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1. ABSTRACT

Per capita income is an important measure to evaluate the standard of living in a
population, specifically by looking at its relationship with certain variables associated with
a county’s economic, health, and social well-being. The data includes county demographic
information for 440 of the most populous counties in the US and 14 variables pertaining to
economics and other health/social well-being metrics. To answer the research questions
presented, we use exploratory data analysis methods, linear regression models, variable
selection, and model selection methods. We find for the different regions in the US, there is
a significant difference in the average salary that an individual will make, and that to
predict per capita income, interaction terms between region and some of the numeric
variables were included to come up with the best model. Limitations of this study include
the lack of second interaction terms, and model selection methods; implications of this
study indicate that potentially there needs to be more assistance, whether that be social,
economic, or political resources, targeted towards the Southern and Western regions of the
United States.



2. INTRODUCTION

The importance of being able to predict per capita income is that if we can predict average
income for an individual, we can then determine the standard of living in different areas in
the US. Thus, we want to be able to predict per capita income using different variables
associated with American counties’ economic, health, and social well-being. Aside from per
capita income, we are also interested the specific relationships between each of the
variables, how region affects crime and whether region and crime are related to per capita
income, as well as whether missing data is a concern or not.

The 4 main research questions of this study are as follows:
What pairwise relationships between the variables exist?
How are crimes and region related to per capita income?

What is the best model that predicts per capita income?

B Mo

Does it matter that there is missing data for counties and states in the data?

3. DATA

The data used in this study is from Kutner (Kutner 2005) that includes county demographic
information for 440 counties information, where the variables are defined in Table 1 (page
3) from the years 1990 - 1992. Looking at Table 1, we see that identification number is the
same as the row number, which is not a very helpful variable in determining its association
with per capita income.

A summary table for the numerical variables is shown in Table 2 (page 3). Region is a
categorial variable, so a separate frequency table is shown in Table 3 (page 3). We see that
there are the most datapoints in the Southern region of the US. After initial exploratory
data analysis, we can see that the best predictors for per capita income are pct.below.pov,
pct.hs.grad, andpct.bach.deg (Figure 1) (page 4).

We also look at the relationships between per capita income, and all the other numerical
variables in Figure 2 (page 4) via scatterplots. As mentioned earlier, it does seem like
pct.below.pov, pct.hs.grad, pct.bach.deg, and maybe pct.unemp are the best
predictors for per capita income. When looking at Figure 3 (page 5), multiple of the
numerical variables are right skewed, indicating that their distribution would be more
normal if transformed via a log transformation. After taking log transformations of a select
few variables, the skewness has been improved, as seen in Figure 4 (page 5). After log
transformations, the scatterplots in Figure 5 (page 6) show a somewhat more linear
relationship between the transformed variables and per capita income. We chose to
transform these 6 variables by looking at the best 4 predictors for per capita income (as
mentioned above) and the other 2 by looking at Figure 2 (page 4). The final variables that
were log transformed are:

pct.below.pov, pct.hs.grad, pct.bach.deg, pct.unemp, doctors, land.area.



Lastly, we want to see if per capita income differs by region. In Figure 6 (page 6), the
boxplot shows that the mean of the Northeast region (NE) has a much higher median per
capita income when compared to the other 3 regions.

4. METHODS

For the first research question, we look at correlogram plots and scatterplots of per capita
income vs all the numerical variables to determine what relationships each pair of
variables had with each other.

For the second research question, we fit linear models using the base R Im() function.
These models include crime, region, and/or interactions between the two variables.
Additionally, the question asks whether there is a difference in choosing a model when
defining “crime” as

a) crimes = number of crimes, or as

number of crimes

b) crimes = per capita crime = ;
population

As a result, we fit models that include per capita crime instead of crime, region, and/or

interactions between the two variables. We use ANOVA tests and BIC/AIC for model

selection to determine which of the models is better in terms of statistical significance and

information criteria.

For the third research question, we first perform 2 methods of variable selection, and then
finalize the model using model selection. Variable selection methods include all subsets and
stepwise regression. Model selection methods include Akaike and Bayesian information
criterion (AIC, BIC), and analysis of variance (ANOVA).

The first variable selection we use is all subsets. We first perform all subsets without the
variable ‘region’ to fit the best model that doesn’t include any interaction terms.
Afterwards, we calculate the variance inflation factors (VIF) to determine if there are
multicollinearities between the predictor variables. We then add in interaction terms
between region and all the other numeric variables, before choosing only the interaction
terms that are statistically significant. We then compare the initial model all subsets chose
without any interactions with the model that has some interaction terms between region
and the other numerical variables using an ANOVA test.

Our second method of variable selection is stepwise regression using AIC and BIC. We do
the same process as the first variable selection method. Lastly, we perform model selection
using ANOVA to determine whether our all subsets model is better than our stepwise
model.

For the fourth research question, we look at the missing data on states and counties and
reference data found online about population density and land area to determine whether
having no data on certain states and counties is a concern.



Variable

Number Variable Name Description
1 Identification number 1-440
2 County County name
3 State Two-letter state abbreviation
4 Land area Land area (square miles)
5 Total population Estimated 1990 population
6 Percent of population Percentof 1990 CDI population aged 18-34
aged 18-34
7 Percent of population 65 Percent of 1990 CDI population aged 65 or old
or older
8 Number of active physi- Number of professionally active nonfederal physicians during 1990
cians
9 Number of hospital beds  Total number of beds, cribs, and bassinets during 1990
10 Total serious crimes Total number of serious crimes in 1990, including murder, rape, rob-
bery, aggravated assault, burglary, larceny-theft, and motor vehicle
theft, as reported by law enforcement agencies
11 Percent high school grad- Percent of adult population (persons 25 years old or older) who com-
uates pleted 12 or more years of school
12 Percent bachelor's de- Percent of adult population (persons 25 years old or older) with bach-
grees elor’'s degree
13 Percent below poverty Percentof 1990 CDI population with income below poverty level
level
14 Percent unemployment Percent of 1990 CDI population that is unemployed
15 Per capita income Per-capita income (i.e. average income per person) of 1990 CDI pop-
ulation (in dollars)
16 Total personal income Total personal income of 1990 CDI population (in millions of dollars)
17 Geographic region Geographic region classification used by the US Bureau of the Cen-
sus, NE (northeast region of the US), NC (north-central region of the
US), S (southern region of the US), and W (Western region of the US)
Table 1. Variable definitions in CDI dataset
Min 1stQu. Median Mean 3rd Qu. Max. SD
land.area 150 45125 696.50 1041 41 94575 200620 1549 92
pop 1000430 139027 25 21728050 39301092 436064 .50 8863164.0 60198702
pop.18_34 164 2620 2810 2857 3002 497 419
pop.65_plus 30 9.88 11.75 1217 1362 338 399
doctors 390 18275 401.00 98800 1036.00 236770 1789.75
hosp beds 920 39075 755.00 1458 63 157575 277000 228913
crimes 563.0 6219.50 1182050 2111162 2627950 688936 0 58237 571
pcths grad 466 7388 1770 1756 8240 929 7.02
pct.bach.deg 81 15.28 19.70 2108 2533 523 765
pct.below pov 14 530 790 872 1090 36.3 4 66
pct.unemp 22 510 6.20 6.60 750 213 2.34
per.cap.income 8899.0 16118 25 17759.00 1856148 20270.00 35410 405919
tot.ncome 1410 2311.00 3857.00 7869 27 8654 25 1842300 12884 32

