
 

 

 

 

 

1. ABSTRACT 

Per capita income is an important measure to evaluate the standard of living in a 
population, specifically by looking at its relationship with certain variables associated with 
a county’s economic, health, and social well-being. The data includes county demographic 
information for 440 of the most populous counties in the US and 14 variables pertaining to 
economics and other health/social well-being metrics. To answer the research questions 
presented, we use exploratory data analysis methods, linear regression models, variable 
selection, and model selection methods. We find for the different regions in the US, there is 
a significant difference in the average salary that an individual will make, and that to 
predict per capita income, interaction terms between region and some of the numeric 
variables were included to come up with the best model. Limitations of this study include 
the lack of second interaction terms, and model selection methods; implications of this 
study indicate that potentially there needs to be more assistance, whether that be social, 
economic, or political resources, targeted towards the Southern and Western regions of the 
United States. 
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2. INTRODUCTION 

The importance of being able to predict per capita income is that if we can predict average 
income for an individual, we can then determine the standard of living in different areas in 
the US. Thus, we want to be able to predict per capita income using different variables 
associated with American counties’ economic, health, and social well-being. Aside from per 
capita income, we are also interested the specific relationships between each of the 
variables, how region affects crime and whether region and crime are related to per capita 
income, as well as whether missing data is a concern or not.  

The 4 main research questions of this study are as follows:  

1. What pairwise relationships between the variables exist?  

2. How are crimes and region related to per capita income?  

3. What is the best model that predicts per capita income?  

4. Does it matter that there is missing data for counties and states in the data?  

3. DATA 

The data used in this study is from Kutner (Kutner 2005) that includes county demographic 
information for 440 counties information, where the variables are defined in Table 1 (page 
3) from the years 1990 - 1992. Looking at Table 1, we see that identification number is the 
same as the row number, which is not a very helpful variable in determining its association 
with per capita income.  

A summary table for the numerical variables is shown in Table 2 (page 3). Region is a 
categorial variable, so a separate frequency table is shown in Table 3 (page 3). We see that 
there are the most datapoints in the Southern region of the US. After initial exploratory 
data analysis, we can see that the best predictors for per capita income are pct.below.pov, 
pct.hs.grad, and pct.bach.deg (Figure 1) (page 4).  

We also look at the relationships between per capita income, and all the other numerical 
variables in Figure 2 (page 4) via scatterplots. As mentioned earlier, it does seem like 
pct.below.pov, pct.hs.grad, pct.bach.deg, and maybe pct.unemp are the best 
predictors for per capita income. When looking at Figure 3 (page 5), multiple of the 
numerical variables are right skewed, indicating that their distribution would be more 
normal if transformed via a log transformation. After taking log transformations of a select 
few variables, the skewness has been improved, as seen in Figure 4 (page 5). After log 
transformations, the scatterplots in Figure 5 (page 6) show a somewhat more linear 
relationship between the transformed variables and per capita income. We chose to 
transform these 6 variables by looking at the best 4 predictors for per capita income (as 
mentioned above) and the other 2 by looking at Figure 2 (page 4). The final variables that 
were log transformed are:  

pct.below.pov, pct.hs.grad, pct.bach.deg, pct.unemp, doctors, land.area. 



2 
 

Lastly, we want to see if per capita income differs by region. In Figure 6 (page 6), the 
boxplot shows that the mean of the Northeast region (NE) has a much higher median per 
capita income when compared to the other 3 regions.  

4. METHODS 

For the first research question, we look at correlogram plots and scatterplots of per capita 
income vs all the numerical variables to determine what relationships each pair of 
variables had with each other.  

For the second research question, we fit linear models using the base R lm() function. 
These models include crime, region, and/or interactions between the two variables. 
Additionally, the question asks whether there is a difference in choosing a model when 
defining “crime” as  

a) 𝑐𝑟𝑖𝑚𝑒𝑠 ≅ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑚𝑒𝑠, or as 

b) 𝑐𝑟𝑖𝑚𝑒𝑠 ≅ 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑐𝑟𝑖𝑚𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑚𝑒𝑠

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
. 

As a result, we fit models that include per capita crime instead of crime, region, and/or 
interactions between the two variables. We use ANOVA tests and BIC/AIC for model 
selection to determine which of the models is better in terms of statistical significance and 
information criteria. 

For the third research question, we first perform 2 methods of variable selection, and then 
finalize the model using model selection. Variable selection methods include all subsets and 
stepwise regression. Model selection methods include Akaike and Bayesian information 
criterion (AIC, BIC), and analysis of variance (ANOVA). 

The first variable selection we use is all subsets. We first perform all subsets without the 
variable ‘region’ to fit the best model that doesn’t include any interaction terms. 
Afterwards, we calculate the variance inflation factors (VIF) to determine if there are 
multicollinearities between the predictor variables. We then add in interaction terms 
between region and all the other numeric variables, before choosing only the interaction 
terms that are statistically significant. We then compare the initial model all subsets chose 
without any interactions with the model that has some interaction terms between region 
and the other numerical variables using an ANOVA test.  

Our second method of variable selection is stepwise regression using AIC and BIC. We do 
the same process as the first variable selection method. Lastly, we perform model selection 
using ANOVA to determine whether our all subsets model is better than our stepwise 
model. 

For the fourth research question, we look at the missing data on states and counties and 
reference data found online about population density and land area to determine whether 
having no data on certain states and counties is a concern. 
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Table 1. Variable definitions in CDI dataset 

 

Table 2. Summary statistics for numeric variables 

 

Table 3. Frequency table for region 
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Figure 1. Correlation heatmap of numeric all variables in cdi dataset 

 

Figure 2. Scatterplots between per.cap.income vs all numeric variables 
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Figure 3. Histograms of all numeric variables 

 

Figure 4. Histograms of the 6 transformed variables 
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Figure 5. Scatterplots between per.cap.income and all variables after transformations 

 

Figure 6. per.cap.income differences based on region (NC, NE, S, W) 
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5. RESULTS 

Our first research question deals with the issue of what are the specific relationships are 
there between the variables in our CDI dataset. When we look at the data one pair of 
variables at a time, we see that total income is related to population, doctors, hospital beds, 
and crimes, population is related to doctors, hospital beds, and crimes, and per capita 
income is related to percent hs grad, pct bach deg, and total income (page 18 of the 
appendix). These are eyeballed results of which variables are highly correlated with each 
other, but we can be more meticulous. We show the variables that have strong correlations 
with each (here, we define strong correlation as r > 0.4) in Table 4 (page 7).   

