
36-617: Applied Linear Models
Fall 2021

HW03 – Solutions

1. Please do Sheather, Ch 3, p. 105, #3, Part A. Remember that the data is in the “0-textbook” folder in
the files area on Canvas for this class.

(a) Develop a simple linear regression model based on least squares that predicts advertising revenue
per page from circulation (i.e., feel free to transform either the predictor or the response variable
or both variables). Ensure that you provide justification for your choice of model.

First, a quick look at the data...
(You do not have to produce any EDA for your answert to part (a)).

> magdata <- read.csv("AdRevenue.csv",header=T)

> str(magdata,width=72,strict.width = "cut")

'data.frame': 70 obs. of 4 variables:

$ Magazine : chr "People" "Better Homes and Garden"..

$ PARENT.COMPANY..SUBSIDIARY: chr "Time Warner, (Time Inc.)" "Mered"..

$ AdRevenue : num 233 397 286 877 304 ...

$ Circulation : num 3.75 7.64 4.07 32.7 3.21 ...

> par(mfrow=c(1,3))

> hist(magdata$AdRevenue,main="")

> hist(magdata$Circulation,main="")

> plot(AdRevenue ~ Circulation, data=magdata)

The plot is shown in Figure 1. We can see from the figure that there is severe right skewing in
both the Circulation and AdRevenue variables.
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Figure 1: Initial EDA.

Next, we fit a linear regression model to the untransformed variables:
(This is a good baseline model to fit when you are considering transformations, but you do not need
to include it in your answer to part (a) for this assignment.)
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> lm.1 <- lm(AdRevenue ~ Circulation, data=magdata)

> summary(lm.1)

Call:

lm(formula = AdRevenue ~ Circulation, data = magdata)

Residuals:

Min 1Q Median 3Q Max

-147.694 -22.939 -7.845 13.810 131.130

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.8095 5.8547 17.05 <2e-16 ***

Circulation 22.8534 0.9518 24.01 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 42.22 on 68 degrees of freedom

Multiple R-squared: 0.8945, Adjusted R-squared: 0.8929

F-statistic: 576.5 on 1 and 68 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(lm.1)

The diagnostic plots are shown in Figure 2. We can see that the residuals are also right-skewed
and have non-constant variance.
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Figure 2: Diagnostics for regression on untransformed variables.
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We will try two transformations:
(You should have something like these two analyses in your answer to part (a).)

� Just a log transformation on both variables (since logarithms reduce right-skew, and if it
works it gives us an interpretable model);

� The power transformations suggested by Box-Cox.

Here’s the “log everything model”:

> lm.2 <- lm(log(AdRevenue) ~ log(Circulation),data=magdata)

> summary(lm.2)

Call:

lm(formula = log(AdRevenue) ~ log(Circulation), data = magdata)

Residuals:

Min 1Q Median 3Q Max

-0.47022 -0.11142 -0.00532 0.10835 0.42705

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.67473 0.02525 185.16 <2e-16 ***

log(Circulation) 0.52876 0.02356 22.44 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1768 on 68 degrees of freedom

Multiple R-squared: 0.881, Adjusted R-squared: 0.8793

F-statistic: 503.6 on 1 and 68 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(lm.2)

The diagnostic plots are shown in Figure 4a, page 5.

For the Box-Cox transformations, I suggest

� First, find the best (rounded) Box-Cox power for x.

� Then, for the model y ∼(transformed x), find the best (rounded) Box-Cox power for y.

That way, you are using the information you have learned about x to produce the best possible
transformation of y.

First, the suggested transformation for x = Circulation:

> library(car)

> with(magdata,boxCox(Circulation~1))

> with(magdata,powerTransform(Circulation~1)$roundlam)

Y1

-0.5

The profile likelihood is shown in Figure 3a, page 4.

Next, the Box-Cox transformation for y = AdRevenue, using the transformed x, 1/
√

Circulation:

> lm.3 <- lm(AdRevenue ~ I(Circulation^(-0.5)),data=magdata)

> with(magdata,boxCox(lm.3))

> with(magdata,powerTransform(lm.3)$roundlam)

Y1

-1
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(a) boxCox profile likelihood for x ∼ 1. The“rounded”
value of λ is −0.5, so the transformation is 1/

√
x.
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(b) boxCox profile likelihood for y ∼ 1/
√

x. The
“rounded” value of λ is −1, so the transformation
is 1/y.

Figure 3: Selecting the boxCox power for x ∼ 1 and for y ∼ 1/
√

x; x = Circulation, y = AdRevenue.

The profile likelihood is shown in Figure 3b.

So, the final model suggested by Box-Cox is 1/(AdRevenue) ∼ 1/
√

(Circulation):

> magdata$AdRevInv <- 1/magdata$AdRevenue

> magdata$InvSqrtCirc <- 1/sqrt(magdata$Circulation)

> lm.4 <- lm(AdRevInv ~ InvSqrtCirc,data=magdata)

> # the following caused an error in R, which is why I defined the variables above...

> # lm.4 <- lm(I(AdRevenue^(-1)) ~ I(Circulation^(-0.5)),data=magdata)

> summary(lm.4)

Call:

lm(formula = AdRevInv ~ InvSqrtCirc, data = magdata)

Residuals:

Min 1Q Median 3Q Max

-0.0028448 -0.0008745 -0.0000689 0.0006133 0.0040733

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0001662 0.0004000 0.416 0.679

InvSqrtCirc 0.0091424 0.0004571 20.000 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.001223 on 68 degrees of freedom

Multiple R-squared: 0.8547, Adjusted R-squared: 0.8526

F-statistic: 400 on 1 and 68 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(lm.4)

The diagnostic plots are shown in Figure 4b.
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(a) Regression diagnostics for log y ∼ log x.
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(b) Regression diagnostics for 1/y ∼ 1/
√

x.

Figure 4: Comparing regression diagnostics for the model log y ∼ log x, vs. the “best” boxCox model 1/y ∼
1/
√

x; x = Circulation, y = AdRevenue.

(Your choice of model, and justification, should be similar to the following.)
Both models have high R2’s: for lm.2 (logy ∼ logx), R2 = 0.88 and for lm.4 (1/y ∼ 1/

√
x), R2 = 0.851.

