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1 Abstract

In this paper we will analyze how average income per person is related to other variables associated with a
county’s economic, health and social well-being. Our data consists of selected county demographic information
for 440 of the most populous counties in the United States. We will develop a model to predict per capita
income from total number of crimes, as well as the best model to predict per capita income from all variables
in the dataset using a variety of methods such as the all subsets method. Models will be compared using
partial F tests and assessed for validity and goodness of fit through diagnostic plots, R? values, VIF’s and BIC
values. Our final models suggest that the relationship between per capita income and total number of crimes
is different in different regions of the country.

2 Introduction

Social scientists are interested in looking at historical county demographic information to learn how average
income per person was related to other variables associated with the county’s economic, health and social
well-being. To provide insight about these relationships, we will answer the following research questions:

1. Looking at the data one pair of variables at a time, which variables seem to be related to which other
variables in the data? Which are not? Are all of the relationships what a reasonable person would expect,
or are there some surprises? Can you explain these findings in terms of the meanings of the variables?

2. There is a theory that, if we ignore all other variables, per-capita income should be related to crime rate,
and that this relationship may be different in different regions of the country (Northeast, North-central,
South, and West). What do the data say? Does it matter if you use number of crimes, or(number of
crimes)/(population), in your analysis?

3. Find the best model predicting per-capita income from the other variables (including possible trans-
formations, interactions, etc.). Here “best” means a good compromise between

* Best reflects the social science and the meaning of the variables
* Best satisfies modeling assumptions
* Is most clearly indicated by the data

¢ Can be explained to someone who is more interested in social, economic and health factors than in
mathematics and statistics.

4. A county is a governmental unit in the United States that is bigger than a city but smaller than a
state.There are 50 states in the US, plus the District of Columbia, which is usually coded as a 51st state
in data like this. There are 48 states represented in the data. There are approximately 3000 counties in
the US, and 373 represented in the data set. Should we be worried about either the missing states or the
missing counties? Why or why not?

3 Data

Our data is taken from Kutneret al. (2005), and consists of selected county demographic information for
440 of the most populous counties in the United States. Counties with missing data were removed from the
dataset. Our dataset contains 17 variables which are defined in Table 1. Our response variable for this analysis
is per capita income. Table 2 contains a summary of the quantitative variables except for identification number
which is not useful in our analysis. Tables 3, 4 and 5 contain summaries of the 3 categorical variables. We note
that the county and state variables contain a large number of unique values (373 and 48, respectively). Thus,
these variables are not very useful and we will exclude them in this analysis.



Variable number Variable name Definition

1 Identification number 1-440
2 County County name
3 State Two-letter state abbreviation
4 Land area Land area (square miles)
5 Total population Estimated 1990 population
6 Percent of population aged 18-34  Percent of 1990 CDI population aged 18-34
7 Percent of population 65 or older Percent of 1990 CDI population aged 65 or older
8 Number of active physicians Number of professionally active nonfederal physi-
cians during 1990
9 Number of hospital beds Total number of beds, cribs and bassinets during
1990
10 Total serious crimes Total number of serious crimes in 1990, including
murder, rape, robbery, aggrevated assault, burglary,
larceny-theft, and motor vehicle theft, as reported
by law enforcement agencies
11 Percent high school graduates Percent of adult population (persons 25 years old
or older) who completed 12 or more years of school
12 Percent bachelor’s degrees Percent of adult population (persons 25 years old
or older) with bachelor’s degree
13 Percent below poverty level Percent of 1990 CDI population with income below
poverty level
14 Percent unemployment Percent of 1990 CDI population that is unemployed
15 Per capita income Per-capita income (i.e. average income per person)
of 1990 CDI population (in dollars)
16 Total personal income Total personal income of 1990 CDI population (in
millions of dollars)
17 Geographic region Geographic region classification used by the US
Bureau of the Census, NE (northeast region of US),
NC (north-central region of the US), S (southern
region of the US), and W (Western region of the
Us)
Table 1: Variable definitions for CDI data from Kutner et al. (2005)
Variable Name Min. 1stQu. Median Mean 3rd Qu. Max.
Land area 15.0 451.2 656.5 1041.4 946.8 20062.0
Total population 100043 139027 217280 393011 436064 8863164
Percent of population aged 18-34 16.40 26.20 28.10 28.57 30.02 49.70
Percent of population aged 65 or older 3.000 9.875 11.750 12.170 13.625 33.800
Number of active physicians 39.0 182.8 401.0 988.0 1036.0 23677.0
Number of hospital beds 92.0 390.8 755.0 1458.6 1575.8 27700.0
Total serious crimes 563 6220 11820 27112 26280 688936
Percent high school graduates 46.60 73.88 77.70 77.56 82.40 92.90
Percent bachelor’s degrees 8.10 15.28 19.70 21.08 25.32 52.30
Percent below poverty level 1.400 5.300 7.900 8.721  10.900 36.300
Percent unemployment 2.200 5.100 6.200 6.597 7.500 21.300
Per capita income 8899 16118 17759 18561 20270 37541
Total personal income 1141 2311 3857 7869 8654 184230

