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Abstract

Changepoint inference is a relatively unexplored methodology area with several attractive
applications in science and industry. In this paper, we extend existing post-selection inference
methodology to various segmentation-based changepoint algorithms which give exact, finite-
sample changepoint inference. These tools are directly useful for practitioners for interpreting
and communicating results, and directly improves upon widely used changepoint detection tools.
We characterize and implement the polyhedral selection space of these algorithms. Several
extensions to the general post-selection tools such as randomization and different modeling
assumptions are also explored. These extensions enable more powerful inferences. We make
practical recommendations for modelling choices for the algorithm and inference, based on
extensive simulations. In addition, we investigate the application of our proposed methods to
real and pseudo-real array CGH data example, to demonstrate the inferential properties of our
proposed tools. Lastly, we developed fast R software for implementing various selective inference
approaches for common segmentation methods.

1 Introduction

There are numerous scientific and industry data applications in which abrupt changes occur in
the underlying structure of the data across some dimension. The study of methods to detect and
test these changes from this type of data is called changepoint detection. Among changepoint
detection algorithms, segmentation algorithms are a popular class of methods that can be applied
to 1 dimensional data. Segmentation algorithms typically involve recursive splitting of the data
at the most plausible location according to a split criterion. They are well studied in the
literature, and hold the advantage of being intuitive to implement and communicate.

A single application of a segmentation algorithm to data gives a set of estimated change-
points. A valuable methodological addition is to be able to conduct statistical inference about
these estimated changepoint locations — providing a level of confidence or plausibility of a de-
tected jumps using hypothesis tests or confidence intervals. Approaches to carry out such
inferences for common segmentation algorithms have not been developed in the literature. If
classical tests of changepoint locations — t-tests or z-tests of means in data segments — are to
be conducted without accounting for selection by the algorithm on the same data, inferential
guarantees like type-1 error do not hold.

Post-selection inference aims to solve one aspect of this problem, by explicitly conditioning on
the event that application of the algorithm yielded the selected model, and conducting inferences
under certain parametric assumptions. In this ‘selective’ distribution and under a suitable null,
a hypothesis test can be conducted regarding linear constrasts describing interesting quantities
of a changepoint model, directly formed from an algorithm’s output. By a straightforward
inversion of the p-values from these tests, valid CI’s can also be produced.

Take the example (figure |1)) of an observed array CGH (aCGH) dataset of fibroblast cell
line GM05296, originally published in |Snijders et al.| (2001)), of n = 2011 measurements from 23
chromosomes measured in a row. In aCGH data, regions of deviations from a baseline level of
zero are scientifically interesting, and are often linked to genetically driven diseases. Detailed
analysis on this dataset will be presented in a later section. Figure [I] shows the results from



carrying out our proposed tests to 13 changepoints after having applied binary segmentation
with additive noise — a technique discussed in section 2:2] The model size 13 was chosen
according to a data-dependent stopping rule. These test results were compared to two-sided
naive Z-tests. We can see that the first five locations A through E are deemed significant against
a Bonferonni-corrected cutoff of 0.05/13, while all others are deemed nonsignificant under the
test. The Z-tests on the same locations conclude that twelve out of the thirteen locations are
significant jumps, which is clearly an optimistic result.
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Post-selection 0.40 0.26 0.19 0.00 0.00 0.00 0.00 0.01 0.06 095 0.97 0.91 0.00

Figure 1: Wild binary segmentation inference applied to Array CGH data set of Coriell cell lines. Locations
A through M were recovered in that order. Stop time was 13 according to two-rise BIC rule. By conducting
post-selection segment tests in each location, A,B,C,D were significant changepoints (p-values were below the
cutoff of a/13). This is shown in the bottom row of the table. On the other hand, naive z-test inference
of the same segments, ignoring the selection, shown in the top row of the table, deems all twelve locations
except for location L as significant.)

In this paper we extend the post-selection inference framework, first introduced in
[rani et al. (2016) and [Lee et al| (2016)), to enable inference on changepoint-related parametric
quantities after selection by segmentation algorithms. In addition to the base case, we improve
these tools by combining the ideas of randomization in |Tian & Taylor| (2015)) and different null
models suggested in [Fithian et al.| (2014) in order to enable more powerful inference. We also
describe two Monte Carlo Markov Chain sampling strategies for implementing these extensions.
Lastly, we demonstrate the application of our methods in simulation and on real data examples
of several array CGH data.

Contributions of the paper

e We extend existing post-selection inference methodology to various segmentation-based
changepoint algorithms.

e We characterize the polyhedral selection space of these algorithms.

e We make practical recommendations for modelling choices for the algorithm and inference,
based on extensive simulations.

e We demonstrate application to real and pseudo-real array CGH data example, to demon-
strate the inferential properties of our proposed tools.

e We developed R software for implementing various selective inference.



1.1 Notation

Whenever applicable, we will use colon notation ga:s for {ga, - - - , g»} and subscripted set notation
for indices in A: ga = {g; : j € A}. Similarly, §g.b := Hl%a ZZZ:@ y; is the sample mean of the
subvector y,.,. We will also use the subscript notation as in P,ps to indicate the quantities based
on the observed data, yobs. The set of positive semi-definite matrices of size n x n is denoted
by ST, and the n x n identity matrix as I,,. We will use the *(y) notation in order to indicate
specific fitted quantities. by.x(y) = (bry, - - - bx(y)) is k-length index set between 1 and n — 1 of
changepoints, and §1.x(-) denotes their directions; each element is equal to +1 for upward and
-1 for downward changepoints.

1.2 Changepoint algorithms

Many algorithms have been developed in the literature for retrospective changepoint analysis.
Segmentation algorithms are one of the most popular classes of algorithms for multiple change-
point detection in a single data stream or time series. Some examples are binary segmentation
(Vostrikoval[1981] [Scott & Knott|1074), wild binary segmentation and circu-
lar binary segmentation (Olshen et al.20045). One significant advantage of binary segmentation
is that the underlying mechanism is straightforward to understand and implement. Popular al-
ternatives to segmentation methods are total variation denoising approaches, which minimize
a likelihood function penalized by a total variation function. Many authors have studied the
methodological and theoretical properties of total variation methods and the fused lasso
[naldo|[2009} [Harchaoui & Lvy-Leduc|2010). While not a focus of this paper, stochastic modeling
like hidden Markov model based approaches has also been studied (Fridlyand et al.|[2004). Re-
cently, multiple stream segmentation has attracted interest and is studied by [Fan & Mackey
(2015). For 1d and regression model changepoint detection, [Jandhyala et al.| (2013), [Horvath &
[Rice (2014)), [Aue & Horvath| (2013)), collectively provide nice survey of methods for changepoint
estimation. In this paper, we focus on the most common segmentation algorithms, as well as
the fused lasso.

Binary Segmentation The k-step binary segmentation (BS) algorithm takes a vector of

data y € R™ and sequentially splits the data according to break locations 3(1:k> () = (br(y), ba(y),- - -

that produce the largest absolute cumulative sum (CUSUM) statistic glg,e. Let s and e denote
the starting and ending indices of a flat segment, and let b be the index of a proposed breakpoint.
The CUSUM statistic is defined as:

b 1 _ _
Ys,e = ﬁ(y(bJrl):e - 'ys:b),
=1 T foFi=s]

which is a variance-stabilized sample mean difference of two immediately adjacent segments to
the left and right. Because all gjg,e are of the same scale regardless of s, b or e, the comparison and
maximization of the CUSUM statistic is still meaningful across different steps of the algorithm.
We now succinctly describe the algorithm. At the end of step 4, denote by 0 = ¢p < ¢1 <
- < ¢i+1 = n the sorted permutation of the detected changepoints l;(l:i)(y), and cp = 0 and
¢i = n for convenience. Also denote by I; = (¢j—1 + 1) : ¢; the data partitions made by c1.;, for
j=1,2,--- i+ 1. Then, the next changepoint Ei+1(y) and the maximizing partition 711 (y)
are obtained by the maximization of the absolute CUSUM statistic in the latest partitions of
the data:

- 5 b
(Ji+1(y); bi+1(y)) = Jelnax |9(e; 14105 |- (1)
bel;
Additionally, the direction of the jump §i+~1(y) is calculated by the sign of the maximizing

absolute CUSUM statistic $;+1(y) = sign@:i(ﬂ’cj

procedure is repeated k times.

