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[ABSTRACT]
It is widely known that a person’s income can depend on several factors of their environment; but

the actual relationships between these socioeconomic variables and income are not widely known and
discovering these trends is the goal of this research project. We use data collected by Kutner et al (2005)
regarding county demographic information like percent unemployed, population in certain age bins,
income, percent below poverty level, etc. from the 440 most populated counties in the US from 1990 to
1992. We examined this data through regression analysis; we fit a multiple linear regression model with
interactions in order to estimate the relationships between income per capita and the other socioeconomic
factors in our dataset. From this model, we were able to estimate coefficients with decent predictive
accuracy and valid assumptions and we discovered that, in line with our intuition, higher percentage of
bachelor's degrees corresponded with increased income per capita and higher percentage of
unemployment corresponded with decreased income per capita (controlling for other variables). We paid
particular attention to crime, and discovered that when looking at total crime and marginalizing over all
other variables the relationship with income is significant (although later on we saw crime does not lead
to any increase in predictive accuracy). In context, our findings mean that there are in fact important
relationships between socioeconomic factors and income and even the geographic location. These
findings can be used to proactively target counties at risk of having a low per capita income for
policy-based relief efforts.
[KEY WORDS] Regression analysis, income, unemployment, education

[INTRODUCTION]
Several factors define a person’s income: education level, location, occupation, etc. However,

there are also socioeconomic factors outside of an individual’s control that also influence their income.
The purpose of this research project is to explore these external variables and assess their impact on
income per capita in the U.S. In particular, areas with high crime could be related to low income (as low
income per capita could encourage crime). This relationship is worth investigating. Similarly, factors like
poverty prevalence, age distribution, and average education can also have an impact on an area’s per
capita income. In this research, we examine which of these socioeconomic factors are relevant via
multiple linear regression. We are interested in multiple research questions: what relationships exist
between different socioeconomic variables, the specific relationship and relevance in using crime to
model income, and how we can predict income using all the variables available to us.

[DATA]
Kutner et al (2005) collected socioeconomic data from the 440 most populated counties in the

US. Each row in the dataset corresponds to a county (there are some duplicate county names because
certain county names collide across states, e.g. Jefferson county is a name in 7 states) and there are 14
total other variables. There are also only 48 states instead of 50. This is to be expected however, the data
only contains the most populous counties, so states in the west that do not have many people in any
county would not show up. So, even though there are only 373 counties, there are exactly 440
county-state pairings. Thus we are not concerned by this apparent inconsistency.

Another data issue comes from the sample bias. Since we only look at populous counties, it’s
entirely possible that the distribution of these socioeconomic factors and their relationship with per capita
income differs in lower populated states or counties. A quick examination of the available data shows us



that Alaska and Wyoming, two very sparsely populated states have no representation in the dataset.
Additionally, populated states like NY, PA, CA, and FL have much more representation in the dataset than
others. So, we should take efforts to mitigate this bias in later work.

TABLE 1: CDI Data from Kutner et al.
Table 1 presents a general description of all the variables present in the dataset we used. In particular, we
have multiple socioeconomic statistics like % unemployed, % below poverty level, and geographic area.
First, we can take a look at summary statistics for the quantitative variables.



TABLE 2: Quantitative Variable Summaries

TABLE 3: Summary of Region
Table 2 shows a 5-number summary for every quantitative variable and Table 3 shows the frequencies for
each Region in the dataset. See Appendix Page 1-3 for the table for State. The table for County is omitted
because county is our row identifier.

Next, we explore what the general distributions for all these variables look like.





FIGURE 1: Histograms of Quantitative Variables
From the histograms, we can see several relevant variables are skewed. Since we are interested in
examining crime rate, we look closely at the distributions of crime and population and find that they are
both right skewed. Since these will likely be involved in our model (either crimes or crimes per capita) it
is important to keep in mind that a transformation might be necessary. the same is true for total income,
but not per capita income. A lot of the other aggregate statistics (total doctors, hospital beds) also look
right skewed.
We can next examine the relationships between different variables to assess which ones exist and whether
or not they align with intuition.

FIGURE 2: Pairs Plot



Figure 2 shows a pairs plot of all the quantitative variables. We can assess the relationships between
certain variables in our data by examining the corresponding index in the scatterplot matrix. For example,
we see a negative relationship between % unemployed and % bachelors, which makes sense as we would
expect less people to be unemployed in areas where more people have higher education (better odds of
getting a job). Similarly, we see a strong positive relationship between hospital beds and crimes, which
could be because high-crime areas need to support more injuries and patients. Somewhat surprisingly,
there does not seem to be any relationship between crime and unemployment or poverty, indicating that
high-crime areas are not necessarily impoverished and crime is not necessarily always because of money.
Next, we can examine how geographic regions impact certain variables.

FIGURE 3: Boxplots of Region



From Figure 3, we can see that the median and quantiles of several variables change with region. It looks
like the per capita income is higher in the NE and W regions, which makes sense as the tech hubs in San
Francisco and NYC likely pull up these respective groups. Interestingly, there also seems to be a lower
high school grad % in the South. Of course, we see a higher land area in the west, as those states are much
larger.
Finally, we can examine the relationships between the categorical and quantitative variables. In particular,
we are interested in predicting income so we can examine how the relationship between income and other
variables changes due to region.



FIGURE 4: How Region affects Income vs Other Variables
Figure 4 presents a series of colored scatterplots that outline how the relationship between income and the
other variables changes when region is conditioned on. In a lot of these plots, because the data is such
high variance, it is difficult to specifically make out a meaningful difference in trend. When looking at
crime specifically, since the relationship between crime and income is of particular interest to us, we do
not see any apparent changes in slope across the four regions. However, it is important we still include
interactions in our model to account for less apparent relationships that we cannot pick up from the
scatterplots.



[METHODS]
We conducted this analysis in 2 parts. In the first, we exclusively examine the effect of crime on

income per capita without conditioning for any other variables and we assess whether or not interactions
should be included and whether or not region influences this relationship.