Comparing coefficient estimates,

> summary(lm.2)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.674734 0.02524738 185.15717 1.168946e-93

log(Circulation) 0.528758 0.02356174 22.44138 3.754210e-33

> summary(lm.4)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0001662359 0.0004000311 0.4155575 6.790423e-01

InvSqrtCirc 0.0091424191 0.0004571138 20.0003113 3.417303e-30

we see that the slope estimates for both models are highly significantly different from zero, so
the regression output doesn’t help us distinguish between the models very well. The regression
diagnostics for both models are also very similar (Figure 4): in both models the residuals are much
more nearly normal, they have nearly constant variance, and there are almost no highly influential
data points.

Since both models fit similarly well, I prefer to use the model that is easier to talk about:
log y ∼ log x. Referring to the coefficient tables above, we see that for each 1% change in cir-
culation, we can expect about a 0.53% change in ad revenue.

(Here is where you identify which magazines are associated with unusual observations.)
Referring back to Figure 4a, we see that the most extreme residual outliers are observations 5,
60, and 64:

1Note that even though the original model lm.1 (y ∼ x) had an even higher R2 = 0.89, we do not seriously consider it since
the regression diagnostic plots (Figure 2) are so bad!
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> with(magdata,

+ data.frame(Magazine,Circulation,AdRevenue,

+ StdRes=rstandard(lm.2),leverage=hatvalues(lm.2))[c(5,60,64),])

Magazine Circulation AdRevenue StdRes leverage

5 Sports Illustrated 3.205 304.185 2.440209 0.02022629

60 Prevention 3.347 127.315 -2.668848 0.02115025

64 Cooking Light 1.717 89.153 -2.678798 0.01432293

> p <- 1 # number of predictors: x only

> c(leverage.cutoff = 2*(p+1)/dim(magdata)[1])

leverage.cutoff

0.05714286

We see that Sports Illustrated ad revenue overperforms relative to its circulation, while both
Cooking Light and Prevention (a health magazine) underperform. None of these has very high
leverage, however (using the rule of thumb that leverage above 4/n is “high”).

(b) Find a 95% prediction interval for the advertising revenue per page for magazines with the following
circulations:

i. 0.5 million

ii. 20 million

(Your answer should pretty much go like this.)
This is slightly tricky, because we have to account for the transformation of y in model lm.2 in
producing the appropriate prediction interval:

i. 0.5 million

> print(pred.i <- predict(lm.2,newdata=data.frame(AdRevenue=0,Circulation=0.5),

+ interval="prediction"))

fit lwr upr

1 4.308227 3.947855 4.6686

> print(interval.i <- exp(pred.i[c(2,3)])) # Have to un-do the logarithm

[1] 51.82406 106.54846

So, we see that a magazine with circulation of half a million could expect ad revenue between
$51,820 and $106,550.

ii. 20 million

> print(pred.ii <- predict(lm.2,newdata=data.frame(AdRevenue=0,Circulation=20),

+ interval="prediction"))

fit lwr upr

1 6.258752 5.885815 6.631689

> print(interval.ii <- exp(pred.ii[c(2,3)])) # Have to un-do the logarithm

[1] 359.8958 758.7626

So, a magazine with circulation of 20 million could expect ad revenue between $359,900 and
$758,760.

(c) Describe any weaknesses in your model.

(Your answer should pretty much go like this, though you might also reproduce the summary()’s here.)
We already discussed the summary in part (a): it shows a high R2 of 0.88, and a highly significant
slope estimate (same with the F statistic for overall fit). Referring again to Figure 4a:

� The residuals vs fitted plot doesn’t really show any problems. Except for a couple of outliers,
that show up more clearly in the QQ plot, there really isn’t any vertical pattern or curve that
the residuals follow.
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� The QQ plot shows that the residuals are following the normal distribution fairly well. There
is still a bit of right skewing in the residuals, and two low outliers Prevention and Cooking
Light.

� The scale-location plot doesn’t really show any serious problems, though there may be a bit
of increasing variance as the predicted ad revenue increases.

� The residuals vs leverage plot shows a couple of high-leverage points, but no really high Cook’s
Distance values, so these points are not very influential on the fit of the model lm.2; some
more detail on the high Cook’s Distance points is given in the R output below:
(You don’t have to do the following for your answer, but it is interesting.)

> res.lev <- data.frame(magdata$Magazine,StdRes=rstandard(lm.2),

+ leverage=hatvalues(lm.2),Cooks.Dist=cooks.distance(lm.2))

> tail(res.lev[order(cooks.distance(lm.2)),])

magdata.Magazine StdRes leverage Cooks.Dist

64 Cooking Light -2.6787982 0.01432293 0.05213714

5 Sports Illustrated 2.4402089 0.02022629 0.06146309

20 Reader's Digest -1.3103123 0.06716783 0.06181267

49 AARP The Magazine -0.9279932 0.13138896 0.06513180

60 Prevention -2.6688479 0.02115025 0.07695149

4 Parade (1) 1.5938160 0.16374980 0.24870866

> p <- 1 # number of predictors: x only

> c(leverage.cutoff = 2*(p+1)/dim(magdata)[1])

leverage.cutoff

0.05714286

Overall, the log-log model seems to fit the data well.

2. Please do Sheather, Ch 3, p. 105, #3, Part B.

(a) Develop a polynomial regression model based on least squares that directly predicts the effect on
advertising revenue per page of an increase in circula- tion of 1 million people (i.e., do not trans-
form either the predictor nor the response variable). Ensure that you provide detailed justification
for your choice of model. [Hint: Consider polynomial models of order up to 3.]

Sheather suggests we try polynomials up to order 3. We will go even higher, to order 5, just to
see what happens. To save some space, I will just print out tables of estimated coefficients and
standard errors, and R2’s:
(You might arrive at the cubic model differently.)

> lm.5 <- lm(AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3) +

+ I(Circulation^4) + I(Circulation^5), data=magdata)

> ## Note: you could get the same model with

> ## lm.5 <- lm(AdRevenue ~ poly(Circulation, degree=5, raw=T),data=magdata)

> summary(lm.5)$r.squared

[1] 0.9366882

> summary(lm.5)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.0382867767 1.737595e+01 3.2825999 0.001668725

Circulation 47.8288287740 2.213601e+01 2.1606799 0.034469648

I(Circulation^2) 1.3621060276 7.962225e+00 0.1710710 0.864707640

I(Circulation^3) -0.6557047334 9.924238e-01 -0.6607104 0.511169347

I(Circulation^4) 0.0370875190 4.489949e-02 0.8260120 0.411865983

I(Circulation^5) -0.0005798354 6.533235e-04 -0.8875166 0.378124078
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If we remove some high powers of x, we may find a change in the significance of lower powers (this
can happen because powers of x can be collinear). So we will also try the model with powers up
to order 4 and order 3 only.