)|j:51+1(y). To detect k changepoints, this



Wild binary segmentation Local, alternating jumps may go undetected when calculating
the CUSUM statistic 7. over longer segments. Motivated by this, wild binary segmentation
(WBS) due to [Fryzlewicz (2014b) modifies binary segmentation to calculate g}ls’,e in randomly
drawn subsegments of the data. Denote by w = {w1, -+ ,wp} = {(s1:€1),- - ,(sp : er)} a set
of B randomly drawn intervals with endpoints between 1 and n.

Given data y € R", the k-step WBS algorithm proceeds as follows. Define I = 1: B and I;
to be the subset of (1 : B) such that none of by.;(y) are contained in w;. Then, at step i + 1, the
next changepoint b;11(y) and the corresponding interval index %;,1(y) are obtained by solving
the following maximization problem:

(1i41,bi+1) = argmax |gj;’j78j | (2)
Jelr;
bewj

As before, the direction of the jump §;+1(y) is calculated by the sign of the maximizing absolute

CUSUM statistic 8;11(y) = sign(g]?j.felj(y) This procedure is repeated for k steps.

)‘j:%iJrl(y)'
Circular binary Segmentation Circular binary segmentation (CBS) due to|Olshen et al.
(2004 b)) specializes in detecting pairs of changepoints of alternating directions and of the same
magnitude. In CBS, pairs of splits are made according to a modified CUSUM-type criterion
which is the variance-stabilized difference in the sample means between a middle subsegment
and the rest. The modified criterion is:

xa,b 1 _ _
Ys,e = 1 i 1 (y(s+1):e - y(a+l):b)- (3)
[b—al le—s—b+al

which, like , has the same scale-invariance property. Denote by b5** () and b5 (y) the pair of
changepoints at step i, and by P, -, P2i+1 the set of indices obtained by partitioning at the
combined set of 2i changepoints bi%™" U b$%, similarly as in binary segmentation. (Specifically,
Ij = (¢cj—1 + 1) : ¢j is defined in terms of the sorted permutation 0 = co < ¢1 < -+ < ¢(2541) =
n of changepoints.) Then, at step i + 1, the next changepoint pair lfﬂf‘ft and i)fﬂ and the
maximizing partition ji+1(y) are found by solving the following maximization problem:

7star 7en s ~a,b
(B3 (1), 6545 (v), i () = argmax [go_ o, | (4)
je(1:(2i+1)) J
a,bel;

~bstart pend
Additionally, the sign 3;41 is defined as the sign ?f the maxiAmizing CUSUM statistic Sign(ycztllﬂz;; ) ‘j=3‘,~+1 »
— the corresponding changepoint directions at b5%* and bfﬂ are +1 times this sign. Continue

until k£ steps are completed.

Fused lasso The 1d fused lasso due to (Tibshirani et al|/2005) — also known as 1d total
variation denoising in signal processing (Rudin et al.|1992) solves the least squares problem but
with an ¢; penalty on the successive differences:

-1 1 0 0
A 2 o 0 -1 1 ... 0
Y T N ®)
0 0 -1 1

The generalized lasso dual path algorithm from |Tibshirani & Taylor| (2011) can be used to
recover a piecewise linear path of B solving over a range of A € [0, 00), with knot locations at
A1 = --- = 0. The primal solution B is piecewise constant, with a single additional changepoint
occurring in the solution at each knot. [Hyun et al.| (2017)) develops post-selection inference for
this algorithm. In the current paper, we extend this framework by incorporating additive-noise
randomization and make comparisons to the post-selection inferences made with segmentation
algorithms.



Recursive vs. sequential segmentation Segmentation algorithms in the literature
are often defined to proceed recursively. In this paper, we take the variant of segmentation
algorithms which sequentially splits the data instead of an ordinary recursion. For example a
CUSUM statistic is sequentially maximized in all latest partitions to obtain a nested sequence of
changepoint sets (models). This modification grants the advantage of being able to incorporate a
data-dependent stopping rule which allows for valid post-selection inference, as will be discussed
in Section [2.3] The unmodified, original recursive algorithm is also polyhedral, but requires a
stopping rule in terms of a minimum threshold for the maximizing CUSUM each time a split
occurs. There is no known polyhedral rule for choosing this threshold, which makes it less
desirable than the fully data-dependent sequential variant.

1.3 Changepoint inference
1.3.1 Existing work

Inference methodology regarding changepoint models found in the literature focuses on the
location or jump size of changepoints, or segment lengths, or goodness of fits among sequences of
models. Some earlier representative works are from [Hinkley]| (1970), [Worsley| (1986)), (1999).
|Jandhyala et al.|(2013)), Horvath & Rice| (2014) collectively provide a nice survey of methods for
changepoint estimation. There is also a body of Bayesian changepoint detection methods whose
inference regarding changepoint locations can be calculated directly from posterior distributions
(Yao|[1984, Barry & Hartigan|[1993] [Yao|[1993| [Chib & Olin|[1997, [Tartakovsky & Moustakides|
B010).

The most directly relevant tools for inference regarding changepoint locations is the simul-
taneous multiscale change-point estimator (SMUCE) estimator in [Frick et al| (2014) and the
generalized lasso post-selection inference tools in (2017). The former produces con-
fidence bands around the changepoint signal with exact simultaneous frequentist coverage. The
latter enables the basic case post-selection inference tools after applying the generalized lasso
path algorithm, of which a subcase is fused lasso. A simple transformation can be made to the
SMUCE bands to make conservative confidence interval of linear contrasts of the mean — this
was explored in [Hyun et al.| (2017)) in comparison to fused lasso post-selection tests.

Another typical inference scheme in multiple changepoint detection is to conduct a sequence
of likelihood ratio tests to admit changepoints until the first failure to reject. This scheme is used
in the original binary segmentation methodology from as well as in
for CBS. When each test is conducted at a prescribed level a, it is unclear what
the aggregate control is among multiple tests. Bonferonni correction can be used for control
of the global null, but only is powerful when a few strong signals exist. Otherwise each test
is quite conservative, making it unsuitable when data is thought to have many changepoints.
Most importantly, it is not clear whether the inference is always valid — each test is conducted
in subsegments of the data chosen adaptively from results of subsequent tests.

1.3.2 Setup for changepoint inference framework

In the current paper, we discuss tools for inference after segmentation algorithms have been
used to detect to changepoints. We give a brief setup of the methods in this paper. For the
majority of the paper, we assume that the data y € R" is multivariate Gaussian around some
mean 6 € R",

y~N(@,Y), y,0eR", YeSt. (6)

‘We can use a general positive semi-definite 3, but for ease of application and explanation of the
post-selection inference tools of [Lee et al| (2016) and [Tibshirani et al| (2016), we will assume
that the covariance is ¥ = 02I,, and can be summarized by a one dimensional noise parameter
o2 eR.

We now desribe the entire procedure, focusing on binary segmentation for concreteness.
First, a sequential binary segmentation algorithm is applied on the data on hand y.ps to recover
a changepoint set by.x (Jobs) and directions di.x(yobs), which jointly represent the outcomes of
binary segmentation on yobs.