Table 2. Summary statistics for numeric variables

NC NE S W
Freq 108 103 152 77

Table 3. Frequency table for region
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Figure 1. Correlation heatmap of numeric all variables in cdi dataset

crimes doctors hosp.beds land.area
[] [ ] [] []
30000 30000 30000 30000
20000 * 2 20000 * % 20000 * % 20000
10000 10000 10000 10000
[ e-EEEEE-05 HA00EDDIC 0 010020000 (600IBa000
@« rct.bach.deg ct.below.po pcths.grad pct.unemp
5 AREE
E 30000
o 20000
0 [ ]
E‘ - " | 10000
o 5060708090 5101520

pop.65_plus

30000
20000
10000

&0008EDD00

Figure 2. Scatterplots between per.cap.income vs all numeric variables
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Figure 3. Histograms of all numeric variables
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Figure 4. Histograms of the 6 transformed variables
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Figure 5. Scatterplots between per.cap.income and all variables after transformations
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5. RESULTS

Our first research question deals with the issue of what are the specific relationships are
there between the variables in our CDI dataset. When we look at the data one pair of
variables at a time, we see that total income is related to population, doctors, hospital beds,
and crimes, population is related to doctors, hospital beds, and crimes, and per capita
income is related to percent hs grad, pct bach deg, and total income (page 18 of the
appendix). These are eyeballed results of which variables are highly correlated with each
other, but we can be more meticulous. We show the variables that have strong correlations
with each (here, we define strong correlation as r > 0.4) in Table 4 (page 7).

Now we examine whether the relationships between the numeric variables make sense.
Some interesting relationships are noted. For example, it makes sense that doctors and
number of hospital beds will have some sort of relationship since if there aren’t enough
doctors, there might not be enough hospital beds either. Similarly, whether one has a
bachelor’s degree will influence one’s income since having a bachelor’s degree will allow
one to make more money. Another relationship that makes sense is that the larger a
population, the more crime there will be. One relationship that is surprising is doctors and
crimes, which has a very strong positive relationship, at v = 0.82 . Why would an increase
in the number of doctors lead to an increase in crimes?

Variable 1 Variable 2 Correlation (r)
pop tot.income 0.9867476
doctors hosp.beds 0.9504644
doctors tot.income 0.9481106
pop doctors 0.9402486
pop hosp.beds 0.9237384
hosp.beds tot.income 0.9020615
pop crimes 0.8863318
hosp.beds crimes 0.8568499
crimes tot.income 0.8430980
doctors crimes 0.8204595
pct.hs.grad pct.bach.deg 0.7077867
pct.bach.deg per.cap.income 0.6953619
pct.hs.grad pctbelow.pov  -0.6917505
pop.18_34 pop.65_plus  -0.6163096
pct.below.pov per.cap.income  -0.6017250
pct.hs.grad pctunemp  -0.5935958
pct.bach.deg pctunemp  -0.5409069
pct.bach.deg pctbelow.pov  -0.4084238
pct.below.pov pct.unemp 0.4369472
pop.18_34 pct.bach.deg 0.4560970
pct.hs.grad per.cap.income 0.5229961

Table 4. Strong correlations between numeric variables



Our second research question asks the question of do crime and region influence per capita
income, and whether this relationship is different when we define “crime” in 2 different
ways (refer to page 2 in Methods). According to our linear regression model (page 22 of
appendix) and while considering interactions between crime and region, we come to the
final model of

per capita income = crimes + region (1.1).

In the end, defining “crime” as the number of crimes instead of as “per capita crime” does
make a difference. However, model 1.1 that uses crimes is better in terms of AIC and BIC.
Table 5 below (page 8) shows the estimated coefficients for Model 1.1 (all the values are
rounded to 2 decimal places for easier interpretation). Additionally, Table 6 (page 8) shows
the baseline salaries for each US region that was calculated from the coefficients of Model
1.1. The R squared for Model 1.1 happens to only be 0.1, which indicates about 1% of the
variability in per capita income can be explained by crime and region.

Estimate Std. Error tvalue Pri=t])
(Intercept) 1810691 37844 4785  0.00
crimes 0.01 000 280 001
regionNE 228604 53247 429  0.00
region3 -860.56 48683 -177 008
region\W -14283 57962 026 081

Table 5. Estimated coefficients, standard errors, t values, and p values for model 1.1

Region Baseline Salary
Northcentral (NC) $18,106
Northeast (NE) $20,392
Southern (S) $17,246
Western (W) $17,963

Table 6. Baseline salaries for each United States region
An interpretation of the final model (Model 1.1) is as follows:

- Inthe US, for every 1 unit of per capita income increase, there is a ~1% increase in
crime. This increase is statistically significant.

- The different regions of the US influence a difference in per capita income. We
conclude this because for each region (NC, NE, S, and W), the baseline salaries are
$18,106, $2,286 + $18,106 = $20,392, -$860 + $18,106 = $17,246, and -$142.83 +



$18,106 = $17,963 respectively. All of the salaries in each region are different, and
all differ from the baseline salary in the NC region, which is $18,106. However, the
only difference in baseline salary that is statistically significant is the difference
between NC and NE.

- Overall, the amount of money one makes in each region does differ, but it doesn't
seem like it affects the crime rate.

Our third research question asks the question of what the best model is to predict per
capita income, when taking into account all of the variables in the CDI dataset. Our final
model chosen is as follows (page 30 of appendix):

per capita income =
log(land. are) + pop. 183, + log(doctors) + pct. hs. grad + pct.bach.deg
+log(pct. below.pov) + log(pct.unemp) + pct. hs. grad = region
+ pct.bach.deg = region + log(pct. below.pov) * region
(1.2).

Interestingly, stepwise regression ended up choosing the exact same model as all subsets
regression did (page 34 of appendix), so it would have been redundant to add in region
interaction terms into the stepwise regression model just to come to the same final model
as from the first part when using al subsets.

We look at the model diagnostics plots for Model 1.2 (page 32 of appendix). The residuals
are roughly centered around 0 and have constant variance. There seems to be a right tail in
the qq plot. There doesn’t seem to be any points that are outliers and/or highly influential.
Despite the diagnostic plots not looking perfect, this is a tradeoff we are willing to make.
Table 7 (page 11) shows the estimated coefficients of our final Model 1.2, as well as
standard errors, t values, and p values (the t values are slightly rounded for easier
interpretation). The R squared for Model 1.2 is 0.86, which indicates that 86% of the
variability in per capita income can be explained by the predictors. An interpretation of the
significant predictors in Model 1.2. follows (assuming that all other predictor variables are
held constant):

- The intercept represents the baseline per capita income: $27,410.