> lm.6 <- lm(AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3) +

+ I(Circulation^4), data=magdata)

> summary(lm.6)$r.squared

[1] 0.935909

> summary(lm.6)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 45.686665431 11.742208057 3.890807 2.377459e-04

Circulation 65.380572047 9.928749452 6.584976 9.325058e-09

I(Circulation^2) -5.499586772 1.900414956 -2.893887 5.173919e-03

I(Circulation^3) 0.220172602 0.104527351 2.106364 3.903839e-02

I(Circulation^4) -0.002733043 0.001694505 -1.612886 1.116144e-01

> lm.7 <- lm(AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3),

+ data=magdata)

> summary(lm.7)$r.squared

[1] 0.933344

> summary(lm.7)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.17036829 8.345045881 7.090478 1.118099e-09

Circulation 51.23581639 4.711234296 10.875243 2.334496e-16

I(Circulation^2) -2.50537894 0.411411261 -6.089719 6.476556e-08

I(Circulation^3) 0.05222479 0.009229702 5.658339 3.574381e-07

All three models have R2 ≈ 0.93, but only model lm.7, with powers just up to order 3, has all of
its β̂’s significiantly different from zero. Since this seems like the best model so far, we consider
diagnostic plots for it:
(Always good to look at diagnostic plots!)

> par(mfrow=c(2,2))

> plot(lm.7)

The plots appear in Figure 5. They suggest that this model isn’t doing as well2 as the log-log
model above!

(b) Find a 95% prediction interval for the advertising page cost for magazines with the following
circulations:

i. 0.5 million

ii. 20 million

(Your answer should pretty much go like this.)
This goes just like the predictions we did earlier, except that now since there is no transformation
on y, we can use the prediction intervals directly.

2We could improve things a bit by fitting log y ∼ x+ x2 + x3 rather than y ∼ x+ x2 + x2 but it is still not better than the log-log
model we chose above (try it!). Box-Cox on y also does not help, and anyway these ideas go beyond what Sheather is asking
for.
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Figure 5: Diagnostics for the 3rd order polynomial model.
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> print(interval.i <- predict(lm.7,newdata=data.frame(AdRevenue=0,Circulation=0.5),

+ interval="prediction")[c(2,3)])

[1] 14.92314 153.41378

> print(interval.ii <- predict(lm.7,newdata=data.frame(AdRevenue=0,Circulation=20),

+ interval="prediction")[c(2,3)])

[1] 418.1790 580.8878

So from this model

i. A magazine with a circulation of half a million could anticipate ad revenue between $14,920
and $153,410.

ii. A magazine with a circulation of 20 million could anticipate ad revenue between $418,180 and
$580,890.

(c) Describe any weaknesses in your model.

(Again, you might copy the model summary here, but otherwise your answer should be pretty similar
to the below.)
The summary of model lm.7 above shows an R2 = 0.93, and all significant predictors, which is
great. Referring to Figure 5, we see, however, that

� The residuals vs fitted plot shows a lot of right-skew in the fitted values, pretty good symmetry
of the residuals around zero, but some pretty large outliers.

� The QQ plot shows a that both the right and left tails or the residual distribution are longer
than the normal distribution’s tails, with the right tail even longer than the left, and some
very large outliers.

� The scale-location plot doesn’t show much stability around 1, but part of the problem may
be that the fitted values are so skewed-right that there just isn’t much data on the right side
of the plot from which to make the (red) loess line.

� The residuals vs. leverage plot shows some very large outliers with large leverage values; these
also have large Cook’s distances, which suggests that they are influential on the fit of lm.7.
A few details on large outliers/leverage points are given below.

> res.lev <- data.frame(magdata$Magazine,StdRes=rstandard(lm.7),

+ leverage=hatvalues(lm.7),Cooks.Dist=cooks.distance(lm.7))

> tail(res.lev[order(cooks.distance(lm.7)),],n=7)

magdata.Magazine StdRes leverage Cooks.Dist

5 Sports Illustrated 3.125952 0.03102333 0.07821313

46 American Profile -1.509367 0.14002065 0.09273286

2 Better Homes and Gardens 2.179137 0.13037457 0.17797941

20 Reader's Digest -2.702626 0.17242129 0.38044641

49 AARP The Magazine -2.765478 0.47272305 1.71414898

8 USA Weekend 3.705447 0.47304388 3.08140011

4 Parade (1) -1.478471 0.99099778 60.15734624

> p <-3 # Number of predictors: x, x^2, X^3

> c(leverage.cutoff = 2*(p+1)/dim(magdata)[1])

leverage.cutoff

0.1142857

Several magazines have outlying residuals or high leverage; three magazines have high Cook’s
distances, with higher influence on the fit of lm.7. The last of these, Parade, has leverage near
one (hii = 0.99!), and a whopping 60 for Cook’s Distance!

Overall, this is not a great model. Although the regression output is good, the diagnostic plots
reveal many problems with the fit.
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3. Please do Sheather, Ch 3, p. 105, #3, Part C.

(a) Compare the model in Part A with that in Part B. Decide which provides a better model. Give
reasons to justify your choice.

(Your answer should go pretty much like this.
All of the models have high R2’s and significant predictors (except for some predictors in the
higher order polynomial models) . The differences really come in the diagnostic plots. Referring
to Figures 4 and 5, as well as our summaries for Parts A(c) and B(c) above, we see that

� The residual diagnostic plots for the polynomial regression model (Figure 5 show severe model
deficiencies, whereas the plots for either the log-log or Box-Cox models Figure 4 show closer
agreement with the regression assumptions. So we should pick one of the models from Part
A.

� The two models from Part A perform about equally well, but the log-log model is easier to
explain and talk about than the Box-Cox model.

For these reasons, I prefer the log-log model (lm.2) to all the others tried.

(b) Compare the prediction intervals in Part A with those in Part B. In each case, decide which
interval you would recommend. Give reasons to justify each choice.