From these, you can form a contrast vector v € R™ whose linear contrast with the mean v76
is a meaningful parameter regarding detected changepoints. Now denote the selection space as
Pops = {z € R™ : b(2) = b(Yobs), d(2) = d(yobs)}. The two works [Tibshirani et al| (2016) and
Lee et al.|(2016]) make it possible to calculate a statistic T(yobs) that serves as a p-value for the
null hypothesis Ho : v7'p = 0 with valid selective type-I error control,

Py (T (Yobs) < aly € Pobs) < (7)

for a preset significance level a. We can also invert these tests to obtain a selective confidence
interval Ci_, that covers vTu,

P (vT,u €eCi—aly € Pobs) =1—-a. (8)

The overall inference procedure is as follows:
1. Observe data yons € R"™.
2. Obtain changepoint set Bl:k(yobs) and changepoint directions czlzk(yobs).

3. Form contrast vectors vi,--- , vk, € R" to use for inference. (The simplest case with no
post-processing, ko = k, is to test all detected changepoints.)

4. Calculate T'(Yobs, vi),% = 1,- - - , ko for p-values to the null hypotheses Hy : vl = 0 against
a/ko, or compute 1 — a/(2ko) confidence interval covering vy p.

In the last step, T'(Yobs, vi) can be calculated under two different types of model assumptions —
one that assumes a full dimensional mean vector 6 but conditions on the rest of the structure,
and one that assumes the latest underlying selected model. These are each called a saturated
model and a selected model, whose details and implications are discussed in Section

The current paper extends the saturated model post-selection inference framework to the
changepoint detection setting, to use with segmentation algorithms. We characterize the selec-
tion space Pops for several segmentation algorithms and devise sampling strategies for conducting
inferences that incorporate randomization of [Tian & Taylor| (2015]), and operate under the se-
lected model. A useful contrast vector v;,i = 1,--- ko is an m-length vector onto which the
mean 6 can be projected to form the sample mean difference in two segments directly adjacent
to a changepoint location of interest. Thus, v} § can represent a shift in mean level, from left to
right, at a given changepoint location of interest. A careful choice of contrast v; in step 3 formed
after post-processing the detected changepoint set, or one that fully exploits the selection event,
can result in more powerful inference — this will be discussed in Section 2]

2 Post selection inference for changepoint problems

2.1 General case

Here, we describe several ingredients for post-selection inference for changepoint inference, keep-
ing the description general at this stage. Section describes useful extensions to this general
description, and [2:3]describes stopping rules and some other practical considerations when using
these tools.

Linear test contrasts After having applied a changepoint algorithm for k steps to obtain
changepoint locations by.x(y) and di.x(y) and after some post-processing (discussed in , the
resulting “pruned” set of locations are b1,--- ,by, with corresponding directions si,--- , Sk,-
With this pruned set, one useful class of tests are segment tests, as coined in [Hyun et al.| (2017)),
which are about the difference in adjacent segment averages. Taking ci.x, to be the increasing,
sorted values of b1, - ,by, With co = 0 and cxy+1 = n, a segment test contrast for testing
location ¢; is:

. 1 Cil 1 CiZJr]l
v, 0=d; | —— 0 — ———— 0; (9)
Citl —Ci ¢i—ci-1t1 i=c;_1+1



which is the difference in the segment means immediately to the left and right of ¢;, in the
appropriate direction d; € {—1,1}. We test the null hypothesis:
Ho:v{0=0 (10)

against the one sided alternative Ho : v7 6 < 0 or the two sided Ho : v]@ = 0. If the sign
si is not available, we can set s; = 1 and conduct a two-sided test instead. When available,
incorporating s; and carrying out a one-sided test yields greater power.

Polyhedral selection spaces We can also formally characterize the selection space Pops
of y € R™ that would result in the same segmentation selection event that of yobs on hand. The
following lemma states that the selection space Pops for three segmentation algorithms can be
represented as polyhedra:

Lemma 2.1. In the following three cases, selection events are polyhedral sets in R"™:

Case 1. the k-step binary segmentation selection event:
Pobs = {y : Blk(y) = Bl:k(yobs)yélzk(y) = Czlzk(yobs)}

Case 2. the k-step wild binary segmentation selection event

Pohs = {y : 611@(2/) = Bl:k(yobs), 621k(y) = dl:k(yobs)y élk(y) = él:k(yobs)}, (11)
Case 3. and the k/2-step circular binary segmentation selection event
Pabs = {y : Bitirt(y) = Eigzﬁ(yobs)y binkd(y) = l;f?Lkd(yobsL Jl:k(y) = Cil:k(yobs)}- (12)

For the WBS selection event, §;(y) and é;(y) are the endpoints of the intervals in which the
CUSUM statistic is maximized at step i, fori = 1, - - - , k. For CBS, b**" (y) and bend (y) denote
the two breakpoints occurring at step 4, and §;(y) represents the direction (+1 for up-down, and
—1 for down-up). The proofs for each algorithm are shown in appendix section [B| Each proof
follows the sequence of algorithm events and characterizes halfspaces for each event, inductively
reasoning that the intersection of such spaces is the ezact space of selection.

Selective distributions and p-values Having characterized P,ps and with a chosen test
contrast vector v, the existing post-selection inference literature suggests carrying out inference
out about v”'@ under a selective distribution instead of the naive, marginal distribution, in order
to explicitly account for the previous selection based on the data. First consider the most basic
selective distribution,

V'Y | Y € P, (13)
under which the contrast vector v is measurable, i.e. it is nonrandom assuming the same
selection event as the one observed with yobs.

In order to make the inference tractable, additional conditioning is needed beyond ,
which can be formulated in terms of two different null models, or null hypotheses. Closely
following the ideas and terminology in Fithian et al.| (2014, 2015)), we first consider the saturated
data model, which assumes a Gaussian model with full-dimensional mean 6 but fixes a n — 1
dimensional component in the parametrization by conditioning on P'Y. Under the saturated
model, additional conditioning on the n — 1 dimensional orthogonal slice Py is required to
cover the nuisance parameter P60 to v 6:

V'Y | Y € Pobe, PyY = P yobs. (14)

In this distribution and under the null Hy : v70 = 0 of 7 we calculate the probability of
vTY exceeding its observed value v”yobs to form a statistic T'(y,v) that serves as the p-value,

T(y,v) = f L™y > v yops) dPr, (15)

This inference tool was developed in |Lee et al.| (2016) and [Tibshirani et al.| (2016)), coined the
truncated Gaussian (TG) statistic. The novelty of this work is in enabling the fast calculation
of the p-value, by exploiting properties of a multivariate Gaussian such as independence of
orthogonal components.



2.2 Modifications to the general case

Selected model inference Continue with the example of testing about a detected location
¢; using a contrast vector v; € R™. Let C' = {co,...,cky+1}\{ci} = {Co,. ..,k }, Where &.; are
in sorted increasing order. Another null model we might operate under is that of a selected
model, which assumes Gaussian data with a piecewise constant mean, i.e. @ lies in a smaller
subspace in which entries are constant in each of the segments broken at locations in c ,

953.714_1 =...= eaj = kg for all j € {1,. . .,ko}. (16)

The key idea shared by the two approaches — saturated and selected model testing — is in the
handling of the nuisance parameters in their respective parametrizations, with respect to the
pivotal. statistic. The statistic we use is the tail probability of v”y is a conditional pivotal (i.e.
it does not depend on the unknown parametrization) only when the nuisance parameters are
cover@aﬂ In a saturated model (where it is assumed ¢ is known), the nuisance is the P;4. In
a selected model (where o is not assumed to be known), the nuisance parameters are all mean
levels p;, i = 1,--- ko in each segment and the noise parameter o, whose sufficient statistics
are,

{Yv(5_7‘_1+1):5j ij=1- 7’I€0}7 HYH2 (17)

A closely related distinction can be made from the view point of the different null hypotheses
(models). The saturated model null hypothesis of a full-dimensional mean is fairly general
harder to reject than the selected model null. The tradeoff also comes in the form of stricter
conditioning — a full n — 1 dimensional slice in the R™ mean parameter — for tractable inference
of vT9. The selected null hypothesis asserts the correctness of a piecewise constant mean with
all detected breaks excluding the one being tested. Because this is a more specific scenario than
the saturated model null scenario, it may be easier to reject (i.e. powerful).

