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ABSTRACT
Magnetoencephalography (MEG) is an advanced imaging technique used to measure the magnetic fields
outside the human head produced by the electrical activity inside the brain. Various source localization
methods in MEG require the knowledge of the underlying active sources, which are identified by a priori.
Common methods used to estimate the number of sources include principal component analysis or infor-
mation criterionmethods, both of whichmake use of the eigenvalue distribution of the data, thus avoiding
solving the time-consuming inverse problem. Unfortunately, all these methods are very sensitive to the
signal-to-noise ratio (SNR), as examining the sample extreme eigenvalues does not necessarily reflect the
perturbation of the population ones. To uncover the unknown sources from the very noisy MEG data, we
introduce a framework, referred to as the intrinsic dimensionality (ID) of the optimal transformation for the
SNR rescaling functional. It is defined as the number of the spiked population eigenvalues of the associated
transformed data matrix. It is shown that the ID yields a more reasonable estimate for the number of
sources than its sample counterparts, especially when the SNR is small. By means of examples, we illustrate
that the new method is able to capture the number of signal sources in MEG that can escape PCA or other
information criterion-based methods. Supplementary materials for this article are available online.

1. Introduction

Thousands of synchronized neurons give rise to macroscopic
oscillations, which can be observed in the electroencephalogram
(EEG). Meanwhile, the electric currents generated by those syn-
chronized neurons induce extremely weak magnetic fields (10–
100 femto-Tesla). Measuring magnetic fields of this magnitude
is a great challenge. The recent development of superconduct-
ing quantum interference devices (SQUIDs) makes it possible
to detect these extremely weak magnetic signals. Magnetoen-
cephalography (MEG) is a noninvasive imaging technique that
measures the magnetic fields produced by neuronal activity in
the brain, withmany coils placed around the head (Cohen 1968).
The fundamental difference between MEG and other func-
tional imaging modalities, such as positron emission tomogra-
phy (PET) or functional magnetic resonance imaging (fMRI),
is that the neuronal activity is measured directly by MEG, in
the sense that the signal it measures is a direct consequence of
brain activity, but indirectly by PET or fMRI, whichmeasure the
blood flow changes or other vascular phenomena. Because of its
impressive temporal resolution (better than 1 ms, compared to
1 sec for fMRI, or up to 1 min for PET), MEG measures brain
activity without any time delay, and thismakesMEG a near opti-
mal tool for studying the brain.

In MEG, the sources are mainly the electric currents gen-
erated by the activated neurons in the human cortex, and they
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are usually formulated as mathematical point current dipoles. A
brief description of the mathematical modeling and the corre-
sponding forward and inverse problems in MEG can be found
in the supplementary materials. The main challenge posed by
MEG is to determine the location of electrical activity within the
brain from the induced magnetic fields around the skull. This is
a typical ill-posed problem since (i) one can always construct a
large number of nontrivial dipoles that have a vanishing mag-
netic field outside the head. (ii) the identification process is usu-
ally unstable, that is, a small amount of noise in themeasurement
data can lead to enormous errors in the estimates. To tackle the
ill-posedness of the inverse MEG problem, a sequence of reg-
ularization algorithms have been extensively exploited during
the past two decades: see Hamalainen and Ilmoniemi (1994),
Uutela, Hamalainen, and Somersalo (1999), Vanni and Uutela
(2000), Pulvermuller, Shtyrov, and Ilmoniemi (2003), Mattout
et al. (2006), and references therein. However, almost all of them
are highly restricted by the predefined number of dipoles or
the prior distribution assumed in the data (Schmidt, George,
and Wood 1999). A fundamental challenge here is that it is
almost impossible to pick up how many active dipoles will be
needed in advance. Other approaches, also known as “imaging
methods,” represented by the multiple signal classification
(MUSIC; see, e.g., Mosher and Leahy 1998), attempt to estimate
the number of dipoles (less than 10) by separating the signal
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subspace and the noise subspace, that is, they decompose the
eigenvalues of the sample space of the MEG data into the eigen-
values of the signal subspace and noise subspace, following the
assumption that the lead field vector at each source location is
orthogonal to the noise. By assuming all dipoles are uncorre-
lated, the beamformer-inspired approaches (Van Veen, Joseph,
and Hecox 1992) solve a more “tangent” problem, that is, avoid-
ing the need to estimate the prior. Beamformers are essentially
spatial filters that suppress the dipoles in a number of selected
locations, blocking out the signal originated elsewhere. Most
recently, several works based on time-varying dipoles (Yao and
Eddy 2014) have been proposed, where it is suggested that the
number of varying dipoles is estimated in a dynamic fashion.