(Your answer should be pretty much like this, although if you don’t go into an explanation for the
different interval widths, that’s OK.)
Here is a table comparing the prediction intervals:

Circulation = 0.5 million Circulation = 20 million
Model Low Endpoint High Endpoint Low Endpoint High Endpoint

lm.2 (log-log) 51.82 106.55 359.9 758.76
lm.7 (polynomial) 14.92 153.41 418.18 580.89

For the lower circulation, the log-log interval is narrower. For the higher circulation, the polyno-
mial interval is narrower. We can say a little more: Both models give wider intervals for higher
circulations; this is just because higher circulations are farther from the average circulation, and
SEpred(ŷ) = S

√
1 + (x − x)2/S XX increases with this distance. The width of the log-log intervals

grows faster because we also had to exponentiate the endpoints to get from log($$) intervals back
to just $$ intervals. Calculations below:

> ## polynomial interval widths:

> data.frame(circ0.5mil=c(width = 153.41 - 14.92), circ20mil = c(width = 580.89 - 418.18))

circ0.5mil circ20mil

width 138.49 162.71

> ## log-log interval widths:

> data.frame(circ0.5mil = c(width = 106.55 - 51.82), circ20mil = c(width = 758.76 - 359.9))

circ0.5mil circ20mil

width 54.73 398.86

I prefer the log-log intervals (even though the second one is quite wide) because they are based
on a better-fitting model.

4. Write a brief IDMRAD paper based on your answers to problems 1–3. Remember to label the Intro-
duction, Data, Methods, Results and Discussion and Technical Appendix sections.

This report appears at the end of these solutions!
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5. [Based on Gelman & Hill. Ch 3, #1, p. 49] The file pyth.dat, in the same folder as this hw, contains
outcome y and inputs x1, x2 for 40 data points, with a further 20 points with the inputs but no observed
outcome (for this problem we will ignore these last 20 points). Save the file to your working directory
and read it into R using the read.table() function.

(a) Fit the two models

M1 : y = β0 + β1x1 + ε

M2 : y = β0 + β1x2 + ε

Which model provides a better fit for y? Why?

> gh.data <- read.table("pyth.dat",header=T)

> gh.data <- gh.data[apply(gh.data,1,function(x) {!any(is.na(x))}),]

> str(gh.data)

'data.frame': 40 obs. of 3 variables:

$ y : num 15.68 6.18 18.1 9.07 17.97 ...

$ x1: num 6.87 4.4 0.43 2.73 3.25 5.3 7.08 9.73 4.51 6.4 ...

$ x2: num 14.09 4.35 18.09 8.65 17.68 ...

> M1 <- lm(y ~ x1, data=gh.data)

> M2 <- lm(y ~ x2, data=gh.data)

> summary(M1)

Call:

lm(formula = y ~ x1, data = gh.data)

Residuals:

Min 1Q Median 3Q Max

-7.7409 -4.5056 0.7114 4.3739 7.7547

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.0633 1.5526 6.481 1.25e-07 ***

x1 0.6559 0.2499 2.625 0.0124 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.921 on 38 degrees of freedom

Multiple R-squared: 0.1535, Adjusted R-squared: 0.1312

F-statistic: 6.89 on 1 and 38 DF, p-value: 0.01242

> summary(M2)

Call:

lm(formula = y ~ x2, data = gh.data)

Residuals:

Min 1Q Median 3Q Max

-3.1751 -1.2352 -0.1867 1.0899 5.3755

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.78532 0.66037 5.732 1.33e-06 ***

x2 0.83223 0.05017 16.589 < 2e-16 ***
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(a) Diagnostic plots for M1.
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(b) Diagnostic plots for M2.

Figure 6: Diagnostic plots for problem 5a.

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.863 on 38 degrees of freedom

Multiple R-squared: 0.8787, Adjusted R-squared: 0.8755

F-statistic: 275.2 on 1 and 38 DF, p-value: < 2.2e-16

> ##

> par(mfrow=c(2,2))

> plot(M1)

> plot(M2)

The plots appear in Figure 6. The R2 is much lower for M1 (0.1535) than for M2 (0.8787). Neither
set of residual diagnostic plots looks great: the residual vs fitted and scale-location plots somewhat
favor M1, and the QQ plots somewhat favor M2. The Cook’s distances are a bit better for M1
also. For R2 and normality of residuals, I prefer M2.

(b) Construct new variables y2 = y2, x12 = x12, and x22 = x22 and fit the models

M3 : y2 = β0 + β1x12 + ε

M4 : y2 = β0 + β1x22 + ε

Compare the fits of these two models to the models in part (a). Which fits best? Why?

> attach(gh.data)

> y2 <- y^2

> x12 <- x1^2

> x22 <- x2^2

> detach()

> M3 <- lm(y2 ~ x12,data=gh.data)

> M4 <- lm(y2 ~ x22,data=gh.data)

> summary(M3)

Call:

lm(formula = y2 ~ x12, data = gh.data)
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Residuals:

Min 1Q Median 3Q Max

-189.324 -125.674 4.988 131.052 214.089

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 161.7831 31.7873 5.090 1e-05 ***

x12 1.2971 0.6242 2.078 0.0445 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 131.1 on 38 degrees of freedom

Multiple R-squared: 0.102, Adjusted R-squared: 0.07841

F-statistic: 4.318 on 1 and 38 DF, p-value: 0.04452

> summary(M4)

Call:

lm(formula = y2 ~ x22, data = gh.data)

Residuals:

Min 1Q Median 3Q Max

-41.280 -31.224 -7.463 25.422 59.571

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.1583 9.0306 3.893 0.000387 ***

x22 1.0198 0.0419 24.338 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 33.96 on 38 degrees of freedom

Multiple R-squared: 0.9397, Adjusted R-squared: 0.9381

F-statistic: 592.3 on 1 and 38 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(M3)

> plot(M4)

The plots are in Figure 7. Model M4 has the highest R2 (0.9397), and has residuals vs fitted and
scale-location plots that are at least as good as any of the others; on the other hand, we seem to
be losing normality of the residuals. Nevertheless I prefer M4 so far.

(c) To fit the model
y2 = β0 + β1x1 + β2x2 + ε ,

we just expand the R modeling language a little bit: y ~ x1 + x2. Fit both of the models

M5 : y = β0 + β1x1 + β2x2 + ε

M6 : y2 = β0 + β1x12 + β2x22 + ε

Compare these to the earlier models. Which fits best? Why?

> M5 <- lm(y ~ x1 + x2, data=gh.data)

> M6 <- lm(y2 ~ x12 + x22, data=gh.data)

> summary(M5)
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(a) Diagnostic plots for M3.
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(b) Diagnostic plots for M4.

Figure 7: Diagnostic plots for problem 5b.