Hit-and-run sampler for selected model inference The null selective distribution
of Y ~ N (0,0°I) conditioned on

YYia;_y41):6; = Pobs,(e;_1+1):2; for 5 € {1, K}, [Y]2 = [yobs|2, and Y € Pops. (18)

To form a p-value, we use a Monte-Carlo approach to simulate the null distribution of v}'Y" for
Y ~ N(O,GQI) conditioned on . That is, we first generate B samples y(l), .. .,y(B) e R™
from this null distribution. Then, we calculate the p-value T(yobs,v;) as in for the test
in by calculating the empirical probability mass exceeding the value v} yops based on the
sample viTy(l), . ,UiTy(B).

To implement the Monte-Carlo sampler, we use a hit-and-run approach. We describe this
approach briefly, with more details in APPENDIX. Observe that sampling ¥ ~ N (9,021 )

conditioned on is equivalent to sampling Y uniformly from the set
{Y : ?V((":j,l-%—l):ﬁj = gobs,(6j71+1):5j for .7 € {17 .- '7k}a HYH2 = ”yobs”27 and Y € Pobs}-

Hence, starting with y(1> = Yobs, for iteration m, we uniformly select a random 2-dimensional
slice of the high-dimensional sphere {Y : Y, _1+1):8; = Yobs,(z,_1+1):¢; for j € {1,...,k} Y2 =

m+1)

|yobs|2} that passes through y™ . We can then explicitly sample y uniformly from the

region(s) of this 2-dimensional circle that lies within the polyhedra Pobs.

Randomization and Importance Sampling [Tian & Taylor| (2015) proposed the idea
of randomization of the selective model distributions for improved numeric stability and for
higher power. This is typically in the form of relaxing parts of the conditioning, or by choosing
to condition on the model selection event after some controlled obfuscation. One example of
this is additive noise randomization, which can be used with polyhedral sequential changepoint

1In an exponential family formulation, this can be done by conditioning on the sufficient statistics of the nuisance
parameters.



algorithms — including the segmentation algorithms discussed in the current work and the 1d
fused lasso path algorithm — described next.

First, another source of auxiliary variation is introduced — for additive noise randomization,
an n-variate W distributed as A'(0,02441,) — whose generating mechanism is under full control
of the user. We draw a realization wons from W. Then inference about v”0 can be carried out
under the randomized selective distribution of ,

Y|(Y+W) GPnoisy,Pj_Y = Pj_yobs,W = Wobs, (19)

which conditions on the polyhedral space Phoisy which would lead to the same selection event
based on the obfuscated data Y + W,

Pnoisy = {y : Z;I:k:(Yv + W) = Bl:k(yobs + wobs)7 §1:k(Y + W) = §1:k(yobs + wobs)} (20)

One valuable goal from randomization is to integrate out W so that (21) does not condition on
the realization of the additive noise W = wops,

Y|(Y + W) € Pnoisy7P1}Y = P'()Lyob& (21)

From this, we can calculate a functional to use for inference, such as the p-value in .
Marginalizing out w leads to a strict increase in Fisher information, corresponding to an in-
crease in power. This is verified through simulations.

We can use importance sampling to calculate a p-value under . Denote by Mons =
(81:k, b1:) the observed a k-step model. Also denote by E1 = {Y|(Y + W) € Paoisy} the model
selection event EI, and by E» = {P;'Y = P} yons} the n — 1 dimensional orthogonal projection.
Denote the k-step model Mobs = (S1:x, b1:1), the selection event Eq = {M(Y, W) = Mobs}, and
the event of observing the orthogonal projection Ey = {PUJ‘Y = Pj‘yobs}. The final p-value is
calculated as,

P(UTY > vaobS|E1, E;) = JP(UTY > vaobS|E1, Ey, W = w)pw g, 5, (w)dw. (22)

We calculate this using importance sampling, sampling from W|E; (assumed to be identical in
distribution to W), and reweighting by

P(W|Es, Es)

This importance sampling approach can be modified for WBS to relax conditioning on the
randomly drawn intervals to improve power. Define the random variable W = (Wq,--- ,Wg), W, =
(W, W2) € R? to be the set of B endpoints for WBS intervals (W} : W2) < {1,2,--- ,n}. Also
adopt the notation of W4 := {W; : ¢ € A}. We also define Eé:k, E%:k to replace Eop and Ej
above. The set Ej™* = {Wi., = wi5} characterize the realizations of the first k intervals. The
set F1* describes the sequence of k events E},i = 1,--- in which, for each i € (1 : k), breakpoint
b; in W; maximizes the CUSUM Q‘Z;V}’Wig out of all qualifying intervals. (Qualifying intervals at
step ¢ > 1 are ones that do not intersect with b1.;—1, and for ¢ = 1, all intervals W = w,ps are
qualified.) Then the above sampling scheme can be applied after replacing E1 with E§™* n E{*.

As with nonrandomized p-values, these p-values can be inverted to obtain confidence intervals
that cover vT 0 after selection. Because calculating randomized TG p-values is computationally
expensive than ordinary ones, it is recommended that the confidence interval endpoints are
found using an efficient optimization than grid search, like binary search.

2Notice this space, or event, is random because W is random. It can be thought of as a wobbly polyhedron, shifted
in a random direction Pyoisy W.



2.3 Practicalities

For saturated model tests, the noise level o is assumed to be known. In practice, it needs to
be estimated. One example is to fit a low-bias or undersmoothed model, estimate the sample
standard deviation from this relatively complex model, and then substitute in o for the inference.
In the case of copy number variation dat, there are typically long flat regions near either end of
the data set. Parts of these regions could be excluded from changepoint detection and inference,
and instead used to estimate the standard devation.

So far we have assumed that the number of segmentation steps k is fixed. Hyun et al.
(2017) introduces a stopping rule based on information criteria (IC) wihich can be characterized
as a polyhedral set and conditioned upon. First consider a sequence of nested changepoint
models represented by increasing sets of changepoints M, = b1, (and My = &) in the piecewise
constant mean. The information criteria for this model is

J(My) =y = gr(®) + pa(k),  Si(y) = sign(J (M) — J (M), (24)

where g;(y) is the projection of y onto a piecewise linear vector subspace with breaks at bi.x.
We will use pn, (k) = 02 -k-log(n), which resembles the Bayesian Information Criterion (BIC) for
fixed changepoint models. The penalty term is proportional to the complexity of the changepoint
model. Now define Sk, the sign of the difference between two steps k and k + 1. The stoppping
rule k is defined as

ke(y) = min{k : Sk(y) = Sks1(y) = -+ = Skrqly) = 1} (25)

which is a local minimization of IC — the first time there are ¢ consecutive rises in IC. As
discussed in [Hyun et al.| (2017)), ¢ = 2 is a reasonable choice for the 1d changepoint detection.
To carry out valid selective inference, we condition on the sequence Si.x(y), which is enough to
determine k.

Additional care is required when using this stopping rule in conjuction with randomized infer-
ence extension of Section After introducing W, the conditioning event becomes {Sl:(k+q) Y, W) =
S1:(k+q)}> Which is polyhedral in Y only when W is fixed. The importance sampling for obtain-
ing saturated model p-values can be modified by intersecting the model selection events — E; in
BS or Ey n E7 in WBS — with these new halfspaces. Then, during sampling, the expectations
of IL(UTY > va) are calculated conditional on this new, smaller polyhedron.