- Forevery 1% increase in land area, there is a decrease of -600*log(1.01) = 6 in per
capita income.

- Forevery 1 unit increase in the population that is aged 18-34, there is a decrease of
268 in per capita income.

- Forevery 1% increase in the number of doctors, there is an increase of
1002*log(1.01) = 10 in per capita income.

- Forevery 1 unit increase in percent of population that has their bachelor’s degree,
there is an increase of 239 in per capita income.
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- Forevery 1% increase in the percent of population with income below poverty
level, there is a decrease of -3,097*log(1.01) = 31 in per capita income.

- The baseline salaries NC, NE, and S regions are $27,410. Meanwhile, since only the
Western region is significant, the Western region baseline salary is $ 27,410 -
$25,229 = $2,181. As we can see, the baseline salary for the Western region is
significantly smaller than that of the other regions.

- In the Western region, for every 1 unit of increase in the percentage of population
who are high school grads, there isa -274 - 50 = 325 decrease in per capita income.
The percentage of population who are high school grads has no statistically
significant relationship with per capita income, unless it’s specifically in the Western
region.

- Inthe Northeast region, for every 1 unit of increase in the percentage of population
with bachelor’s degrees, there isa 172 + 239 = 411 increase in per capita income. In
the Western region, for every 1 unit of increase in the percentage of population with
bachelor’s degrees, there isa 171 + 239 = 410 increase in per capita income. The
percentage of population who have bachelor’s degrees has no statistically significant
relationship overall with per capita income, unless it’s specifically in the Northeast
and Western regions.

- In the Western region, for every 1 percent increase in the percentage of population
who have incomes below poverty level, there is a-30.97 - 33.13 = 64 unit decrease
in per capita income. The percentage of population who have incomes below
poverty level has no statistically significant relationship with per capita income,
unless it’s specifically in the Western region.

Our fourth question asks the question of whether it'd be an issue that there are missing
county and state data. We see that three states are missing out 51 (this number counts and
includes DC as the 51th state), Alaska, lowa, and Wyoming (page 34 in appendix)
(States101.com). Out of the 3000 US counties, our data has 440 unique counties, but only
378 uniquely named counties represented, meaning that some states have counties that
have the same name.

6. DISCUSSION

Our analyses and statistical methods all aim to answer the 4 research questions that were
presented in the Introduction.

The first question is answered by looking at correlations between all of the numerical
variables. The second is answered by building a model that includes crime and region to
predict per capita income. The third is answered by also building the best model that
includes potentially all numeric variables and region to predict per capita income. The last
is answered by looking at the missing state data and making inferences about county data.

For the first question, we determined some interesting and expected relationships between
variables. These relationships informed our ability to create a predictive model to
determine the relationship between per capita income and county data.
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For the second question, we determined that the additive model with number of crimes
and region predicted per capita income best. Looking at the interpretation of the model
(page 8) and the baseline salaries for each region, we can see that the Southern and
Western regions have the lowest baseline salaries. Potentially, this could mean that the US
should focus their resources and efforts on increasing the per capita income, and thus
standard of living, in these regions.

For the third question, we determined that the best model to predict per capita income
included some interaction terms with region and the other variables. There should be an
involved focus on the Western region. Here, we've confirmed that in the Western region,
higher populations have below poverty incomes, leading to lower per capita income (page
10 interpretation). Additionally, it's evident even more so in the Western region that
having a high school’s degree does not necessarily lead higher per capita income. Rather,
having a bachelor’s degree leads to higher per capita income (interpretation from page 10).
Not surprisingly, the Northeast shows that the higher percentage of population with
bachelor’s degrees, the higher per capita income, which aligns with what we saw in our
EDA (page 6 boxplot). The Northeast region has a higher median per capita income when
compared to the other 3 regions.

Estimate  Std Error tvalue Pr(=[t])
(Intercept) 27410.36035 519460608  5.2766966 0.0000002
log(land area) 59999335 10895258 55069221 00000001
pop.18_34 -26853575 2236154 120088231 00000000
log(doctors) 100278280 8136939 123238336 00000000
pct.hs grad 5023999 6169152 -0.8143744 04158920
pet.bach.deg 23939383 4017310 59590574 0.0000000
log(pct below pov) 3097 65105 46764044 66237878 0.0000000
log(pct unemp) 97088519 33414339 29055345 00038594
regionNE 9514 52762 608944718 09055876 03656734
regionS -5288.49652 5528.00868 -0.9566626 03392879
regionW 29229.19060 644316189  3.9157468 0.0001051
pct hs grad regionNE 9874412 7543006 -1.3090818 01912224
pct hs grad regionS 0514010 6790400 08120302 04172343
pet hs grad-region\y 21470618 7291105 -3.7676893 00001883
pet bach deg-regionNE 17176839 5020463 34213655 00006841
pct.bach degregionS 2357759 4283440 05504358 0.5823131
pct bach deg:regionW 170.67468 5107390  3.3452431 0.0008960

log(pct below pov)regionNE  -72996278 63321791 -1.1527829 (2496552
log(pct below pov):regionS 8457739 55104781 01534847 0.8780898
log(pct below.pov)regionW  -331347328 82858091 -3.9989737 0.0000752

Table 7. Estimated coefficients, standard errors, t values, and p values for Model 1.2

11



The fourth research question poses the issue of having missing data for both states and
counties. Implications of the results are as follows.

There are 48 out of 51 states being represented in the data. The three missing states are
Alaska, lowa, and Wyoming. Alaska has the lowest population density in the entirety of the
50 states, with land area of ~ 86%. lowa has a relatively small population density, with a
land area of ~99%. Wyoming has an even smaller population density, also with a land area
of ~99%. Approximately 96% of the data in terms of states is being represented in this
sample of 48 out of 51 states, which seems like a pretty good representation of the 51
states. Additionally, since the population density in these missed states is so small, relative
to the other states in the US, missing these three states’ data seems okay, as there are 48
other states to make up for the missing data (States101.com).

In terms of county, it’s a bit harder to determine whether it is an issue that only about 12%
of the counties data is being represented. There are 440 unique counties out the 3000 total
counties in the US. This is an issue that should be further investigated; it would be nice to
know how the data itself was collected. For now, it’s better to be safe and determine that it
is an issue that so many counties are missing in the data. Unless the method in which the
data for counties is disclosed, there is no concrete evidence that 440 counties is a good
representative sample for the 3000 counties in the United States.

