
Homework 04 Solutions

9/28/2020

1.

(1a)

We will utilize several facts from lecture. First, let W ∼ N(µ,Σ) be an arbitrary multivariate normal random
vector and A a matrix whose second dimension is the same as the length of W , so that AW is defined. Then
we have

AW ∼ N(Aµ,AΣAT ) (1)

Additionally, we have from lecture that

HXβ = Xβ (2)
(I −H)(I −H)T = (I −H)(I −H) = (I −H) (3)
y ∼ N(Xβ, σ2I) (4)

Let ŷ be the n× 1 column vector of fitted values.

ê = y − ŷ
= y −Hy
= (I −H)y
∼ N((I −H)Xβ, (I −H)σ2I(I −H)T ) (by facts (1) and (4))
= N(0, σ2(I −H)(I −H)T ) (by fact (2))
= N(0, σ2(I −H)) (by fact (3))

(1b)

(i)

In the intercept-only model, the design matrix X is an n× 1 matrix in which each entry is 1. This can be
used to derive the hat matrix H:

XTX = [n]1×1 (the 1× 1 matrix whose only entry is n)
=⇒ (XTX)−1 = [1/n]1×1 (the 1× 1 matrix whose only entry is 1/n)

=⇒ X(XTX)−1XT = 1
n
XXT

= 1
n

1 . . . 1
...

. . .
...

1 . . . 1


n×n

= H (by the definition of the hat matrix)
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For any i in 1, 2, . . . , n, we derive ŷ∗
i by multiplying the ith row of H by the vector y. In other words,

ŷ∗
i = 1

n

∑n
i=1 yi = ȳ for all i.

(ii)

To avoid using ȳ to denote both a scalar and a vector, let’s immediately use the fact that H1y is equal to the
n× 1 vector

[
ȳ ȳ . . . ȳ

]T , as shown in the previous problem. Rewriting the covariance in vector form,
per the problem suggestion, we have:

Cov(y, ŷ) = 1
n

(y −H1y)T (ŷ −H1y)

= 1
n

(y −H1y)T (Hy −H1y)

= 1
n

[(I −H1)y]T (H −H1)y

= 1
n
yT (I −H1)T (H −H1)y (since (AB)T = BTAT )

= 1
n
yT (H −H1 −HT

1 H +HT
1 H1)y

= 1
n
yT (H −H1H)y (since HT

1 = H1 and H1H1 = H1)

= 1
n
yT (H −H1)y (since H1H = HH1 = H1)

(iii)

Recall that the sample correlation is the standardized sample covariance, defined as

ˆCorr(y, ŷ) =
ˆCov(y, ŷ)√
σ̂2

yσ̂
2
ŷ

=
∑n

i=1(yi − ȳ)(ŷi − ȳ)√∑n
i=1(yi − ȳ)2∑n

i=1(ŷi − ȳ)2

= (y −H1y)T (ŷ −H1y)√
(y −H1y)T (y −H1y)(ŷ −H1y)T (ŷ −H1y)

= yT (H −H1)y√
yT (I −H1)T (I −H1)yyT (H −H1)T (H −H1)y

(using the previous problem)

=
√
yT (H −H1)y√

yT (I −H1)T (I −H1)y

=
√
yT (H −H1)y√
yT (I −H1)y

(using a version of fact (3))

=
√
SSreg

SST

= R2
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(1c)

The sample correlation is 0 iff the sample covariance is 0, so let’s just concern ourselves with the sample
covariance and not worry about the denominator in the correlation.

Recall that the residuals sum to 0 by construction, which also means that their sample mean is 0. Hence:

ˆCov(ê, ŷ) = 1
n

n∑
i=1

(êi − 0)(ŷi − ȳ)

= 1
n

(ê)T (ŷ − ȳ)

= 1
n

(y − ŷ)T (ŷ − ȳ)

= 1
n

[(I −H)y]T (H −H1)y

= 1
n
yT (I −H)(H −H1)y (since (I −H)T = (I −H))

= 1
n
yT (H −H1 −HH +HH1)y

= 1
n
yT (H −H1 −H +H1)y (since HH1 = H1)

= 0

2.

(2a)

(i)

The red lines represent the predicted values for males, and the blue lines represent predicted values for females.
In the first plot, the intercept for the red line is the (Intercept) coefficient, while the intercept for the blue
line is the (Intercept) coefficient plus the female coefficient. The slope for both lines is the btystdave
coefficient.

In the second plot, the intercept for the red line is the (Intercept) coefficient. The intercept for the blue line
again is the (Intercept) coefficient plus the female coefficient. The slope for the red line is the btystdave
coefficient, while the slope for the blue line is the btystdave coefficient plus the btystdave:female coefficient.