3 Array CGH data changepoint inference

We now illustrate the application of this methodology to an array CGH dataset. Figure[I]shows
an array CGH dataset of fibroblast cell line GM05296 originally published in |Snijders et al.
(2001). The data consists of a sequence of n = 2011 measurements from 23 chromosomes. This
example appeared in the introduction; we describe the procedure in more detail here.

Prior to applying the methodology, we exclude three outlier points, as well as the first

200 points which are used to estimate the noise standard deviation (6 = 0.74). We then
apply additive noise binary segmentation with our BIC-based stopping rule (¢ = 2) resulting
in k = 13 steps. We construct segment test contrasts {v;,i = 1,---,13} for the detected

changepoints bi.x as in @ and conduct one-sided post-selection tests of the saturated null
hypotheses Hy : v}'8 = 0. The corresponding post-selection p-values are shown in the bottom
row of the table in Figure[I] and the naive Z-test p-values for the same hypotheses are shown in
the top row. The first five locations A through E were deemed significant against a Bonferonni-
corrected cutoff of 0.05/13, while all other changepoints were not deemed significant. The naive
two-sided Z-tests on the same locations using the same contrasts v;,7 = 1,--- , 13 deemed twelve
out of thirteen locations significant. The four significant jumps detected by post-selection tests
occur in the two chromosomes that have known variation in copy number (Olshen et al.|[2004d).

We also analyzed data from individual chromosomes, in both the GM05296 data and in
another fibroblast cell line GM03563. Out of the 23 chromosomes in GM05296 (top two rows of
Figure [2)), only chromosome 10 and 11 have known gain and loss patterns. We apply a similar
analysis steps as before to data from chromosomes 1, 4, 10 and 11, as analyzed in|Olshen et al.
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(2004a@). We post-processed the chosen k changepoints using centroid-clustering of locations
within 5 distance of each other; there was no need for post-processing the analysis in Figure
In each of chromosomes 10 and 11, we see that two detected jumps are deemed significant
(after Bonferroni correction), in similar locations to the four significant locations from the larger
dataset in Figure[I] These locations also match closely with those detected on the same data
by [Olshen et al.| (2004a)) who used the CBS algorithm combined with sequential likelihood ratio
tests for stopping. There is one significant jump location (D) in chromosome 4 that appears to be
a false discovery. Repeating this analysis in GM03563 fibroblast cell line data in chromosomes 1,
3,9 and 11, we found no jumps in chromosome 1, and correctly found all jumps in the remaining
three. As before, there is one jump (B) in chromosome 9 that may be spurious.

In the next section, we conduct simulation studies on synthetic and pseudo-real simulations
to demonstrate the inferential properties of our proposed tools.
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Figure 2: Post-selection segment tests were applied to changepoint locations detected by WBS, in four
chromosomes each from two observed array CGH datasets of fibroblast cell line GM05296 (top two rows) and
of GM03536 (bottom two rows). The detected locations for which the post-selection tests were not significant
vertical lines are shown in light-grey, dashed lines. The locations that were significant are shown in dark-grey,
solid lines. The corresponding p-values are shown in the tables below each figure.
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4 Simulations

4.1 Synthetic simulations

In this section, we show simulation examples to demonstrate properties of the segmentation post-
selection inference tools presented in the current paper. We will vary the signal size, denoted as
§, while generating data from a fixed noise level o = 1. The main synthetic simulation setting
consists of four alternating direction jumps in an otherwise constant mean:

B if 41 < i <80
yi ~N(6;,0%), 6; ={—25 if121<i<160 (26)
0 if i e (1:40) U (81 :120) U 161 : 200

The sample size n = 200 was chosen because it is in the scale of the data length in a typical
array CGH dataset in a single chromosome. An example of this synthetic dataset can be seen

in figure

« Data PRy
© | Mean C
T T T T 1

0 50 100 150 200

Location
Figure 3: Ezample realization for simulation with § =2 .

Type-I error control verification We consider simulations in the no-signal scenario
(6 = 0) to verify the expected Type-I error control of the proposed post-selection tests. The
results are shown in Appendix @ For all of the proposed methods, the p-values are seen to be
uniformly distributed under § = 0 at all steps in the model.

Power comparison by simulation Two signal size regimes are interesting. The no-signal
regime § = 0 can be used to examine the validity (type I error control) of the inference; when
there is no signal the null scenario v79 = 0 is true so that Unif(0, 1) distributed p-values are
expected in simulation. This is shown in appendix @

Simulations are carried out across a range of signal strengths § to demonstrate and compare
the power of the proposed tests. Because these tests are carried out only when a jump is selected,
it is necessary to separate the effects of detection by a segmentation method, from test power.
To that end, we define the following quantities:

F#correctly detected

Detection = 27
crection #simulations @7
Unconditional power — ##correctly detected and rejected (28)
#correctly detected
ecti
Conditional power = M (29)
F#simulations

The overall power of an inference tool can only be assessed by examining the conditional and
unconditional power in conjunction.
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Figure 4: Data was simulated from a four-jump mean as in , over § € (0,4) with n = 200 data points.
Several four-step algorithms (WBS, SBS, CBS, FL) were applied, and post-selection segment test inference
was conducted on the resulting four detected changepoints from each method. The detection proportions
show out of all detected changepoints overall, the proportion of ones that were within +2 prozimity of each
true jump location (40,80,120,160) in the mean. The conditional power shows the proportion of p-values
that are below a/4 = 0.0125, out of the those that test the approximately correct detected changepoints.
The unconditional power is the proportion of these p-values over all simulated p-values. For randomization,
nr = n = 200 for WBS was used, and an additive noise of 04qq = 0.2 was used for the rest. The rightmost
plot shows the detection, unconditional and conditional power of noise-added BS inference, for simulations
conducted across a range of 0ai4a = 0,1,2,3,4, for four-jump data with noise o = 1 and signal size § = 1.

We examine the performance of four methods — binary segmentation (BS), 1 dimensional
fused lasso (FL), wild binary segmentation (WBS) and circular binary segmentation (CBS).
For BS, FL, and CBS, we use the randomized noise-added methods using Gaussian noise with
standard deviation gaqa = 0.2. For WBS, we employ the randomization scheme as described in
Section and in Appendix [C] The left panel of [d] shows the detection ability of three methods
WBS and CBS and BS. Detection ability was calculated as the average fraction of changepoitns
that were detected within three indices of the true locations. Power was calculated as in ,
but with approximate detection — within two locations of the correct changepoints in the mean
— instead of exact detection.

First, we can notice that BS dominates FL in both detection ability and conditional power.
FL often chooses closely neighboring points early in the path algorithm, and fails to capture
all four points accurately. If we allow it to go k steps chosen by the two-rise IC rule, and also
perform centroid clustering of the detected changpeoints prior to forming segment tests, it gains
back some conditional power (middle panel). Both CBS and WBS dominate BS in detection
ability. This is understandable, as CBS is designed to detect pairs of jumps in alternating
directions, and WBS is designed for effective detection of local jumps. In conditional power,
WBS is the weakest out of the three, which is likely because the conditioning (i.e. adaptivity
to the data) is the strongest.