The first step in the data analysis procedure for this work was the assessment of the relationship
between crime and income, and how this relationship changes across regions. To this end, we first fit 2
models: a regression of income against crime and region, and a regression of income against crime,
region, and the interaction between crime and region. We use ANCOVA and a partial F test to first assess
whether or not the interactions are necessary, then we examine the significance of the crime and region
coefficients. We repeat this analysis with a newly constructed crime per capita variable (crime / total
population) in order to assess if the per capita crime value is more meaningful. We repeated the fitting and
ANCOVA procedure above for this new variable as well.

Before conducting any modeling or analysis, we first refer back to Figure 1 to assess any
necessary transformations of the data. Because doctors, land area, hospital beds, and crimes were all right
skewed, we first mutated these variables with a log transformation. Additionally, we dropped state and
county from the dataset (county is an identifier, and state was not helpful in any analysis).

For the modeling procedure, we first fit a multiple linear regression model of per capita income
against all of the variables (not including crimes per capita, we just used crimes) and all interactions
between these variables and region. Because many coefficients were insignificant and we had evidence of
multicollinearity, we experimented with a few model selection approaches. Since stepwise regression
approximates all-subsets, we proceeded with BIC criterion stepwise regression first. We then compared
this model with the one chosen by all-subsets and found that they had fidelity. So, we proceed with the
model agreed upon by stepwise and all subsets, then add region and interactions back in the model.
Finally, we experiment with removing certain interactions and reassessing the explainability of the model
with ANOVA tests.  Because we are interested in interpretability and statistical claims about the estimated
coefficients, we do not try penalized regression.

Next, we use marginal model plots, diagnostics, and multicollinearity assessments to validate
model assumptions and come to meaningful conclusions about the relationships we are interested in.

[RESULTS]
First, we explore the output of our analysis focusing on crime. When fitting a multiple linear

regression model against total crimes and region, we get the output in figure 5.



FIGURE 5: Crimes and Income, controlling for Region
Note that we also tried fitting the above model with interaction, but a partial F test tells us that this model
does not explain the data any better than the reduced one above (see appendix pages 13-15 for details).
From this output, it appears that there is a positive relationship between crimes and income. Specifically,
when controlling for region, we estimate an unit increase in crime corresponds with an average increase
of 8.9e-3 units of per capita income. We also expect this relationship to be different based on region, as
the NE term is significant. In context, we expect a unit increase in crime in a NE county to correspond to
an increase of 8.9e-3+2.3e+3 ~= 2.3e+3 in units of per capita income. So, NE counties have a much
steeper positive relationship on average between crime and income as opposed to NC (the base class).
We can also try this analysis with crimes per capita instead of total crime (see appendix pages 13-15 for
output). Upon doing so, we see no significant relationship between crime and income, and the interactions
are still not meaningful. Because this provides us with no explicit benefit, we do not transform crimes in
our model.
Our next step to answer the research questions is to build a model to predict income per capita. First, we
remove population, total income, state, and county from the model. This is because population and total
income are both directly related to the response and population is likely collinear with variables like
pop.18_34 (total population with age between 18 and 34), and state is not helpful in modeling (we tried
some experiments including it but found it to not improve the fit). After these dataset mutations, we first
fit a full model with all terms, including interactions. The model explained about 84% of the variation in
the response, but had issues with multicollinearity and several insignificant terms. So, we proceed with
variable selection. Since variable selection algorithms often do not handle categorical data and interaction



terms well, we will first select for the quantitative variables, then add region and interactions back in to
improve the fit if necessary. We first tried stepwise regression with BIC, as it is a heuristic for all subsets.

FIGURE 6: BIC Stepwise Output
From the output above, we can see that the approximate best model in terms of BIC is a regression of
income per capita against land area, population with ages from 18 to 34, doctors, % high school grads,
%with  bachelor’s degrees, % below poverty, and % unemployed. When using all-subsets regression with
a BIC search criterion, we arrive at an identical model. We could have also experimented with LASSO,
but because penalized regression is less interpretable in context we chose to proceed with the models we
found above.
Next, we add region and all interactions back into the model. Because several of the coefficients in this
model are insignificant and it is difficult to assess whether the interactions are actually meaningful. The
new fitted model is presented below. There are multiple interaction terms where every level is
insignificant, so we have justification to try a new model with these terms taken out.



FIGURE 7: Selected Quantitative Variables with Region and All Interactions
In particular, the interaction between doctors and region and the interaction between population between
18 and 34 and region are insignificant at all levels, so we first try to remove these terms. We fit a new
model with only the remaining interactions and region, and of course all of the quantitative variables.



FIGURE 8: Final Model
Figure 8 shows the coefficients for the new model, and we first notice that all of the interactions and the
region variable are significant at one level at least, so we include them all. When examining the VIFs, we
see that there are several variables with high VIFs, but this is often the case when using interaction terms
and despite the multicollinearity issues we still have interpretable coefficients in expected directions. This
model explains the data equivalently well when compared to the model with all interactions and better
than the model without region and no interactions (see appendix pages 22-25). So, we proceed with this
model and validate its assumptions. The added variable plots and model diagnostics show us that the
assumptions are valid; we see no poor leverage points and the residual scatter is normal and centered
around 0. There is some deviation from the normal line in the qq plot, but overall the assumptions seem
well met. The transformations we applied also fit the data well as shown in the output from the marginal
model plots.



FIGURE 9: Diagnostics

FIGURE 10: Marginal Model Plots
Finally, we interpret some coefficients in context.



- Controlling for the other variables in the model, we expect a 1% increase in percent below
poverty to correspond with a decrease in per capita income of 444 units on average for an NC
county.

- Controlling for the other variables in the model, we expect a 1% increase in bachelor’s degree
holders to correspond with a 341 unit increase in income per capita on average for an NC county.

- We expect the increase in income per capita that corresponds with a 1% increase in bachelor’s
degree holders to be 206 units larger for a county in NE as opposed to one in NC when
controlling for the other predictors.

One peculiar thing with this model is that there is a positive relationship between unemployment and
income, which could be due to multicollinearity or the fact that the relationship is different across
different regions (as some of the interaction terms are negative and have high magnitude).