Table 2: Summary of quantitative variables in dataset, excluding id

Figure 3 contains histograms for the quantitative variables excluding identification number. Note that the data
for land.area, pop, doctors, hosp.beds, crimes, tot.income and per.cap.income are strongly right-skewed, which
suggests we may want to apply transformations these variables later in our analysis.

Figure 3 displays the correlation matrix of the quantitative variables, excluding identification number, as
a heatmap. We note that total personal income and total population are highly correlated, which is not
surprising because we would generally expect a larger population to have a larger total personal income. We
also note that total personal income, total population, active physicians, number of hospital beds and total
serious crimes all appear to be fairly highly correlated with eachother. Finally, note that per capita income,
our response variable, is not very highly correlated with any variables in the plot. Per capita income is most



Frequency Number of unique counties

1 334
2 23
3 10
4 3
5 1
6 1
7 1

Table 3: Summary of counties in the dataset

State Count | State Count | State Count | State Count | State Count
AL 7 | HI 3| Ml 18 | NM 2 | TN 8
AR 2 | ID 1 | MN 7 | NV 2| TX 28
AZ 5| IL 17 | MO 8 | NY 22 | UT 4
CA 34 | IN 14 | MS 3 | OH 24 | VA 9
CO 9 | KS 4 | MT 1| OK 4 | VT 1
CT 8 | KY 3 | NC 18 | OR 6 | WA 10
DC 1| LA 9 | ND 1| PA 29 | WI 11
DE 2 | MA 11 | NE 3| RI 3| WV 1
FL 29 | MD 10 | NH 4 | SC 11

GA 9 | ME 5| NJ 18 | SD 1

Table 4: Summary of states in the dataset

Region Count

NC 108
NE 103
S 152
W 77

Table 5: Summary of regions in the dataset

strongly correlated with percent bachelor’s degrees, percent high school graduates, and percent below poverty
level.

4 Methods

We begin by applying log transformations to the variables land.area, pop, doctors, hosp.beds, crimes, tot.income
and per.cap.income to address the extreme right skew in the distribution of these variables as shown in Figure 3.

To determine if per capita income should be related to crime rate, we first fit linear models which predict
log(per capita income) from log(total serious crimes) as well as from log(total serious crimes) and geographic
region, with and without an interaction term between log(total serious crimes) and geographic region. Next, to
determine whether using crime rate, where crime rate equals total serious crimes divided by total population,
instead of total serious crimes made a difference, we fit linear models which predict log(per capita income)
from log(crime rate) in addition to log(crime rate) and geographic region, with and without an interaction
term between log(crime rate) and geographic region. We assessed each of the six models using residual plots
and compared models using partial F tests in addition to AIC and BIC values to choose the best model.

We then shifted our focus in order to find the best model predicting log(per capita income) using all predictors.
We excluded the variables identification number, county and state as they are not useful in our analysis.
We also excluded the variables total population and total personal income which are directly related to our
response variable, per capita income.

We started by using the all subsets method on all remaining predictors, excluding region temporarily, with
transformations as described previously. We fit a new model containing region, the predictors in the model
chosen by the all subsets method, and interaction terms between all of these predictors and region. We
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Figure 1: Histograms of quantitative variables in dataset, excluding id

removed interaction terms from the model which did not have statistically significant coefficients for any factor.
We compared the resulting model to the model chosen by the all subsets method using a partial F test. We
repeated this same process with stepwise regression using the AIC criterion and using the BIC criterion. The
final three models were assessed using VIF values and residual plots. Model characteristics were taken into
account in addition to AIC and BIC values to choose our final model.