Improved test contrasts The segment test in @ is practically and conceptually appealing
because it is equivalent to a likelihood ratio test between two fixed models of piecewise constant
mean which differ by the single tested changepoint b;. However, in wild binary segmentation,
we might be able to design a more powerful linear contrast by incorporating the endpoints of
the intervals in which the CUSUM statistic was maximized. Coining this the ’segment+’ test
contrast, the exact form is:

1 w2 1 b,

T

00 =s; mz Gi_bi—iwla,Z 0; |, (30)
i i=b;+1 toi=w}

where b; is the i’th detected changepoint and W; = (W;', W?) is the couplet of interval end-
points in which the CUSUM was maximized. Using W; in forming is permissible because
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Figure 5: In a four-jump example with n = 200 as described in with signal size 6 = 1, we can see
that the power of the segment test is consistently higher than the original test. The first changepoint to be
detected is typically around location 120. In this case, the power is dramatically increased. Power is defined
as the proportion of tests that yield a p-value below a Bonferonni-corrected cutoff of 0.05/4.

the endpoints of this winning interval is fixed with respect to the distribution conditioned on
polyhedron . In the left panel of Figure |5, an example of a segment+ contrast is shown on a
simulated data example from ; the left region for the segment+ contrast is longer than that
of the original segment contrast. In the top half of the table, we can see that the conditional
power for this improved test statistic dominates wild binary segmentation consistently across
signal sizes when testing 120 + 2. This advantage disappears in further steps. The lower half
of the table shows lower power for segment+ tests when conducted on locations 80 + 2, which
is typically detected in the third or fourth step. Because the endpoints used in segment+ are
affected by segmentation from earlier steps, the endpoints cannot extend as long as was pre-
viously possible, and in fact are often shorter than is desirable, resulting in lower-power tests
contrasts. This suggests that when testing changepoints detected in the first few steps of WBS,
segment+ is a good substitute to the segment test to boost power (a more detailed analysis is
provided in Appendix .

Additive noise and power There is also an interesting tradeoff in power and the amount
of additive noise used for randomization. As the additive noise level increases, the data used
for fitting becomes more obfuscated, deteriorating the accuracy of detection. Hoever, the condi-
tional power increases with o,q4. As a result, we expect an increase in unconditional power up
to a point, followed by a decrease as segmentation fails. We can verify this from a simulation
example. We consider a fixed signal-to-noise ratio regime of § = 1 (a weak signal) in the four-
jump scenario of with n = 200. We conduct post-selection segment tests on changepoint
locations obtained from four-step WBS. Figure [6] shows conditional and unconditional power,
and detection rate over a range of additive noise levels: cad4qa € (0,2). We see two effects of
increasing additive noise — first, the detection ability uniformly decreases (dashed line), and
both types of power have peak around roughly half (caqq = 0.5) of the original noise.

4.2 Pseudo-real data application

From the same array CGH data as used in Figure[I] We create a pseudo-data simulation. We first
fit a 1d fused lasso with an elastic net penalty, from which we extract locations of changepoints.
These locations are then further pruned by post-processing to eliminate changepoints that are

15



observed

Unconditional power
0.6
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 05 1.0 15 2.0

expected Additive noise G,4q

Figure 6: In a four-jump example with n = 200, as described in , the normal quantile-quantile plots
(left) and powers (right) demonstrate the dependence of power on the amount of additive noise cqqq for
randomized binary segmentation segment test p-values.

adjacent. Taking regions in between these pruned points to be constant and the regions close to
zero to be equal to zero, we create a flat mean Mmu of total length n = 2012] with three regions
of deviation from zero. The first 200 points are excluded for the estimation of noise.

(SH: need to /completely/ change this.) To this mean, we add bootstrapped versions of the
residuals nr = y — i, = 1, and repeat the analysis. In addition to pure bootstrapped noise,
we increase the difficulty of the problem by multiplying r by n = 2, 3,4 prior to bootstrap. On
these simulated datasets, noise-added SBS and WBS were run for a number of steps chosen by
q = 2 rises in BIC, and segment tests were performed on the detected changepoints. Figure m
shows the results of these simulations. We can see that both the conditional and unconditional
power are very high for the original-scale (n = 1) case, and decreases as we increase the problem
difficulty n = 2, 3,4. We can see that both noise-added binary segmentation and circular binary
segmentation perform well in terms of power.

5 Conclusions

‘We have described an approach to conduct post-selection inference on changepoints detected by
common segmentaiton algorithms, using the same data for detection and testing. Segmentation
algorithms are popular across many fields of application, including biology and economics, and
have been well studied in the literature. The proposed approaches include adaptations of sev-
eral recent developments in post-selection inference. For powerful randomized saturated model
inference, we outlined an importance sampling strategy for calculating p-values from a selective
distribution with relaxed conditioning — both over additive noise and also over intervals used in
wild binary segmentation. For inference under a selected model, we demonstrated the proce-
dure of conditioning on the sufficient statistic of a Gaussian changepoint model that assumes a
piecewise constant mean, then outlined and implemented a hit-and-run Monte Carlo sampling
scheme in order to calculate the p-values. We demonstrated the application in array CGH data,
where we show that our methods effectively provide a statistical filter — in Figure [1} we show
that the post-selection hypothesis tests after binary segmentation retain only the stronger five
signals out of the thirteen detected. A pseudo-real simulation example on bootstrapped data
also confirms this strength of our proposed tools. In addition , we demonstrate the detection
probability and power over signal-to-noise ratios in a variety of simulations.

Future work in this area could improve the practical applicability of these methods. One
useful extension would be to incorporate more complex and realistic noise models. For example,
a noise model for CGH might incorporate some estimated spatial dependence. The impact of
violations of model conditions — for example, using estimating noise levels for saturated models
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— is also important item for future study. The selected model testing framework can also be
extended to include other exponential family models for y;. Post-selection inference may also
be extended to multiple streams of copy number variation data from different subjects in order
to more powerfully detect and make inferences about changepoint locations. Lastly, it may
be possible to extend the framework of inference after cross validation (Loftus/|2015) to post-
selection changepoint inference.
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A Simulation examples

Here, we present more simulations to verify inferential properties. Having simulated Gaussian
data from the four-jump mean as defined in with n = 20, we verify the uniformity of
p-values under two null scenarios in which the hypothesized linear contrasts after selection (by
three methods — BS, noise-added BS, and WBS) is equal to zero. The first scenario is when the
signal size ¢ is equal to zero. The p-values of any post-selection segment tests of changepoints
detected from one or two algorithm steps, should be U(0, 1) distributed. The second scenario
is when the signal size is nonzero (§ > 0) but the segment test contrast for changepoints from
one or two step algorithm steps, v7p = 0, is zero in mean. In this case, the resulting p-values
should also be distributed as U(0,1). We can see in Figure [7| that all p-values that fall under
these two null scenarios are indeed uniformly distributed.
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Figure 7: Under various null scenarios, post-selection segment tests for simulated data generated around
a four-jump mean (as in (26))) are shown to be distributed U(0,1). This verifies the Type-I error control
property of our methods, under simulations (Placeholder figures, for now).

B Proof of lemma 2.1

B.1 Binary segmentation

We describe the selection event for k-step binary segmentation where k is fixed a priori. Recalling
the CUSUM statistic y;e and related notation we will define a vector w(,s,..) € R™ for any

s,byee {1,...,n} where s < b < e. such that
b 1 _ _ T
Ys,e = -1 . 1 (y(b+1):e - ys:b) = w(s,b,e)y-

e—o] + Toriq]

Upon fitting the binary segmentation for a fixed & number of changepoints, recall that

b1, ..., br denote the set of changepoints, where b; is the ith changepoint found in sequence. For
any i € {1,...,k}, denote C; = (co,c1,...,¢i—1,¢;) where 0 = co < ... < ¢; = n, and ¢y.(i—1)
are the sorted increasing permutation of by.(;—1). Notice that C; segments the indices {1,...,n}
into ¢ — 1 partitions. We call these partitions Z; = {I1,...,I;}, where I; = {c;—1 + 1,...,¢;}
for j € {1,...,i+ 1}, and b; lies in exactly one of these i + 1 partitions, which we will call P}*.
Finally, we define (sj,e;) for j € {1,...,% + 1} so that I; = {sj,s; + 1,...,e;}. Similarly, we
define (sf,e¥) so that I* = {s¥ s¥ +1,...,ef}. Z; can be understood to represent the set of

data partitions in which yls’,e is maximized at step i.
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We are ready to character the model selection event. Our model is characterized by

M= ({bl,...,bk},{sl,...,sk}),

where (b;,d;) € {1,...,n — 1} x {—1,1} is the index of the ith jump as well as the sign (i.e.,
direction) of the jump. The sign of the ith jump is 1 if
T

Vst pyet)¥ > 0
and is —1 otherwise. Hence, we are interested in characterizing the set of y’s such that applying
the binary segmentation with for a fixed £ number changepoints will result in the same model
M. We define our selection event recursively. For the first changepoint, i = 1, we have 2-(n—2)
inequalities,

dlwablyn)y > wajm)y, and dlw(TLbl’n)y > —waj,n)y, for e {1,...,n}\{b1}.