There are several limitations that this study suffers from. Firstly, there is no justification as
to why state and county were not included in the model that answered question 3. State
and county could be good predictors of per capita income, but they were completely left
out from the models. Another limitation could be that linear model assumptions were
potentially not met. This would cause any linear regression model to be invalid, as
assumptions must be met before doing linear regression. As mentioned in research
question four, there is missing data for counties and states, which would potentially make
the models from questions 3 and 4 not generalizable to the entire United States.

However, future work can be done to determine how the data was collected, so that there
can be further investigation on whether it is an issue missing data on all the counties.
Implications arise when we think about the differences in per capita income when it comes
to the different regions of the US. The lower per capita income in a region, the lower the
standard of living is. According to our data analyses (refer to interpretation of model 2 that
answers question 2), the Southern and Western regions of the US have the lowest per
capita income. There could be two explanations for this: 1) the South is not as
technologically advanced, or at least during the 90’s from when the data was collected, as
the rest of the country, and 2) the Western region of the US has a lot of land area, maybe
with an emphasis of agriculture and horticulture, which isn’t as high paying as other type of
jobs.

It might be a good idea to redo this study with more recent data to see just how much the
Western and Southern regions in the US have developed. Additionally, it might be a good
idea to focus resources on the Southern and Western regions, whether that’s technological,
economical, socially, etc., then their standard of living could be improved to be on par with
the rest of the nation.

12



7. REFERENCES

Kutner, M.H., Nachsheim, C.J., Neter, J. & Li, W. (2005) Applied Linear Statistical Models,
Fifth Edition. NY: McGraw-Hill/Irwin.

Sheather, S.]. (2009), “A Modern Approach to Regression with R,” Springer eBooks.

“U.S. States Populations, Land Area, and Population Density,” States101.com [online].
Available at https://www.states101.com/populations.

”

Williams, C. (2020), “How to Create a Correlation Matrix with Too Many Variables in R,
Towards Data Science.

13


https://www.states101.com/populations

8. TECHNICAL APPENDIX
library(glmnet)
library(MASS)
library(leaps)
library(car)
library(dplyr)
library(ggplot2)
library(stats4)
library(car)
library(mctest)
library(gtsummary)
library(kableExtra)
library(tidyr)
library(reshape2)

question 1
cdi <- read.table("../data/cdi.dat")
cdi_edit <- cdi[,-c(1,2,3,17)] ## remove id, state, county, and region

cdi_log <- data.frame(per.cap.income = cdi_no_reg$per.cap.income, log.land.ar
ea = log(cdi_no_reg$land.area), pop.18_34 = cdi_no_reg$pop.18_ 34, pop.65 plus
= cdi_no_reg$pop.65 plus, log.doctors = log(cdi_no_reg$doctors), log.hosp.be
ds = log(cdi_no_reg$hosp.beds), log.crimes = log(cdi_no_reg$crimes), pct.hs.g
rad = cdi_no_reg$pct.hs.grad, pct.bach.deg = cdi_no_reg$pct.bach.deg, log.pct
.below.pov = log(cdi_no_reg$pct.below.pov), log.pct.unemp = log(cdi_no_reg$pc
t.unemp))

Remove id, state, county, and region in cdi edit.

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
land area 15.0 45125 656.50 1041.41 946.75 20062.0 1549.92
pop 100043.0 139027.25 217280.50 393010.92 436064 .50 8863164.0 601987.02
pop.18_34 164 26.20 2810 2857 30.02 497 419
pop.65_plus 30 9.88 1.75 1217 13.62 338 3.99
doctors 39.0 182.75 401.00 988.00 1036.00 236770 1789.75
hosp.beds 920 390.75 755.00 145863 1575.75 27700.0 2289.13
crimes 563.0 6219.50 11820.50 27111.62 26279.50 668936.0 58237 51
pet hs.grad 466 73.88 7770 7756 8240 929 7.02
pct bach.deg 8.1 15.28 19.70 2108 2533 52.3 7.65
pct below. pov 14 530 7.90 8.72 10.90 36.3 4 66
pct.unemp 22 510 6.20 6.60 750 213 2.34
per.cap.income 8899.0 16118.25 17759.00 1856148 20270.00 375410 4059.19
tot.income 11410 2311.00 3857.00 7869.27 8654.25 184230.0 12884 32

Table 2: Summary statistics for numeric variables

apply(cdi, 2, function(x) any(is.na(x))) ## doesn't seem to have any NA's in
the data

H## id county state land.area pop
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## FALSE FALSE FALSE FALSE FALSE

## pop.18 34 pop.65_plus doctors hosp.beds crimes
H# FALSE FALSE FALSE FALSE FALSE
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## FALSE FALSE FALSE FALSE FALSE
## tot.income region
H# FALSE FALSE

There aren’t any na’s in the data, so that’s good

NG NE S W
Freq 108 103 152 77

Table 3: Frequency table for region

cdi_actual <- cdi[,-c(1,2,3)] ## remove id, state, and county

## histograms of all numeric vars - probably need to fix the x axes, numbers
are squished
ggplot(gather(cdi_edit), aes(value)) +

geom_histogram( 30) +

facet_wrap(~key, "free x')

In cdi actual, we remove id, state, and county. Below is the histogram of all numeric
variables without transformations.
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Figure 1: Histograms of all numeric variables

## crimes, doctors, hosp beds, land area, pop, and total income need to be Lo
g transformed

## distribution of region

ggplot(cdi_actual, aes(x=region)) +
geom_bar(fill="lightblue') + labs(x = "Region") ## most data is in southern
region

Crimes, doctors, hosp beds, land area, pop, and total income need to be log transformed
because right skewed.

Most of the data happens to be in the southern region.
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Figure 2: Distribution of Region

## want to check correlation between predictors and Lin relationship between
per.cap.income and all other predictors

corgraph <- function(df) {
cormat <- cor(df)
melted cormat <- melt(cormat) ## need Library(reshape2) for this..
ggplot(data = melted_cormat, aes(x=Varl, y=Var2, fill=value)) +
geom_tile() +

theme(axis.text.x = element_text(angle = 45,vjust=0.9,hjust=1)) +
scale_fill _gradient2(low="gold”,mid="white”,high="navy”’)
}

corgraph(cdi_edit)

17



totincome - .

per.cap.income -

pct.unemp -
pctbelow.pov- value

pctbach.deg - . I 1.0

pcths.grad - 0.5

crimes -

WarZ

hosp.beds - 0.0
doctors -
pop.65_plus -
pop.18_34 -
pop -
land.area-

Figure 3: Correlation heatmap of numeric all variables in cdi dataset

high correlations: tot.income and pop, tot.income and doctors, tot.income and hosp.beds,
tot.income and crimes, pop and doctors, pop and hosp.beds, pop and crimes,
per.cap.income and pct.hs.grad, pct.bach.deg, tot.income issues with multicollinearity