5 Results

We fit a linear model which predicts log(per capita income) from log(crimes), a linear model which predicts
log(per capita income) from log(crimes) and region, and a linear model which predicts log(per capita income)
from log(crimes), region and the interaction between log(crimes) and region. We then fit the same three
models but using log(crime rate) instead of log(crimes), where crime rate is crimes/total.pop. These models
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Figure 2: Heatmap of correlation matrix of quantitative variables, excluding id

are shown below.

log (per.cap.income) ~ log (crimes) 1)
log (per.cap.income) ~ log (crimes) + region (2)
log (per.cap.income) ~ log (crimes) + region + log (crimes) * region 3
log (per.cap.income) ~ log (crime.rate) “4)
log (per.cap.income) ~ log (crime.rate) + region 5)
log (per.cap.income) ~ log (crime.rate) + region + log (crime.rate) * region (6)

We will first consider models (1), (2) and (3). All three models appear to be equally valid models according
to their residual plots. All three models are statistically significant. However, model (3) contains several
coefficients which are not statistically significant, unlike models (1) and (2). We also notice that model (1) has
a much smaller R? value than models (2) and (3), which have very similar R? values. A partial F test between
models (1) and (2) indicates that we have significant evidence that model (2) is a better fit for the data than
model (1), i.e. the region term significantly improves the model. A partial F test between models (2) and (3)
indicates that we do not have significant evidence that model (3) is a better fit for the data than model (2).
Thus, we choose model (2) as the best model among models (1), (2) and (3).

We will now consider models (4), (5) and (6). Residual plots suggest that model (4) is a valid model, however
we see a somewhat concerning clustering pattern between the residuals and fitted values for models (5) and
(6). We note that models (5) and (6) are statistically significant while model (4) is not. Also, we note that all
coefficients except the intercept in models (4) and (6) are not statistically significant, while all coefficients in
model (5) are significant except for one. Model (4) has a very small R? value compared to models (5) and
(6) which have very similar R? values. A partial F test between models (4) and (5) indicates that we have
significant evidence that model (5) is a better fit for the data than model (4), i.e. the region term significantly
improves the model. A partial F test between models (5) and (6) indicates that we do not have significant
evidence that model (6) is a better fit for the data than model (5). Thus, we choose model (5) as the best
model among models (4), (5) and (6).

Lastly, we compare models (2) and (5). Model (2) is a statistically significant model and all coefficients in
the model are significant as well. Model (2) is a valid model with an R? value of 0.1959. Model (5) is a
statistically significant model and all coefficients in the model are significant except for one. Model (5) does
not appear to be a completely valid model due to the clustering trend between residuals and fitted values, and
the value of R? for this model is only 0.08814. For these reasons. We choose model (2) as the best model of
the six models fit. The residual plots of this model are shown in Figure 5

Next, we applied the all subsets method to all variables except for id, county, state, log.pop and log.tot.income,
including region. The model with the lowest BIC value produced by this method is as follows:



Residuals vs Fitted Normal Q-Q

o o 2060
w S
> =
o © [
E] @
g g g
|7 = o
] 2 ]
o T o E g
' [}
T T T T T T ¥ T
9.7 9.8 9.9 10.0 10.1 10.2 3
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
I
2 & © -
S o < =
S o | =]
g - P
B k=3
N2 4 _ S o - - o
= ° - ©°
3 o | S o
§ © 5 o
D = — Cook's distance O
2 o | @ 5 4 ® e
< T T T T T T T T T T
9.7 9.8 9.9 10.0 10.1 10.2 0.00 0.05 0.10 0.15
Fitted values Leverage

Figure 3: Residual plots for model (2)

log (per.cap.income) ~ log (land.area) + pop.18_34 + log (doctors) + pct.hs.grad + pct.bach.deg
+ pct.below.pov + pct.unemp (7)

We then fit a model including all predictors in model (7), region, and the interactions between region and all
predictors in model (7). We removed all interaction terms which did not contain a significant coefficient for at
least one factor of region. The resulting model is as follows:

log (per.cap.income) ~ log (land.area) + pop.18_34 + log (doctors) + pct.hs.grad + pct.bach.deg
+ pct.below.pov + pct.unemp + region + pct.hs.grad * region
+ pct.below.pov x region + pct.unemp * region (8)