(ii)

In Figure 2, there don’t appear to be any worrying trends between the fitted values and the residuals. However,
the Q-Q plot shows some non-normality in the residuals, on the right side of the plot; and the bottom right
plot appears to show that the residuals are left skewed, as there are a good number of standardized residuals
with values below -2. This is apparent also looking back at the scatter plots in Figure 1.

Figure 3 for the second model, with the interaction effect, shows essentially the same results as for the first
model. It’s possible that the fit could be improved by transforming the predictor(s) and/or the outcome.
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Figure 1: Problem 2(a)i: Course evaluations against beauty ratings, with no interaction (left) and with an
interaction (right).
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Figure 2: Problem 2(a)ii: Diagnostic plots for the first model
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Figure 3: Problem 2(a)ii: Diagnostic plots for the second model

(iii)

Here’s the summary for the first model with no interaction:

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.87196 -0.36913 0.03493 0.39919 1.03237
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.09471 0.03328 123.03 < 2e-16 ***
## btystdave 0.14859 0.03195 4.65 4.34e-06 ***
## female -0.19781 0.05098 -3.88 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5373 on 460 degrees of freedom
## Multiple R-squared: 0.0663, Adjusted R-squared: 0.06224
## F-statistic: 16.33 on 2 and 460 DF, p-value: 1.407e-07

Here’s the summary for the second model, which has the interaction:

##
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## Call:
## lm(formula = courseevaluation ~ btystdave * female, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.83820 -0.37387 0.04551 0.39876 1.06764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.10364 0.03359 122.158 < 2e-16 ***
## btystdave 0.20027 0.04333 4.622 4.95e-06 ***
## female -0.20505 0.05103 -4.018 6.85e-05 ***
## btystdave:female -0.11266 0.06398 -1.761 0.0789 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5361 on 459 degrees of freedom
## Multiple R-squared: 0.07256, Adjusted R-squared: 0.0665
## F-statistic: 11.97 on 3 and 459 DF, p-value: 1.471e-07

Here’s a partial F-test, computed with anova(model1, model2), where model1 is the model with
no interaction:

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave * female
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 459 131.92 1 0.89124 3.101 0.07891 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The coefficient estimates for btystdave and female are quite large in both models with respect to their
estimated standard errors, which is reflected in the fact that their associated p-values are quite small: the
three stars (***) mark that they are less than 0.001. Notice that the estimates differ between the two models.
This is not surprising; in general, adding a new variable to a model will change the estimates of all the
coefficients, unless that new variable is completely uncorrelated with the previous variables. Since the “new”
variable here is an interaction between the other two variables, it is naturally correlated with those variables,
so we should expect the estimates to change.

The adjusted R2 values for both models are quite small, indicating that the predictors do not account for
much of the total variance. The addition of the interaction term did not increase the adjusted R2 by a
non-trivial amount.

The estimate of btystdave:female, the interaction term, is not significantly different from 0 at the conven-
tional α = 0.05 level. The actual magnitude of the estimate is also smaller than the main effect estimates.
The partial F-test here constitutes a test of the null hypothesis

H0 : β3 = 0

where β3 is the coefficient associated with btystdave:female. Hence, the p-value of the partial F-test that
is printed in the anova output is equivalent to the p-value of the t-test in the output of summary(model2),
namely, p = 0.0789.

Since we don’t have enough evidence to reject H0, and since the addition of the interaction term term did
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not increase the adjusted R2, in the interest of parsimony, we may decide based on these results to exclude
the interaction term.

(2b)

We don’t have a lot of formal tools available for variable selection at this stage, so the general approach
here is to think in real-world terms about what variables seem likely to be related to the outcome
and see what happens when they are included in the model. There’s no one correct approach or
outcome here. In addition to btystdave and female, let’s consider the variables age, minority,
nonenglish, tenured, and onecredit. First, let’s look at a pairs plot with courseevaluation:

Corr:

−0.052

courseevaluation age minority nonenglish tenured onecredit

courseevaluation
age

m
inority

nonenglish
tenured

onecredit

2 3 4 5 30 40 50 60 70 0 1 0 1 0 1 0 1

0.0
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0.6
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0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

05
10152025

05
10152025

0102030

0102030

The marginal distributions of each variable appear on the diagonal, while the top row and leftmost column give
different visualizations of the relationship between the course evaluation scores and the other five variables.
Among the candidate predictors, only onecredit shows a clear marginal relationship with courseevaluation,
but since these are marginal plots, that doesn’t mean the other variables won’t be informative to some
degree. There are very few one credit courses represented here (27 out of 463 rows), but nevertheless, let’s
try including it, along with the following sets of variables:

Model m1: onecredit
Model m2: onecredit, minority, nonenglish
Model m3: onecredit, minority, nonenglish, tenured, age

For each model, we’ll look at a model summary and diagnostic plots. We can also run an F-test comparing
the model from part 2(a)ii (aka model1) to the expanded model.
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Model m1

m1 <- lm(courseevaluation ~ btystdave + female + onecredit)

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female + onecredit,
## data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.82352 -0.34541 0.06084 0.38657 1.08122
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.05783 0.03287 123.438 < 2e-16 ***
## btystdave 0.16258 0.03103 5.240 2.45e-07 ***
## female -0.18832 0.04938 -3.814 0.000155 ***
## onecredit1 0.58513 0.10358 5.649 2.84e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5201 on 459 degrees of freedom
## Multiple R-squared: 0.127, Adjusted R-squared: 0.1213
## F-statistic: 22.25 on 3 and 459 DF, p-value: 1.804e-13
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Figure 4: Diagnostic plots for model m1

F-Test for model m1 vs. model1
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## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave + female + onecredit
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 459 124.18 1 8.6326 31.909 2.838e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model m2

m2 <- lm(courseevaluation ~ btystdave + female + onecredit + minority + nonenglish)

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female + onecredit +
## minority + nonenglish, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.84951 -0.33198 0.04644 0.37907 1.05533
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.08668 0.03327 122.833 < 2e-16 ***
## btystdave 0.16604 0.03063 5.422 9.59e-08 ***
## female -0.17418 0.04911 -3.546 0.000431 ***
## onecredit1 0.64133 0.10632 6.032 3.34e-09 ***
## minority1 -0.16479 0.07569 -2.177 0.029982 *
## nonenglish1 -0.24801 0.10523 -2.357 0.018859 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.513 on 457 degrees of freedom
## Multiple R-squared: 0.1546, Adjusted R-squared: 0.1453
## F-statistic: 16.71 on 5 and 457 DF, p-value: 3.586e-15

F-Test for model m2 vs. model1

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave + female + onecredit + minority +
## nonenglish
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 457 120.25 3 12.556 15.906 7.475e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 5: Diagnostic plots for model m2

Model m3

m3 <- lm(courseevaluation ~ btystdave + female + onecredit + minority + nonenglish)

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female + onecredit +
## minority + nonenglish + tenured + age, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8386 -0.3414 0.0501 0.3776 1.0619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.187474 0.138209 30.298 < 2e-16 ***
## btystdave 0.159636 0.032038 4.983 8.92e-07 ***
## female -0.182937 0.051959 -3.521 0.000474 ***
## onecredit1 0.640845 0.112170 5.713 2.01e-08 ***
## minority1 -0.168522 0.076030 -2.217 0.027151 *
## nonenglish1 -0.245503 0.106022 -2.316 0.021024 *
## tenured1 0.005034 0.056134 0.090 0.928583
## age -0.002068 0.002807 -0.737 0.461551
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5138 on 455 degrees of freedom
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## Multiple R-squared: 0.1556, Adjusted R-squared: 0.1426
## F-statistic: 11.98 on 7 and 455 DF, p-value: 4.703e-14
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Figure 6: Diagnostic plots for model m3

F-Test for model m3 vs. model1

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave + female + onecredit + minority +
## nonenglish + tenured + age
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 455 120.10 5 12.706 9.627 9.498e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The diagnostics for all three models look reasonable, and they look fairly similar to the diagnostics for model1,
the model that we retained from part 2(a)iii. The F-tests comparing each model to the baseline model1 are
all highly significant. Summaries for models m1 and m2 each model show highly significant coefficients. In
model m3, however, the tests for tenured and age are non-significant, and the coefficient estimates are tiny.
Given these tiny estimates, it would be reasonable to drop these variables from the model and retain model
m2.

If we believe this model, then we can say that course evaluations bear at least a roughly linear relationship
to ratings of beauty, whether a person is female or male, whether a course is one credit or not, whether
the professor is a minority, and whether the professor is a native English speaker or not, with the sign and
magnitude of the estimated coefficients indicating the nature and strength of the relationships. It is tempting
to draw causal conclusions here, but we can’t really do that without checking some additional assumptions
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which are beyond the scope of the problem. However, these patterns may at least be suggestive of causal
relationships, which we can subsequently go about testing more rigorously.

3 (skipped)
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