Now we examine whether the relationships between the numeric variables make sense. 
Some interesting relationships are noted. For example, it makes sense that doctors and 
number of hospital beds will have some sort of relationship since if there aren’t enough 
doctors, there might not be enough hospital beds either. Similarly, whether one has a 
bachelor’s degree will influence one’s income since having a bachelor’s degree will allow 
one to make more money. Another relationship that makes sense is that the larger a 
population, the more crime there will be. One relationship that is surprising is doctors and 
crimes, which has a very strong positive relationship, at 𝑟 ≈ 0.82 . Why would an increase 
in the number of doctors lead to an increase in crimes?  

Variable 1 Variable 2 Correlation (r) 

pop tot.income 0.9867476 

doctors hosp.beds 0.9504644 

doctors tot.income 0.9481106 

pop doctors 0.9402486 

pop hosp.beds 0.9237384 

hosp.beds  tot.income 0.9020615 

pop crimes 0.8863318 

hosp.beds crimes 0.8568499 

crimes tot.income 0.8430980 

doctors crimes 0.8204595 

pct.hs.grad pct.bach.deg 0.7077867 

pct.bach.deg per.cap.income 0.6953619 

pct.hs.grad pct.below.pov -0.6917505 

pop.18_34 pop.65_plus -0.6163096 

pct.below.pov per.cap.income -0.6017250 

pct.hs.grad pct.unemp -0.5935958 

pct.bach.deg pct.unemp -0.5409069 

pct.bach.deg pct.below.pov -0.4084238 

pct.below.pov pct.unemp 0.4369472 

pop.18_34 pct.bach.deg 0.4560970 

pct.hs.grad per.cap.income 0.5229961 

Table 4. Strong correlations between numeric variables 
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Our second research question asks the question of do crime and region influence per capita 
income, and whether this relationship is different when we define “crime” in 2 different 
ways (refer to page 2 in Methods). According to our linear regression model (page 22 of 
appendix) and while considering interactions between crime and region, we come to the 
final model of  

                                          𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑐𝑟𝑖𝑚𝑒𝑠 + 𝑟𝑒𝑔𝑖𝑜𝑛                                                (1.1). 

In the end, defining “crime” as the number of crimes instead of as “per capita crime” does 
make a difference. However, model 1.1 that uses crimes is better in terms of AIC and BIC. 
Table 5 below (page 8) shows the estimated coefficients for Model 1.1 (all the values are 
rounded to 2 decimal places for easier interpretation). Additionally, Table 6 (page 8) shows 
the baseline salaries for each US region that was calculated from the coefficients of Model 
1.1. The R squared for Model 1.1 happens to only be 0.1, which indicates about 1% of the 
variability in per capita income can be explained by crime and region.  

 

Table 5. Estimated coefficients, standard errors, t values, and p values for model 1.1 

Region Baseline Salary 

Northcentral (NC) $18,106 

Northeast (NE) $20,392 

Southern (S) $17,246 

Western (W) $17,963 

Table 6. Baseline salaries for each United States region 

An interpretation of the final model (Model 1.1) is as follows: 

- In the US, for every 1 unit of per capita income increase, there is a ~1% increase in 
crime. This increase is statistically significant.  

- The different regions of the US influence a difference in per capita income. We 
conclude this because for each region (NC, NE, S, and W), the baseline salaries are 
$18,106, $2,286 + $18,106 = $20,392, -$860 + $18,106 = $17,246, and -$142.83 + 
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$18,106 = $17,963 respectively. All of the salaries in each region are different, and 
all differ from the baseline salary in the NC region, which is $18,106. However, the 
only difference in baseline salary that is statistically significant is the difference 
between NC and NE. 

- Overall, the amount of money one makes in each region does differ, but it doesn't 
seem like it affects the crime rate. 

Our third research question asks the question of what the best model is to predict per 
capita income, when taking into account all of the variables in the CDI dataset. Our final 
model chosen is as follows (page 30 of appendix): 

𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑖𝑛𝑐𝑜𝑚𝑒 = 

log(𝑙𝑎𝑛𝑑. 𝑎𝑟𝑒) + 𝑝𝑜𝑝. 1834 + log(𝑑𝑜𝑐𝑡𝑜𝑟𝑠) + 𝑝𝑐𝑡. ℎ𝑠. 𝑔𝑟𝑎𝑑 + 𝑝𝑐𝑡. 𝑏𝑎𝑐ℎ. 𝑑𝑒𝑔 

+ log(𝑝𝑐𝑡. 𝑏𝑒𝑙𝑜𝑤. 𝑝𝑜𝑣) + log(𝑝𝑐𝑡. 𝑢𝑛𝑒𝑚𝑝) + 𝑝𝑐𝑡. ℎ𝑠. 𝑔𝑟𝑎𝑑 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛 

+ 𝑝𝑐𝑡. 𝑏𝑎𝑐ℎ. 𝑑𝑒𝑔 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛 + log(𝑝𝑐𝑡. 𝑏𝑒𝑙𝑜𝑤. 𝑝𝑜𝑣) ∗ 𝑟𝑒𝑔𝑖𝑜𝑛 

(1.2). 

Interestingly, stepwise regression ended up choosing the exact same model as all subsets 
regression did (page 34 of appendix), so it would have been redundant to add in region 
interaction terms into the stepwise regression model just to come to the same final model 
as from the first part when using al subsets.  

We look at the model diagnostics plots for Model 1.2 (page 32 of appendix). The residuals 
are roughly centered around 0 and have constant variance. There seems to be a right tail in 
the qq plot. There doesn’t seem to be any points that are outliers and/or highly influential. 
Despite the diagnostic plots not looking perfect, this is a tradeoff we are willing to make. 
Table 7 (page 11) shows the estimated coefficients of our final Model 1.2, as well as 
standard errors, t values, and p values (the t values are slightly rounded for easier 
interpretation). The R squared for Model 1.2 is 0.86, which indicates that 86% of the 
variability in per capita income can be explained by the predictors. An interpretation of the 
significant predictors in Model 1.2. follows (assuming that all other predictor variables are 
held constant): 

- The intercept represents the baseline per capita income: $27,410. 

