
R E A C T I O N E NG I N E E R I N G , K I N E T I C S A ND C A T A L Y S I S

Uncertainty quantification in machine learning and nonlinear
least squares regression models

Ni Zhan | John R. Kitchin

Department of Chemical Engineering, Carnegie

Mellon University, Pittsburgh, PA, USA

Correspondence

John R. Kitchin, Department of Chemical

Engineering, Carnegie Mellon University, 5000

Forbes Avenue, Pittsburgh, PA 15213, USA.

Email: jkitchin@andrew.cmu.edu

Abstract

Machine learning (ML) models are valuable research tools for making accurate

predictions. However, ML models often unreliably extrapolate outside their

training data. The multiparameter delta method quantifies uncertainty for ML

models (and generally for other nonlinear models) with parameters trained by

least squares regression. The uncertainty measure requires the gradient of the

model prediction and the Hessian of the loss function, both with respect to

model parameters. Both the gradient and Hessian can be readily obtained from

most ML software frameworks by automatic differentiation. We show examples

of the uncertainty method in applications of molecular simulations and neural

networks. We further show that the uncertainty measure is larger for input

space regions that are not part of the training data. Therefore, this method can

be used to identify extrapolation and to aid in selecting training data or

assessing model reliability.

K E YWORD S

artificial intelligence, machine learning, uncertainty

1 | INTRODUCTION

Machine learning (ML) models are used in many fields of science

and engineering. They can decrease computational time, make

predictions and forecasts, and improve insights of complex and

high-dimensional datasets. Models are more useful when they

provide a prediction with its uncertainty, and in some applications

it may be critical to provide a reliable uncertainty estimate.1,2 The

uncertainty estimate should also help identify input data regions

that lead to extrapolation. Overall, ML models can be used more

reliably when robust uncertainty quantification is available. In the

simple case of low-dimensional linear regression, an analytical

prediction interval is available,3 and that can be used to calculate

the uncertainty intervals in many statistical software packages.

The analytical prediction interval for linear regression requires (XT

X) to be invertible, where X�ℝn�d is the design matrix with n data

points and d feature dimensions. In general, for more complex

(nonlinear) models and higher dimensional datasets, analytical predic-

tion intervals do not exist and alternative methods are required.

Uncertainty quantification methods for ML models are an active

area of research.4–6 Some common methods are model ensembling

and training models with built-in uncertainty such as Gaussian pro-

cess (GP) regression and quantile regression.7,8 If we already have a

model with trained parameters, we may want to avoid training a dif-

ferent model type or additional model ensemble. In these cases, this

article presents a simple uncertainty quantification method for

parameterized models trained on minimizing the summed squared

error between a model and a dataset. The method exploits automatic

differentiation to calculate the Hessian of the loss function based on

summed squared errors, and provides an uncertainty estimate which

depends on the prediction point, model training data, and the model

itself. We show how the uncertainty can identify whether extrapola-

tion is occurring and aids in dataset selection for an example applica-

tion of molecular simulation. In the remaining sections, we review

the background on uncertainty quantification and an application of

ML models for molecular simulation, describe the method called the

delta method, and show its use in an example neural network

(NN) that predicts energies from atomic structures.

Received: 22 July 2021 Revised: 28 September 2021 Accepted: 24 October 2021

DOI: 10.1002/aic.17516

AIChE J. 2021;e17516. wileyonlinelibrary.com/journal/aic © 2021 American Institute of Chemical Engineers. 1 of 11

https://doi.org/10.1002/aic.17516

https://orcid.org/0000-0003-2625-9232
mailto:jkitchin@andrew.cmu.edu
http://wileyonlinelibrary.com/journal/aic
https://doi.org/10.1002/aic.17516
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faic.17516&domain=pdf&date_stamp=2021-11-21

1.1 | Uncertainty quantification methods

An ML model is defined by its mathematical definition and training

dataset. In complex models, the mathematical definition may be best

defined with a computing program (code) and includes the model

structure, parameters, and hyperparameters. The training data are

most likely preprocessed and modified to normalize and standardize

them. The ML models are fitted to the training data, usually by mini-

mizing an error function. In parameterized models, the training pro-

cess determines the model parameters. We take the model

parameters, the error function, exact training dataset with its modifi-

cations, and all aspects of the model's mathematical definition to be

the ML model.

Here, we describe the motivation and need for the uncertainty

estimate. When we use a trained ML model to predict on another

dataset, the prediction accuracy depends on the training data used.

If the new data are in an extrapolation region, the accuracy is not

expected to be good.9 It is not obvious when the model is

predicting in an extrapolation region if the ML model has a high-

dimensional input space. A motivation for an uncertainty measure-

ment is to help determine when the model is extrapolating, or is

simply not reliable. Knowledge of the uncertainty helps in identify-

ing when a model is reliable and indicates confidence in a model

prediction.

Uncertainty quantification methods for models include bootstrap,

ensembling, using model-specific uncertainty, and the delta method.

Bootstrap, ensembling, and the delta method can be used for para-

metric models and NNs. Bootstrap uncertainty is based on statistical

theory, has some different variations, and requires training multiple

models on different bootstrap samples of the data or residuals.10–12

With the different models, the uncertainty on predictions can be

estimated.

Ensemble methods require training multiple models on the entire

dataset, and the different models give the uncertainty.13–15 The

uncertainty estimate quantitatively improves as the ensemble size

increases, so the optimal number of ensemble models is unknown and

must be user-determined.16 Some studies used bootstrap uncertainty

for NN models and showed that it gave more reliable uncertainties

than the delta method,17,18 but training multiple models is computa-

tionally expensive and time consuming.

Model-specific uncertainty include GP regression,19 dropout for

NNs,20 and Bayesian NNs.21–23 Obtaining uncertainties in this way

limits the possible mathematical forms of the model. Dropout and

Bayesian NNs are also more difficult to train than standard NNs. The

next section describes specific instances in which ensembling, boot-

strap, and GP methods were used for molecular simulation. In another

method, the posterior of model parameters can be approximated by

the Laplace approximation, which is the second-order Taylor series

expansion around the optimal model parameters.24,25 Hence, the Hes-

sian of the log-likelihood contains relevant information about

uncertainty.