A partial F test between models (7) and (8) indicates that we have significant evidence that model (8) is a
better fit for the data than model (7), i.e. the region term and the included interactions with region significantly
improve the model. The estimated coefficients and their associated standard errors are provided in Table 5
Residual plots for model (8) are shown in Figure 5. In the Residuals vs Fitted plot, we see that the residuals
have mean approximately zero and no obvious trends with the fitted values. The standardized residuals are
fairly normal according to the Normal Q-Q plot. The Scale-Location plot shows that the square-root of the
standardized residuals have fairly constant variance and no obvious trends with the fitted values. Lastly, the
Residuals vs Leverage plot does not indicate any high-leverage outliers. Thus, we conclude that model (8) is a
valid model. Model (8) is also a good fit for the data because its R? value is equal to 0.8615, which is very
close to 1.

6 Discussion

We saw in the Data section that total personal income and total population are highly correlated, which is
not surprising because we would generally expect a larger population to have a larger total personal income.
We also found that total personal income, total population, active physicians, number of hospital beds and
total serious crimes all appear to be fairly highly correlated with eachother. This is also not entirely surprising
because we would generally expect more populous counties to have more doctors, larger hospitals and a
greater number of crimes. Our response variable, per capita income, did not appear to be very highly correlated
with any variables, but was most strongly correlated with percent bachelor’s degrees, percent high school
graduates, and percent below poverty level. This is not surprising because we would generally expect more
educated counties to have higher per capita incomes and counties with a high percent of the population with
income below the poverty level to have a lower per capita income.



Coefficient Estimate Standard Error
Intercept 10.242123935 0.2176557
log(land.area) -0.038173762 0.0053996
pop-18_34 -0.014934657 0.0010897
log(doctors) 0.057228443 0.0040082
pct.hs.grad -0.004353194 0.0024515
pct.bach.deg 0.015630966 0.0009715
pct.below.pov -0.025202882 0.0032612
pct.unemp 0.019739969 0.0046254
regionNE -0.052006957 0.2707173
regionS -0.038971766 0.2383516
regionW 1.391048448 0.3408962
pct.hs.grad*regionNE 0.001768418 0.0029293
pct.hs.grad*regionS 0.001152511 0.0025618
pct.below.pov*regionNE  -0.014147323 0.0035826
pct.hs.grad*regionW -0.001517033 0.0046143
pct.below.pov*regionS 0.007018461 0.0035199
pct.below.pov*regionW  -0.013791967 0.0051811
pct.unemp*regionNE -0.012984072 0.0070423
pct.unemp*regionS -0.023113781 0.0061365
pct.unemp*regionW -0.021735737 0.0065225

Table 6: Estimated coefficients for model (8)
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Figure 4: Residual plots for model (8)

We found that the best model predicting per capita income from total number of crimes included region but
not the interaction between total number of crimes and region. Using crime rate instead of total number of
crimes in the model did not make a significant difference. Our model suggests that the relationship between
total number of crimes and per capita income is different in different regions of the country, with per capita
income being smallest in the southern region and largest in the north-eastern region for a set total number of
crimes. However, for a set change in the total number of crimes, our model estimates that the change in per
capita income is the same regardless of region.

We found that the best model predicting per capita income from all variables in the dataset was model (8). We
chose this model as our best model because it was a valid model which was a good fit to the data and was not
as complex as models produced by other methods.

Our model would likely be improved by collecting more data. The dataset we used may not necessarily be
representative of all counties in the US. For example, note that the state Texas contains 254 counties while the
state Pennsylvania contains only 67 counties, but our dataset contains almost the same number of counties for



Texas and Pennsylvania (28 and 29 respectively). Collecting data on more counties would help ensure that our

dataset is representative of all counties in the US. In addition, a larger dataset might allow us to include the
variable state in our model which might improve the fit.