Call:

lm(formula = y ~ x1 + x2, data = gh.data)

Residuals:

Min 1Q Median 3Q Max

-0.9585 -0.5865 -0.3356 0.3973 2.8548

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.31513 0.38769 3.392 0.00166 **

x1 0.51481 0.04590 11.216 1.84e-13 ***

x2 0.80692 0.02434 33.148 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9 on 37 degrees of freedom

Multiple R-squared: 0.9724, Adjusted R-squared: 0.9709

F-statistic: 652.4 on 2 and 37 DF, p-value: < 2.2e-16

> summary(M6)

Call:

lm(formula = y2 ~ x12 + x22, data = gh.data)

Residuals:

Min 1Q Median 3Q Max

-0.26020 -0.05391 -0.00396 0.06367 0.35990

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0026691 0.0422669 0.063 0.95

x12 0.9999672 0.0006419 1557.713 <2e-16 ***
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(a) Diagnostic plots for M5.
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(b) Diagnostic plots for M6.

Figure 8: Diagnostic plots for problem 5c.

x22 0.9998685 0.0001663 6011.909 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1344 on 37 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 2.013e+07 on 2 and 37 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(M5)

> plot(M6)

The plots appear in Figure 8.

Putting both x1 and x2 in the model for y really improved the model: M5 has an R2 of 0.9724,
and both predictors are significant (have coefficient estimates significantly different from zero).
However the residual diagnostic plots don’t look great; in particular it seems like the residuals
have a lot of right skew, and leverage seems tio increase with the size of the standardized resduals.

M6 is really winning, though: R2 = 1, and the QQ plot shows good agreement between the residuals
and the normal distribution. There seems to be some evidence for non-constant variance though:
the residuals vs fitted plot fans out as the fitted valuess increase, and the scale-location plot tells
a similar story. On the other hand, only one data point seems to have a concerning Cook’s distance.

Based on all of this I like M6 best. Looking at the estimated coefficients for M6, I notice something
interesting: β̂0 is indistinguishable from 0, and both β̂1 and β̂2 equal 1, to at least two decimal
places (even if we compute the 95% CI’s!).

(d) Can you find a simple, recognizable function x3 = (something involving both x1 and x2), so
that

M7 : y = β0 + β1x3 + ε

provides a fit comparable to the best fitting models above? What is going on?
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Figure 9: Diagnostic plots for model M7 (problem 5d).

In problem 5c we saw that the model M6 was very nearly

y2 = x12 + x22 + ε

If we ignore ε, take square roots, and put ε and some “unknown” regression coefficients back in,
we get a model like

y = β0 + β1

√
x12 + x22 + ε

i.e., y is the distance to the origin from some points (x1, x2) in Cartesian space.

Let’s try fitting this model:

> M7 <- lm(y ~ I(sqrt(x1^2 + x2^2)),data=gh.data)

> summary(M7)

Call:

lm(formula = y ~ I(sqrt(x1^2 + x2^2)), data = gh.data)

Residuals:

Min 1Q Median 3Q Max

-0.0083283 -0.0027000 -0.0007907 0.0031643 0.0089809

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0018422 0.0019159 0.962 0.342

I(sqrt(x1^2 + x2^2)) 0.9998313 0.0001316 7596.431 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.00434 on 38 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 5.771e+07 on 1 and 38 DF, p-value: < 2.2e-16

> par(mfrow=c(1,4))

> plot(M7)

The residual diagnostic plots are in Figure 9. This seems to confirm our suspicions! R2 = 1, the
estimated regression coefficients are essentially β̂0 = 0 and β̂1 = 1, and the diagnostic plots looks
great:

� The residual vs fitted plot shows little vertical structure.

� The QQ plot shows good adherence to normality.

� The scale-location plot is consistent with constant-variance residuals.

� None of the data points has Cook’s distance above 0.5.
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Understanding the Relationship Between Circulation Size and Ad
Revenue for a Selection of U.S. Consumer Magazines

Brian Junker, Department of Statistics and Data Science

brian@stat.cmu.edu

1 Introduction

The price of advertising (and hence revenue from advertising) is different from one consumer magazine to
another. Publishers of consumer magazines argue that magazines that reach more readers create more value
for the advertiser. Thus, circulation is an important factor that affects revenue from advertising. In this
report, we investigate the relationship between circulation and gross advertising revenue.

In particular we will

� Develop regression models to predict gross advertising revenue per advertising page in 2006 (in thou-
sands of dollars) from circulation (in millions); and

� Illustrate the effect of circulation on ad revenue with two prediction intervals.

2 Data

The data are for the top 70 US magazines ranked in terms of total gross advertising revenue in 2006. The
data were obtained from http://adage.com and are given in the file AdRevenue.csv which is available on the
book web site.

The variables in the data set are shown in Table 1.

Variable Definition & Comments
Magazine The name of each magazine for which data was collected

PARENT.COMPANY The parent company or subsidiary which publishes this magazine
AdRevenue The magazine’s revenue per advertising page in 2006 (in thousands of dollars)
Circulation The number of subscribers (in millions) to this magazine

Table 1: Variable Definitions for the AdRevenue.csv data set.

Summary statistics for the two quanitative variables are given in Table 2. Further EDA in Appendix A
(page 5 below) shows that both variables are substantially skewed right, but that an increasing relationship
between the variables is plausible.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Circulation 0.331 0.99225 1.6755 3.118471 2.74325 32.700

AdRevenue 61.101 104.85050 133.7940 171.077200 179.39750 876.907

Table 2: Summary Statistics for AdRevenue and Circulation.

1



3 Methods

To develop a regression model to predict AdRevenue from Circulation, we considered regression models using
logarithmic and Box-Cox power transforms of the variables AdRevenue and Circulation (Appendix B) as well
as regression of AdRevenue on polynomial functions of Circulation (Appendix C), up to order 5. We chose
our final model based on a summary of each regression analysis and an examiniation of residual diagnostic
plots.

With our final model, we calculated AdRevenue intervals in which we would expect to find 95% of
companies with circulations of 0.5 million subscribers and 20 million subscribers, respectively, accommodating
transformation of variables, if any.

4 Results

We considered regressions using the original variables AdRevenue and Circulation (details in Appendix
B, p. 6), logarithmic and power transformations (Appendix B, pp. 7ff.) and polynomial regression using
polynomials in Circulation of orders 3, 4 and 5 (Appendix C). All approaches produced models with high R2

values and highly significant predictors of AdRevenue.