For the ith jump, for i > 1, we add an additional 2 - (n — ¢ — 2) inequalities. These can be
understood as inequalities characterizing maximizations within I’*, and the rest. The inequalities
pertaining to I}* are

T T T T .
0t ety > Wit gyt A0 iy gy > —wir s oy, for j e IN\{bi).

The inequalities not pertaining to I}* are

diw(z;:k7bi,e;|<)y > w(q;j,g,ej)y, and diw(q;;kybi,e;k)y > fw(q;j,g,ej)y, for £ € I;,for I; € P\{I]}.

After forming all the inequalities, we note that all the inequalities are linear in y. That
means we can construct a matrix I' and a vector u such that our inequalities are succinctly
represented by

{y : Ty >u}

(SH:Need to make this into an inductive reasoning.) (SH:Use different letter than w for the

linear contrast vector.)

B.2 Wild binary segmentation
In addition to the changepoint lA)Lobs defined in 7 define two other quantities:

. ~b; obs
Si,obs = Slgn(ysg;,:;i) (31)
and
. ~b
i1,0bs = argmax [ max 9, .. 32
1,0bs jeg(I:B) (be(Sj,e].)y 3 ]) ( )

which are respectively the sign of the maximized cusum statistic from (??), and the index of
the interval in which the maximization occurs.

We proceed by induction. At step ¢ = 1, it is straightforward to see that the triplet takes
the values (b1,%1,81) = (b1,0bs; i1,0bss S1,0bs) if and only if the following hold:

A ~b
819sy.e; >0 (33)
and for all b € (sj,e;) for all j € (1: B)\{%1} and j €1, and for all be (s : ej)\{l;j}:
D (34)
A ~b A ~b
Slys;l,e;;l = sjysj-,raj' (35)
i.e. the sign of the maximizing CUSUM statistic, and the absolute value is bounded below
and above by all others. At a general step ¢ > 1, the triplet (bi,%:,8:) = (bi,obs, %i,0bs, Si,obs) 18

observed if and only if the following hold; the single inequality:

'§igé;,5j > 07 (36)
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and the following two inequalities for (j,b) such that j € (s; : ¢;) for all j € I\{i;} and
(4,b) = (15,b) for all b e (s; : e;)\{b;}:

B.3 Circular binary segmentation

First define the sign of the maximizing statistic:
. xbi obs
oo = sign(@ ) (37)

We now proceed by induction. At step i = 1, it is straightforward to see that the triplet takes
the values (55", 5™, 81) = (b3'31%, b5 shes S1,0bs) if and only if the following holds:

__jstart fend
~b1 ,bl

51Ys

>0 (38)

49€5
and the following two inequalities hold for all 1 < a < b < n:

pstart pend
by b3

slyl,n = _Sjyl,n (39)
R %i)?tartyéind R %ﬂ,,b
Slyl,n = SiY1:n (40)

start pend
(

At a general step i > 1, the triplet (63", b™d, 3,) 5 -obss Ui obs» Si,obs) 18 observed if and

only if the following hold; the single inequality:

S e >0, (41)

i

and only if the following holds:
R %Bitart ’l';?nd
8;7 ySz . ,62 .

>0 (42)
and the following two inequalities hold for all (s, a,b,e) in the two cases (1) s = §; and e = §;
and a # b5*'* and b # 5" and a < b, and (2) .

jstart pend
[ ~a,b

Siiyl,n = _ys,e (43)
. %Bitart,i’?nd ~a,b
S%,iyl,n 2 ys,e (44)

C Sampling details for randomization

In addition to the randomness induced by the data ¥ ~ F),, consider an external random
component, I ~ Fy, such that Fy_l Fr by design. For example, in wild binary segmentation
(WBS), I can be thought of as randomly drawn endpoints (uniform in {1,---,n}) to be used
in the WBS algorithm. Another example is external additive noise to the original data. We
outline the procedure for conducting randomized post-selection inference according to |Tian &
Taylor| (2015)).

21



Main derivation The end goal is to calculate a truncated Gaussian p-value without condi-
tioning on the realization of the random component I = i:

h’(t) :P(UTZZHM(ZvI) :MobsanLZ:Pj_yobs) (45)

E; Eq

First write this as an integral over the joint density of I and Z:

h(t) = f 10" Z <) fr.218, .8, (i, 2) didz (46)
z,1 —
A

Then the joint density A partitions into two components:

f1.218,.8, (1, 2)d2di = fz11-i.8,.5,(2) f11E, B, () d2di (47)
Using Bayes rule, we can write the latter probability mass function as:
PR L CATES N CATATNG,
1|1Ey, By P(E1|E2) )
where we have flipped Ei and I while conditioning on F». With this, we can rewrite h(t) as a
double integral over I and Z

(48)

T , f118,(7) .
Mo = [1672 <0)- Pl = i, ) Pl i b (e (19)
Now, rearranging (and writing the integral over ¢ as a sum since it is discrete), we getﬂ
h(t) = f Un(sz < 1) 21121818, (2)dz - P(E1|I = i,Eg)] M, (50)
supp(I) P(El‘EQ)

Denoting by g(i) = P(E1|I =i, E2) and hi(t) = {1(v"'Z < t) - fz112i,5,,5,(2) dz - g(i), be
rearranged to form:

_ T . . o) —— ) = AR SRS
0= [ 10720 st o 00)| gm0 = [ e e
51
Now, substitute in the following;:
PEIE) = [ PEI=iB GG = | smGd 62
supp(I) supp(I)
so that h(t) becomes:
h(t) = f hi(t) Py (i) - 9(0) . (53)
supp(7) Ssupp(I) (i) 112, (4)

The multiplier in the last part can be thought of as an importance weight by viewing it as a
density ratio. This can be seen by applying Bayes rule to the numerator of (53)), and rearranging:

g(3) _ P(Ei|BE2, I =i) _ P(I=i|Ey,Ez) _ P(I=ilE, E») (54)
Lo, 9OPI)  P(Er|ER) P(I = i[E2) P(I = i)
From this, an importance sampling estimate of h(t) can be deduced to be:

h(t) =Y hi(t)Pr(i) =—2t——.

Zil 2290 fr1e, ()
The importance sampling scheme is as follows: instead of sampling from I|E, E>, which is hard
or impossible, sample from the easier reference distribution I|FE2, and applying the importance
weight in . We additionally assume that I and E> are independent so that I|FEs 4 I, making
the reference distribution even simpler.