- For every 1% increase in land area, there is a decrease of -600*log(1.01) = 6 in per 
capita income. 

- For every 1 unit increase in the population that is aged 18-34, there is a decrease of 
268 in per capita income. 

- For every 1% increase in the number of doctors, there is an increase of 
1002*log(1.01) = 10 in per capita income. 

- For every 1 unit increase in percent of population that has their bachelor’s degree, 
there is an increase of 239 in per capita income. 
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- For every 1% increase in the percent of population with income below poverty 
level, there is a decrease of -3,097*log(1.01) = 31 in per capita income. 

- The baseline salaries NC, NE, and S regions are $27,410. Meanwhile, since only the 
Western region is significant, the Western region baseline salary is $ 27,410 – 
$25,229 = $2,181. As we can see, the baseline salary for the Western region is 
significantly smaller than that of the other regions. 

- In the Western region, for every 1 unit of increase in the percentage of population 
who are high school grads, there is a -274 – 50 = 325 decrease in per capita income. 
The percentage of population who are high school grads has no statistically 
significant relationship with per capita income, unless it’s specifically in the Western 
region. 

- In the Northeast region, for every 1 unit of increase in the percentage of population 
with bachelor’s degrees, there is a 172 + 239 = 411 increase in per capita income. In 
the Western region, for every 1 unit of increase in the percentage of population with 
bachelor’s degrees, there is a 171 + 239 = 410 increase in per capita income. The 
percentage of population who have bachelor’s degrees has no statistically significant 
relationship overall with per capita income, unless it’s specifically in the Northeast 
and Western regions. 

- In the Western region, for every 1 percent increase in the percentage of population 
who have incomes below poverty level, there is a -30.97 – 33.13 = 64 unit decrease 
in per capita income. The percentage of population who have incomes below 
poverty level has no statistically significant relationship with per capita income, 
unless it’s specifically in the Western region.  

Our fourth question asks the question of whether it’d be an issue that there are missing 
county and state data. We see that three states are missing out 51 (this number counts and 
includes DC as the 51th state), Alaska, Iowa, and Wyoming (page 34 in appendix) 
(States101.com). Out of the 3000 US counties, our data has 440 unique counties, but only 
378 uniquely named counties represented, meaning that some states have counties that 
have the same name.  

6. DISCUSSION 

Our analyses and statistical methods all aim to answer the 4 research questions that were 
presented in the Introduction.  

The first question is answered by looking at correlations between all of the numerical 
variables. The second is answered by building a model that includes crime and region to 
predict per capita income. The third is answered by also building the best model that 
includes potentially all numeric variables and region to predict per capita income. The last 
is answered by looking at the missing state data and making inferences about county data. 

For the first question, we determined some interesting and expected relationships between 
variables. These relationships informed our ability to create a predictive model to 
determine the relationship between per capita income and county data.  
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For the second question, we determined that the additive model with number of crimes 
and region predicted per capita income best. Looking at the interpretation of the model 
(page 8) and the baseline salaries for each region, we can see that the Southern and 
Western regions have the lowest baseline salaries. Potentially, this could mean that the US 
should focus their resources and efforts on increasing the per capita income, and thus 
standard of living, in these regions.  

For the third question, we determined that the best model to predict per capita income 
included some interaction terms with region and the other variables. There should be an 
involved focus on the Western region. Here, we’ve confirmed that in the Western region, 
higher populations have below poverty incomes, leading to lower per capita income (page 
10 interpretation). Additionally, it’s evident even more so in the Western region that 
having a high school’s degree does not necessarily lead higher per capita income. Rather,  
having a bachelor’s degree leads to higher per capita income (interpretation from page 10). 
Not surprisingly, the Northeast shows that the higher percentage of population with 
bachelor’s degrees, the higher per capita income, which aligns with what we saw in our 
EDA (page 6 boxplot). The Northeast region has a higher median per capita income when 
compared to the other 3 regions.  

 

 

Table 7. Estimated coefficients, standard errors, t values, and p values for Model 1.2 
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The fourth research question poses the issue of having missing data for both states and 
counties. Implications of the results are as follows.  

There are 48 out of 51 states being represented in the data. The three missing states are 
Alaska, Iowa, and Wyoming. Alaska has the lowest population density in the entirety of the 
50 states, with land area of ~ 86%. Iowa has a relatively small population density, with a 
land area of ~99%. Wyoming has an even smaller population density, also with a land area 
of ~99%. Approximately 96% of the data in terms of states is being represented in this 
sample of 48 out of 51 states, which seems like a pretty good representation of the 51 
states. Additionally, since the population density in these missed states is so small, relative 
to the other states in the US, missing these three states’ data seems okay, as there are 48 
other states to make up for the missing data (States101.com). 

In terms of county, it’s a bit harder to determine whether it is an issue that only about 12% 
of the counties data is being represented. There are 440 unique counties out the 3000 total 
counties in the US. This is an issue that should be further investigated; it would be nice to 
know how the data itself was collected. For now, it’s better to be safe and determine that it 
is an issue that so many counties are missing in the data. Unless the method in which the 
data for counties is disclosed, there is no concrete evidence that 440 counties is a good 
representative sample for the 3000 counties in the United States.  

There are several limitations that this study suffers from. Firstly, there is no justification as 
to why state and county were not included in the model that answered question 3. State 
and county could be good predictors of per capita income, but they were completely left 
out from the models. Another limitation could be that linear model assumptions were 
potentially not met. This would cause any linear regression model to be invalid, as 
assumptions must be met before doing linear regression. As mentioned in research 
question four, there is missing data for counties and states, which would potentially make 
the models from questions 3 and 4 not generalizable to the entire United States.  

However, future work can be done to determine how the data was collected, so that there 
can be further investigation on whether it is an issue missing data on all the counties. 
Implications arise when we think about the differences in per capita income when it comes 
to the different regions of the US. The lower per capita income in a region, the lower the 
standard of living is. According to our data analyses (refer to interpretation of model 2 that 
answers question 2), the Southern and Western regions of the US have the lowest per 
capita income. There could be two explanations for this: 1) the South is not as 
technologically advanced, or at least during the 90’s from when the data was collected, as 
the rest of the country, and 2) the Western region of the US has a lot of land area, maybe 
with an emphasis of agriculture and horticulture, which isn’t as high paying as other type of  
jobs.  