Logarithmic and Power Transformations

Among models with logarithmic and power transformations, the models with the best residual diagnostic plots
(Appendix B, pages 7 and 11) were the following two models, shown with estimated regression coefficients:

log(AdRevenue) = 4.67 + 0.53 · log(Circulation) + ε (1)

and
1/(AdRevenue) = 0.0002 + 0.0091 · 1/

√
(Circulation) + ε (2)

Models (1) and (2) had similar R2 values (0.881 and 0.8547, respectively) and similarly good residual di-
agnostic plots. Because the log-log model is more easily interpreted in terms of percent-change, we prefer
model (1). Table 3 gives the full table of estimated coefficients and standard errors for model (1).

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.674734 0.02524738 185.15717 1.168946e-93

log(Circulation) 0.528758 0.02356174 22.44138 3.754210e-33

Table 3: Estimated coefficients and standard errors for model (1).

Polynomial Regression Models

We fitted polynomial regression models of order 3, 4 and 5, and found that the model of order 3, shown here
with estimated regression coefficients,

(AdRevenue) = 59.17 + 51.24 · (Circulation) − 2.51 · (Circulation)2 + 0.05 · (Circulation)3 + ε (3)

was the most successful—all the predictors were significant, and R2 ≈ 0.93. Table 4 gives the estimated
coefficients and standard errors for this model.

Nevertheless, the residual diagnostic plots for this model (Appendix C, p. 13) did not look as good as
the diagnostics for the log-log model (1).
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.17036829 8.345045881 7.090478 1.118099e-09

Circulation 51.23581639 4.711234296 10.875243 2.334496e-16

I(Circulation^2) -2.50537894 0.411411261 -6.089719 6.476556e-08

I(Circulation^3) 0.05222479 0.009229702 5.658339 3.574381e-07

Table 4: Estimated coefficients and standard errors for model (3).

Magazine Circulation Predicted.AdRevenue Actual.AdRevenue

5 Sports Illustrated 3.205 198.46 304.185

60 Prevention 3.347 203.06 127.315

64 Cooking Light 1.717 142.68 89.153

Table 5: Magazines with unusually high or low ad revenues (in thousands of dollars), given their circulation
sizes (in millions of subscriptions), relative to their predicted ad revenue under model (1). These magazines
are marked as red points in Figure 1.

Final Model

All three models (1), (2) and (3) have high R2’s and highly significant predictors. Based on residual diagnostic
plots (pages 7, 11 and 13 in the Appendix), we can eliminate model (3), which does not follow the assumptions
of the linear model as well as the other two. Models (1) and (2) have very similar residual diagnostics, so we
are free to choose based on interpretability.

Since the model with logarithms has a simpler interpretation (a 1% change in Circulation is associated
with an expected change of 0.53% in AdRevenue), we chose model (1) as our final model. Figure 1 shows
the fitted regression line under model (1), laid over the raw data.

0 5 10 15 20 25 30

20
0

40
0

60
0

80
0

Circulation

A
dR

ev
en

ue

*

**

(a) Original scale.

0.5 1.0 2.0 5.0 10.0 20.0

10
0

20
0

50
0

Circulation

A
dR

ev
en

ue *

*
*

(b) Log-log scale.

Figure 1: The fitted model (1) overlaid on the raw data. Points in red correspond to magazines in Table 5.

The three magazines that followed our final model (1) least well are listed in Table 5; nevertheless they did
not influence the fit of the model very much. We can see from the table that Sports Illustrated outperforms
its predicted ad revenue, and both Cooking Light and Prevention underperform their predicted ad revenues.
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Prediction Intervals

Using our final model model (1), we predict 95% of consumer magazines could expect ad revenues in the
following intervals, based on their circulations:

� For a magazine with a circulation of 0.5 million subscriptions, the predicted interval for ad revenue is
$51,820 to $106,550.

� For a magazine with a circulation of 20 million subscriptions, the predicted interval for ad revenue is
$359,900 to $758,760.

5 Discussion

Among models we considered (power transformations in simple linear regression, as well as polynomial
regression), we found that the model that fits the relationship between Circulation and AdRevenue best is a
log-log model, shown here with estimated regression coefficients:

log(AdRevenue) = 4.67 + 0.53 · log(Circulation) + ε (1)

The variable log(Circulation) is a highly significant predictor of log(AdRevenue); the variation in predicted
log(AdRevenue) accounts for R2 · 100% = 88.1% of the variation in raw log(AdRevenue). The model can be
interpreed as saying that we expect a 0.53% change in Ad Revenue for every 1% change in Circulation. The
relationship in model (1) is illustrated in Figure 1 above.

We also calculated intervals predicting a range of Ad Revenues for magazines with circulations of 0.5
million and 20 million subscriptions. As expected, the larger the circulation, the wider the range of possible
ad revenues.

These calculations are helpful in determining whether particular magazines are over- or under-performing
what we would expect, and we illustrated this with three magazines with the most unusual ad revenues for
their circulation sizes, according to model 1; see Table 5 above.

A key limitation of this work is that the data is quite old, from 2006. This limits the generalizability
of the results to the present time: the publishing industry has continued to undergo enormous upheavals
due to competition from “free” content available on the internet; although we might still expect a log-log
relationship to hold up with more current data, we would expect the estimated regression coeffcients (at
least) to change.

It also might be useful to have more than 70 magazines, especially to assess whether the relationship
holds up for lower-circulation or lower-revenue magazines, and whether the relationship changes from one
magazine genre (e.g. sports magazines) to another (e.g. health magazines).
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A Initial Look at the Data

We begin by reading in the data and taking a quick look at it:

> magdata <- read.csv("AdRevenue.csv",header=T)

> str(magdata,width=72,strict.width = "cut")

'data.frame': 70 obs. of 4 variables:

$ Magazine : chr "People" "Better Homes and Garden"..

$ PARENT.COMPANY..SUBSIDIARY: chr "Time Warner, (Time Inc.)" "Mered"..

$ AdRevenue : num 233 397 286 877 304 ...

$ Circulation : num 3.75 7.64 4.07 32.7 3.21 ...

> par(mfrow=c(1,3))

> hist(magdata$AdRevenue,main="")

> hist(magdata$Circulation,main="")

> plot(AdRevenue ~ Circulation, data=magdata)
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> rbind(

+ Circulation = summary(magdata$Circulation),

+ AdRevenue = summary(magdata$AdRevenue)

+ )

Min. 1st Qu. Median Mean 3rd Qu. Max.