This article focuses on the delta method, a method which also

uses the Hessian of the log-likelihood. The method is based on

linearly approximating the model and uses an estimate of the stan-

dard error of model parameters assuming maximum likelihood esti-

mation. Therefore, the method applies to models with parameters

trained by minimizing squared error, and the model structure could

be a simple linear regression to complex nonlinear regression

including NNs. Different variants of the method use approxima-

tions of the Hessian, such as the outer product of gradients, and

experiments have tested the delta method on NN models.17,26–30

We further describe the method in Methods, with theoretical

details in Appendix S1.

1.2 | Addressing uncertainty in molecular
simulation

We examine uncertainty quantification using the example applica-

tion of molecular simulation, an area which has benefited from

ML. Here, we describe the background of ML for molecular simula-

tion. Simulations allow researchers to obtain materials' physical

properties and quickly screen materials. Molecular dynamics

(MD) and Monte Carlo simulations require a model of the potential

energy surface (PES) which predicts energies and forces from

atomic configurations. The options for the PES model include first-

principles methods such as density functional theory (DFT), physi-

cal potentials, and ML potentials. ML potentials aim to achieve the

high accuracy of DFT at a significantly faster computation. ML

potentials are also more systematically improvable than physical

potentials.31 Many studies have successfully used ML potentials in

simulations.32–35

Uncertainty quantification is useful for ML potentials. Commonly

used ML potentials such as NNs will usually unreliably extrapolate on

inputs much different from their training data. A consequence of

extrapolation during a molecular simulation is that it likely gives wrong

or unphysical results. The best ways to select enough of the relevant

training space are nonobvious, since the space of atomic structures is

often large, not well understood, and not possible to enumerate. Fur-

thermore, atomic structures are translated into fingerprints which are

high dimensional and less human-interpretable than the original

atomic configurations. Hence, we require a method to determine the

uncertainty of a prediction from an ML potential, and the quantitative

uncertainty helps us to avoid extrapolation and identify sparse regions

in the training dataset.

Current methods developed to address uncertainty are ensembles

of potentials, on-the-fly methods, and using ML models with built-in

uncertainty. Ensemble methods independently train two or more ML

potentials, and check for agreement between them. In Behler's

approach, NNs with different architectures are trained, and atomic

structures whose predictions' differ significantly across NNs are

added to the training set.36–38 Peterson et al. trained an ensemble of

50 NN potentials and found that ensemble spread was a good indica-

tor for prediction error across the space.39 Smith et al. also used

ensemble disagreement to approximate prediction error and select a

small training set.40,41

2 of 11 ZHAN AND KITCHIN

In MD simulations, on-the-fly methods use an ML potential

augmented with quantum mechanical (QM) calculations.42 There is

a query if the ML prediction can be used. If it fails, a QM calcula-

tion is run and added to a database, and the ML model can be

retrained. A simple query is whether the fingerprint is out of the

minimum and maximum bounds in the current database.43 This is a

minimum requirement that the ML model is not extrapolating;

however, guaranteeing that the fingerprint is within bounds of

training data does not guarantee a low error.44

Another approach is training GP regressions42,45 or other ML

models with built-in uncertainty estimates. Vandermause et al.

and Xie et al. used GP uncertainty to train potentials on the

fly.46,47 Many ML models, such as NNs, do not have theoretical

guarantees for uncertainty of a prediction. Perturbation of NN

weights could provide some range of uncertainty.48 Another work

used dropout in NN training as a Bayesian approximation and

thereby calculating uncertainties for interatomic potentials.49

Janet et al. used the distance in values of the last layer of NNs

(or latent space) as an uncertainty measure.50 Tran et al. com-

pared GP, Bayesian NN, dropout NN, and ensembles of different

NN structures and found more conservative uncertainties for GP

and overconfident uncertainties for Bayesian NN, dropout, and

NN ensemble.51

Musil et al. compared GP, ensembling with random subsets of the

data, and bootstrap methods for obtaining uncertainties of predicting

formation energies on molecular datasets.52 They found that random

sampling was easier to implement than bootstrapping, computation-

ally faster than GP for uncertainty estimates, and matches the true

error and uncertainty from GP. Li et al. trained NN potentials with dif-

ferent NN structures (number of nodes), weight initialization, and

learning rates, and compared the resulting prediction accuracies.53

Their work showed a quantitative uncertainty arising from some NN

hyperparameters, but it required training several NN potentials for a

new system, and does not provide confidence or prediction intervals.

In an alternative approach, Botu et al. fitted an empirical function

to an uncertainty estimate as a function of fingerprint

distance between input and reference training fingerprints.54 Their

uncertainty estimation approach requires a larger training set size.

Overall, there is no clear consensus on the best uncertainty

quantification method, and its selection usually depends on the

model form used, for example, built-in uncertainty from GPR or

ensembles when using NNs. The delta method provides a simple

alternative for providing quantitative uncertainty when a pretrained

model exists, without the necessity of training additional models.

That is the focus of this article.

2 | METHODS

The delta method applies to regression problems of a model g with

parameters θ. The residuals of model prediction are assumed to be

Gaussian-distributed and centered around zero. We assume that

the model parameters bθ were obtained by minimizing a function of

the summed squared errors, although the method can be extended to

maximize a posteriori estimation and cross-entropy loss for classifica-

tion tasks.55 We obtain an approximate standard error of a model

prediction g bθ,x� �
by using a Taylor series approximation and an approx-

imate standard error of bθ. Suppose that
∂g bθ,x,� �

∂bθ is nonzero, then the

standard error of g bθ,x� �
for a point x is given in Equation (1) using the

delta method.

se g bθ,x� �� �
≈

ffi
∂g bθ,x� �

∂bθ
T

I�1
n

∂g bθ,x� �
∂bθ

vuut ð1Þ

where
∂g bθ,x,� �

∂bθ is the gradient vector of the model with respect to

parameters at the point x for which we are calculating uncer-

tainty, and In is the Fisher information matrix, defined as the

expectation of the Hessian of the negative log-likelihood. The

Fisher information is related to the Hessian of the loss, usually

the sum of squared errors, by a scaling factor. Equation (1) shows

that the model prediction of the standard error is a function of

the training data, model, and point for which the uncertainty is

calculated.