3 We were able to bring three things — P(E1|E2), P(E1|l = i, E2) and fy|g, (i) = pr(i) — out of the integral with
respect to Pz|r—; E, E,, because they are constant with respect to Z|I =i, F1, Eo; constant in the sense that it does
not depend on a particular instance of it; just like {2P(Z € A)dPz(z) = §2dPz(z)P(Z € A). This equality comes
from our assume the distribution of I does not change after conditioning on FEsg; this is debatable.
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Sampling instructions The form in can be simplified once more by noticing that
hi(t) = k(i)/g(z), where k(i) = FUTW,Q"UH%(V“") — FUTH’OQHHHg(t) and cancelling g(7) to get:

P 2 K@) - Pr(i)

h(t) = &2 — (56)
290) - Pr(4)
giving a clear recipe for sampling;:
1. Sample I = ¢ from the marginal distribution.
k(i) = F, VeP) - F t
9. Caleulate (l.) UTH,U’L’HU\@( up) vTu,oszH%( )lo .
g(i) = FuTu,afA’Hqu(V ) — FUTH,U’ZHU\@(V )
3. Add each to collection {k(:)} and {g(i)}
Then, the final p-value A(t) can be calculated as D k() 20 9(0).
Modifications for WBS Having fixed the drawn intervals (i1,--- ,ig5), there are several
options for conditioning;:
Pr={y: M(y,i) = {+5}} (57)
P, = {y: 1-step WBS applied to y on intervals i1, -- ,ip resulted in + 5} (58)
j {y : location 5 in i,, = 3 : 8 had the largest CUSUM, } (59)
out of all other cusums.

A and B, which are equal, are a union of events — it is not specific about which interval the
maximum occurs. For instance, it allows for the case that there is another interval 2 : 9 whose
maximizer is at 5.

So, we can take the conditioning statement in to be

TG = P(v"Z < t| M(Z,1,i(max)) = Mobs, PoZ = Py Yobs, i(max) = iummx) (60)
—_
E; Eqo

where imax € I, also a random variable, is the interval in which the maximum has occurred. The

main modification is now to sample other N — 1 random intervals whose maximum CUSUM

statistics are smaller than what had occurred in the imax’th one, as the random component.
Continue here.

D Sampling details for randomized wild binary seg-
mentation inference

The selection event (one that is a minimally unique characterizable) is the maximizations of the
cusum statistics at the i’th step in a specific interval. Notating that ‘winning’ interval as the

Gi(Yobs ) 'th one, the event is:

Pubs = {y  bir(y) = b1k (Yobs), 1:6 () = 316 (1), Gren(y) = Gren(Yobs) } (61)

This is still a polyhedral set.

Here the trick is to have all components in I, except for the actual interval in which the
changepoint occurred, be allowed to be random. This minimal amount of conditioning still
allows Fo, F1|FE2 to be a polyhedral event, which enables closed form calculation of importance
weights. A similar mechanism allows for importance sampling scheme after having fit larger
number of steps of WBS. The details of sampling are deferred to the appendix.
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E IC-based stopping rule with randomization

The IC-based stopping rule requires some special handling when combined with randomized
post-selection infernece. For fused lasso or binary segmentation inference with additive noise
randomization, recall our inference is based on a polyhedron that characterizes the selection
event on noise-infused (fuzzy) data:

Pnoisy = {y : 1_‘noisyy = Unoisy}7
and the event that we aim to condition on is:
1_‘noisy(Yv + W) = Unoisy < I‘noisyS/ = Unoisy — 1_‘noisy‘/‘f-

The stopping time is to be calculated on the noise-added (fuzzed) data, so that we denote it
Fﬁfoisy and uifoisy, They simply enter the dataset as a

For wild binary segmentation, the IC minimization is with respect to nested changepoint
models constructed from the changepoint locations lAn;k and signs §1.5. Let us say that kops is

that observed stopping time. The randomized selective distribution is

YV‘E(),El,Ez7 k(y,b) = kobs

In the importance sampling involved in calculating the p-value function under this distribution
requires P(E|Eo, F2) and P(v"Y > UTy0b§|E0,E2). These are now modified to P(E1,k =
kobs|Eo, E2); essentially, replace E1 with E1|k = kobs everywhere.

F Wild Binary Segmentation Number of intervals

We examine the effect of the choice of the number of intervals, n; in wild binary segmentation
inference. For a four-jump signal (n = 50), the detection ability of wild binary segmentation
does not drastically differ after n; = n/2, tapering off to a flat level of 0.75 at around n; = n.

Fixing other simulation settings, conditional power does not notably change across different
choices of ny, as can be seen in g
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Figure 8: (Top row) We generated data form a four-jump mean as in with signal size § = 1, as shown in
the left panel. Then, we calculated the average of the approrimate correct detection proportion by a four-step
fized wild binary segmentation. Approximate correct recovery is defined to be within +1 wviscinity of correct
locations n/5, - -+ ,4n/5. This average detection proportion was calculated for ny values ranging in (0,1.5n).
(Bottom row) QQ plots of p-values for tests conducted about approzimately correct locations, for various
choices of nr in the same range as above. The left shows p-value QQ plots for fixed inference, and right
shows this for randomized inference. (SH: rerun everything with n = 200 with § = 2.)

G Improved segment+ test for WBS

‘We continue the discussion of an improved segment test contrast — coined ‘segment+’ — that uses
the winning intervals of wild binary segmentation events . We demonstrated that power can
be noticeably improved when using segment+, in |5 in earlier steps. Figure |§| shows a detailed
comparison of the test contrasts for some insight into why it is more powerful in earlier steps
and why this trend is reversed in later steps. Take the four-jump example as described in
with § = 1.

Earlier steps (120 +5) We first isolate our attention to the four-step wild binary segmen-
tation tests regarding location 120 + 5, the third breakpoint location from the left. In the left
panel, we can see that the segment+ test contrasts are more likely to use left endpoints that well
extend to the left of 40 (the right end is similar on average). On the other hand, the segment+
test contrasts use left endpoints that are concentrated around 80. From the mean structure as
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Figure 9: Data was generated from a four-jump example in with § = 1. After applying a four-step wild
binary segmentation algorithm, corresponding segment and segment+ test contrasts endpoints are displayed
in a scatterplot — each pair of points comes from the same simulation replicate. Two cases were considered
— when (left) 120 £ 5 was tested, and when (right) 80 = 5 was tested. (Left panel) In the former case, we
can see that segment+ left endpoints often extend to the viscinity of location 40, while counteraprt segment
test left endpoints are usually limited to the right of 80. (Right panel) In the latter case, the segment test
endpoints are usually closer to 40 and 80, and segment+ contrasts are usually closer, making for shorter left
and right segments.

described in 26] we know that it is beneficial to use longer left segments when detecting a mean
shift at location 80. As expected, the segment+ test has higher power.

Later steps (80+5) When testing 80 & 5, the second breakpoint location from the left, the
trend reverses. Both contrasts use endpoints are usually within (40,120), and the segment+
contrasts have closer-by endpoints. This is understandable because coordinates in 80 + 5 are
detected later in the algorithm, so it is impossible for there to be larger segments, since the earlier
segmentations limit this from happening. Because segment+ use strictly shorter segments, there
is a loss of power that occurs

H Assessing model assumptions

(SH: This was originally kind of a stretch goal, but now I see how it is quite important for
this paper. but I would want to show how close/far the data is from (i.i.d.) Gaussianity, and
what effect it has on inference, and how to remedy it Start with: ‘Data is never perfectly i.i.d.
Gaussian. We discuss a departure from it.’

e How far is estimated noise from the true noise?

e As a diagnostic (after the BIC-stopped model), talk about (or simulate) residuals from
this stopped model (optionally, KS test).

e Show QQ plots (of the left-out region)
e Produe 1 to 4 lag serial correlation tables.

e Compare the validity of WBS inference when you have 1-lag autocorrelated noise? Com-
pare the following three in a table, in terms of the nominal rejection probability (i.e.
proportion of p-values under «/4) under simple, lev = 0, 1,2 settings.

— Use the naive i.i.d. assumption uner real noise

— Use the naive i.i.d. assumption uner estimated noise
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— Use an estimated Toeplitz Sigma matrix?
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