It might be a good idea to redo this study with more recent data to see just how much the 
Western and Southern regions in the US have developed. Additionally, it might be a good 
idea to focus resources on the Southern and Western regions, whether that’s technological, 
economical, socially, etc., then their standard of living could be improved to be on par with 
the rest of the nation.  
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8. TECHNICAL APPENDIX 
library(glmnet) 
library(MASS)      
library(leaps)    
library(car)       
library(dplyr) 
library(ggplot2) 
library(stats4) 
library(car) 
library(mctest) 
library(gtsummary) 
library(kableExtra) 
library(tidyr) 
library(reshape2) 

question 1 
cdi <- read.table("../data/cdi.dat") 
cdi_edit <- cdi[,-c(1,2,3,17)] ## remove id, state, county, and region 

cdi_log <- data.frame(per.cap.income = cdi_no_reg$per.cap.income, log.land.ar
ea = log(cdi_no_reg$land.area), pop.18_34 = cdi_no_reg$pop.18_34, pop.65_plus
 = cdi_no_reg$pop.65_plus, log.doctors = log(cdi_no_reg$doctors), log.hosp.be
ds = log(cdi_no_reg$hosp.beds), log.crimes = log(cdi_no_reg$crimes), pct.hs.g
rad = cdi_no_reg$pct.hs.grad, pct.bach.deg = cdi_no_reg$pct.bach.deg, log.pct
.below.pov = log(cdi_no_reg$pct.below.pov), log.pct.unemp = log(cdi_no_reg$pc
t.unemp)) 

Remove id, state, county, and region in cdi edit.  

 

Table 2: Summary statistics for numeric variables 

apply(cdi, 2, function(x) any(is.na(x))) ## doesn't seem to have any NA's in 
the data 

##             id         county          state      land.area            pop
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##          FALSE          FALSE          FALSE          FALSE          FALSE

  
##      pop.18_34    pop.65_plus        doctors      hosp.beds         crimes

  
##          FALSE          FALSE          FALSE          FALSE          FALSE

  
##    pct.hs.grad   pct.bach.deg  pct.below.pov      pct.unemp per.cap.income

  
##          FALSE          FALSE          FALSE          FALSE          FALSE

  
##     tot.income         region  
##          FALSE          FALSE 

There aren’t any na’s in the data, so that’s good. 

 

Table 3: Frequency table for region 

cdi_actual <- cdi[,-c(1,2,3)] ## remove id, state, and county 

## histograms of all numeric vars – probably need to fix the x axes, numbers 
are squished  
ggplot(gather(cdi_edit), aes(value)) + 
  geom_histogram(bins = 30) +  
  facet_wrap(~key, scales = 'free_x') 

In cdi actual, we remove id, state, and county. Below is the histogram of all numeric 
variables without transformations.  



16 
 

 

Figure 1: Histograms of all numeric variables 

## crimes, doctors, hosp beds, land area, pop, and total income need to be lo
g transformed 

## distribution of region 
ggplot(cdi_actual, aes(x=region)) + 
  geom_bar(fill='lightblue') + labs(x = "Region") ## most data is in southern
 region  

Crimes, doctors, hosp beds, land area, pop, and total income need to be log transformed 
because right skewed.  

Most of the data happens to be in the southern region.  



17 
 

 

Figure 2: Distribution of Region 

## want to check correlation between predictors and lin relationship between 
per.cap.income and all other predictors 
 
corgraph <- function(df) { 
  cormat <- cor(df) 
  melted_cormat <- melt(cormat)   ## need library(reshape2) for this… 
  ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) +  
    geom_tile() +  
    theme(axis.text.x = element_text(angle = 45,vjust=0.9,hjust=1)) + 
    scale_fill_gradient2(low=”gold”,mid=”white”,high=”navy”) 
} 
 
corgraph(cdi_edit) 
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Figure 3: Correlation heatmap of numeric all variables in cdi dataset 

high correlations: tot.income and pop, tot.income and doctors, tot.income and hosp.beds, 
tot.income and crimes, pop and doctors, pop and hosp.beds, pop and crimes, 
per.cap.income and pct.hs.grad, pct.bach.deg, tot.income issues with multicollinearity 

## looking at the relationships b/t numeric vars where r > 0.4 and a  
correlogram 

corr_simple <- function(data=df,sig=0.4){ 
  #convert data to numeric in order to run correlations 
  #convert to factor first to keep the integrity of the data – each value wil
l become a number rather than turn into NA 
  df_cor <- data %>% mutate_if(is.character, as.factor) 
  df_cor <- df_cor %>% mutate_if(is.factor, as.numeric) 
  #run a correlation and drop the insignificant ones 
  corr <- cor(df_cor) 
  #prepare to drop duplicates and correlations of 1      
  corr[lower.tri(corr,diag=TRUE)] <- NA  
  #drop perfect correlations 
  corr[corr == 1] <- NA  
  #turn into a 3-column table 
  corr <- as.data.frame(as.table(corr)) 
  #remove the NA values from above  
  corr <- na.omit(corr)  
  #select significant values   
  corr <- subset(corr, abs(Freq) > sig)  
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  #sort by highest correlation 
  corr <- corr[order(-abs(corr$Freq)),]  
  #print table 
  print(corr) 
  #turn corr back into matrix in order to plot with corrplot 
  mtx_corr <- reshape2::acast(corr, Var1~Var2, value.var=”Freq”) 
   
  #plot correlations visually 
  corrplot(mtx_corr, is.corr=FALSE, tl.col=”black”, na.label=” “) 
} 
 
corr_simple(cdi_edit) 

##              Var1           Var2       Freq 
## 158           pop     tot.income  0.9867476 
## 70        doctors      hosp.beds  0.9504644 
## 161       doctors     tot.income  0.9481106 
## 54            pop        doctors  0.9402486 
## 67            pop      hosp.beds  0.9237384 
## 162     hosp.beds     tot.income  0.9020615 
## 80            pop         crimes  0.8863318 
## 84      hosp.beds         crimes  0.8568499 
## 163        crimes     tot.income  0.8430980 
## 83        doctors         crimes  0.8204595 
## 112   pct.hs.grad   pct.bach.deg  0.7077867 
## 152  pct.bach.deg per.cap.income  0.6953619 
## 125   pct.hs.grad  pct.below.pov -0.6917505 
## 42      pop.18_34    pop.65_plus -0.6163096 
## 153 pct.below.pov per.cap.income -0.6017250 
## 138   pct.hs.grad      pct.unemp -0.5935958 
## 139  pct.bach.deg      pct.unemp -0.5409069 
## 151   pct.hs.grad per.cap.income  0.5229961 
## 107     pop.18_34   pct.bach.deg  0.4560970 
## 140 pct.below.pov      pct.unemp  0.4369472 
## 126  pct.bach.deg  pct.below.pov -0.4084238 

 
look at the relationships between the variables with high correlations where r > |.4|. 
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Figure 4: Correlogram of numeric variables, colored circles show high enough correlations 