For small to medium models, the delta method is faster and eas-

ier to implement compared to ensembling, and the Hessian and gra-

dients of the model are readily obtained with automatic

differentiation that is included in most ML packages. To demon-

strate the ease of use, we show a simple code example using the

autograd56 package in Listing 1 (results in Figure 1). The delta

method is limited by model size because the Hessian will be m � m,

where m is number of parameters, and the Hessian needs to be

inverted. For very large models and NNs, inverse Fisher information

approximations have been proposed. Ritter et al. implemented

Kronecker-factored Hessian for a network with around 2 million

parameters,24 and Nilsen et al. proposed and implemented eigen-

value spectrum Hessian approximation on networks with around

100,000 parameters.55 For even larger networks, other uncertainty

quantification methods would likely be needed.

The uncertainties are calculated after the model has finished

training, and the Fisher information inverse needs to be calcu-

lated only once per model and training dataset. In previous tests,

a model with 861 parameters and 1900 training data points

required around 5 min to calculate the inverse Fisher information

with an Intel Core i7-7820HQ CPU @ 2.9 GHz using autograd.

Using more modern automatic differentiation, frameworks are

expected to be faster. Calculating the uncertainties after

obtaining the inverse Fisher information requires much less time.

Theoretically, calculation of the Fisher information matrix scales

quadratically with number of parameters and linearly with number

of training data points.

The quality of standard errors calculated using the delta method

depends on the fit of the model. We found that well-fitted models

have better uncertainty measures, and our assumptions required

residuals to be independent and identically distributed normal around

zero. Poorly fitted models have uncertainty measures that are less

quantitatively accurate.

ZHAN AND KITCHIN 3 of 11

2.1 | Practical modifications to the inverse Fisher
matrix

There are a few steps or best practices to modify how the inverse

Fisher information matrix is computed.

1. We start with H, the Hessian of the sum squared errors loss func-

tion. For some models, such as NNs, the Hessians of the loss func-

tions with respect to parameters are often nearly singular with

some eigenvalues much larger than the others,57,58 and the optimal

parameters may be at a saddle point.

2. Add a small number ϵ to the Hessian diagonal. Adding ϵ to the

diagonals makes the matrix better conditioned for taking its

inverse. ϵ should be larger in magnitude than the most negative

eigenvalue. We used ϵ¼max 1e�5,1:05 �abs λmin Hð Þð Þð Þ, where

λmin Hð Þ is the smallest eigenvalue of H. Modifying the Hessian of

the objective function with respect to NN parameters has been

suggested in the literature and is justified because the top eigen-

values are a few orders of magnitude larger than the other eigen-

values.24,58,59 Also note that Hessian conditioning suggests that

the number of parameters of the NN is much larger than the actual

degrees of freedom of the NN.

3. We take the Moore–Penrose pseudoinverse (H + ϵI)�1. If the

inverse exists, which is most cases following step 2, it is the same

as the true inverse.

4. Multiply (H + ϵI)�1 by a scaling factor α. This is done to cali-

brate the uncertainties to be near the residuals. We set α to be

mean squared error (MSE) in most cases. To select α, we sug-

gest trying nβ�MSE, where n is the number of training data

points and β is any nonnegative number, but usually in the

range [0, 1]. α should be chosen so that uncertainties have the

same order of magnitude as the residual errors for the training

dataset.

5. Force the scaled inverse P := α(H + ϵI)�1 to be positive semi-defi-

nite. For eigendecomposition P = QΛQ�1, the closest positive

semi-definite matrix in terms of Frobenius norm is Qmax Λ,0ð ÞQ�1,

where max is element-wise max.60

The final inverse Fisher information I�1
n used in Equation (1)

is Qmax Λ,0ð ÞQ�1.

2.2 | Code example

We show a simple code implementation of the delta method in Listing 1

using the autograd package.56 Note that obtaining the required gradi-

ents is a single line for the Hessian (line 27) and gradients (line 34),

demonstrating the ease of automatic differentiation. Similar codes

would apply in PyTorch61 or other ML packages. In this simple exam-

ple, we fit a quadratic function to some slightly noisy data and show

the resulting confidence intervals on the fit (Figure 1). The Hessian in

this case was well-conditioned, so the modifications described above

were not necessary.

LISTING 1 Autograd example of the delta method

F IGURE 1 Result from Listing 1

4 of 11 ZHAN AND KITCHIN

This simple example shows all the pieces of the delta method.

There are data and a function (line 11) with parameters that are fitted

to the data. The regression here is done by optimization (line 21); this

problem is linear and could be solved analytically, but we show the

optimization approach for generality. We used automatic differentia-

tion to obtain the Hessian (line 26) and gradient of the function (line

33) with respect to the parameters. The rest is conventional linear

algebra.

In calculating the t-value (line 39), technically the degrees of free-

dom should be used instead of the number of data points. However

for large NNs, the effective degrees of freedom is much smaller than

the number of model parameters, and determining NN degrees of

freedom is an active area of research.62–64 For simplicity, we used the

number of data points to estimate the t-value throughout our results.

3 | RESULTS

We show examples of using the delta method on different models to

demonstrate how the uncertainty behaves. We begin with a simple one-

dimensional (1-D) NN, and build in complexity in subsequent examples.