7 References



Technical Appendix

Read in the data and summarize quantitative variables

cdi <- read.delim('"cdi.dat", TRUE, n oy
head(cdi)
summary (cdi)

Summary of county

¢ <- data.frame(table(cdi$county))
unique(c$Freq)
length(which(c$Freq==1))
length(which(c$Freq==2))
length(which(c$Freq==3))
length(which(c$Freq==4))
length(which(c$Freq==5))
length(which(c$Freq==6))
length(which(c$Freq==7))

Summary of state

table(cdi$state)

Summary of region

table(cdi$region)

Histograms of untransformed quantitative variables

par( c(2,3))

hist(cdi$land.area, NULL, "land.area")
hist(cdi$pop, NULL, "pop")

hist (cdi$pop.18_34, NULL, "pop.18_34")
hist(cdi$pop.65_plus, NULL, "pop.65_plus")
hist(cdi$doctors, NULL, "doctors")
hist(cdi$hosp.beds, NULL, "hosp.beds")
hist(cdi$crimes, NULL, "crimes"
hist(cdi$pct.hs.grad, NULL, "pct.hs.grad")
hist(cdi$pct.bach.deg, NULL, "pct.bach.deg")
hist(cdi$pct.below.pov, NULL, "pct.below.pov'")



hist(cdi$pct.unemp, NULL, "pct.unemp")

hist(cdi$per.cap.income, NULL, "per.cap.income")

hist(cdi$tot.income, NULL, "tot.income")

Heatmap of correlation matrix

library(reshape2)

cdinumeric <- cdil[,-c(1,2,3,17)]

corgraph <-function(df) {
cormat <- cor(df)
melted_cormat <- melt(cormat)

ggplot( melted_cormat, aes(x=Varl, y=Var2,
geom_tile() +
theme ( element_text( 45,
scale_fill_gradient2( "red", "white",

}

corgraph(cdinumeric)

value)) +
0.8, 1)) +
"blue " )

Histograms of transformed quantitative variables

cdi.updated <- cdi
par ( c(2,3))

hist(log(cdi$land.area), NULL, "log.land.area")

cdi.updated$land.area <- log(cdi$land.area)

hist(log(cdi$pop), NULL, "log.pop")
cdi.updated$pop <- log(cdi$pop)

hist(cdi$pop.18_34, NULL, "pop.18_34")
hist(cdi$pop.65_plus, NULL, "pop.65_plus")
hist(log(cdi$doctors), NULL, "log.doctors")

cdi.updated$doctors <- log(cdi$doctors)

hist(log(cdi$hosp.beds), NULL, "log.hosp.beds")

cdi.updated$hosp.beds <- log(cdi$hosp.beds)

hist(log(cdi$crimes), NULL, "log.crimes")
cdi.updated$crimes <- log(cdi$crimes)

hist(cdi$pct.hs.grad, NULL, "pct.hs.grad")
hist(cdi$pct.bach.deg, NULL, "pct.bach.deg")
hist(cdi$pct.below.pov, NULL, "pct.below.pov")
hist(cdi$pct.unemp, NULL, "pct.unemp")



hist(log(cdi$per.cap.income), NULL, "log.per.cap.income")
cdi.updated$per.cap.income <- log(cdi.updated$per.cap.income)

hist(log(cdi$tot.income), NULL, "log.tot.income")
cdi.updated$tot.income <- log(cdi$tot.income)

cdi.updated <- cdi.updated[,-c(18,19,20,21)] %>%
rename ( Pop,

land.area,

doctors,
hosp.beds,

crimes,
tot.income,

per.cap.income

Heatmap of correlation matrix after transformations applied

cdi.updatednumeric <- cdi.updated[,-c(1,2,3,17)]
corgraph(cdi.updatednumeric)

Relationship between log(crimes) and log(per.cap.income)

plot(cdi.updated$log.crimes,cdi.updated$log.per.cap.income)

Find model to predict log(per.cap.income) from log(crimes)

linmod0 <- 1m(log.per.cap.income~log.crimes, cdi.updated)
linmodl <- 1lm(log.per.cap.income~log.crimes+region, cdi.updated)
linmod2 <- 1m(log.per.cap.income~log.crimes*region, cdi.updated)
summary (1inmod0)

summary (1linmod1)

summary (1inmod2)

anova(linmod0O,linmod1)
anova(linmodi,linmod2)
par ( c(2,2))
plot(1linmod0)
plot(linmodl)
plot(linmod2)

