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Sheather 8.3.2

First of all, note that the outcome values are not independent, because exactly 10 jurisdictions produce a top
10 finalist in a given year. Since the data ranges over 9 years, that means that the sum of the Top10 values
must be 9 × 10 = 90. That’s actually a pretty strong constraint; it means, for example, that if we observe 10
jurisdictions with the value 9 for Top10, we automatically know the value for the other 41 jurisdictions (i.e.,
0). Of course, we never expect regression assumptions to hold exactly in practice, but I’d take this model
with a big grain of salt since the samples are so heavily dependent.

That said, let’s go ahead and visualize the data (Figure 1).

Three predictors, LogPopulation, LogContestants, and Latitude have high marginal correlations with
Top10. LogTotalArea and Longitude have pretty small correlations, but of course these are marginal
correlations, so they could still be strongly related to the outcome.

There are some unsurprising correlations between some pairs of predictors. LogPopulation and
LogContestants are positively correlated, which makes sense: larger populations produce more contestants.
Longitude is positively correlated with LogTotalArea: western states are larger on average than eastern ones.

The predictors have reasonably symmetric and unimodal distributions, presumably thanks in part to the log
transformations.

(a): Full model

Here’s the full model, with a summary below. Standardized deviance residuals are plotted against each of the
predictors in Figure 2. Marginal model plots are in Figure 3.

The residuals look essentially patternless, and the nonparametric curves for the fitted and the observed values
in the marginal model plots look roughly the same. Since Longitude is not significant, and the problem
requests a model in which all the predictors are significant, let’s drop Longitude and refit (see below).

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.692 2.63 -2.925 0.003446

LogPopulation 0.6256 0.1845 3.391 0.0006959
LogContestants 1.417 0.4213 3.364 0.0007675
LogTotalArea -0.3701 0.1393 -2.657 0.007892

Latitude -0.06525 0.03028 -2.155 0.03115
Longitude 0.006509 0.009271 0.7021 0.4826

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 118.47 on 50 degrees of freedom
Residual deviance: 50.11 on 45 degrees of freedom
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Figure 1: Pairs plot for Miss America data, excluding abbreviation column.
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Figure 2: Standardized deviance residuals (left) against fitted values for the full model.
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Figure 3: Marginal model plots for the full model
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Figure 4: Standardized deviance residuals (left) against fitted values for the reduced model.

(a): Reduced model without Longitude

The model summary is below. Residuals are plotted in Figure 2 and the marginal model plots are in Figure 5.

Once again, the residuals look essentially patternless, and the curves in each marginal model plot follow each
other closely. All the predictors are now statistically significant. The AIC for this model (142.79) is also
lower than for the full model (144.3). This model seems reasonable.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.619 2.15 -3.079 0.002075

LogPopulation 0.5888 0.1758 3.35 0.0008074
LogContestants 1.337 0.4104 3.258 0.001123
LogTotalArea -0.3198 0.1204 -2.656 0.007903

Latitude -0.0733 0.029 -2.528 0.01148

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 118.47 on 50 degrees of freedom
Residual deviance: 50.59 on 46 degrees of freedom
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Figure 5: Marginal model plots for the reduced model
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Figure 6: Residuals vs. leverage for the reduced model

(b)

Recall that a “bad” leverage point was defined as a leverage point that is also an outlier. To detect this, let’s
examine the diagnostic plot that R generates with standardized Pearson residuals on the y-axis and leverage
on the x-axis, in Figure 6.

Point 12 has both high leverage and a high standardized residual value, so it could be considered a bad
leverage point. Let’s refit the model without that point.

Once again, the residual plots (Figure 7) and marginal model plots (Figure 8) look good. From the summary
below, we see that the coefficient for Latitude is no longer significant. Point 12 corresponded to Hawaii, which
has a very low latitude, so it makes sense that that point was responsible for making Latitude statistically
significant. The model without Hawaii is probably a better model of the continental US. (Alaska is still in
the picture, but evidently it’s not a bad leverage point, since it didn’t show up as such on the plot.)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.741 2.938 -3.315 0.0009168

LogPopulation 0.6171 0.1768 3.489 0.0004839
LogContestants 1.772 0.4994 3.549 0.0003872
LogTotalArea -0.354 0.1286 -2.753 0.005905

Latitude -0.02955 0.03938 -0.7504 0.453

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 117.51 on 49 degrees of freedom
Residual deviance: 48.07 on 45 degrees of freedom
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Figure 7: Standardized deviance residuals (left) against fitted values for the reduced model without point 12.
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Figure 8: Marginal model plots for the reduced model without point 12.
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(c)

Let’s interpet the coefficients from the model without Hawaii.

Mathematically, the intercept means that when the covariates are all 0, the estimated log odds of producing
a top 10 finalist is -9.741, which corresponds to a probability of 0.000059. Of course, a jurisdiction with 0 for
all covariate values is not realistic or of interest in the model.

Note that the odds are

θ(X)
1 − θ(X)

where θ(X) represents the probability of producing a top 10 finalist (given covariates X) for a single Bernoulli
trial. Since we’re pretending that Yi ∼ Bin(10, θ(Xi)), we have that θ(X) corresponds to the probability of
producing a top 10 finalist in a single year. It does not represent the probability of producing at least one
top 10 finalist over 10 ten years or anything like that.

The coefficient on LogPopulation indicates that, if we observe two jurisdictions that have the same covariate
values except that they differ by 1 in LogPopulation, then the log odds of producing a top 10 finalist for the
more populous jurisdiction are 0.6171 higher than for the less populous jurisdiction. Equivalently, the odds
are exp(0.671) = 1.9 higher.

The interpretation is analogous for the other coefficients.
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