Circulation 0.331 0.99225 1.6755 3.118471 2.74325 32.700

AdRevenue 61.101 104.85050 133.7940 171.077200 179.39750 876.907

We see from the plots that both AdRevenue and Circulation are highly skewed-right. However, there does
seem to be a linear relationship between these two variables.

B Simple Regression, Transformed Variables

We tried

� Simple regression on the original variables: AdRevenue ∼ Circulation.

� Simple regression on the logs of the variables: log(AdRevenue) ∼ log(Circulation).

� Simple regression with Box-Cox power transformations of the variables; this model turned out to be
1/AdRevenue ∼ 1/

√
Circulation.

The best model turned out to be the log-log model. Some details of our analyses follow:
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Original variables

The regression output and residual diagnostic plots for the model AdRevenue ∼ Circulation are as follows:

> summary(lm.1 <- lm(AdRevenue ~ Circulation,data=magdata))

Call:

lm(formula = AdRevenue ~ Circulation, data = magdata)

Residuals:

Min 1Q Median 3Q Max

-147.694 -22.939 -7.845 13.810 131.130

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.8095 5.8547 17.05 <2e-16 ***

Circulation 22.8534 0.9518 24.01 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 42.22 on 68 degrees of freedom

Multiple R-squared: 0.8945, Adjusted R-squared: 0.8929

F-statistic: 576.5 on 1 and 68 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(lm.1)
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Although R2 = 0.8945 and Circulation is a highly statistically significant predictor, the residual diagnostic
plots show skewing in the residuals, to go along with the skewing in AdRevenue and Circulation that we saw
in the exploratory plots in Section A.
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Log-transformed variables

The regression output and residual diagnostic plots for the model log(AdRevenue) ∼ log(Circulation) are as
follows:

> summary(lm.2 <- lm(log(AdRevenue) ~ log(Circulation),data=magdata))

Call:

lm(formula = log(AdRevenue) ~ log(Circulation), data = magdata)

Residuals:

Min 1Q Median 3Q Max

-0.47022 -0.11142 -0.00532 0.10835 0.42705

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.67473 0.02525 185.16 <2e-16 ***

log(Circulation) 0.52876 0.02356 22.44 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1768 on 68 degrees of freedom

Multiple R-squared: 0.881, Adjusted R-squared: 0.8793

F-statistic: 503.6 on 1 and 68 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(lm.2)
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For this model, R2 = 0.881 is still high, log(Circulation) is still a strong predictor, and the residual diagnostic
plots look much better: residuals show no severe vertical patterns, they follow the normal distribution except
for a small number of outliers, the location-scale plot shows at most mild violations of non-constant variance,
and no data points with high Cook’s distances.
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We can look at the data points with the highest (but still not concerning) Cook’s distances to see what
“extreme”data looks like for this model; points with high leverage tend to have small residuals, and vice-versa:

> res.lev <- data.frame(Magazine=magdata$Magazine,StdRes=rstandard(lm.2),

+ leverage=hatvalues(lm.2),Cooks.Dist=cooks.distance(lm.2))

> tail(res.lev[order(cooks.distance(lm.2)),],n=8)

Magazine StdRes leverage Cooks.Dist

42 Country Home 2.3636899 0.01639929 0.04657547

2 Better Homes and Gardens 1.3575202 0.05146659 0.04999601

64 Cooking Light -2.6787982 0.01432293 0.05213714

5 Sports Illustrated 2.4402089 0.02022629 0.06146309

20 Reader's Digest -1.3103123 0.06716783 0.06181267

49 AARP The Magazine -0.9279932 0.13138896 0.06513180

60 Prevention -2.6688479 0.02115025 0.07695149

4 Parade (1) 1.5938160 0.16374980 0.24870866

> p <- 1 # number of predictors: x only

> c(leverage.cutoff = 2*(p+1)/dim(magdata)[1])

leverage.cutoff

0.05714286

We see that none of these cases have Cook’s distances exceeding 0.50. The points that are identified as the
three most extreme outliers in the QQ plot correspond to the magazines Sports Illustrated, which overperforms
expectation, and Cooking Light and Prevention, which both underperform:

> data.frame(Magazine=magdata$Magazine,Circulation=magdata$Circulation,

+ Predicted.AdRevenue=round(exp(predict(lm.2)),2),

+ Actual.AdRevenue=magdata$AdRevenue)[c(5,60,64),]

Magazine Circulation Predicted.AdRevenue Actual.AdRevenue

5 Sports Illustrated 3.205 198.46 304.185

60 Prevention 3.347 203.06 127.315

64 Cooking Light 1.717 142.68 89.153

Finally, here are plots of the fitted regression line, overlaid on the raw data, in the original scale and in a
log-log scale. The points colored in red correspond to the “outlier” magazines in the table above.

> plot(AdRevenue ~ Circulation,data=magdata)

> regline <- function(x) {exp(4.67 + 0.53*log(x))}

> curve(regline,add=T)

> points(c(3.205,3.347,1.717),c(304.185,127.315,89.153),col="red",pch="*",cex=3)

> plot(AdRevenue ~ Circulation,data=magdata,log="xy")

> regline <- function(x) {exp(4.67 + 0.53*log(x))}

> curve(regline,add=T)

> points(c(3.205,3.347,1.717),c(304.185,127.315,89.153),col="red",pch="*",cex=3)
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Box-Cox transformed variables

In order to find the Box-Cox transformations, we first find the best transform for x, and then using the
transformed x, we find the best transform for y.

First, the suggested transformation for x = Circulation:

> library(car)

> with(magdata,powerTransform(Circulation~1)$roundlam)

Y1
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> with(magdata,boxCox(Circulation~1))
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Then, the suggested transform for y = AdRevenue, when regressing on x = 1/
√

Circulation:
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> lm.3 <- lm(AdRevenue ~ I(Circulation^(-0.5)),data=magdata)

> with(magdata,powerTransform(lm.3)$roundlam)

Y1

-1

> with(magdata,boxCox(lm.3))
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So our final Box-Cox model should be 1/AdRevenue ∼ 1/
√

Circulation:

> magdata$AdRevInv <- 1/magdata$AdRevenue

> magdata$InvSqrtCirc <- 1/sqrt(magdata$Circulation)

> lm.4 <- lm(AdRevInv ~ InvSqrtCirc,data=magdata)

> # the following caused an error in R, which is why I defined the variables above...

