#March 17, 2009 #Please change the file path in the command below to coincide with where you have stored the data files setwd("C:/Users/sheather.ADSTAT/Documents/docs/AModernApproachToRegression/Data") profsalary <- read.table("profsalary.txt",header=TRUE) attach(profsalary) #Figure 5.1 on page 126 plot(Experience,Salary,xlab="Years of Experience") #Figure 5.2 on page 127 m1 <- lm(Salary~Experience) leverage1 <- hatvalues(m1) StanRes1 <- rstandard(m1) ExperienceNew <- seq(0,37,len=37) plot(Experience,StanRes1,xlab="Years of Experience", ylab="Standardized Residuals") #Figure 5.3 on page 127 m2 <- lm(Salary~Experience + I(Experience^2)) plot(Experience,Salary,xlab="Years of Experience") ExperienceNew <- seq(0,37,len=37) lines(ExperienceNew,predict(m2,newdata=data.frame(Experience=ExperienceNew))) #Figure 5.4 on page 128 StanRes2 <- rstandard(m2) plot(Experience,StanRes2,xlab="Years of Experience", ylab="Standardized Residuals") #Figure 5.5 on page 128 leverage2 <- hatvalues(m2) plot(Experience,leverage2,xlab="Years of Experience",ylab="Leverage") abline(h=6/max(Case),lty=2) #Figure 5.6 on page 129 par(mfrow=c(2,2)) plot(m2) #Regression output on pages 129 & 130 summary(m2) predict(m2,newdata=data.frame(Experience=c(10)),interval="prediction",level=0.95) detach(profsalary) nyc <- read.csv("nyc.csv", header=TRUE) attach(nyc) #Regression output on pages 138 & 139 m1 <- lm(Price~Food+Decor+Service+East) summary(m1) #Regression output on page 139 m2 <- lm(Price~Food+Decor+East) summary(m2) #An alterntive way to obtain m2 is to use the update command m2 <- update(m1,~.-Service) summary(m2) detach(nyc) travel <- read.table("travel.txt",header=TRUE) attach(travel) #Regression output on page 141 mfull <- lm(Amount~Age+C+C:Age) summary(mfull) #Figure 5.7 on page 142 par(mfrow=c(1,1)) plot(Age[C==0],Amount[C==0],pch=c("A"),col=c("black"),ylab="Amount Spent",xlab="Age") points(Age[C==1],Amount[C==1],pch=c("C"),col=c("red")) #Regression output on page 143 mreduced <- lm(Amount~Age) summary(mreduced) #Regression output on page 144 anova(mreduced,mfull) detach(travel) nyc <- read.csv("nyc.csv", header=TRUE) attach(nyc) #Regression output on page 145 mfull <- lm(Price~Food+Decor+Service+East+Food:East+Decor:East+Service:East) summary(mfull) #Regression output on page 146 mreduced <- lm(Price~Food+Decor+East) summary(mreduced) #Regression output on page 146 anova(mreduced,mfull) detach(nyc) #################EXERCISES #Ex 5.4.3 latour <- read.table("Latour.txt", header=TRUE) attach(latour) #Regression output on page 148 mfull <- lm(Quality ~ EndofHarvest + Rain + Rain:EndofHarvest) summary(mfull) #Figure 5.8 on page 149 y = Rain par(mfrow=c(1,1)) plot(EndofHarvest,Quality,pch=y+1,col=y+1,xlab="End of Harvest (in days since August 31)") abline(lsfit(EndofHarvest[y==0],Quality[y==0]),lty=1,col=1) abline(lsfit(EndofHarvest[y==1],Quality[y==1]),lty=2,col=2) legend(23, 2.5,legend=c("No","Yes"),pch=1:2,col=1:2,title="Rain at Harvest?") #Regression output on page 149 mreduced <- lm(Quality ~ EndofHarvest + Rain) summary(mreduced) anova(mreduced,mfull) detach(latour)