3.1 | One dimension input NN

This example is a 1-D input NN. We start with 1-D input for clearer

intuition and visualization. We generated synthetic data from the one-

dimensional Lennard–Jones (LJ) function and added some Gaussian

noise. We fitted these data to an NN with structure [1, 4, 1] (one

input, one hidden layer with four nodes, and one output) using

scipy.optimize.minimize. The NN had 13 total parameters.

We test how the standard error changes with different training

datasets. We generated two sets of training data to fit the NN, and

Figure 2 shows the fits. These sets of training data were from the same

LJ function and had the same variance of Gaussian noise added. We

expect the true function to be within the confidence interval 95% of the

time. In Figure 2A, the uncertainty increases for large and small x, which

is desirable because we do not know how the NN will behave in those

regions outside the training data. In Figure 2B, there is a region of miss-

ing data in the middle, and the confidence interval expands in the region

of missing data. These cases demonstrate that the uncertainty depends

on the training data in a useful way. The uncertainty generally increases

in regions with less data, which makes sense because we are less certain

of our model in a space with less training data.

3.2 | High-dimensional NN potential

3.2.1 | Trained NN potential

This example applies the delta uncertainty method to a high-

dimensional NN potential. We use the SingleNN (implemented in

PyTorch) and weighted Behler–Parinello style symmetry func-

tions.65–67 The data are DFT energy and force calculations based on

atomic configurations, specifically the dataset used in Boes 2017,68

which contains 3907 unique AuPd slabs. The symmetry functions

transform the atomic configuration information into a vector of num-

bers, or “fingerprint,” and we used four weighted G2 symmetry func-

tions. For the NN, we used two hidden layers with 11 nodes each;

thus the NN architecture is [4, 11, 11, 1], which is 211 total

parameters.

To demonstrate the usefulness of the uncertainty method, we

start by training on a subset of the data. This mimics the iterative

approach often used in training these models. We then check for

extrapolation on the remaining data using the delta method. For this

first potential, 572 configurations with a lattice constant of 3.934 Å

were randomly split into 64%, 16%, and 20% training, validation, and

test sets, respectively. The NN was trained on energies and atomic

forces using SingleNN, and uncertainties were calculated in the same

PyTorch framework.

Figure 3 shows the energy parity plots of the training, validation,

and test sets. The parity is good in all cases, and root mean squared

F IGURE 2 One dimension input NN and confidence intervals. (A) Twenty-three training data points, and confidence interval is wider at the
edges. (B) Region of missing data in middle, and confidence interval expands in region of missing data

ZHAN AND KITCHIN 5 of 11

errors (RMSEs) are 0.003, 0.0023, and 0.003 eV/atom for train, vali-

dation, and test, respectively. Figure 4 shows the distributions of stan-

dard errors of confidence for the three datasets. These distributions

are very similar and mostly overlapping. Figure 5 shows the parity plot

of the test set with 95% prediction intervals. The true values are

within the prediction intervals for 98% of the dataset, which is close

to 95% and shows that the delta method provides quantitatively rea-

sonable uncertainties in this case. The main result is that similar

datasets with the same accuracy using the model will have similar dis-

tributions of uncertainties.

Next, we use the same potential to predict on a new dataset. If

the new dataset is dissimilar from the training data, we expect the

uncertainties to be high. While all the training set had 3.934 Å lattice

constants, the new dataset has 4.034 and 4.134 Å lattice constants,

which we will refer to as predict-4.0 and 4.1 datasets. As a result, we

expect the fingerprints to differ from those of the train set, that is, we

F IGURE 3 Parity plot of SingleNN

F IGURE 4 Distribution of uncertainties (standard error of confidence)

F IGURE 5 Parity plot with 95% prediction intervals for test set

6 of 11 ZHAN AND KITCHIN

know we are extrapolating here. Figure 6 shows the energy parity

plots for the predict sets with 95% prediction intervals. The predic-

tions are offset with an error, and the uncertainties are clearly much

larger than those for the test set from Figure 5. Table 1 shows the

average standard error of confidence/prediction for the datasets.

Training and test sets have around the same standard error confi-

dence of 0.002 eV/atom, and predict-4.0 and 4.1 sets have higher

uncertainties of 0.023 and 0.034 eV/atom, respectively, which are

one order of magnitude larger than that of training and test. Since this

uncertainty is much larger, it could indicate that the model is extrapo-

lating on the predict sets, and the parity plots (Figure 6) seem to

indicate this.

We examine the fingerprints, and Figure 7 shows an example fin-

gerprint for the train and predict datasets. There are regions where

the predict-4.0 and 4.1 atoms' fingerprints are outside the training

distributions, which is suggestive of extrapolation. For predict-4.0, the

true values are within the prediction intervals for 75% of the dataset,

which is not that close to 95%; however for predict-4.1, the true

values are within the prediction intervals for 0% of the dataset. This

F IGURE 6 Prediction on new lattice datasets; uncertainty may be
much larger in an extrapolation region

TABLE 1 Average standard error confidence of datasets

Dataset

Average standard error

confidence (eV/atom)

Average standard error

prediction (eV/atom)

Test 0.0020 0.0036

Predict-

4.0

0.0234 0.0235

Predict-

4.1

0.0336 0.0337

F IGURE 7 The predict-4.0 and 4.1 datasets have fingerprints
outside the range of training distribution (fingerprint example shown
is eta = 0 with Pd center atoms)

F IGURE 8 Standard error from delta method vs. absolute error
and their distributions

ZHAN AND KITCHIN 7 of 11

seems to indicate that the prediction interval becomes less quantita-

tively accurate as the extrapolation increases. However, when the

uncertainty is much larger than the training uncertainties, the model is

likely extrapolating, and we should not trust the prediction. Therefore,

this uncertainty method helps in identifying the data regions where a

model extrapolates. Figure 8 shows the standard error confidence

vs. absolute energy error, and their distributions for the test and pre-

dict datasets. Figure 8 shows the general trend that uncertainty from

the delta method increases when the true error increases. The trend is

most obvious in a heterogeneous dataset.