## Looking at the relationships b/t numeric vars where r > 0.4 and a
correlogram

corr_simple <- function(data=df,sig=0.4){
#convert data to numeric in order to run correlations
#convert to factor first to keep the integrity of the data - each value wil
L become a number rather than turn into NA
df_cor <- data %>% mutate_if(is.character, as.factor)
df_cor <- df_cor %>% mutate_if(is.factor, as.numeric)
#run a correlation and drop the insignificant ones
corr <- cor(df_cor)
#prepare to drop duplicates and correlations of 1
corr[lower.tri(corr,diag=TRUE)] <- NA
#drop perfect correlations
corr[corr == 1] <- NA
#turn into a 3-column table
corr <- as.data.frame(as.table(corr))
#remove the NA values from above
corr <- na.omit(corr)
#select significant values
corr <- subset(corr, abs(Freq) > sig)
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#sort by highest correlation
corr <- corr[order(-abs(corr$Freq)), ]
#print table

print(corr)
#turn corr back into matrix in order to plot with corrplot
mtx_corr <- reshape2::acast(corr, Varl~Var2, ”Freq”)

#plot correlations visually

corrplot(mtx_corr, FALSE, ”black”, )

}

corr_simple(cdi_edit)

#i Varl Var2 Freq
## 158 pop tot.income ©.9867476
#it 70 doctors hosp.beds ©0.9504644
## 161 doctors tot.income ©0.9481106
## 54 pop doctors ©.9402486
## 67 pop hosp.beds ©.9237384
## 162 hosp.beds tot.income ©0.9020615
#i# 80 pop crimes ©0.8863318
##t 84 hosp.beds crimes ©0.8568499
## 163 crimes tot.income ©.8430980
## 83 doctors crimes ©.8204595
## 112 pct.hs.grad pct.bach.deg ©.7077867
## 152 pct.bach.deg per.cap.income 0.6953619

## 125 pct.hs.grad pct.below.pov -0.6917505

#it 42 pop.18_ 34 pop.65 plus -0.6163096
## 153 pct.below.pov per.cap.income -0.6017250
## 138 pct.hs.grad pct.unemp -0.5935958
## 139 pct.bach.deg pct.unemp -0.5409069
## 151 pct.hs.grad per.cap.income ©.5229961
## 107 pop.18 34 pct.bach.deg ©.4560970
## 140 pct.below.pov pct.unemp ©0.4369472

## 126 pct.bach.deg pct.below.pov -0.4084238

look at the relationships between the variables with high correlations where r > |.4|.
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Figure 4: Correlogram of numeric variables, colored circles show high enough correlations

## scatterplots between all numeric vars and per.cap.income
cdi_edit %>%
gather(-per.cap.income, key = "var", value = "value") %>%
ggplot(aes(x = value, y = per.cap.income)) +
geom_point() +
facet_wrap(~ var, scales = "free") +
theme_bw()
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Figure 5: Scatterplots between per.cap.income vs all numeric variables

best predictors for per.cap.income: pos pct.bach.deg, neg pct.below.pov, pos pc.hs.grad, neg

per.cap.income
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## difference between region and per.cap.income using boxplot --> LooRks Like

ne has significantly higher mean of per.cap.income
per.cap.income)) +

ggplot(cdi_actual, aes(

geom_boxplot (
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Figure 6: per.cap.income differences based on region (NC, NE, S, W)

Differences between per capita income for regions - northest has highest mean per capita
income compared to other 3 regions.

## histograms of transformed vars

par( c(3,2))

hist(log(cdi_actual$pct.bach.deg))
hist(log(cdi_actual$pct.below.pov))

hist(log(cdi$pct.hs.grad)) ## somehow worse - not going to transform
hist(log(cdi$pct.unemp))

hist(log(cdi_actual$doctors))

hist(log(cdi_actual$land.area))

Histogram of log(cdi_actual$pct.bach.distogram of log(cdi_actual$pct.below.
2 2
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Figure 7: Histograms of chosen transformed variables

First 4 chosen from the best predictors in scatterplots against per cap income, the other 2
are identified from looking at histograms of all other numeric vars

question 2

## create models

modl <- lm(per.cap.income ~ crimes, cdi_actual)

mod2 <- lm(per.cap.income ~ crimes + region, cdi_actual)
mod3 <- lm(per.cap.income ~ crimes*region, cdi_actual)

summary(mod2) ## crimes and ne significant
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##

## Call:

## 1lm(formula = per.cap.income ~ crimes + region, data = cdi_actual)
##

## Residuals:

## Min 1Q Median 3Q Max

## -9661.0 -2260.7 -618.3 1650.0 19492.6

#it

## Coefficients:

it Estimate Std. Error t value Pr(>|t])

## (Intercept) 1.811le+04 3.784e+02 47.846 < 2e-16 ***
## crimes 8.915e-03 3.188e-03 2.797 ©.00539 **
## regionNE 2.286e+03 5.325e+02 4.293 2.17e-0@5 ***
## regionS -8.606e+02 4.868e+02 -1.768 0.07782 .
## regionW -1.428e+02 5.796e+02 -0.246 0.80548

## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
#i

## Residual standard error: 3866 on 435 degrees of freedom
## Multiple R-squared: ©0.1011, Adjusted R-squared: ©.09288
## F-statistic: 12.24 on 4 and 435 DF, p-value: 1.946e-09

Only crimes and NE are significant.
anova(modl, mod2, mod3) ## mod2 is the best which is just crimes + region

## Analysis of Variance Table

##

## Model 1: per.cap.income ~ crimes

## Model 2: per.cap.income ~ crimes + region

## Model 3: per.cap.income ~ crimes * region

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 438 7133487504

#it 2 435 6501791845 3 631695660 14.1275 8.444e-09 ***
## 3 432 6438799739 3 62992106 1.4088 0.2396

## ---

## Signif. codes: © '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1

Model 2 with additive model is best.

pcc <- cdi_actual$crimes / cdi_actual$pop ## create new var for per capita cr
ime

moda <- lm(per.cap.income ~ pcc, cdi_actual)
modb <- lm(per.cap.income ~ pcc + region, cdi_actual)
modc <- lm(per.cap.income ~ pcc*region, cdi_actual)

summary(modb) ## only ne significant

##
## Call:
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## lm(formula = per.cap.income ~ pcc + region, data = cdi_actual)
#it
## Residuals:

## Min 1Q Median 3Q Max

## -8634 -2300 -631 1716 19333

#it

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 18006.04 537.04 33.528 < 2e-16 ***
## pcc 5773.20 7520.41 0.768 0.4431

## regionNE 2354.70 541.97 4.345 1.74e-05 **x*
## regionS -927.45 512.31 -1.810 0.0709 .
## regionW -34.92 586.03 -0.060 0.9525

## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
##

## Residual standard error: 3898 on 435 degrees of freedom
## Multiple R-squared: ©0.08622, Adjusted R-squared: ©0.07782
## F-statistic: 10.26 on 4 and 435 DF, p-value: 6.007e-08

Create new variables for per capita crime and then fit the model. In this model, only NE is
significant.

anova(moda, modb, modc) ## second model does best again

## Analysis of Variance Table

##

## Model 1: per.cap.income ~ pcc

## Model 2: per.cap.income ~ pcc + region

## Model 3: per.cap.income ~ pcc * region

##  Res.Df RSS Df Sum of Sq F Pr(>F)

##t 1 438 7186843542

##t 2 435 6609753963 3 577089580 12.5761 6.753e-08 ***
#it 3 432 6607856753 3 1897210 0.0413 0.9888

## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

The second model (additive) does better than interaction model.