Find model to predict log(per.cap.income) from log(crime rate)

cdi.updated$log.per.cap.crime <- log((cdi$crimes)/(cdi$pop))
hist(cdi.updated$log.per.cap.crime)

linmod3 <- 1lm(log.per.cap.income~log.per.cap.crime, cdi.updated)
linmod4 <- 1m(log.per.cap.income~log.per.cap.crime+region, cdi.updated)
linmod5 <- 1m(log.per.cap.income~log.per.cap.crime*region, cdi.updated)



summary (1inmod3)

summary (1inmod4)

summary (1inmod5)
anova(linmod3,linmod4)
anova(linmod4,linmod5)

par( c(2,2))

plot(linmod3)

plot(linmod4)

plot(linmod5)
cdi.updated$log.per.cap.crime <- NULL

All subsets method on all variables except id, county, state, log.pop,
log.tot.income, and region

library(leaps)

library(car)

cdi.good <- cdi.updated[,-c(1,2,3,5,16,17)]

all.subsets <- regsubsets(log.per.cap.income~.,cdi.good, 14)

s <- summary(all.subsets)
d <- data.frame(s$rss,s$bic)
d

Coefficients when subset size is 7 (which corresponds to minimum BIC value)

coef(all.subsets,7)

Summary, VIFs and residual plots of model chosen by all subsets method

all.subsets.mod <- 1lm(log.per.cap.income~log.land.area+pop.18_34+log.doctors+pct.hs.grad+pct.bach.deg+p
summary (all.subsets.mod)

vif (all.subsets.mod)

par ( c(2,2))

plot(all.subsets.mod)

Stepwise AIC and BIC method on all variables except id, county, state, log.pop,
log.tot.income, and region

stepAIC(1m(log.per.cap.income~., cdi.good), "both" ,k=2)
n <- dim(cdi.updated) [1]
stepAIC(1m(log.per.cap.income~., cdi.good), "both",k=log(n))

Summary, VIF’s and residual plots for model chosen by stepwise AIC method

stepAIC.mod <- 1lm(log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus + log.doctors + pct.hs.g
summary (stepAIC.mod)



vif (stepAIC.mod)
par ( c(2,2))
plot(stepAIC.mod)

Summary, VIF’s and residual plots for model chosen by stepwise BIC method

stepBIC.mod <- 1m( log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad -
summary (stepBIC.mod)

vif (stepBIC.mod)

par( c(2,2))

plot(stepBIC.mod)

Lasso method on all variables except id, county, state, log.pop, log.tot.income,
and region

result <- cv.glmnet(as.matrix(cdi.good[,-c(11)]),cdi.good[,11])

plot(result)

c( result$lambda. lse, result$lambda.min)

cbind(coef (result),coef (result,s=result$lambda.lse),coef (result,s=result$lambda.min))

Now we look at all models above but including interactions with region

First, all subsets

cdi.good$region <- cdi.updated$region

all.subsets.mod.tmp <- 1lm(log.per.cap.income~(log.land.area+pop.18_34+log.doctors+pct.hs.grad+pct.bach.
#summary (all.subsets.mod. tmp)

all.subsets.mod.r <- lm(log.per.cap.income~log.land.area+pop.18_34+log.doctors+pct.hs.grad+pct.bach.deg
summary (all.subsets.mod.r)

vif(all.subsets.mod.r)

par( c(2,2))

plot(all.subsets.mod.r)

anova(all.subsets.mod,all.subsets.mod.r)

Stepwise AIC

stepAIC.mod.tmp <- 1lm(log.per.cap.income ~ (log.land.area + pop.18_34 + pop.65_plus + log.doctors + pct
# summary (stepAIC.mod. tmp)

stepAIC.mod.r <- Im(log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus + log.doctors + pct.hs
summary (stepAIC.mod.r)

vif (stepAIC.mod.r)

par( c(2,2))

plot(stepAIC.mod.r)

anova(stepAIC.mod,stepAIC.mod.r)



Stepwise BIC

stepBIC.mod.tmp <- 1lm( log.per.cap.income ~ (log.land.area + pop.18_34 + log.doctors + pct.hs.
# summary (stepBIC.mod. tmp)
stepBIC.mod.r <- 1m( log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.gra

summary (stepBIC.mod.r)

vif (stepBIC.mod.r)

par( c(2,2))
plot(stepBIC.mod.r)
anova(stepBIC.mod,stepBIC.mod.r)
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