 

## scatterplots between all numeric vars and per.cap.income 
cdi_edit %>% 
  gather(-per.cap.income, key = "var", value = "value") %>% 
  ggplot(aes(x = value, y = per.cap.income)) + 
    geom_point() + 
    facet_wrap(~ var, scales = "free") + 
    theme_bw() 
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Figure 5: Scatterplots between per.cap.income vs all numeric variables 

best predictors for per.cap.income: pos pct.bach.deg, neg pct.below.pov, pos pc.hs.grad, neg 
pct.unemp (some need transformations b/c not completely lin relationship) 

## difference between region and per.cap.income using boxplot --> looks like 
ne has significantly higher mean of per.cap.income 
ggplot(cdi_actual,aes(x=region,y=per.cap.income)) +  
  geom_boxplot(notch=F) 
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Figure 6: per.cap.income differences based on region (NC, NE, S, W) 

Differences between per capita income for regions – northest has highest mean per capita 
income compared to other 3 regions.  

## histograms of transformed vars 
par(mfrow=c(3,2)) 
hist(log(cdi_actual$pct.bach.deg)) 
hist(log(cdi_actual$pct.below.pov)) 
hist(log(cdi$pct.hs.grad)) ## somehow worse - not going to transform 
hist(log(cdi$pct.unemp)) 
hist(log(cdi_actual$doctors)) 
hist(log(cdi_actual$land.area)) 

 

Figure 7: Histograms of chosen transformed variables 

First 4 chosen from the best predictors in scatterplots against per cap income, the other 2 
are identified from looking at histograms of all other numeric vars 

question 2 
## create models 
mod1 <- lm(per.cap.income ~ crimes, data = cdi_actual) 
mod2 <- lm(per.cap.income ~ crimes + region, data = cdi_actual) 
mod3 <- lm(per.cap.income ~ crimes*region, data = cdi_actual) 
 
summary(mod2) ## crimes and ne significant 
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##  
## Call: 
## lm(formula = per.cap.income ~ crimes + region, data = cdi_actual) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -9661.0 -2260.7  -618.3  1650.0 19492.6  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  1.811e+04  3.784e+02  47.846  < 2e-16 *** 
## crimes       8.915e-03  3.188e-03   2.797  0.00539 **  
## regionNE     2.286e+03  5.325e+02   4.293 2.17e-05 *** 
## regionS     -8.606e+02  4.868e+02  -1.768  0.07782 .   
## regionW     -1.428e+02  5.796e+02  -0.246  0.80548     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3866 on 435 degrees of freedom 
## Multiple R-squared:  0.1011, Adjusted R-squared:  0.09288  
## F-statistic: 12.24 on 4 and 435 DF,  p-value: 1.946e-09 

Only crimes and NE are significant.  

anova(mod1, mod2, mod3) ## mod2 is the best which is just crimes + region 

## Analysis of Variance Table 
##  
## Model 1: per.cap.income ~ crimes 
## Model 2: per.cap.income ~ crimes + region 
## Model 3: per.cap.income ~ crimes * region 
##   Res.Df        RSS Df Sum of Sq       F    Pr(>F)     
## 1    438 7133487504                                    
## 2    435 6501791845  3 631695660 14.1275 8.444e-09 *** 
## 3    432 6438799739  3  62992106  1.4088    0.2396     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Model 2 with additive model is best. 

pcc <- cdi_actual$crimes / cdi_actual$pop ## create new var for per capita cr
ime 
 
moda <- lm(per.cap.income ~ pcc, data = cdi_actual) 
modb <- lm(per.cap.income ~ pcc + region, data = cdi_actual) 
modc <- lm(per.cap.income ~ pcc*region, data = cdi_actual) 
 
summary(modb) ## only ne significant 

##  
## Call: 
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## lm(formula = per.cap.income ~ pcc + region, data = cdi_actual) 
##  
## Residuals: 
##    Min     1Q Median     3Q    Max  
##  -8634  -2300   -631   1710  19333  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 18006.04     537.04  33.528  < 2e-16 *** 
## pcc          5773.20    7520.41   0.768   0.4431     
## regionNE     2354.70     541.97   4.345 1.74e-05 *** 
## regionS      -927.45     512.31  -1.810   0.0709 .   
## regionW       -34.92     586.03  -0.060   0.9525     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3898 on 435 degrees of freedom 
## Multiple R-squared:  0.08622,    Adjusted R-squared:  0.07782  
## F-statistic: 10.26 on 4 and 435 DF,  p-value: 6.007e-08 

Create new variables for per capita crime and then fit the model. In this model, only NE is 
significant.  

anova(moda, modb, modc) ## second model does best again 

## Analysis of Variance Table 
##  
## Model 1: per.cap.income ~ pcc 
## Model 2: per.cap.income ~ pcc + region 
## Model 3: per.cap.income ~ pcc * region 
##   Res.Df        RSS Df Sum of Sq       F    Pr(>F)     
## 1    438 7186843542                                    
## 2    435 6609753963  3 577089580 12.5761 6.753e-08 *** 
## 3    432 6607856753  3   1897210  0.0413    0.9888     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The second model (additive) does better than interaction model.  