Though the underlying number of dipoles is generally
unknown and thus impossible to verify, there has been increas-
ing demand for a reliable estimation. Due to the nature of the
inverse problem, estimating the number of dipoles in MEG can
pose unconventional challenges. The same type of problem can
be traced back to the problem of detecting the number of signal
sources in the presence of noise, or its intrinsic dimensionality, in
a multiple channels of time series (Ligget 1973; Schmidt 1986).
The heuristics are as follows: if the noise is Gaussian, then the
number of the dipoles is related to the multiplicity of the small-
est eigenvalues of the sample covariance matrix, and in this case
the key to estimating the number of dipoles is to find a thresh-
old that separates the spiked eigenvalues, the extreme eigenval-
ues, from the bulk eigenvalues of sample covariance matrix, or,
more generally, to perform a sequence of hypothesis tests on the
same eigenvalues against the threshold (Bartlett 1954; Lawley
1956). Centering aroundmaking use of the distribution of eigen-
values of the sample covariance matrix, there are two schools
of thoughts in the literature: (1) pursuing the number of signal
sources from principal component analysis (PCA), independent
component analysis (ICA) (Green et al. 2001) and factor anal-
ysis (Malinowski 1977a, b); (2) estimating the solution based
on certain information criterion, such as Akaike information
criterion (AIC) and minimum description length (MDL). This
being said, separating the spiked eigenvalues from the sample
covariance does not necessarily give an accurate estimation for
the number of sources. The reasons are two-fold: (1) the sam-
ple eigenvalues are not consistent estimators of their population
counterparts, and hence any test based on sample eigenvalues
inevitably reveals considerable deviation from the truth, and (2)
the unknown noise structure, which, although it can be esti-
mated, amplifies the difficulty of estimating the transition func-
tion (to be defined in Section 2) between the sample eigenvalues
and the population eigenvalues. The first one is well illustrated
by considering an extreme case (see Bai 1999 for details): assum-
ing the population covariance σ 2Ip with finite fourth moment
and p/n → γ ∈ (0, 1) (n is the size of samples), then the empir-
ical spectral distribution of the sample covariance converges to
the Marc̆enko–Pastur law Fγ (dx)

Fγ (dx) = 1
2πxγ σ 2

√
(bγ − x)(x − aγ )dx, aγ ≤ x ≤ bγ ,

where aγ = σ 2(1 − √
γ )2, bγ = σ 2(1 + √

γ )2. This means,
with high probability, the k-largest eigenvalues (or k-smallest
eigenvalues) of the sample covariance matrix converge to the

spectrum bounds aγ (or bγ ), rather than the population eigen-
value σ 2 in the null case. The second reason outlined above
implies that the inverse of transition function does not gener-
ally work, unless there are only a few distinct spiked eigenvalues,
which is usually the case in real applications (inMEG, we expect
only a few spiked eigenvalues). A crucial problem, particularly
in MEG, is that the magnitude of the unknown noise aggregates
the estimation error of the population spikes under the non-
Gaussian model, which fails most of existing methods, such as
PCA. This calls for a reexamination of the effect caused on the
sample extreme eigenvalues by perturbation on the population
covariancematrix, the essence ofwhich involves developing new
estimates for the population eigenvalues and a justification for its
consistency in Gaussian and non-Gaussian spiked model.

The goal of this article is to bridge the estimation of the num-
ber of sources and the behavior of the spiked eigenvalues, on
the population level. The remainder of the article is structured
as follows: in Section 2, we demonstrate how the problem can
be transformed into one of estimating the extreme eigenval-
ues of the population matrix, instead of directly investigating
the limiting behavior of sample spikes. This differentiates our
method from other thresholding methods. The relation of the
spiked sample eigenvalues and the spiked population eigenval-
ues is then presented. A new estimator for the population spiked
eigenvalues is given, with an algorithm estimating the intrinsic
dimensionality under an optimal signal-to-noise ratio transfor-
mation. In Section 3, by means of simulated examples and the
empty-room data, we illustrate that our method is able to cap-
ture the number of sources under various SNRs, with hundreds
of channels or more. We also compare our approach with other
methods. Finally, a real MEG dataset is tested in Section 4, and a
short discussion and concluding remarks are given in Section 5.