[DISCUSSION]
We addressed 4 separate questions throughout this analysis. Through our EDA and initial

experiments and plotting of the dataset, we were able to identify key insights about various relationships
within the data. To summarize: we saw a negative relationship between % unemployed and % bachelors,
which makes sense as higher education can increase one’s market value or job prospects. Similarly, we
saw a strong positive relationship between hospital beds and crimes, which could be because high-crime
areas need to support more injuries and patients. However, there did not seem to be any relationship
between crime and unemployment or poverty, indicating that high-crime areas are not necessarily
impoverished and crime is not necessarily always because of money. Next, through ANCOVA, we
analyzed the relationship between crime and income and how this relationship changes over region. We
determined that region does not affect this relationship, and that there is a significant positive relationship
between crime and income when marginalizing (i.e. not controlling for) all the other predictors. This
relationship is not apparent when addressing crimes per capita, however, which could be important for a
stakeholder to consider.

A large part of this work focused on the modeling problem, where we successfully developed a
multiple linear regression model to determine what the relationships are between per capita income and
various other socioeconomic factors. We found that, in line with our intuition, increased poverty in the
area corresponds with decreased income per capita, and that an increase in the proportion of the
population with higher education corresponds with an increase in per capita income. We also noticed that
the relationship between bachelor degree and income is steeper in the NE region as opposed to NC, which
could mean that a college education goes further in the northeast than it does elsewhere.

Although we were able to extract meaningful information from our approach, there were some
important limitations. The interaction terms introduced multicollinearity that caused the estimate for
unemployment to have a sign that did not agree with our intuition; a possible remediation would be a
more extensive model selection procedure or consideration for dropping a few variables that might not
impact performance. There was also some deviation from the normal line in the qq plot; we could have
employed a transformation of the response (e.g. with Box Cox) in order to remediate this. For this
analysis, response transformations were omitted to keep the coefficients as straightforward to interpret as
possible.

Overall, this work gives important insights into the socioeconomic factors behind income in
various regions. Using this model, stakeholders would be able to identify what could lead to low income
in certain counties for targeted remediation through policy-based efforts. There is also potential for future



work. In particular, we could examine more variables and consider more transformations (e.g. per capita
crimes) or try a more flexible model. We could also try more in-depth transformations to try to validate
the assumptions better. Further research could include analysis of how these relationships have changed
over time or assessing a causal relationship between socioeconomic status and per capita income.

Our final question was to address missing counties and states and determine whether or not that
was an issue. This was discussed briefly in the DATA section and we summarize our findings here. We
noticed that there were only 48/50 states present, but this is reasonable since the data only contained the
440 most populous counties. Next, we noticed that there were less counties than rows, but this is because
some states have the same county names (so, we have 440 unique state-county name pairs). Thus, we are
not concerned by these inconsistencies.

Something that is concerning is the inherent bias in the data we used to fit the model. Since we
only looked at the most populous counties in the U.S. it could be the case that the model is not
generalizable to low-population areas. One future extension of this work could be to analyze the
socioeconomic differences between high population and low population counties and examine if the
model will generalize well. For example, if the relationship between income and things like
unemployment, crime, etc. is markedly different in less populated states then our model would not be able
to explain this. When examining the states, we find that Alaska and Wyoming, 2 very low-density states
are missing. Additionally, our model contains a population variable, so it is entirely possible that it cannot
generalize with respect to this variable.
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[1.A]

library(knitr)
library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --

## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.3 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

library(car)

## Loading required package: carData

##
## Attaching package: ’car’

## The following object is masked from ’package:dplyr’:
##
## recode

## The following object is masked from ’package:purrr’:
##
## some

library(MASS)

##
## Attaching package: ’MASS’
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## The following object is masked from ’package:dplyr’:
##
## select

library(leaps)
cdi = read.table('cdi.dat')

(kable(sort(table(cdi$state)/nrow(cdi))))

Var1 Freq
DC 0.0022727
ID 0.0022727
MT 0.0022727
ND 0.0022727
SD 0.0022727
VT 0.0022727
WV 0.0022727
AR 0.0045455
DE 0.0045455
NM 0.0045455
NV 0.0045455
HI 0.0068182
KY 0.0068182
MS 0.0068182
NE 0.0068182
RI 0.0068182
KS 0.0090909
NH 0.0090909
OK 0.0090909
UT 0.0090909
AZ 0.0113636
ME 0.0113636
OR 0.0136364
AL 0.0159091
MN 0.0159091
CT 0.0181818
MO 0.0181818
TN 0.0181818
CO 0.0204545
GA 0.0204545
LA 0.0204545
VA 0.0204545
MD 0.0227273
WA 0.0227273
MA 0.0250000
SC 0.0250000
WI 0.0250000
IN 0.0318182
IL 0.0386364
MI 0.0409091
NC 0.0409091
NJ 0.0409091
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Var1 Freq
NY 0.0500000
OH 0.0545455
TX 0.0636364
FL 0.0659091
PA 0.0659091
CA 0.0772727

kable(table(cdi$region)/nrow(cdi))

Var1 Freq
NC 0.2454545
NE 0.2340909
S 0.3454545
W 0.1750000

#kable(table(cdi$county)/nrow(cdi))

tab = summary(cdi$land.area)
name = c('land.area')
for (i in 5:16){

name = c(name, names(cdi)[i])
tab = rbind(tab, summary(cdi[,i]))

}
rownames(tab)= name
kable(tab)

Min. 1st Qu. Median Mean 3rd Qu. Max.
land.area 15.0 451.250 656.50 1.041411e+03 946.750 20062.0
pop 100043.0 139027.250 217280.50 3.930109e+05 436064.500 8863164.0
pop.18_34 16.4 26.200 28.10 2.856841e+01 30.025 49.7
pop.65_plus 3.0 9.875 11.75 1.216977e+01 13.625 33.8
doctors 39.0 182.750 401.00 9.879977e+02 1036.000 23677.0
hosp.beds 92.0 390.750 755.00 1.458627e+03 1575.750 27700.0
crimes 563.0 6219.500 11820.50 2.711162e+04 26279.500 688936.0
pct.hs.grad 46.6 73.875 77.70 7.756068e+01 82.400 92.9
pct.bach.deg 8.1 15.275 19.70 2.108114e+01 25.325 52.3
pct.below.pov 1.4 5.300 7.90 8.720682e+00 10.900 36.3
pct.unemp 2.2 5.100 6.20 6.596591e+00 7.500 21.3
per.cap.income 8899.0 16118.250 17759.00 1.856148e+04 20270.000 37541.0
tot.income 1141.0 2311.000 3857.00 7.869273e+03 8654.250 184230.0