3.2.2 | Uncertainties after retraining

Next, we retrain the potential with some of the predict-4.0 and 4.1

data and check how uncertainties are affected. We expect the uncer-

tainties to decrease after retraining. We added 64% of each predict-

4.0 and 4.1 dataset, or 365 data points each, and retrained. Figure 9

shows the energy parity plots of the new training and predict sets.

After retraining, the predict set is on parity and no longer offset. The

true values are within the prediction intervals for 98.7% of the train-

ing data and 98.5% of the predict data, which are close to the theoret-

ical 95% and show that the uncertainties calculated from the delta

method are quantitatively reasonable. Figure 10 shows the updated

standard error confidence vs. absolute energy error and their distribu-

tions for test and predict datasets. After retraining, the standard errors

across datasets are mostly overlapping, and the average standard

errors are the same for the datasets. The average standard error confi-

dence and predict are 0.002 and 0.003 eV/atom, respectively. Since

we retrained on the predict-4.0 and 4.1 datasets, we are no longer

extrapolating on that data and the uncertainties updated to reflect

this: they are no longer an order of magnitude larger than the train

sets' as was the case before retraining. We can use this uncertainty

method to iteratively retrain a potential by adding data with high

uncertainties. This is sometimes called active learning.

In the calculation of the Fisher information matrix, we used the

errors of energies only, although we trained on energies and forces.

From a theoretical perspective, the Fisher information should include

some information about force errors, but exactly how much to include

is not obvious. By using only loss of energies, we save computational

time for calculating the Fisher information, and the uncertainty mea-

surement still accomplishes the objective and is quantitatively reason-

able. Therefore in practice, using only the loss of energies for the

Fisher information works well.

We can also extend uncertainty to other properties such as forces.

For this case, in Equation (1), g bθ� �
is force, which is � ∂E

∂position, where

E represents energy. We obtain g0 bθ� �
through automatic differentia-

tion by taking the derivative of � ∂E
∂position with respect to model param-

eters. In this way, we use the delta method to calculate uncertainties

F IGURE 9 Parity plot after retraining F IGURE 10 Distribution of uncertainties after retraining

8 of 11 ZHAN AND KITCHIN

for other quantities of interest. Further work can be done to investi-

gate the quality and methods for force uncertainties of NN potentials.

There is a possibility for fast approximations of the Fisher informa-

tion after retraining. If we retrain by adding one or a few new training

points, we may want a cheaper calculation of the Fisher information

matrix. The Fisher information matrix can be linearly separated by train-

ing data since the loss is a sum over training data points. If the parame-

ters of the model did not change from retraining, then the new Fisher

information is the summation of the original Fisher information and the

Fisher information for the new training points. Since retraining likely

alters the model parameters, the previous Fisher information from old

model parameters is an approximation. If only a few training points are

added and the model parameters do not change much, taking the Fisher

information of the new training points and adding it to the original can

be a fast approximation of the true Fisher information. Further work is

required to determine when this approximation is adequate.

4 | CONCLUSIONS

The deltamethod is a fast and easyway to estimate uncertainty. It requires

the Hessian of the loss and gradient with respect to model parameters,

and these are obtainablewithmostMLpackages using automatic differen-

tiation. The delta method is applicable to most models that are parametric

and have nonzero gradients with respect to parameters. The uncertainty

estimate will depend on the training data, model, and input (point) for

which the uncertainty is calculated. The delta method is an alternative to

ensemble or bootstrapping methods for obtaining uncertainty estimates,

and uncertainty estimates are important because they can help determine

when amodel is extrapolating and increasemodel reliability.

We showed an application of the delta method to a high-

dimensional NN potential in molecular simulation. We illustrated how

we can iteratively retrain a model by adding data with high uncertainties

to improve it. This could also be done on the fly, for example, while run-

ning an MD simulation with an ML potential. The uncertainty can deter-

mine the longest timescale MD simulation that is valid for a potential, or

identify when additional data should be added to the training data to

improve it. The utility of the delta method shown here extends far

beyond molecular simulation; it can also be applied to many other appli-

cations that rely on linear or nonlinear regression models.

AUTHOR CONTRIBUTIONS

Ni Zhan: Methodology (lead); writing – original draft (lead).

John R. Kitchin: Conceptualization (equal); project administration

(equal); writing – review and editing (equal).

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the

supplementary material of this article

ORCID

John R. Kitchin https://orcid.org/0000-0003-2625-9232

REFERENCES

1. Ovadia Y, Fertig E, Ren J, et al. Can you trust your model's uncer-

tainty? Evaluating predictive uncertainty under dataset shift. CoRR;

2019. http://arxiv.org/abs/1906.02530v2

2. Kompa B, Snoek J, Beam AL. Second opinion needed: communicating

uncertainty in medical machine learning. NPJ Digit Med. 2021;4(1):4.

doi:10.1038/s41746-020-00367-3

3. Wasserman L. All of Statistics. Springer Texts in Statistics. Springer;

2004. doi:10.1007/978-0-387-21736-9

4. Maddox W, Garipov T, Izmailov P, Vetrov D, Wilson AG. A simple

baseline for Bayesian uncertainty in deep learning. CoRR; 2019.

http://arxiv.org/abs/1902.02476v2

5. Izmailov P, Maddox WJ, Kirichenko P, Garipov T, Vetrov D,

Wilson AG. Subspace inference for Bayesian deep learning. In:

Adams RP, Gogate V, eds. Proceedings of the 35th Uncertainty in Artifi-

cial Intelligence Conference, Vol. 115 of Proceedings of Machine Learning

Research. PMLR; 2020:1169-1179. http://proceedings.mlr.press/

v115/izmailov20a.html

6. Liu JZ, Lin Z, Padhy S, Tran D, Bedrax-Weiss T, Lakshminarayanan B.

Simple and principled uncertainty estimation with deterministic deep

learning via distance awareness. CoRR; 2020. http://arxiv.org/abs/

2006.10108v2

7. Lei J, G'Sell M, Rinaldo A, Tibshirani RJ, Wasserman L. Distribution-

free predictive inference for regression. CoRR; 2016. http://arxiv.

org/abs/1604.04173v2

8. Romano Y, Patterson E, Candès EJ. Conformalized quantile regres-

sion. CoRR; 2019. http://arxiv.org/abs/1905.03222v1

9. Hajinazar S, Shao J, Kolmogorov AN. Stratified construction of

neural network based interatomic models for multicomponent

materials. Phys Rev B. 2017;95(1):014114. doi:10.1103/physrevb.