2. Methodology

In a typicalMEG experiment, themagnetic fieldB is sampled on
a finite number (sayK) of sensors, with each onemeasuring one
component (radial direction) of the magnetic field, namely, Bz;
if e = (0, 0, 1), a unit vector, is used to findBz, the z component
of B can be obtained by Bz = B · e. Nevertheless, for simplicity,
we will ignore the subscript z in Bz from now on. Therefore, the
general framework of the MEG model becomes

Y(t ) = B(t ) + e(t ) = GQ(t ) + e(t ), (1)

where Y(t ) = [Y1(t ),Y2(t ), . . . ,YK (t )]� is the K × 1 vector
representing the observed magnetic field by K sensors at time
t . The design matrix G = [G1,G2, . . . ,GN] is of size K ×
3N matrix with each submatrix Gi of K × 3 being the corre-
sponding magnetic field observed across sensors generated by
a unit dipole at a given location ri(1 ≤ i ≤ N). The Q(t ) =
[Q�

1 (t ),Q�
2 (t ), . . . ,Q�

N (t )]� is the time course vector repre-
senting the strength and moments of all N dipoles, with each
submatrix Qi(t ) of 3 × 1 being the time course of ith dipole at
time t . Considering the entire time course of Q(t ), we denote
the covariance matrix of B(t ) (or GQ(t )) as Rs. The vector
e(t ) = [e1(t ), e2(t ), . . . , eK (t )]� accounts for the presence of
additive noise in the MEG data.
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2.1. Optimal Signal-to-Noise Ratio (SNR) and Intrinsic
Dimensionality (ID)

Before discussing the method of determining the number of
sources in MEG, introduce a so-called SNR rescaling functional
IR,Rn , such that for any matrix X ∈ R

K×K

IR,Rn (X) = ‖X�RX‖2
‖X�RnX‖2 , (2)

where R and Rn are the covariance matrix of the observed data
Y(t ) and noise e(t ), respectively, and ‖X‖2 =

√
λmax(X�X) is a

standard operation norm for amatrixX ∈ R
K×K . Such a norm is

invariant with respect to any unitarymatrix transformation, that
is, for any unitary matrixU1,U2 the equality ‖U1XU2‖2 = ‖X‖2
holds. Therefore, the transformation can be employed for the
signal and noise simultaneously. As a ratio between the noise
and signal, a high value of IR,Rn means a small effect caused by
noise.

The following theorem finds an optimal transformation for
which the SNR rescaling functional IR,Rn attains its maximum.
The proof can be found in the Appendix.

Theorem 1. Suppose that matrix R is nonsingular. Let �n and
�n be eigenvectors and eigenvalues of noise covariance Rn. Let
λmax > 0 be the maximal eigenvalue of the matrix Radj, where

Radj = W�
n RWn, Wn = �n�

−1/2
n . (3)

Then

max
X∈RK×K

IR,Rn (X) = λmax,

and

Xopt
1 = Wn, (4)

Xopt
2 = �n�

−1/2
n �adj (5)

are two maximums of functional IR,Rn (·), that is, IR,Rn (X
opt
i ) =

λmax for i = 1, 2. Here, the columns ofmatrix�adj are the eigen-
vectors of Radj.

If we assume the signal and noise are uncorrelated as in (1),
then the covariance matrix R simply breaks down to

R = Rs + Rn,

where Rs is the signal covariance matrix. Suppose we know the
noise covariance matrix Rn, then a whitening process can be
applied to transform R and Rn

W�
n RWn = W�

n RsWn + I, (6)

whereWn is defined in (3).
Theorem 1 implies that, withX = Xopt

2 defined in (5), we can
rewrite

X�RX = �adj = diag(λ1, λ2, . . . , λM, λM+1, . . . , λK )

by noting that Radj = W�
n RWn and the fact that

��
adjRadj�adj = �adj.

By Equation (6), it is not difficult to show that λk ≥ 1, k =
1, . . . ,K. Denote by M the number of nonzero eigenvalues of
Rs. Then, we can split {λk}Kk=1 into two groups: let {λk}Mk=1 be

the first group (we call it the spiked group), where all eigenval-
ues are strictly larger than the unit; the second group, which is
called the bulk group, contains only the unit eigenvalues, that
is, {λk ≡ 1}Kk=M+1. Obviously, the spiked group can be regarded
as the contribution of the associated eigenvalues of both Rs and
Rn, whereas the ones in the bulk group originate from the eigen-
values ofRn after the whitening process. Therefore, the intrinsic
dimensionality (ID) of the data can be determined by counting
the number of distinct eigenvalues of Radj in the spiked group.
In the next subsection, we confirm that the ID is an invariant,
therefore, it can be used to estimate the number of sources in
the MEG problem. However, with limited knowledge of Rn, one
would mainly rely on an estimate of Rn, say R̂n. The challenge
is that the distribution of the eigenvalues of R̂adj are no longer
tractable, in the sense that neither does the thresholding apply
nor are the sample eigenvalues of R̂adj good estimates of their
population counterparts. Rather than using the spiked sample
eigenvalues, we propose a new method to estimate the spiked
population eigenvalues of Radj, based on which the inference of
the dimensionality is made (see Theorem 3 in Section 2.2).