## need to compare mod2 and modb
BIC(mod2, modb) ## mod2 is smaller bic

H# df BIC
## mod2 6 8548.957
## modb 6 8556.203

AIC(mod2, modb) ## same with aic

H# df AIC
## mod2 6 8524.436
## modb 6 8531.682
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round(coef(summary(mod2)),2)

Hit Estimate Std. Error t value Pr(>|t])
## (Intercept) 18106.91 378.44  47.85 0.00
## crimes 0.01 0.00 2.80 0.01
## regionNE 2286.04 532.47 4.29 0.00
## regionS -860.56 486.83 -1.77 0.08
## regionW -142.83 579.62 -0.25 0.81

in the end, it does matter if we use crimes or per capita crimes (crimes/population). the
better model of the 2 using aic/bic as a measure shows that model 2 with just crimes and
region as the predictor variables for per capita income instead of using per capita crimes.

interpretation of mod2: in the us, for every 1 unit of per capita income increase, there is a
~1% increase in crime. this increase is statistically significant. different regions of the us
has an effect on per capita income. for each region (nc, ne, s, and w) the baseline salaries
are “18,106”, 2,286+18,106 = 20,392, -860+18106 = 17246, and -142.83+18106 = 17963.
all of the salaries in each region are different, and all differ from the baseline salary in the
nc region, which is 18106. overall, the amount of money one makes in each region does
differ, but it doesn’t seem like it actually affect crime rate itself.

## table for model 2 coefficients/regression output
round(coef(summary(mod2)),2) %>% kbl(booktabs=T,caption=" ") %>% kable
_classic(full width=F)

## residual plots for all 6 models
oldmar <- par()$mar

par( c(6,4))

par( c(2,2,2,2))

invisible(lapply(list(modl,mod2,mod3,moda,modb,modc),
function(x) plot(x)))
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Figure 8: Residual plots for all 6 models mentioned above
(mod1, mod2, mod3, moda, modb, modc)

cdi_matrix <- as.matrix(cdi_log[, -1]) ## create design matrix without per ca
pita income
cdi y <- cdi_log[,1] ## per capita income vector

cv.lasso.fit <- cv.glmnet(cdi_matrix, cdi_y)

plot(cv.lasso.fit) ## huge mse's???? and postive log lambda

lambda_min <- cv.lasso.fit$lambda.min ## lambda that minimizes is 20.36
lambda.se <- cv.lasso.fit$lambda.lse ## lambda that is 1 se larger is 189.87

cbind(coef(cv.lasso.fit, s = cv.lasso.fit$lambda.1lse),

coef(cv.lasso.fit, s = cv.lasso.fit$lambda.min))

question 3

cdi_new <- cdi_actual[,-c(2,13)] ## remove pop and total income because corre
Lated with per capita income

cdi no reg <- cdi_new[,-c(12)] ## remove region

all.subset <- regsubsets(per.cap.income ~ log(land.area) + pop.18 34 + pop.65
_plus + log(doctors) + log(hosp.beds) + log(crimes) + pct.hs.grad + pct.bach.
deg + log(pct.below.pov) + log(pct.unemp), cdi_no_reg)

## lLet reg subsets find the best model for us

plot(all.subset)
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which.min(summary(all.subset)$bic) ## model with minimum bic has 7 vars
# [1] 7

First remove population and total income because they’re correlated with per capita
income. Also create only numerical variable data called cdi no reg.

Model with smallest bic has 7 predictors.

cbind(coef(all.subset,which.min(summary(all.subset)$bic))) ## coefficients of
the best reg subsets model that has 7 vars

#H# [,1]
## (Intercept) 27091.20331
## log(land.area) -623.02904
## pop.18 34 -249.38687
## log(doctors) 1119.67817
## pct.hs.grad -72.82166
## pct.bach.deg 298.14366
## log(pct.below.pov) -3909.99239
## log(pct.unemp) 1678.42683

all.subset.mod <- 1lm(per.cap.income ~ log(land.area) + pop.18_34 + log(doctor
s) + pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp),
cdi_no_reg) ## general model chosen by regsubsets
coef(summary(all.subset.mod)) ## all predictors are significant

Hit Estimate Std. Error t value Pr(>|t])
## (Intercept) 27091.20331 1970.82790 13.746103 6.360451e-36
## log(land.area) -623.02904 94.76104 -6.574739 1.408797e-10
## pop.18_34 -249.38687 23.00306 -10.841463 2.189522e-24
## log(doctors) 1119.67817 81.71519 13.702204 9.697278e-36
## pct.hs.grad -72.82166 19.58113 -3.718971 2.263959e-04
## pct.bach.deg 298.14366 19.33180 15.422446 4.571538e-43
## log(pct.below.pov) -3909.99239 218.30290 -17.910858 4.673793e-54
## log(pct.unemp) 1678.42683 315.66424 5.317127 1.694403e-07

best all reg subset model has 7 vars: land area, pop 18_34, doctors, pct hs grad, pct bach
deg, pct below pov, and pct unemp

if you look at the signs of the coefficients, we see several of them have the wrong sign
(wrong direction of relationship with per cap income) - pct unemp and pct hs grad signs
are wrong (look at original scatterplots w/ relationships b/t per capital income and the
predictor vars)

vif(all.subset.mod) ## none are above 5 actually

it log(land.area) pop.18 34 log(doctors) pct.hs.gra
d
#i 1.116567 1.520927 1.430151 3.08770
(%]
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it pct.bach.deg log(pct.below.pov) log(pct.unemp)
## 3.583155 2.194639 1.735595

par( c(2,2))
plot(all.subset.mod)
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Figure 9: Diagnostic plots for model chosen by regsubsets

mmps(all.subset.mod) ## Look at marginal model plots - blue Lines line up wel
L with red dashed Lines, probably didn't miss any transformationa/interaction
s
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Marginal Model Plots
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Figure 10: Marginal model plots for model chosen by regsubsets