> # lm.4 <- lm(I(AdRevenue^(-1)) ~ I(Circulation^(-0.5)),data=magdata)

> summary(lm.4)

Call:

lm(formula = AdRevInv ~ InvSqrtCirc, data = magdata)

Residuals:

Min 1Q Median 3Q Max

-0.0028448 -0.0008745 -0.0000689 0.0006133 0.0040733

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0001662 0.0004000 0.416 0.679

InvSqrtCirc 0.0091424 0.0004571 20.000 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.001223 on 68 degrees of freedom

Multiple R-squared: 0.8547, Adjusted R-squared: 0.8526

F-statistic: 400 on 1 and 68 DF, p-value: < 2.2e-16
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> par(mfrow=c(2,2))

> plot(lm.4)
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This model has an R2 = 0.8547, nearly as good as the log-log model, and again (transformed) Circulation is
a strong predictor of (transformed) AdRevenue. The residual diagnostic plots are also very comparable to
the corresponding plots for the log-log model.

Conclusions, Simple Regression

Here’s a brief comparison of the models (x=Circulation, y=AdRevenue):

Significant Comments on
Strategy Model R2 Predictor? Residual Diagnostics

No Transform y ∼ x 0.8945 yes x, y and residuals all skewed right; some severe
outliers and larger Cook’s distances.

log-log log(y) ∼ log(x) 0.881 yes Assumptions of normality and constant variance
for residuals approximately satisfied; few outliers;
no large Cook’s distances.

Box-Cox 1/y ∼ 1/
√

x 0.8547 yes Similar to log-log diagnostics.

Since there isn’t much difference in terms of fit and residual diagnostics between the log-log and Box-Cox
models, we should choose based on interpretability. The log-log model has a simpler interpreation: a 1%
change in Circulation can be expected to produce a β̂1 = 0.53% change in AdRevenue. Therefore we prefer
the log-log model.

C Polynomial Regression, Untransformed Variables

We tried polynomial models of order 5, 4, and 3. To save space, we just quote the R2 and coefficient tables
for each model:
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> lm.5 <- lm(AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3) +

+ I(Circulation^4) + I(Circulation^5), data=magdata)

> ## Note: you could get the same model with

> ## lm.5 <- lm(AdRevenue ~ poly(Circulation, degree=5, raw=T),data=magdata)

> summary(lm.5)$r.squared

[1] 0.9366882

> summary(lm.5)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.0382867767 1.737595e+01 3.2825999 0.001668725

Circulation 47.8288287740 2.213601e+01 2.1606799 0.034469648

I(Circulation^2) 1.3621060276 7.962225e+00 0.1710710 0.864707640

I(Circulation^3) -0.6557047334 9.924238e-01 -0.6607104 0.511169347

I(Circulation^4) 0.0370875190 4.489949e-02 0.8260120 0.411865983

I(Circulation^5) -0.0005798354 6.533235e-04 -0.8875166 0.378124078

> lm.6 <- lm(AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3) +

+ I(Circulation^4), data=magdata)

> summary(lm.6)$r.squared

[1] 0.935909

> summary(lm.6)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 45.686665431 11.742208057 3.890807 2.377459e-04

Circulation 65.380572047 9.928749452 6.584976 9.325058e-09

I(Circulation^2) -5.499586772 1.900414956 -2.893887 5.173919e-03

I(Circulation^3) 0.220172602 0.104527351 2.106364 3.903839e-02

I(Circulation^4) -0.002733043 0.001694505 -1.612886 1.116144e-01

> lm.7 <- lm(AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3),

+ data=magdata)

> summary(lm.7)$r.squared

[1] 0.933344

> summary(lm.7)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.17036829 8.345045881 7.090478 1.118099e-09

Circulation 51.23581639 4.711234296 10.875243 2.334496e-16

I(Circulation^2) -2.50537894 0.411411261 -6.089719 6.476556e-08

I(Circulation^3) 0.05222479 0.009229702 5.658339 3.574381e-07

All three models have R2 ≈ 0.93; in the models of order 4 and 5, the predictors (Circulation)4 and (Circulation)5

were not significant predictors; all predictors were significant for the model of order 3. Therefore we concen-
trate on the model of order 3. Here is the complete summary and residual diagnostics for that model:

> summary(lm.7)

12



Call:

lm(formula = AdRevenue ~ Circulation + I(Circulation^2) + I(Circulation^3),

data = magdata)

Residuals:

Min 1Q Median 3Q Max

-83.75 -13.56 -2.16 11.46 104.82

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.17037 8.34505 7.090 1.12e-09 ***

Circulation 51.23582 4.71123 10.875 2.33e-16 ***

I(Circulation^2) -2.50538 0.41141 -6.090 6.48e-08 ***

I(Circulation^3) 0.05223 0.00923 5.658 3.57e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 34.06 on 66 degrees of freedom

Multiple R-squared: 0.9333, Adjusted R-squared: 0.9303

F-statistic: 308.1 on 3 and 66 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(lm.7)
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This set of residual diagnostic plots does not look as good as either the log-log or Box-Cox residual diagnostics
in Section B. Although R2 is higher, we seem to be farther from the assumptions underlying regression here.

D Final Model and Predictions

Comparing the regression output and residual diagnostic plots for the log-log model and polynomial model
of order 3:
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� The log-log model has dramatically better residual diagnostic plots;

� The log-log model has a significant predictor and an R2 nearly as high as the polynomial model;

� The log-log model has a simple interpretation: for every 1% increase in Circulation, we can expect a
0.53% increase in Ad Revenue.

For these reasons, we prefer the log-log model.

Here are 95% prediction intervals for Ad Revenue, for a publication with circulation of 0.5 million and
20 million, respectively, from the log-log model. Note that we have to exponentiate the endpoints of the
intervals, to “undo” the log transformation on AdRevenue.

> int.A.i <- round(exp(predict(lm.2,newdata=data.frame(AdRevenue=0,Circulation=0.5),

+ interval="prediction")[c(2,3)]),2)

> int.A.ii <- round(exp(predict(lm.2,newdata=data.frame(AdRevenue=0,Circulation=20),

+ interval="prediction")[c(2,3)]),2)

> data.frame("Lower Endpoint"=c("Circulation 0.5 Million"=int.A.i[1],

+ "Circulation 20 Million"=int.A.ii[1]),

+ "Upper Endpoint"=c("Circulation 0.5 Million"=int.A.i[2],

+ "Circulation 20 Million"=int.A.ii[2]))

Lower.Endpoint Upper.Endpoint

Circulation 0.5 Million 51.82 106.55

Circulation 20 Million 359.90 758.76

14