95.014114

10. Endo T, Watanabe T, Yamamoto A. Confidence interval estimation by

bootstrap method for uncertainty quantification using random sam-

pling method. J Nucl Sci Technol. 2015;52(7–8):993-999. doi:

10.1080/00223131.2015.1034216

11. Palmer G, Du S, Politowicz A, et al. Calibrated bootstrap for uncer-

tainty quantification in regression models. CoRR; 2021. http://arxiv.

org/abs/2105.13303v1

12. Du H, Barut E, Jin F. Uncertainty quantification in CNN through the

bootstrap of convex neural networks. Proc AAAI Conf Artif Intell.

2021;35(13):12078-12085. https://ojs.aaai.org/index.php/AAAI/

article/view/17434

13. Abdar M, Pourpanah F, Hussain S, et al. A review of uncertainty

quantification in deep learning: techniques, applications and chal-

lenges. Inf Fusion. 2021;76:243-297. doi:10.1016/j.inffus.2021.

05.008

14. Wenzel F, Snoek J, Tran D, Jenatton R. Hyperparameter ensembles

for robustness and uncertainty quantification. CoRR; 2020. http://

arxiv.org/abs/2006.13570v3

15. Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predic-

tive uncertainty estimation using deep ensembles. CoRR; 2016.

http://arxiv.org/abs/1612.01474v3

16. Berger JO, Smith LA. On the statistical formalism of uncertainty quan-

tification. Ann Rev Stat Appl. 2019;6(1):433-460. doi:

10.1146/annurev-statistics-030718-105232

17. Tibshirani R. A comparison of some error estimates for neural net-

work models. Neural Comput. 1996;8(1):152-163. doi:10.1162/neco.

1996.8.1.152

18. Dybowski R, Roberts SJ. Confidence intervals and prediction

intervals for feed-forward neural networks. Clinical Applications of

Artificial Neural Networks. Cambridge University Press; 2001:

298-326.

19. Rasmussen C, Williams C. Gaussian Processes for Machine Learning.

MIT Press 2006. www.GaussianProcess.org/gpml

ZHAN AND KITCHIN 9 of 11

https://orcid.org/0000-0003-2625-9232
https://orcid.org/0000-0003-2625-9232
http://arxiv.org/abs/1906.02530v2
info:doi/10.1038/s41746-020-00367-3
info:doi/10.1007/978-0-387-21736-9
http://arxiv.org/abs/1902.02476v2
http://proceedings.mlr.press/v115/izmailov20a.html
http://proceedings.mlr.press/v115/izmailov20a.html
http://arxiv.org/abs/2006.10108v2
http://arxiv.org/abs/2006.10108v2
http://arxiv.org/abs/1604.04173v2
http://arxiv.org/abs/1604.04173v2
http://arxiv.org/abs/1905.03222v1
info:doi/10.1103/physrevb.95.014114
info:doi/10.1103/physrevb.95.014114
info:doi/10.1080/00223131.2015.1034216
http://arxiv.org/abs/2105.13303v1
http://arxiv.org/abs/2105.13303v1
https://ojs.aaai.org/index.php/AAAI/article/view/17434
https://ojs.aaai.org/index.php/AAAI/article/view/17434
info:doi/10.1016/j.inffus.2021.05.008
info:doi/10.1016/j.inffus.2021.05.008
http://arxiv.org/abs/2006.13570v3
http://arxiv.org/abs/2006.13570v3
http://arxiv.org/abs/1612.01474v3
info:doi/10.1146/annurev-statistics-030718-105232
info:doi/10.1162/neco.1996.8.1.152
info:doi/10.1162/neco.1996.8.1.152
http://www.gaussianprocess.org/gpml

20. Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: rep-

resenting model uncertainty in deep learning. CoRR; 2015. http://

arxiv.org/abs/1506.02142v6

21. Mackay DJC. Bayesian methods for adaptive models. PhD thesis. Cali-

fornia Institute of Technology; 1992.

22. Neal RM. Priors for infinite networks. Bayesian Learning for Neural

Networks. Springer; 1996:29-53. doi:10.1007/978-1-4612-0745-0_2

23. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight uncer-

tainty in neural networks. CoRR; 2015. http://arxiv.org/abs/1505.

05424v2

24. Ritter H, Botev A, Barber D. A scalable Laplace approximation for

neural networks. Paper presented at: 6th International Conference

on Learning Representations, ICLR 2018-Conference Track Pro-

ceedings, Vol. 6. International Conference on Representation

Learning; 2018.

25. Tian H, Rzepa C, Upadhyay R, Rangarajan S. Estimating vibrational

and thermodynamic properties of adsorbates with uncertainty

using data driven surrogates. AIChE J. 2019;65(12). doi:10.10

02/aic.16838e16838.

26. Donaldson JR, Schnabel RB. Computational experience with confi-

dence regions and confidence intervals for nonlinear least squares.