There are no NA values in this table. We present summary statistics for each variable. For categorical data,
we present a table of the frequency of each class. For quantitative data, we present 5 number summaries.
For county, most of the frequency counts are 1, so there is no reason to include this table. There are 373
unique values out of 440 rows.
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sort(table(cdi$county), decreasing = T)[1:20]

##
## Jefferson Montgomery Washington Cumberland Jackson Lake Clark
## 7 6 5 4 4 4 3
## Hamilton Kent Madison Marion Middlesex Monroe Orange
## 3 3 3 3 3 3 3
## Wayne York Allen Bay Butler Calhoun
## 3 3 2 2 2 2

cdi[cdi$county == "Jefferson",1:3]

## id county state
## 66 66 Jefferson KY
## 68 68 Jefferson AL
## 107 107 Jefferson LA
## 110 110 Jefferson CO
## 202 202 Jefferson TX
## 271 271 Jefferson MO
## 399 399 Jefferson NY

cdi[cdi$county == "Montgomery",1:3]

## id county state
## 48 48 Montgomery MD
## 58 58 Montgomery PA
## 80 80 Montgomery OH
## 230 230 Montgomery AL
## 254 254 Montgomery TX
## 438 438 Montgomery TN

cdi[cdi$county == "Washington",1:3]

## id county state
## 156 156 Washington OR
## 234 234 Washington PA
## 312 312 Washington MN
## 389 389 Washington AR
## 402 402 Washington RI

So, some county names repeat because different states have the same names for certain counties.

length(unique(paste(cdi$state, cdi$county, sep = "-")))

## [1] 440

We can see that we have exactly 440 county-state pairings, justifying our argument that the counties that
repeat are just collisions across different states. This does not impede our modeling process.
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par(mfrow = c(2,3))
for (i in 4:16){

hist(cdi[,i], main = names(cdi)[i], xlab = '', breaks = 20)
}
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From the histograms, we can see several relevant variables are skewed. Since
we are interested in examining crime rate, we look closely at the distributions of crime and population
and find that they are both right skewed. Since these will likely be involved in our model (either crimes
or crimes per capita) it is important to keep in mind that a transformation might be necessary. the same
is true for total income, but not per capita income. A lot of the other aggregate statistics (total doctors,
hospital beds) also look right skewed.

We see some important relationships among the quantitative variables here. We see negative trends with
unemployment rate and poverty rate, and a positive trend with high school graduation rate. Interestingly,
we do not see any relationship with crimes per capita (omitted for consiseness) or total crimes.

par(mfrow = c(3, 4))

library(ggplot2)

for (i in 4:16){

if(i != 15){
name = colnames(cdi)[i]
print(ggplot(data = cdi) + geom_point(aes(x = cdi[,i],

y = per.cap.income,
color = region)) + xlab(name))

}
}
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par(mfrow = c(3,3))
for (i in 4:(ncol(cdi) - 1)){
boxplot(cdi[,i] ~ region, yllab = names(cdi)[i],data = cdi)}
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We see a different distribution of income in different regions but the medians are close and quantiles overlap,
so it’s unlikely this variable contains relevant information to our modeling problem.

[1.B]

Looking at the scatterplot above, we do not see evidence for interaction based on region in the relationship
between income and crimes. We just see random scatter in all the groups. For this reason, we do not
include an interaction term in the regression of income against crimes. (if we do try to include one, it is not
significant and the ANOVA indicates that the model with interaction does not explain the data any better).
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lm1_nointer = lm(per.cap.income ~ crimes + region , data = cdi)
lm1 = lm(per.cap.income ~ crimes + region + region : crimes, data = cdi)
anova(lm1, lm1_nointer)

## Analysis of Variance Table
##
## Model 1: per.cap.income ~ crimes + region + region:crimes
## Model 2: per.cap.income ~ crimes + region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 6438799739
## 2 435 6501791845 -3 -62992106 1.4088 0.2396

summary(lm1_nointer)

##
## Call:
## lm(formula = per.cap.income ~ crimes + region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9661.0 -2260.7 -618.3 1650.0 19492.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.811e+04 3.784e+02 47.846 < 2e-16 ***
## crimes 8.915e-03 3.188e-03 2.797 0.00539 **
## regionNE 2.286e+03 5.325e+02 4.293 2.17e-05 ***
## regionS -8.606e+02 4.868e+02 -1.768 0.07782 .
## regionW -1.428e+02 5.796e+02 -0.246 0.80548
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3866 on 435 degrees of freedom
## Multiple R-squared: 0.1011, Adjusted R-squared: 0.09288
## F-statistic: 12.24 on 4 and 435 DF, p-value: 1.946e-09

Above we fit a linear regression of income against total crimes and region. Our analysis tells us that in fact
there is surprisingly a significant positive relationship between crimes and income because the estimated
coefficient is > 0 and the p value is < 0.05, so for a unit increase in total crime we expect to see an increase
in 8.9e-03 units of income per capita. However, since we’re using income per capita, it could be better to
use crime per capita instead of total crime to maintain consistency and keep the variables on a similar scale.

lm2_nointer = lm(per.cap.income ~ I(crimes/pop) + region , data = cdi)
lm2 = lm(per.cap.income ~ I(crimes/pop) + region

+ region : I(crimes/pop), data = cdi)
anova(lm2_nointer, lm2)

## Analysis of Variance Table
##
## Model 1: per.cap.income ~ I(crimes/pop) + region
## Model 2: per.cap.income ~ I(crimes/pop) + region + region:I(crimes/pop)
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## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 435 6609753963
## 2 432 6607856753 3 1897210 0.0413 0.9888

summary(lm2_nointer)

##
## Call:
## lm(formula = per.cap.income ~ I(crimes/pop) + region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8634 -2300 -631 1710 19332
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18006.04 537.04 33.528 < 2e-16 ***
## I(crimes/pop) 5773.20 7520.41 0.768 0.4431
## regionNE 2354.70 541.97 4.345 1.74e-05 ***
## regionS -927.45 512.31 -1.810 0.0709 .
## regionW -34.92 586.03 -0.060 0.9525
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3898 on 435 degrees of freedom
## Multiple R-squared: 0.08622, Adjusted R-squared: 0.07782
## F-statistic: 10.26 on 4 and 435 DF, p-value: 6.007e-08

When computing against crime per capita instead, the analysis looks a little bit different. In this model,
there is no evidence for a linear relationship between crime per capita and income because the p value is >
0.05. Again, we use the model without interaction because including these terms does not help us explain
the data any better.

