while our final stepwise regression model chose pct.unemp instead. We can quickly

perform an ANOVA F test on the models to see which one is the most significant.

anova(allsubset_lasso_common_model, all_subsets_model, full_cdi_model_lasso)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Model 3: log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + pct.bach.deg + log.pct.below.pov
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 434 3.2187
## 2 433 3.1134 1 0.105273 14.641 0.0001492 ***
## 3 433 3.2097 0 -0.096292
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

We can immediately see that our all subsets model with pct.unemp turned out to be more significant. The

predictor pop.65_plus does not add much to the model, so we will stick with our final all subsets model we

have identified before, with the regions categorical variable plus some interaction terms added.

It makes sense that hosp.beds was removed, since it would be highly correlated to the doctors variable.

Interestingly, the variable crimes seemed to be insignificant when predicting the Per Capita Income of a County.

Final model with region variable and assessing validity of model

Looking at the boxplot of Per Capita Income and Region that I produced in part (a), it can easily be seen

that there is some variability and di�erences in per capita income between the di�erence regions. Due to this

I thought that the region variable could add something meaningful to the model and not including it could

make the model su�er from ommitted variable bias. Thus, I chose to include the region categorical variable

in my final model.
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The summary of my final model can be seen below. It looks like the R squared value is around 0.85 and

didn’t change much. Interpretation on the coe�cients will be done in the IMRAD report.

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.014 0.066 151.841 0.000
## log.land.area -0.034 0.005 -6.227 0.000
## pop.18_34 -0.013 0.001 -11.095 0.000
## log.doctors 0.066 0.004 15.960 0.000
## pct.bach.deg 0.011 0.001 12.157 0.000
## log.pct.below.pov -0.167 0.019 -8.579 0.000
## pct.unemp 0.016 0.004 3.678 0.000
## regionNE 0.117 0.050 2.326 0.021
## regionS 0.150 0.047 3.218 0.001
## regionW 0.152 0.062 2.468 0.014
## log.pct.below.pov:regionNE -0.037 0.027 -1.401 0.162
## log.pct.below.pov:regionS 0.000 0.023 0.000 1.000
## log.pct.below.pov:regionW -0.077 0.035 -2.235 0.026
## pct.unemp:regionNE -0.007 0.007 -1.071 0.285
## pct.unemp:regionS -0.028 0.006 -5.114 0.000
## pct.unemp:regionW -0.001 0.005 -0.108 0.914

##
## R2 = 0.8510172

##
## R2adj = 0.8457466
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