Dent Tech. 1987;29(1):67-82. doi:10.1080/00401706.1987.1048

8184

27. de Veaux RD, Schumi J, Schweinsberg J, Ungar LH. Prediction inter-

vals for neural networks via nonlinear regression. Dent Tech. 1998;

40(4):273. doi:10.2307/1270528

28. Papadopoulos G, Edwards P, Murray A. Confidence estimation

methods for neural networks: a practical comparison. IEEE Trans Neu-

ral Netw. 2001;12(6):1278-1287. doi:10.1109/72.963764

29. Settles B. Active learning literature survey; 2009.

30. Khosravi A, Nahavandi S, Creighton D, Atiya AF. Comprehensive

review of neural network-based prediction intervals and new

advances. IEEE Trans Neural Netw. 2011;22(9):1341-1356. doi:

10.1109/tnn.2011.2162110

31. Kitchin JR. Machine learning in catalysis. Nat Catal. 2018;1(4):230-

232. doi:10.1038/s41929-018-0056-y

32. Boes JR, Kitchin JR. Neural network predictions of oxygen interac-

tions on a dynamic Pd surface. Mol Simul. 2017;43(5–6):346-354. doi:
10.1080/08927022.2016.1274984

33. Shakouri K, Behler J, Meyer J, Kroes GJ. Accurate neural network

description of surface phonons in reactive gas-surface dynamics: N2

+ Ru(0001). J Phys Chem Lett. 2017;8(10):2131-2136. doi:

10.1021/acs.jpclett.7b00784

34. Kobayashi R, Giofré D, Junge T, Ceriotti M, Curtin WA. Neural net-

work potential for Al-Mg-Si alloys. Phys Rev Mater. 2017;1(5):

053604. doi:10.1103/physrevmaterials.1.053604

35. Deringer VL, Bernstein N, Bart�ok AP, et al. Realistic atomistic struc-

ture of amorphous silicon from machine-learning-driven molecular

dynamics. J Phys Chem Lett. 2018;9(11):2879-2885. doi:10.1021/acs.

jpclett.8b00902

36. Behler J. Representing potential energy surfaces by high-dimensional

neural network potentials. J Phys Condens Matter. 2014;26(18):

183001. doi:10.1088/0953-8984/26/18/183001

37. Behler J. Constructing high-dimensional neural network potentials: a

tutorial review. Int J Quantum Chem. 2015;115(16):1032-1050. doi:

10.1002/qua.24890

38. Behler J. First principles neural network potentials for reactive simula-

tions of large molecular and condensed systems. Angew Chem Int Ed.

2017;56(42):12828-12840. doi:10.1002/anie.201703114

39. Peterson AA, Christensen R, Khorshidi A. Addressing uncertainty in

atomistic machine learning. Phys Chem Chem Phys. 2017;19(18):

10978-10985. doi:10.1039/c7cp00375g

40. Smith JS, Nebgen B, Lubbers N, Isayev O, Roitberg AE. Less is more:

sampling chemical space with active learning. J Chem Phys. 2018;

148(24):241733. doi:10.1063/1.5023802

41. Smith JS, Nebgen BT, Zubatyuk R, et al. Approaching coupled clus-

ter accuracy with a general-purpose neural network potential

through transfer learning; 2019. https://chemrxiv.org/articles/

Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/

6744440

42. Li Z, Kermode JR, Vita AD. Molecular dynamics with on-the-fly

machine learning of quantum-mechanical forces. Phys Rev Lett. 2015;

114(9):096405. doi:10.1103/physrevlett.114.096405

43. Botu V, Ramprasad R. Adaptive machine learning framework to accel-

erate ab initio molecular dynamics. Int J Quantum Chem. 2014;

115(16):1074-1083. doi:10.1002/qua.24836

44. Artrith N, Behler J. High-dimensional neural network potentials for

metal surfaces: a prototype study for copper. Phys Rev B. 2012;85(4):

045439. doi:10.1103/physrevb.85.045439

45. Bart�ok AP, Kermode J, Bernstein N, Csányi G. Machine learning a

general-purpose interatomic potential for silicon. Phys Rev X. 2018;

8(4):041048. doi:10.1103/physrevx.8.041048

46. Vandermause J, Torrisi SB, Batzner S, et al. On-the-fly active learn-

ing of interpretable Bayesian force fields for atomistic rare events.

NPJ Comput Mater. 2020;6(1):20. doi:10.1038/s41524-020

-0283-z

47. Xie Y, Vandermause J, Sun L, Cepellotti A, Kozinsky B. Bayesian force

fields from active learning for simulation of inter-dimensional trans-

formation of stanene. NPJ Comput Mater. 2021;7(1):40. doi:

10.1038/s41524-021-00510-y

48. Christensen R. Error mitigation in computational design of sustainable

energy materials. PhD thesis. Department of Energy Conversion and

Storage, Technical University of Denmark; 2016.

49. Wen M, Tadmor EB. Uncertainty quantification in molecular simula-

tions with dropout neural network potentials. NPJ Comput Mater.

2020;6(1):124. doi:10.1038/s41524-020-00390-8

50. Janet JP, Duan C, Yang T, Nandy A, Kulik H. A quantitative uncer-

tainty metric controls error in neural network-driven chemical discov-

ery. Chem Sci. 2019;10:7913-7922. doi:10.1039/c9sc02298h

51. Tran K, Neiswanger W, Yoon J, Zhang Q, Xing E, Ulissi ZW. Methods

for comparing uncertainty quantifications for material property pre-

dictions. Mach Learn Sci Technol. 2020. doi:10.1088/2632-215

3/ab7e1a1(2):025006.

52. Musil F, Willatt MJ, Langovoy MA, Ceriotti M. Fast and accurate

uncertainty estimation in chemical machine learning. J Chem Theory

Comput. 2019;15:906-915. doi:10.1021/acs.jctc.8b00959

53. Li Y, Xiao W, Wang P. Uncertainty quantification of artificial neural

network based machine learning potentials. Volume 12: Materials:

Genetics to Structures; 2018. 10.1115/imece2018-88071

54. Botu V, Batra R, Chapman J, Ramprasad R. Machine learning force

fields: construction, validation, and outlook. J Phys Chem C. 2016;

121(1):511-522. doi:10.1021/acs.jpcc.6b10908

55. Nilsen GK, Munthe-Kaas AZ, Skaug HJ, Brun M. Epistemic uncer-

tainty quantification in deep learning classification by the delta

method. CoRR; 2019. http://arxiv.org/abs/1912.00832v2

56. autograd: https://github.com/HIPS/autograd

57. Sagun L, Bottou L, LeCun Y. Eigenvalues of the hessian in deep learn-

ing: singularity and beyond CoRR; 2016. http://arxiv.org/abs/1611.