## need to compare mod2 and modb 
BIC(mod2, modb) ## mod2 is smaller bic 

##      df      BIC 
## mod2  6 8548.957 
## modb  6 8556.203 

AIC(mod2, modb) ## same with aic 

##      df      AIC 
## mod2  6 8524.436 
## modb  6 8531.682 
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round(coef(summary(mod2)),2) 

##             Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 18106.91     378.44   47.85     0.00 
## crimes          0.01       0.00    2.80     0.01 
## regionNE     2286.04     532.47    4.29     0.00 
## regionS      -860.56     486.83   -1.77     0.08 
## regionW      -142.83     579.62   -0.25     0.81 

in the end, it does matter if we use crimes or per capita crimes (crimes/population). the 
better model of the 2 using aic/bic as a measure shows that model 2 with just crimes and 
region as the predictor variables for per capita income instead of using per capita crimes. 

interpretation of mod2: in the us, for every 1 unit of per capita income increase, there is a 
~1% increase in crime. this increase is statistically significant. different regions of the us 
has an effect on per capita income. for each region (nc, ne, s, and w) the baseline salaries 
are “18,106”, 2,286+18,106 = 20,392, -860+18106 = 17246, and -142.83+18106 = 17963. 
all of the salaries in each region are different, and all differ from the baseline salary in the 
nc region, which is 18106. overall, the amount of money one makes in each region does 
differ, but it doesn’t seem like it actually affect crime rate itself. 

## table for model 2 coefficients/regression output 
round(coef(summary(mod2)),2) %>% kbl(booktabs=T,caption=" ") %>% kable
_classic(full_width=F) 

 

## residual plots for all 6 models 
oldmar <- par()$mar 
par(mfrow=c(6,4)) 
par(mar=c(2,2,2,2)) 
 
invisible(lapply(list(mod1,mod2,mod3,moda,modb,modc), 
                 function(x) plot(x))) 
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Figure 8: Residual plots for all 6 models mentioned above 
 (mod1, mod2, mod3, moda, modb, modc) 

 

cdi_matrix <- as.matrix(cdi_log[, -1]) ## create design matrix without per ca
pita income  
cdi_y <- cdi_log[,1] ## per capita income vector 

cv.lasso.fit <- cv.glmnet(cdi_matrix, cdi_y) 

plot(cv.lasso.fit) ## huge mse's???? and postive log lambda 

lambda_min <- cv.lasso.fit$lambda.min ## lambda that minimizes is 20.36 

lambda.se <- cv.lasso.fit$lambda.1se ## lambda that is 1 se larger is 189.87 

cbind(coef(cv.lasso.fit, s = cv.lasso.fit$lambda.1se),  

      coef(cv.lasso.fit, s = cv.lasso.fit$lambda.min)) 

 

question 3 
cdi_new <- cdi_actual[,-c(2,13)] ## remove pop and total income because corre
lated with per capita income 
cdi_no_reg <- cdi_new[,-c(12)] ## remove region 

all.subset <- regsubsets(per.cap.income ~ log(land.area) + pop.18_34 + pop.65
_plus + log(doctors) + log(hosp.beds) + log(crimes) + pct.hs.grad + pct.bach.
deg + log(pct.below.pov) + log(pct.unemp), data = cdi_no_reg)  
## let reg subsets find the best model for us 
plot(all.subset) 
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which.min(summary(all.subset)$bic) ## model with minimum bic has 7 vars 

## [1] 7 

First remove population and total income because they’re correlated with per capita 
income. Also create only numerical variable data called cdi no reg.  

Model with smallest bic has 7 predictors.  

cbind(coef(all.subset,which.min(summary(all.subset)$bic))) ## coefficients of
 the best reg subsets model that has 7 vars 

##                           [,1] 
## (Intercept)        27091.20331 
## log(land.area)      -623.02904 
## pop.18_34           -249.38687 
## log(doctors)        1119.67817 
## pct.hs.grad          -72.82166 
## pct.bach.deg         298.14366 
## log(pct.below.pov) -3909.99239 
## log(pct.unemp)      1678.42683 

all.subset.mod <- lm(per.cap.income ~ log(land.area) + pop.18_34 + log(doctor
s) + pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp), data =
 cdi_no_reg) ## general model chosen by regsubsets 
coef(summary(all.subset.mod)) ## all predictors are significant 

##                       Estimate Std. Error    t value     Pr(>|t|) 
## (Intercept)        27091.20331 1970.82790  13.746103 6.360451e-36 
## log(land.area)      -623.02904   94.76104  -6.574739 1.408797e-10 
## pop.18_34           -249.38687   23.00306 -10.841463 2.189522e-24 
## log(doctors)        1119.67817   81.71519  13.702204 9.697278e-36 
## pct.hs.grad          -72.82166   19.58113  -3.718971 2.263959e-04 
## pct.bach.deg         298.14366   19.33180  15.422446 4.571538e-43 
## log(pct.below.pov) -3909.99239  218.30290 -17.910858 4.673793e-54 
## log(pct.unemp)      1678.42683  315.66424   5.317127 1.694403e-07 

best all reg subset model has 7 vars: land area, pop 18_34, doctors, pct hs grad, pct bach 
deg, pct below pov, and pct unemp 

if you look at the signs of the coefficients, we see several of them have the wrong sign 
(wrong direction of relationship with per cap income) - pct unemp and pct hs grad signs 
are wrong (look at original scatterplots w/ relationships b/t per capital income and the 
predictor vars) 

vif(all.subset.mod) ## none are above 5 actually 

##     log(land.area)          pop.18_34       log(doctors)        pct.hs.gra
d  
##           1.116567           1.520927           1.430151           3.08770
0  
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##       pct.bach.deg log(pct.below.pov)     log(pct.unemp)  
##           3.583155           2.194639           1.735595 

par(mfrow = c(2,2)) 
plot(all.subset.mod) 

 

Figure 9: Diagnostic plots for model chosen by regsubsets 

 

mmps(all.subset.mod) ## look at marginal model plots - blue lines line up wel
l with red dashed lines, probably didn't miss any transformationa/interaction
s 
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Figure 10: Marginal model plots for model chosen by regsubsets  

If you look ok at marginal model plots - blue lines line up well with red dashed lines, 
probably didn't miss any transformations/interactions 

all.subset.final.reg <- lm(per.cap.income ~ log(land.area) + pop.18_34 + log(
doctors) + pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +
 log(land.area)*region + pop.18_34*region + log(doctors)*region + pct.hs.grad
*region + pct.bach.deg*region + log(pct.below.pov)*region + log(pct.unemp)*re
gion, data = cdi_new) 
 
summary(all.subset.final.reg) ## pop.18_34, doctors, pct.bach.deg, pct.below.
pov, pct.unemp, regionw sign, landarea * regionne, pct.hs.grad*regionw, pct.b
elow.pov*regionw all sign interactions 