Because we get no explicit benefit from using crimes per capita and this could lead to complications in
multicollinearity when including population or population by age as a dependent variable in the model later
on, we proceed with just crimes as a predictor.

[1.C]

Clearly, the models we fit above are inadequate. So, we must expand our search space and consider more
predictors and transformations of these predictors as needed. Because crimes, hospital beds, doctors, land
area, population, and total income are all skewed right, we can first take a log transformation to improve
the distributions to better satisfy model assumptions.

When considering how region affects the relationship of the quantitative predictors and income, we can look
at the above plots and find that the different regions seem to follow random scatter and do not separate into
groups for any of these income/predictor pairings. However, we do include interactions to see if after relevant
transformations and variable inclusions these relationships are relevant. We also omit state and county from
this analysis for interpretability: considering factors with so many levels increases the difficulty of both the
modeling problem and the interpretation problem, and we’re already capturing geographic information in
the region variable. We tried fitting a model with state, but saw no benefit and ended up with the same
final model after variable selection.
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First, since income per capital is directly related to population and total income, we first remove these from
the data as to only include relevant predictors. We also remove county, state, and id for simplicity. Then, we
should transform the variables that are clearly skewed right: doctors, hospital beds, land area, and crimes.

cdi$county = NULL
cdi$state = NULL
cdi$id = NULL
cdi$tot.income = NULL
cdi$pop = NULL
cdi$doctors = log(cdi$doctors )
cdi$hosp.beds = log(cdi$hosp.beds )
cdi$crimes = log(cdi$crimes )
cdi$land.area = log(cdi$land.area )

lm_full = lm(per.cap.income ~ . , data = cdi)
lm_full_inter = lm(per.cap.income ~ .*region , data = cdi)
summary(lm_full_inter)

##
## Call:
## lm(formula = per.cap.income ~ . * region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4181.8 -830.2 -81.0 692.4 6272.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27527.1301 6384.3709 4.312 2.05e-05 ***
## land.area -611.6857 327.1091 -1.870 0.062225 .
## pop.18_34 -316.3239 59.8129 -5.289 2.04e-07 ***
## pop.65_plus -13.9216 106.8299 -0.130 0.896383
## doctors 925.6080 497.4879 1.861 0.063547 .
## hosp.beds -151.8263 534.6754 -0.284 0.776590
## crimes 157.4794 307.8606 0.512 0.609266
## pct.hs.grad -89.3150 72.3469 -1.235 0.217734
## pct.bach.deg 319.9115 64.6938 4.945 1.13e-06 ***
## pct.below.pov -437.9730 81.6343 -5.365 1.38e-07 ***
## pct.unemp 332.6328 112.3044 2.962 0.003242 **
## regionNE 7646.2210 8456.2360 0.904 0.366433
## regionS -3655.1215 7090.0721 -0.516 0.606473
## regionW 39542.1668 10137.8967 3.900 0.000113 ***
## land.area:regionNE 19.4306 431.3388 0.045 0.964092
## land.area:regionS -165.4512 376.3480 -0.440 0.660450
## land.area:regionW 331.4142 391.5202 0.846 0.397796
## pop.18_34:regionNE -195.9275 88.0449 -2.225 0.026623 *
## pop.18_34:regionS 58.5780 72.6074 0.807 0.420279
## pop.18_34:regionW -0.4859 99.8203 -0.005 0.996119
## pop.65_plus:regionNE -148.1345 136.9211 -1.082 0.279957
## pop.65_plus:regionS 52.8801 112.7167 0.469 0.639226
## pop.65_plus:regionW -93.9925 144.1454 -0.652 0.514736
## doctors:regionNE -794.6074 806.4630 -0.985 0.325079
## doctors:regionS 174.8199 643.1920 0.272 0.785917
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## doctors:regionW 2132.3982 1039.3420 2.052 0.040858 *
## hosp.beds:regionNE 679.9715 864.6849 0.786 0.432115
## hosp.beds:regionS -360.4192 657.9997 -0.548 0.584172
## hosp.beds:regionW -64.6518 835.6308 -0.077 0.938369
## crimes:regionNE 237.7094 492.7801 0.482 0.629799
## crimes:regionS 34.2973 449.5959 0.076 0.939231
## crimes:regionW -2320.8276 764.3259 -3.036 0.002552 **
## pct.hs.grad:regionNE -75.2925 92.5338 -0.814 0.416319
## pct.hs.grad:regionS 46.6164 79.7802 0.584 0.559345
## pct.hs.grad:regionW -367.7820 96.6265 -3.806 0.000163 ***
## pct.bach.deg:regionNE 222.0039 89.2939 2.486 0.013322 *
## pct.bach.deg:regionS -21.5795 70.7407 -0.305 0.760488
## pct.bach.deg:regionW 118.9315 81.6123 1.457 0.145833
## pct.below.pov:regionNE -8.6187 111.4515 -0.077 0.938399
## pct.below.pov:regionS 173.1631 91.6347 1.890 0.059527 .
## pct.below.pov:regionW -231.5163 119.0365 -1.945 0.052492 .
## pct.unemp:regionNE -129.2935 160.3883 -0.806 0.420653
## pct.unemp:regionS -293.2009 149.4599 -1.962 0.050493 .
## pct.unemp:regionW -375.3741 148.6425 -2.525 0.011948 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1554 on 396 degrees of freedom
## Multiple R-squared: 0.8678, Adjusted R-squared: 0.8535
## F-statistic: 60.48 on 43 and 396 DF, p-value: < 2.2e-16

pairs(cdi[,-ncol(cdi)])
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Right away we see a much better fit. The R squared is much higher and many variables (crimes not included)
are significant. Most of the interaction terms do not seem useful. From this set of variables, we can examine
the VIFs to determine any multicollinearity.
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library(rms)