If you look ok at marginal model plots - blue lines line up well with red dashed lines,
probably didn't miss any transformations/interactions

all.subset.final.reg <- 1lm(per.cap.income ~ log(land.area) + pop.18 34 + log(
doctors) + pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +

log(land.area)*region + pop.18 34*region + log(doctors)*region + pct.hs.grad
*region + pct.bach.deg*region + log(pct.below.pov)*region + log(pct.unemp)*re
gion, cdi_new)

summary(all.subset.final.reg) ## pop.18 34, doctors, pct.bach.deg, pct.below.
pov, pct.unemp, regionw sign, landarea * regionne, pct.hs.grad*regionw, pct.b
elow.pov*regionw all sign interactions

##

## Call:

## 1m(formula = per.cap.income ~ log(land.area) + pop.18_34 + log(doctors) +
it pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +

it log(land.area) * region + pop.18 34 * region + log(doctors) *

H## region + pct.hs.grad * region + pct.bach.deg * region + log(pct.below.
pov) *

it region + log(pct.unemp) * region, data = cdi_new)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -4574.2 -918.8 -69.0 768.7 6376.3

#i

## Coefficients:

H# Estimate Std. Error t value Pr(>|t])
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## (Intercept) 24348.03 6074.50 4.008 7.27e-05 ***
## log(land.area) -360.22 305.79 -1.178 0.239490

## pop.18_34 -269.27 54.96 -4.899 1.39e-06 ***
## log(doctors) 908.78 186.08 4.884 1.50e-06 ***
## pct.hs.grad -53.71 69.50 -0.773 0.440035

## pct.bach.deg 278.07 59.39 4.682 3.87e-06 ***
## log(pct.below.pov) -3059.37 519.69 -5.887 8.22e-09 ***
## log(pct.unemp) 1848.92 607.63  3.043 0.002495 **
## regionNE 9757.79 7627.71 1.279 0.201534

## regionS 834.28 6744.81 0.124 0.901620

## regionW 28193.60 8481.74 3.324 0.000967 ***
## log(land.area):regionNE -100.35 405.23 -0.248 0.804538

## log(land.area):regionS -430.46 351.28 -1.225 0.221131

## log(land.area):regioni -110.36 366.69 -0.301 0.763601

## pop.18_34:regionNE -119.91 77.46 -1.548 0.122400

## pop.18_34:regionS 13.20 64.17 ©.206 0.837099

## pop.18 34:regioni 21.70 84.70 0.256 0.797958

## log(doctors):regionNE 66.93 268.02 0.250 0.802939

## log(doctors):regionS 53.44 231.45 0.231 0.817506

## log(doctors):regionW 153.63 258.08 ©0.595 0.551983

## pct.hs.grad:regionNE -114.61 89.15 -1.286 0.199298

## pct.hs.grad:regionS 52.29 75.43 0.693 0.488555

## pct.hs.grad:regionl -281.34 85.10 -3.306 0.001030 **
## pct.bach.deg:regionNE 195.92 83.63 2.343 0.019622 *
## pct.bach.deg:regionS -31.34 65.24 -0.480 0.631230

## pct.bach.deg:regionW 125.04 73.82 1.694 0.091063 .
## log(pct.below.pov):regionNE -503.89 727.31 -0.693 0.488818

## log(pct.below.pov):regionS 103.85 634.03 0.164 0.869974

## log(pct.below.pov):regionW -3384.68 874.56 -3.870 0.000127 ***
## log(pct.unemp):regionNE -280.17 1023.02 -0.274 0.784329

## log(pct.unemp):regionS -1592.38 865.77 -1.839 0.066601 .
## log(pct.unemp):regionW -1311.92 931.74 -1.408 0.159884

## ---

## Signif. codes: © '***' 9,001 '**' @.01 '*' ©0.05 '.' 0.1 ' ' 1

#it

## Residual standard error: 1526 on 408 degrees of freedom
## Multiple R-squared: ©0.8686, Adjusted R-squared: ©.8586
## F-statistic: 87.02 on 31 and 408 DF, p-value: < 2.2e-16

should keep: region b/c w sign, pct.hs.grad:region, log(pct.below.pov):region,
pct.bach.deg:region drop: log(doctors):region, pop.18_34:region, log(land.area):region,
log(pct.unemp):region

all.subset.final.final <- 1lm(per.cap.income ~ log(land.area) + pop.18 34 + lo
g(doctors) + pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp)
+ pct.hs.grad*region + pct.bach.deg*region + log(pct.below.pov)*region,

cdi new) ## dropped interactions w/ region that were insignificant

summary(all.subset.final.final)
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##

## Call:

## lm(formula = per.cap.income ~ log(land.area) + pop.18_34 + log(doctors) +
#it pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +
## pct.hs.grad * region + pct.bach.deg * region + log(pct.below.pov) *
it region, data = cdi_new)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4864.3 -820.6 -45.7 790.6 5909.6

#it

## Coefficients:

it Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 27410.36 5194.61 5.277 2.11e-07 ***
## log(land.area) -599.99 108.95 -5.507 6.37e-08 ***
## pop.18_34 -268.54 22.36 -12.009 < 2e-16 ***
## log(doctors) 1002.78 81.37 12.324 < 2e-16 **x*
## pct.hs.grad -50.24 61.69 -0.814 0.415892

## pct.bach.deg 239.39 40.17 5.959 5.38e-09 ***
## log(pct.below.pov) -3097.55 467.64 -6.624 1.07e-10 ***
## log(pct.unemp) 970.89 334.14 2.906 ©.003859 **
## regionNE 5514.53 6089.45 0.906 0.365673

## regionS -5288.50 5528.07 -0.957 0.339288

## regionW 25229.79 6443.16 3.916 0.000105 ***
## pct.hs.grad:regionNE -98.74 75.43 -1.309 0.191222

## pct.hs.grad:regionS 55.14 67.90 0.812 0.417234

## pct.hs.grad:regionW -274.71 72.91 -3.768 0.000188 ***
## pct.bach.deg:regionNE 171.77 50.20 3.421 0.000684 ***
## pct.bach.deg:regionS 23.58 42.83 ©.550 0.582313

## pct.bach.deg:regionW 170.87 51.08 3.345 0.000896 ***
## log(pct.below.pov):regionNE -729.96 633.22 -1.153 0.249655

## log(pct.below.pov):regionS 84.58 551.05 ©.153 0.878090

## log(pct.below.pov):regionW -3313.47 828.58 -3.999 7.52e-05 ***
#H# ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' @.05 '.' 0.1 ' ' 1

#it

## Residual standard error: 1530 on 420 degrees of freedom

## Multiple R-squared: 0.8641, Adjusted R-squared: ©.858

## F-statistic: 140.6 on 19 and 420 DF, p-value: < 2.2e-16
vif(all.subset.final.final) ## 5 greater than 5

#i GVIF Df GVIF~(1/(2*Df))