Definition 1. Xopt
i (i = 1, 2) defined in (4) and (5), are called

optimal transformations (Xopt
1 and Xopt

2 are essentially equiv-
alent; we will be only using Xopt

1 ) for the SNR-functional (2).
Moreover,Radj = (Xopt

1 )�RXopt
1 ≡ W�

n RWn is called an optimal
associated covariance matrix (with respect to the optimal trans-
formation Xopt

1 ). Accordingly, R̂adj = Ŵ�
n R̂Ŵn, with an esti-

mated R̂ and Ŵn (named as a quasi-optimal transformation),
is called a quasi-optimal associated covariance matrix.

An the end of this subsection, we indicate that it is rea-
sonable to use the quasi-optimal associated covariance matrix
R̂adj instead of the optimal one Radj, if a good noise estimation
has been captured. Theorem 2 (its proof can be found in the
Appendix) also implies that the transformation used inTheorem
1 is a stable operator.

Theorem 2. Let R̂n be an ω-estimator of Rn such that

‖�̂n − �n‖ ≤ ω, ‖�̂−1/2
n − �−1/2

n ‖ ≤ ω, (7)

where {�̂n, �̂n} and {�n,�n} are eigenvectors and eigenvalues
of R̂n and Rn, respectively. ‖ · ‖ denotes any type of norm of a
matrix.Moreover, assume that there exists a constantC such that
‖�−1/2

n ‖ ≤ C. Then

‖R̂adj − Radj‖ = O(ω).

2.2. Determining the Intrinsic Dimensionality (ID)

In this section, we present the details to determine the ID from
the quasi-optimal associated covariancematrix R̂adj.We indicate
that, from this section, instead of using the original data Y(t ),
we will only deal with the data after the quasi-optimal transfor-
mation, introduced in the previous section, that is, the new data
structure Z(t ) = Ŵ�

n Y(t ).



508 Z. YAO ET AL.

... Definition and Assumption

Definition 2. Let VK be a population covariance matrix of
dimension K and assume that the empirical spectral distribu-
tion (ESD) HT of VK tends to a proper probability distribution
H , called the limiting spectral distribution (LSD), as the dimen-
sion K → ∞. An eigenvalue λ of VK is called a spiked eigen-
value if λ �∈ �H , where �H denotes the support ofH . Otherwise,
it is called a bulk eigenvalue.

Remark: To avoid possible confusion when the eigenvalues vary
with K, this definition can be modified as d(λ(VK ), �H ) > δ0
for spiked eigenvalues and otherwise for bulk eigenvalues, where
δ0 is a prechosen positive constant and d(·) is a distance func-
tion, that is, d(λ(VK ), �H ) = infx∈λ(VK ),y∈�H |x − y|.

We generate the spiked covariance model in Bai and Ding
(2012). Define Z(1),Z(2), . . . ,Z(T ) iid sample vectors drawn
from the K-dimensional population with mean vector μ and
covariance matrix

VK = O�diag(λ1Im1 , λ2Im2 , . . . , λLImL , IK−M )O, (8)

with unit bulk eigenvalues and L distinct spiked eigen-
values {λl}Ll=1, with respective multiplicities m1, . . . ,mL,
satisfying λ1 > λ2 > · · · > λL. Let M be a fixed constant.
Denote

∑L
l=1 ml = M < K, and assume finite fourth moment

E‖Z(t )‖4 < ∞ (1 ≤ t ≤ T). Here Iml is an identity matrix of
sizeml . Without losing generality, we assume μ = 0.

Definition 3. The number L will be called the intrinsic
dimensionality.

The intrinsic dimensionality L will be determined by Algo-
rithm 1. Here, throughout, we assume that
(A1) There exists an orthogonal K-dimensional matrix O

such that Z(t ) = OZ(t ), t = 1, . . . ,T are the sample
vectors and sequence Z(t ) can be split as Z(t ) =
(Z�

M(t ),Z�
K−M(t ))� according to their dimensions

M and K − M. Moreover, ZM(t ) and ZK−M(t ) are
independent.

(A2) K and T are related so that K/T → γ ∈ (0, 1) as T →
∞.