##  
## Call: 
## lm(formula = per.cap.income ~ log(land.area) + pop.18_34 + log(doctors) +  
##     pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +  
##     log(land.area) * region + pop.18_34 * region + log(doctors) *  
##     region + pct.hs.grad * region + pct.bach.deg * region + log(pct.below.
pov) *  
##     region + log(pct.unemp) * region, data = cdi_new) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -4574.2  -918.8   -69.0   768.7  6376.3  
##  
## Coefficients: 
##                             Estimate Std. Error t value Pr(>|t|)     
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## (Intercept)                 24348.03    6074.50   4.008 7.27e-05 *** 
## log(land.area)               -360.22     305.79  -1.178 0.239490     
## pop.18_34                    -269.27      54.96  -4.899 1.39e-06 *** 
## log(doctors)                  908.78     186.08   4.884 1.50e-06 *** 
## pct.hs.grad                   -53.71      69.50  -0.773 0.440035     
## pct.bach.deg                  278.07      59.39   4.682 3.87e-06 *** 
## log(pct.below.pov)          -3059.37     519.69  -5.887 8.22e-09 *** 
## log(pct.unemp)               1848.92     607.63   3.043 0.002495 **  
## regionNE                     9757.79    7627.71   1.279 0.201534     
## regionS                       834.28    6744.81   0.124 0.901620     
## regionW                     28193.60    8481.74   3.324 0.000967 *** 
## log(land.area):regionNE      -100.35     405.23  -0.248 0.804538     
## log(land.area):regionS       -430.46     351.28  -1.225 0.221131     
## log(land.area):regionW       -110.36     366.69  -0.301 0.763601     
## pop.18_34:regionNE           -119.91      77.46  -1.548 0.122400     
## pop.18_34:regionS              13.20      64.17   0.206 0.837099     
## pop.18_34:regionW              21.70      84.70   0.256 0.797958     
## log(doctors):regionNE          66.93     268.02   0.250 0.802939     
## log(doctors):regionS           53.44     231.45   0.231 0.817506     
## log(doctors):regionW          153.63     258.08   0.595 0.551983     
## pct.hs.grad:regionNE         -114.61      89.15  -1.286 0.199298     
## pct.hs.grad:regionS            52.29      75.43   0.693 0.488555     
## pct.hs.grad:regionW          -281.34      85.10  -3.306 0.001030 **  
## pct.bach.deg:regionNE         195.92      83.63   2.343 0.019622 *   
## pct.bach.deg:regionS          -31.34      65.24  -0.480 0.631230     
## pct.bach.deg:regionW          125.04      73.82   1.694 0.091063 .   
## log(pct.below.pov):regionNE  -503.89     727.31  -0.693 0.488818     
## log(pct.below.pov):regionS    103.85     634.03   0.164 0.869974     
## log(pct.below.pov):regionW  -3384.68     874.56  -3.870 0.000127 *** 
## log(pct.unemp):regionNE      -280.17    1023.02  -0.274 0.784329     
## log(pct.unemp):regionS      -1592.38     865.77  -1.839 0.066601 .   
## log(pct.unemp):regionW      -1311.92     931.74  -1.408 0.159884     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1526 on 408 degrees of freedom 
## Multiple R-squared:  0.8686, Adjusted R-squared:  0.8586  
## F-statistic: 87.02 on 31 and 408 DF,  p-value: < 2.2e-16 

should keep: region b/c w sign, pct.hs.grad:region, log(pct.below.pov):region, 
pct.bach.deg:region drop: log(doctors):region, pop.18_34:region, log(land.area):region, 
log(pct.unemp):region 

all.subset.final.final <- lm(per.cap.income ~ log(land.area) + pop.18_34 + lo
g(doctors) + pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp)
+ pct.hs.grad*region + pct.bach.deg*region + log(pct.below.pov)*region, data 
= cdi_new) ## dropped interactions w/ region that were insignificant 
 
summary(all.subset.final.final) 
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##  
## Call: 
## lm(formula = per.cap.income ~ log(land.area) + pop.18_34 + log(doctors) +  
##     pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +  
##     pct.hs.grad * region + pct.bach.deg * region + log(pct.below.pov) *  
##     region, data = cdi_new) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -4864.3  -820.6   -45.7   790.6  5909.6  
##  
## Coefficients: 
##                             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                 27410.36    5194.61   5.277 2.11e-07 *** 
## log(land.area)               -599.99     108.95  -5.507 6.37e-08 *** 
## pop.18_34                    -268.54      22.36 -12.009  < 2e-16 *** 
## log(doctors)                 1002.78      81.37  12.324  < 2e-16 *** 
## pct.hs.grad                   -50.24      61.69  -0.814 0.415892     
## pct.bach.deg                  239.39      40.17   5.959 5.38e-09 *** 
## log(pct.below.pov)          -3097.55     467.64  -6.624 1.07e-10 *** 
## log(pct.unemp)                970.89     334.14   2.906 0.003859 **  
## regionNE                     5514.53    6089.45   0.906 0.365673     
## regionS                     -5288.50    5528.07  -0.957 0.339288     
## regionW                     25229.79    6443.16   3.916 0.000105 *** 
## pct.hs.grad:regionNE          -98.74      75.43  -1.309 0.191222     
## pct.hs.grad:regionS            55.14      67.90   0.812 0.417234     
## pct.hs.grad:regionW          -274.71      72.91  -3.768 0.000188 *** 
## pct.bach.deg:regionNE         171.77      50.20   3.421 0.000684 *** 
## pct.bach.deg:regionS           23.58      42.83   0.550 0.582313     
## pct.bach.deg:regionW          170.87      51.08   3.345 0.000896 *** 
## log(pct.below.pov):regionNE  -729.96     633.22  -1.153 0.249655     
## log(pct.below.pov):regionS     84.58     551.05   0.153 0.878090     
## log(pct.below.pov):regionW  -3313.47     828.58  -3.999 7.52e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1530 on 420 degrees of freedom 
## Multiple R-squared:  0.8641, Adjusted R-squared:  0.858  
## F-statistic: 140.6 on 19 and 420 DF,  p-value: < 2.2e-16 

vif(all.subset.final.final) ## 5 greater than 5 

##                                   GVIF Df GVIF^(1/(2*Df)) 
## log(land.area)            1.692031e+00  1        1.300781 
## pop.18_34                 1.647587e+00  1        1.283584 
## log(doctors)              1.625573e+00  1        1.274980 
## pct.hs.grad               3.513328e+01  1        5.927333 
## pct.bach.deg              1.773780e+01  1        4.211627 
## log(pct.below.pov)        1.154453e+01  1        3.397724 
## log(pct.unemp)            2.229315e+00  1        1.493089 
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## region                    2.736822e+08  3       25.480488 
## pct.hs.grad:region        1.586555e+08  3       23.267113 
## pct.bach.deg:region       2.064872e+04  3        5.237799 
## log(pct.below.pov):region 8.945037e+04  3        6.687498 