07476v2

58. Gur-Ari G, Roberts DA, Dyer E. Gradient descent happens in a tiny

subspace. CoRR; 2018. http://arxiv.org/abs/1812.04754v1

59. Gill J, King G. What to do when your hessian is not invertible. Sociol

Methods Res. 2004;33(1):54-87. doi:10.1177/0049124103262681

60. Cheng SH, Higham NJ. A modified Cholesky algorithm based on a

symmetric indefinite factorization. SIAM J Matrix Anal Appl. 1998;19:

1097-1110.

61. PyTorch. https://pytorch.org/

62. Larsen BW, Fort S, Becker N, Ganguli S. How many degrees of free-

dom do we need to train deep networks: a loss landscape perspec-

tive. CoRR; 2021. http://arxiv.org/abs/2107.05802v1

10 of 11 ZHAN AND KITCHIN

http://arxiv.org/abs/1506.02142v6
http://arxiv.org/abs/1506.02142v6
info:doi/10.1007/978-1-4612-0745-0_2
http://arxiv.org/abs/1505.05424v2
http://arxiv.org/abs/1505.05424v2
info:doi/10.1002/aic.16838
info:doi/10.1002/aic.16838
info:doi/10.1080/00401706.1987.10488184
info:doi/10.1080/00401706.1987.10488184
info:doi/10.2307/1270528
info:doi/10.1109/72.963764
info:doi/10.1109/tnn.2011.2162110
info:doi/10.1038/s41929-018-0056-y
info:doi/10.1080/08927022.2016.1274984
info:doi/10.1021/acs.jpclett.7b00784
info:doi/10.1103/physrevmaterials.1.053604
info:doi/10.1021/acs.jpclett.8b00902
info:doi/10.1021/acs.jpclett.8b00902
info:doi/10.1088/0953-8984/26/18/183001
info:doi/10.1002/qua.24890
info:doi/10.1002/anie.201703114
info:doi/10.1039/c7cp00375g
info:doi/10.1063/1.5023802
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
info:doi/10.1103/physrevlett.114.096405
info:doi/10.1002/qua.24836
info:doi/10.1103/physrevb.85.045439
info:doi/10.1103/physrevx.8.041048
info:doi/10.1038/s41524-020-0283-z
info:doi/10.1038/s41524-020-0283-z
info:doi/10.1038/s41524-021-00510-y
info:doi/10.1038/s41524-020-00390-8
info:doi/10.1039/c9sc02298h
info:doi/10.1088/2632-2153/ab7e1a
info:doi/10.1088/2632-2153/ab7e1a
info:doi/10.1021/acs.jctc.8b00959
info:doi/10.1115/imece2018-88071
info:doi/10.1021/acs.jpcc.6b10908
http://arxiv.org/abs/1912.00832v2
https://github.com/HIPS/autograd
http://arxiv.org/abs/1611.07476v2
http://arxiv.org/abs/1611.07476v2
http://arxiv.org/abs/1812.04754v1
info:doi/10.1177/0049124103262681
https://pytorch.org/
http://arxiv.org/abs/2107.05802v1

63. Ingrassia S, Morlini I. Equivalent number of degrees of freedom for

neural networks. In: Decker R, Lenz HJ, eds. Advances in Data Analy-

sis. Springer; 2007:229-236.

64. Gao T, Jojic V. Degrees of freedom in deep neural networks. Proceed-

ings of the Thirty-Second Conference on Uncertainty in Artificial Intelli-

gence, UAI'16. AUAI Press; 2016:232-241. https://www.auai.org/

uai2016/proceedings/papers/257.pdf

65. Behler J. Atom-centered symmetry functions for constructing high-

dimensional neural network potentials. J Chem Phys. 2011;134(7):

074106. doi:10.1063/1.3553717

66. Gastegger M, Schwiedrzik L, Bittermann M, Berzsenyi F,

Marquetand P. wACSF-weighted atom-centered symmetry functions

as descriptors in machine learning potentials. J Chem Phys. 2018;

148(24):241709. doi:10.1063/1.5019667

67. Liu M, Kitchin JR. Singlenn: modified Behler-Parrinello neural network

with shared weights for atomistic simulations with transferability. J Phys

Chem C. 2020;124(32):17811-17818. doi:10.1021/acs.jpcc.0c04225

68. Boes JR, Kitchin JR. Modeling segregation on AuPd(111) surfaces

with density functional theory and Monte Carlo simulations. J Phys

Chem C. 2017;121(6):3479-3487. doi:10.1021/acs.jpcc.6b12752

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Zhan N, Kitchin JR. Uncertainty

quantification in machine learning and nonlinear least squares

regression models. AIChE J. 2021;e17516.

doi:10.1002/aic.17516

ZHAN AND KITCHIN 11 of 11

https://www.auai.org/uai2016/proceedings/papers/257.pdf
https://www.auai.org/uai2016/proceedings/papers/257.pdf
info:doi/10.1063/1.3553717
info:doi/10.1063/1.5019667
info:doi/10.1021/acs.jpcc.0c04225
info:doi/10.1021/acs.jpcc.6b12752
info:doi/10.1002/aic.17516

	Uncertainty quantification in machine learning and nonlinear least squares regression models
	1 INTRODUCTION
	1.1 Uncertainty quantification methods
	1.2 Addressing uncertainty in molecular simulation

	2 METHODS
	2.1 Practical modifications to the inverse Fisher matrix
	2.2 Code example

	3 RESULTS
	3.1 One dimension input NN
	3.2 High-dimensional NN potential
	3.2.1 Trained NN potential
	3.2.2 Uncertainties after retraining

	4 CONCLUSIONS
	 AUTHOR CONTRIBUTIONS
	 DATA AVAILABILITY STATEMENT

	REFERENCES