## Loading required package: Hmisc

## Loading required package: lattice

## Loading required package: survival

## Loading required package: Formula

##
## Attaching package: ’Hmisc’

## The following objects are masked from ’package:dplyr’:
##
## src, summarize

## The following objects are masked from ’package:base’:
##
## format.pval, units

## Loading required package: SparseM

##
## Attaching package: ’SparseM’

## The following object is masked from ’package:base’:
##
## backsolve

##
## Attaching package: ’rms’

## The following objects are masked from ’package:car’:
##
## Predict, vif

rms::vif(lm_full_inter)

## land.area pop.18_34 pop.65_plus
## 14.78608 11.42796 33.08557
## doctors hosp.beds crimes
## 58.90931 52.33403 20.18326
## pct.hs.grad pct.bach.deg pct.below.pov
## 46.84266 44.59529 26.28063
## pct.unemp regionNE regionS
## 12.53665 2336.85258 2071.79787
## regionW land.area:regionNE land.area:regionS
## 2704.60022 243.42055 242.17880
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## land.area:regionW pop.18_34:regionNE pop.18_34:regionS
## 228.99105 201.97400 193.46201
## pop.18_34:regionW pop.65_plus:regionNE pop.65_plus:regionS
## 211.66898 120.17780 99.87398
## pop.65_plus:regionW doctors:regionNE doctors:regionS
## 74.68390 888.95914 659.82570
## doctors:regionW hosp.beds:regionNE hosp.beds:regionS
## 1200.19163 1174.25715 825.77659
## hosp.beds:regionW crimes:regionNE crimes:regionS
## 837.84799 690.72890 791.22928
## crimes:regionW pct.hs.grad:regionNE pct.hs.grad:regionS
## 1520.77118 1695.92697 1506.10587
## pct.hs.grad:regionW pct.bach.deg:regionNE pct.bach.deg:regionS
## 1578.47478 141.22802 112.38018
## pct.bach.deg:regionW pct.below.pov:regionNE pct.below.pov:regionS
## 96.20519 23.25079 55.42150
## pct.below.pov:regionW pct.unemp:regionNE pct.unemp:regionS
## 38.53981 46.53163 40.49845
## pct.unemp:regionW
## 37.18172

There is indeed some multicollinearity issue within doctors and hospital beds, and crimes is also high. Most
of the interaction terms have very high VIFs, as expected. Because of this, it is necessary to attempt some
modeling selection. We try stepwise with a backwards direction using BIC as our criterion, as this is a
heuristic for all subsets and should give us a reasonable model. When selecting variables, we choose to
first remove region and interactions because selection algorithms are not robust to categorical data. We
experiment with stepwise and all subsets search.

lm_full_noregion = lm(per.cap.income ~ . -region, data = cdi)

lm_step_noregion = stepAIC(lm_full_noregion, k = log(nrow(cdi)), trace = F)
summary(lm_step_noregion)

##
## Call:
## lm(formula = per.cap.income ~ land.area + pop.18_34 + doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5688.4 -1015.1 -123.4 892.2 8260.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28748.60 1944.84 14.782 < 2e-16 ***
## land.area -683.89 99.76 -6.855 2.47e-11 ***
## pop.18_34 -300.39 23.21 -12.942 < 2e-16 ***
## doctors 1000.90 83.92 11.926 < 2e-16 ***
## pct.hs.grad -116.80 22.60 -5.168 3.63e-07 ***
## pct.bach.deg 371.01 19.31 19.214 < 2e-16 ***
## pct.below.pov -427.27 26.28 -16.258 < 2e-16 ***
## pct.unemp 251.44 45.47 5.530 5.56e-08 ***
## ---
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## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1713 on 432 degrees of freedom
## Multiple R-squared: 0.8248, Adjusted R-squared: 0.822
## F-statistic: 290.6 on 7 and 432 DF, p-value: < 2.2e-16

lm_sub_noregion = regsubsets(per.cap.income ~ .-region, data = cdi, nvmax = 15)
plot(lm_sub_noregion)
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coef(lm_sub_noregion, 1:8)[[7]]

## (Intercept) land.area pop.18_34 doctors pct.hs.grad
## 28748.6035 -683.8873 -300.3892 1000.9013 -116.8039
## pct.bach.deg pct.below.pov pct.unemp
## 371.0053 -427.2673 251.4416

lm_sub_res = lm(per.cap.income ~ pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp, data = cdi)

summary(lm_sub_res)

##
## Call:
## lm(formula = per.cap.income ~ pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4923.9 -1070.2 -131.4 944.1 8211.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26910.05 2025.98 13.282 < 2e-16 ***
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## pop.18_34 -288.72 24.35 -11.859 < 2e-16 ***
## doctors 1002.53 88.27 11.358 < 2e-16 ***
## pct.hs.grad -152.96 23.12 -6.617 1.09e-10 ***
## pct.bach.deg 392.00 20.05 19.549 < 2e-16 ***
## pct.below.pov -459.48 27.20 -16.896 < 2e-16 ***
## pct.unemp 203.03 47.24 4.298 2.13e-05 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1801 on 433 degrees of freedom
## Multiple R-squared: 0.8058, Adjusted R-squared: 0.8031
## F-statistic: 299.4 on 6 and 433 DF, p-value: < 2.2e-16

We actually find that stepwise and all subsets arrive at the same model. So, we now take this subset of
quantitative variables and add back region and interactions to see if there will be an improvement in the fit.

library(MASS)
library(leaps)

lm_sub_region_res = lm(per.cap.income ~ (pop.18_34 +
doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov +
pct.unemp) * region, data = cdi)

summary(lm_sub_region_res)