## log(land.area) 1.692031e+00 1 1.300781

## pop.18 34 1.647587e+00 1 1.283584

## log(doctors) 1.625573e+00 1 1.274980

## pct.hs.grad 3.513328e+01 1 5.927333

## pct.bach.deg 1.773780e+01 1 4.211627

## log(pct.below.pov) 1.154453e+01 1 3.397724

## log(pct.unemp) 2.229315e+00 1 1.493089
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## region 2.736822e+08 3 25.480488
## pct.hs.grad:region 1.586555e+08 3 23.267113
## pct.bach.deg:region 2.064872e+04 3 5.237799
## log(pct.below.pov):region 8.945037e+04 3 6.687498

## diagnostic plots for the final model chosen via reg subsets and with some
interaction terms w/ region

par( c(2,2))

plot(all.subset.final.final)
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Figure 11: Diagnostic plots for model chosen by regsubsets including some interaction terms
between region and other numeric variables

diagnostic plots look decent... can’t be perfect though

anova(all.subset.mod, all.subset.final.final) ## the 2nd model with some inte
raction terms with region better than model with no region

## Analysis of Variance Table

#i

## Model 1: per.cap.income ~ log(land.area) + pop.18 34 + log(doctors) +
it pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp)

## Model 2: per.cap.income ~ log(land.area) + pop.18 34 + log(doctors) +
it pct.hs.grad + pct.bach.deg + log(pct.below.pov) + log(pct.unemp) +
H## pct.hs.grad * region + pct.bach.deg * region + log(pct.below.pov) *
#it region

#H# Res.Df RSS Df Sum of Sq F Pr(>F)

#t 1 432 1158947355
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## 2 420 982926692 12 176020663 6.2677 3.206e-10 ***
i ---
## Signif. codes: @ '***' 9.001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

BIC(all.subset.mod, all.subset.final.final) ## almost the same but first mode
L w/o interaction is better b/c bic favors smaller models

it df BIC
## all.subset.mod 9 7808.408
## all.subset.final.final 21 7808.967

AIC(all.subset.mod, all.subset.final.final) ## aic clearly favors model 2 wit
h some region interaction terms b/c larger model

it df AIC
## all.subset.mod 9 7771.627
## all.subset.final.final 21 7723.145

round(coef(summary(all.subset.final.final)), 2)

Hit Estimate Std. Error t value Pr(>|t])
## (Intercept) 27410.36 5194.61 5.28 0.00
## log(land.area) -599.99 108.95 -5.51 0.00
## pop.18_ 34 -268.54 22.36 -12.01 0.00
## log(doctors) 1002.78 81.37 12.32 0.00
## pct.hs.grad -50.24 61.69 -0.81 0.42
## pct.bach.deg 239.39 40.17 5.96 0.00
## log(pct.below.pov) -3097.55 467.64  -6.62 0.00
## log(pct.unemp) 970.89 334.14 2.91 0.00
## regionNE 5514.53 6089.45 0.91 0.37
## regionS -5288.50 5528.07 -0.96 0.34
## regionW 25229.79 6443.16 3.92 0.00
## pct.hs.grad:regionNE -98.74 75.43 -1.31 0.19
## pct.hs.grad:regionS 55.14 67.90 0.81 0.42
## pct.hs.grad:regionl -274.71 72.91 -3.77 0.00
## pct.bach.deg:regionNE 171.77 50.20 3.42 0.00
## pct.bach.deg:regionS 23.58 42.83 0.55 0.58
## pct.bach.deg:regionW 170.87 51.08 3.35 0.00
## log(pct.below.pov):regionNE -729.96 633.22 -1.15 0.25
## log(pct.below.pov):regionS 84.58 551.05 0.15 0.88
## log(pct.below.pov):regionW -3313.47 828.58 -4.00 0.00

## stepwise regression using aic and bic

stepwise base <- lm(per.cap.income ~., cdi log)
stepl <- stepAIC(stepwise_base,
list( ~ 1, ~ )

log(dim(cdi_log)[1]),
F) ## chose the same model without region as all subs
ets
step2 <- stepAIC(stepwise base,
list( ~ 1, ~ ),
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k = 2,
trac = F) ## chose same model as all subsets and as bic abov

round(coef(summary(all.subset.final.final)),2) %>% kbl(booktabs=T,caption=" "
) %>% kable_classic(full width=F)

Estimate Std. Error tvalue Pr(>[t])

(Intercept) 2141036 519461 528 000
log(land area) 59999 10895 551 0.00
pop.18_34 -268 54 2236 1201 000
log(doctors) 1002.78 8137 1232 000
pct hs grad 5024 6169 081 042
pct bach.deg 239.39 4017 59 000
log(pct below pov) 309755 46764 662 000
log(pct unemp) 97089 33414 291 000
regionNE 551453 608945 091 037
regionS 528850 562807 0% 034
regionW 2522979 644316 392 000
pct hs grad:regionNE 98.74 43 131 019
pct hs grad:regionS 9514 6790 081 042
pct hs grad:regionW 27471 291 377 000
pct bach.deg:regionNE 17177 9020 342 000
pct bach.degregionS 2358 4283 05 058
pct bach.deg regionW 170.87 5108 335 000

log(pct below pov)regionNE /2996 63322 115 025
log(pct below pov):regionS 8458 B5106 015 088
log(pct below pov)regionW 331347 82858 400 000

turns out stepwise regression using both aic and bic choose the exact same model without
region as all subsets did. it would be redundant to add in region , take out insignificant
terms, and come to the same final model as all subsets found and with some region
interaction terms.

question 4
sort(unique(cdi$state))
## missing iowa, alaska, and wyoming

## [1] |IALI| llARll llAzll llCAll "CO" “CT" llDCll llDEll IIFLll llGAll |lHIll |IID|I llILIl “IN"
IIKSII IIKYII n LAII IIMAII

[19] llMDll llMEll |lMI|l llMNll llMoll IIMS n llMTll “NC" |INDII IINEII IINHll "NJ" ||NM|I "NV" IIN
Yll IIOHII IIOKII IIORII

[37] IIPAII IIRIII "SC" IISDII IITNII IITXII IIUTII IIVAII IIVTII "WA" "WI" llwvll
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there are 48/51 states (includes dc) being represented in the data. the 3 missing states are
Alaska, iowa, and Wyoming. Alaska has the lowest population density in the entirety of the
50 states, with ~ 86% land area. lowa has a relatively small population density, with a
~99% land area. Wyoming has an even smaller population density, and is also ~99% land
area. ~96% of the data in terms of states is being represented, which I think is a good
sample size for the 51 states (including dc). Additionally, since the population density in
these missed states is so small, relative to the other states in the us, missing these 3 states’
data seems okay, as there are 48 other states (including dc) that makes up for the missing
data.

in terms of county, it’s a bit harder to determine whether it is ok that only 10% of the
counties data is being represented. There only 378 unique counties out 3000 total counties
in the us. This is an issue that should be further investigated; it would be nice to know how
the data was collected. For now, [ would say it’s an issue that so many counties are missing
in the data, and unless the method in which the data for counties is disclosed, there is no
concrete evidence showing that 378 counties is a good representative sample for the 3000
counties in the united states.
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