## diagnostic plots for the final model chosen via reg subsets and with some 
interaction terms w/ region 
par(mfrow=c(2,2)) 
plot(all.subset.final.final) 

 

Figure 11: Diagnostic plots for model chosen by regsubsets including some interaction terms 
between region and other numeric variables 

diagnostic plots look decent… can’t be perfect though 

anova(all.subset.mod, all.subset.final.final) ## the 2nd model with some inte
raction terms with region better than model with no region 

## Analysis of Variance Table 
##  
## Model 1: per.cap.income ~ log(land.area) + pop.18_34 + log(doctors) +  
##     pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) 
## Model 2: per.cap.income ~ log(land.area) + pop.18_34 + log(doctors) +  
##     pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +  
##     pct.hs.grad * region + pct.bach.deg * region + log(pct.below.pov) *  
##     region 
##   Res.Df        RSS Df Sum of Sq      F    Pr(>F)     
## 1    432 1158947355                                   
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## 2    420  982926692 12 176020663 6.2677 3.206e-10 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

BIC(all.subset.mod, all.subset.final.final) ## almost the same but first mode
l w/o interaction is better b/c bic favors smaller models 

##                        df      BIC 
## all.subset.mod          9 7808.408 
## all.subset.final.final 21 7808.967 

AIC(all.subset.mod, all.subset.final.final) ## aic clearly favors model 2 wit
h some region interaction terms b/c larger model 

##                        df      AIC 
## all.subset.mod          9 7771.627 
## all.subset.final.final 21 7723.145 

round(coef(summary(all.subset.final.final)), 2) 

##                             Estimate Std. Error t value Pr(>|t|) 
## (Intercept)                 27410.36    5194.61    5.28     0.00 
## log(land.area)               -599.99     108.95   -5.51     0.00 
## pop.18_34                    -268.54      22.36  -12.01     0.00 
## log(doctors)                 1002.78      81.37   12.32     0.00 
## pct.hs.grad                   -50.24      61.69   -0.81     0.42 
## pct.bach.deg                  239.39      40.17    5.96     0.00 
## log(pct.below.pov)          -3097.55     467.64   -6.62     0.00 
## log(pct.unemp)                970.89     334.14    2.91     0.00 
## regionNE                     5514.53    6089.45    0.91     0.37 
## regionS                     -5288.50    5528.07   -0.96     0.34 
## regionW                     25229.79    6443.16    3.92     0.00 
## pct.hs.grad:regionNE          -98.74      75.43   -1.31     0.19 
## pct.hs.grad:regionS            55.14      67.90    0.81     0.42 
## pct.hs.grad:regionW          -274.71      72.91   -3.77     0.00 
## pct.bach.deg:regionNE         171.77      50.20    3.42     0.00 
## pct.bach.deg:regionS           23.58      42.83    0.55     0.58 
## pct.bach.deg:regionW          170.87      51.08    3.35     0.00 
## log(pct.below.pov):regionNE  -729.96     633.22   -1.15     0.25 
## log(pct.below.pov):regionS     84.58     551.05    0.15     0.88 
## log(pct.below.pov):regionW  -3313.47     828.58   -4.00     0.00 

## stepwise regression using aic and bic 

stepwise_base <- lm(per.cap.income ~., data = cdi_log) 
step1 <- stepAIC(stepwise_base,  
                 scope = list(lower = ~ 1, upper = ~ .), 
                 k = log(dim(cdi_log)[1]), 
                 trac = F) ## chose the same model without region as all subs
ets 
step2 <- stepAIC(stepwise_base,  
                 scope = list(lower = ~ 1, upper = ~ .), 
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                 k = 2, 
                 trac = F) ## chose same model as all subsets and as bic abov
e  
 

round(coef(summary(all.subset.final.final)),2) %>% kbl(booktabs=T,caption=" "
) %>% kable_classic(full_width=F) 

 

turns out stepwise regression using both aic and bic choose the exact same model without 
region as all subsets did. it would be redundant to add in region , take out insignificant 
terms, and come to the same final model as all subsets found and with some region 
interaction terms.  

question 4 
sort(unique(cdi$state)) 
## missing iowa, alaska, and wyoming 

## [1] "AL" "AR" "AZ" "CA" "CO" "CT" "DC" "DE" "FL" "GA" "HI" "ID" "IL" "IN" 
"KS" "KY" "LA" "MA" 

[19] "MD" "ME" "MI" "MN" "MO" "MS" "MT" "NC" "ND" "NE" "NH" "NJ" "NM" "NV" "N
Y" "OH" "OK" "OR" 

[37] "PA" "RI" "SC" "SD" "TN" "TX" "UT" "VA" "VT" "WA" "WI" "WV" 
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there are 48/51 states (includes dc) being represented in the data. the 3 missing states are 
Alaska, iowa, and Wyoming. Alaska has the lowest population density in the entirety of the 
50 states, with ~ 86% land area. Iowa has a relatively small population density, with a 
~99% land area. Wyoming has an even smaller population density, and is also ~99% land 
area. ~96% of the data in terms of states is being represented, which I think is a good 
sample size for the 51 states (including dc). Additionally, since the population density in 
these missed states is so small, relative to the other states in the us, missing these 3 states’ 
data seems okay, as there are 48 other states (including dc) that makes up for the missing 
data.  

in terms of county, it’s a bit harder to determine whether it is ok that only 10% of the 
counties data is being represented. There only 378 unique counties out 3000 total counties 
in the us. This is an issue that should be further investigated; it would be nice to know how 
the data was collected. For now, I would say it’s an issue that so many counties are missing 
in the data, and unless the method in which the data for counties is disclosed, there is no 
concrete evidence showing that 378 counties is a good representative sample for the 3000 
counties in the united states.  

 

 

 