##
## Call:
## lm(formula = per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp) * region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4136.4 -915.1 -94.0 747.2 7161.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26365.00 6037.12 4.367 1.59e-05 ***
## pop.18_34 -329.35 55.17 -5.970 5.13e-09 ***
## doctors 909.94 199.06 4.571 6.42e-06 ***
## pct.hs.grad -118.62 70.93 -1.672 0.095222 .
## pct.bach.deg 342.72 61.69 5.555 4.98e-08 ***
## pct.below.pov -443.21 77.52 -5.718 2.08e-08 ***
## pct.unemp 327.90 103.56 3.166 0.001659 **
## regionNE 8345.82 7647.63 1.091 0.275781
## regionS -6483.53 6598.24 -0.983 0.326374
## regionW 27386.55 8918.87 3.071 0.002278 **
## pop.18_34:regionNE -126.80 78.30 -1.619 0.106111
## pop.18_34:regionS 86.68 64.82 1.337 0.181907
## pop.18_34:regionW 12.98 87.27 0.149 0.881820
## doctors:regionNE -45.68 283.48 -0.161 0.872067
## doctors:regionS -61.54 244.55 -0.252 0.801426
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## doctors:regionW -95.17 280.63 -0.339 0.734689
## pct.hs.grad:regionNE -116.11 88.98 -1.305 0.192660
## pct.hs.grad:regionS 58.68 79.07 0.742 0.458459
## pct.hs.grad:regionW -336.02 96.68 -3.476 0.000564 ***
## pct.bach.deg:regionNE 249.06 81.75 3.047 0.002464 **
## pct.bach.deg:regionS -16.38 67.49 -0.243 0.808307
## pct.bach.deg:regionW 179.27 75.49 2.375 0.018024 *
## pct.below.pov:regionNE 22.11 108.66 0.203 0.838870
## pct.below.pov:regionS 126.06 86.95 1.450 0.147850
## pct.below.pov:regionW -281.84 115.71 -2.436 0.015283 *
## pct.unemp:regionNE -156.06 157.18 -0.993 0.321346
## pct.unemp:regionS -242.09 140.18 -1.727 0.084928 .
## pct.unemp:regionW -377.14 144.17 -2.616 0.009224 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1626 on 412 degrees of freedom
## Multiple R-squared: 0.8494, Adjusted R-squared: 0.8396
## F-statistic: 86.08 on 27 and 412 DF, p-value: < 2.2e-16

When we add back region and interactions, we get a couple terms where every level is insignificant. Using
our best judgement we attempt to remove these variables and reassess the fit.

lm_sub_region_res_small = lm(per.cap.income ~ (pop.18_34 +
doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov +
pct.unemp) * region -

doctors:region - pop.18_34:region , data = cdi)
summary(lm_sub_region_res_small)

##
## Call:
## lm(formula = per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp) * region - doctors:region -
## pop.18_34:region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4004.1 -890.1 -124.3 754.6 7260.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26275.113 5452.666 4.819 2.02e-06 ***
## pop.18_34 -311.555 23.585 -13.210 < 2e-16 ***
## doctors 875.820 87.533 10.006 < 2e-16 ***
## pct.hs.grad -121.194 68.159 -1.778 0.076114 .
## pct.bach.deg 341.063 45.709 7.462 5.00e-13 ***
## pct.below.pov -444.613 72.731 -6.113 2.24e-09 ***
## pct.unemp 333.017 103.703 3.211 0.001424 **
## regionNE 5156.517 6563.365 0.786 0.432517
## regionS -6025.465 5981.880 -1.007 0.314380
## regionW 26275.154 7729.723 3.399 0.000741 ***
## pct.hs.grad:regionNE -106.707 83.943 -1.271 0.204366
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## pct.hs.grad:regionS 79.713 76.703 1.039 0.299297
## pct.hs.grad:regionW -324.506 91.069 -3.563 0.000408 ***
## pct.bach.deg:regionNE 206.265 56.213 3.669 0.000275 ***
## pct.bach.deg:regionS -9.271 50.357 -0.184 0.854025
## pct.bach.deg:regionW 173.775 56.612 3.070 0.002284 **
## pct.below.pov:regionNE -18.314 100.827 -0.182 0.855957
## pct.below.pov:regionS 159.038 79.973 1.989 0.047393 *
## pct.below.pov:regionW -273.588 112.101 -2.441 0.015079 *
## pct.unemp:regionNE -178.932 157.437 -1.137 0.256388
## pct.unemp:regionS -305.351 138.413 -2.206 0.027921 *
## pct.unemp:regionW -373.807 143.196 -2.610 0.009367 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1638 on 418 degrees of freedom
## Multiple R-squared: 0.845, Adjusted R-squared: 0.8372
## F-statistic: 108.5 on 21 and 418 DF, p-value: < 2.2e-16

Our reduced model has a significant coefficient for at least one level for all interactions and categorical
variables. Next, we see if it lost any explainability through ANOVA.

anova(lm_sub_region_res, lm_sub_region_res_small)

## Analysis of Variance Table
##
## Model 1: per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp) * region
## Model 2: per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp) * region - doctors:region - pop.18_34:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 412 1089211145
## 2 418 1121004010 -6 -31792865 2.0043 0.06398 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We can see that the full model does not necessarily explain any of the variation in the response better than
the reduced model. So, we are able to remove these insignificant terms without losing modeling power.

A natural next question is to experiment with removing more interactions and reassessing the fit. We tried a
few combinations of interactions to take out, but all of them resulted in a worse fit, as per the output below.

lm_sub_region_res_smaller = lm(per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp) * region - doctors:region - pct.unemp:region - pop.18_34:region , data = cdi)
anova(lm_sub_region_res_smaller, lm_sub_region_res_small)

## Analysis of Variance Table
##
## Model 1: per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp) * region - doctors:region - pct.unemp:region -
## pop.18_34:region
## Model 2: per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp) * region - doctors:region - pop.18_34:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 421 1142203076
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## 2 418 1121004010 3 21199066 2.6349 0.04943 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

As we can see, the full model with more interaction terms explains the data better than the one without
these terms. So, we do not have a justification for removing any more interaction terms.

As a final check, we can assess whether or not including region and the interactions actually improved the
fit with another ANOVA.

anova(lm_sub_res, lm_sub_region_res_small)

## Analysis of Variance Table
##
## Model 1: per.cap.income ~ pop.18_34 + doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp
## Model 2: per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp) * region - doctors:region - pop.18_34:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 1.405e+09
## 2 418 1.121e+09 15 2.84e+08 7.0597 8.025e-14 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output above shows a significant F score and thus including region and the interactions we chose did in
fact help us with the fit.

summary(lm_sub_region_res_small)

##
## Call:
## lm(formula = per.cap.income ~ (pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp) * region - doctors:region -
## pop.18_34:region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4004.1 -890.1 -124.3 754.6 7260.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26275.113 5452.666 4.819 2.02e-06 ***
## pop.18_34 -311.555 23.585 -13.210 < 2e-16 ***
## doctors 875.820 87.533 10.006 < 2e-16 ***
## pct.hs.grad -121.194 68.159 -1.778 0.076114 .
## pct.bach.deg 341.063 45.709 7.462 5.00e-13 ***
## pct.below.pov -444.613 72.731 -6.113 2.24e-09 ***
## pct.unemp 333.017 103.703 3.211 0.001424 **
## regionNE 5156.517 6563.365 0.786 0.432517
## regionS -6025.465 5981.880 -1.007 0.314380
## regionW 26275.154 7729.723 3.399 0.000741 ***
## pct.hs.grad:regionNE -106.707 83.943 -1.271 0.204366
## pct.hs.grad:regionS 79.713 76.703 1.039 0.299297
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## pct.hs.grad:regionW -324.506 91.069 -3.563 0.000408 ***
## pct.bach.deg:regionNE 206.265 56.213 3.669 0.000275 ***
## pct.bach.deg:regionS -9.271 50.357 -0.184 0.854025
## pct.bach.deg:regionW 173.775 56.612 3.070 0.002284 **
## pct.below.pov:regionNE -18.314 100.827 -0.182 0.855957
## pct.below.pov:regionS 159.038 79.973 1.989 0.047393 *
## pct.below.pov:regionW -273.588 112.101 -2.441 0.015079 *
## pct.unemp:regionNE -178.932 157.437 -1.137 0.256388
## pct.unemp:regionS -305.351 138.413 -2.206 0.027921 *
## pct.unemp:regionW -373.807 143.196 -2.610 0.009367 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1638 on 418 degrees of freedom
## Multiple R-squared: 0.845, Adjusted R-squared: 0.8372
## F-statistic: 108.5 on 21 and 418 DF, p-value: < 2.2e-16

Above is the summary for the final model we choose. Next, we validate its assumptions and examine
multicollinearity.

vif(lm_sub_region_res_small)

## pop.18_34 doctors pct.hs.grad
## 1.599381 1.641602 37.424800
## pct.bach.deg pct.below.pov pct.unemp
## 20.038883 18.777267 9.622177
## regionNE regionS regionW
## 1267.175237 1327.479835 1415.277701
## pct.hs.grad:regionNE pct.hs.grad:regionS pct.hs.grad:regionW
## 1256.253171 1253.138967 1262.106587
## pct.bach.deg:regionNE pct.bach.deg:regionS pct.bach.deg:regionW
## 50.380733 51.259727 41.669411
## pct.below.pov:regionNE pct.below.pov:regionS pct.below.pov:regionW
## 17.128812 37.997555 30.766221
## pct.unemp:regionNE pct.unemp:regionS pct.unemp:regionW
## 40.357617 31.264306 31.060862

As expected, we see some multicollinearity. However, because this is due in part to the inclusion of in-
teractions, because BIC approximates an explanatory and parsimonious model, and because most of the
coefficients are meaningful in sign, we choose to keep the variables we have.

We are focused on an interpretable model, so we do not inspect LASSO as a regularized model does not
give us the necessary statistical information. As a result of these analysis, we consider the backward step/
all subsets model plus region and a few interactions to be our best and move forward with validating its
assumptions.

par(mfrow = c(2,2))
plot(lm_sub_region_res_small)
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library(car)

mmps(lm_sub_region_res_small, terms = ~.-region)

## Warning in mmps(lm_sub_region_res_small, terms = ~. - region): Interactions and/
## or factors skipped
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From the diagnostics and marginal model plots above, we can see that the assumptions are mostly valid.
While there is some deviation from the normal line in the qq plot in the top right, there is only random
scatter in the standardized residuals, and most of them are close to the qq line besides the top right. There
are only a few apparent outliers or poor leverage points. Furthermore, the marginal model plots show that
the fits of all the quantitative predictors in the model are accurate, as the estimated curves are close to each
other. So, the transformations we chose, while less interpretable, did in fact improve the model assumptions
and validity. In this instance, we choose to sacrifice interpretability because a powerful model that satisfies
all assumptions can still let us make consise and relevant arguments about the relationships between the
predictors and the response. Additionally, the log function is monotonic so an increase in a log predictor
coefficient. can be qualitatively interpreted in the same direction as the natural predictor coefficient.

Throughout our model selection process, we had to make several tradeoffs in terms of interpretability,
modeling assumptions, and predictive power. We chose to find a model that satisfied at least a baseline of all
three. We did not use any complex transformations and only implemented log transforms, which are simple
to interpret in context. Our final model has a high R squared, but it is not the highest we saw; the full model
had a higher adjusted R-squared but broke some assumptions due to the VIFs. We made the tradeoff of
reliable estimates in exchange for more explainability of the response. We can still interpret these coefficients
in context despite the VIFs. Additionally, we are more inclined to include all terms, even multicollinear ones,
because our selection came from BIC so these variables are necessary in approximating the true model. Our
model has decently valid assumptions and interpretable coefficients, so it meets all relevant criteria for this
problem. Although not the “best” in any one category, its usefulness in interpretability and predictive power,
along with its validity will make this model a valuable tool for any stakeholder.
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