(A3) λM − λM+1 >
√
K/T , that is, the gap between the spiked

and bulk eigenvalues is larger than a critical value
√
K/T .

(A4) There exists a positive number ε0 such that minL−1
i=1 (λi −

λi+1) ≥ ε0.
Assumption (A1) guarantees the extension of the spiked

covariance model in Bai and Ding (2012) to the model with a
nonblock structure (i.e., a dense VK). This is the well-known
“source condition” in regularization theory. Assumption (A3)
is needed, since the BBP phase transition in the spiked popu-
lation model exists, which says that only when the population
spike is larger than a critical value, will its corresponding sample
counterpart have a different asymptotic behavior from the null
case (see Baik, BenArous, and Péché (2005) for details). In prac-
tice, the value ofM will be estimated by Algorithm 3. Assump-
tion (A4) sets the lower bound of theminimum eigen-gap of the
spiked population eigenvalues.

... Estimating Spiked Eigenvalues
To estimate the spiked eigenvalue of the population matrix,
define

sT,k = γT − 1
λ̂T,k

+ 1
T

∑
j �∈Jl

1
λ̂T, j − λ̂T,k

, k ∈ Jl, (9)

where γT = K/T , λ̂T,k (k = 1, . . . ,K) is the kth sample spiked
eigenvalues of the quasi-optimal associated covariance matrix
R̂adj = Ŵ�

n R̂Ŵn, and Jl = {sl + 1, . . . , sl + ml} is denoted as
the index set of the lth population spiked eigenvalue λl , where
sl = ∑l−1

i=1 |Ji|.
As we can see in (9), the value of sT,k consists of two parts.

The first part is the contribution of the kth eigenvalue of the
sample matrix R̂adj with the factor γT − 1, and the second part
is the contribution of the remaining eigenvalues with the factor
of the sample size T .

The following theorem provides an estimator of the eigenval-
ues of a population covariance matrix from the sample covari-
ance matrix, which helps us to estimate the ID.

Theorem 3 (Theorem 3.1, Bai and Ding 2012). If λl is a distant
population spike with multiplicityml , then, under the existence
of the fourth moment of underlying distributions,

− 1/sT,k → λl (10)

as T → ∞ almost surely, for any k ∈ Jl .

Note that the limiting property of the estimators sT,k relies
on the true set Jl . However, the exact set of Jl is not accessible in
most of the cases. We will change the condition of summation
in (9) by replacing { j �∈ Jl} with the set { j : |λ̂T, j − λ̂T,k| > ε′}.
Moreover, theoretically, for any k ∈ Jl , −1/sT,k can be consid-
ered as an estimator of the spiked population eigenvalue λl . In
this article, using the “averaging” technique, instead of choosing
one of {sT,k} we use the following “averaged” one

s(l)T = γT − 1
λ̂

(l)
T

+ 1
T

·
∑

{ j: |λ̂T, j−λ̂
(l)
T |>ε′}

1
λ̂T, j − λ̂

(l)
T

(11)

with

Jl = { j : |λ̂T, j − λ̂T,kl | ≤ ε, kl < j ≤ K}, J0 = ∅, (12)

kl = 1 +
l−1∑
i=1

|Ji|, λ̂
(l)
T = 1

|Jl |
∑
k∈Jl

λ̂T,k, (13)

where ε′ in (11) and ε in (12) are two thresholds. Note that ε′

can be any arbitrary small number decided by users. This is to
remove some eigenvalues closest to λ̂T,k in (9) (or λ̂

(l)
T in (13)).

Thismodificationwill not affect the consistency of the estimator,
as stated in Bai and Ding (2012). We set ε′ ≡ 1% · λ̂T,1 through-
out this article. The threshold ε, however, is a tuning param-
eter. It controls the radius of the sample eigenvalues necessary
for inclusion to estimate the corresponding spiked population
eigenvalue.

It is not difficult to show that −1/s(l)T → λl as T → ∞, and
it is a better estimator in comparison with sT,k (at least from the
numerical point of view, see a demonstration at the end of this
subsection).
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We first present a high-level description of the algorithm—
Algorithm 1. The element of noise estimation in Step 2 will be
briefly discussed in the next section. Readers may refer to the
supplementarymaterials formore details. Apart from the spiked
population eigenvalues, the bulk population eigenvalues will be
estimated simultaneously with tuning parameter δ. The thresh-
olds of δ and ε in Step 4 are to be determined by a self-exploited
procedure. This will be explained through Algorithms 2 and 3.
A complete integration of Algorithms 1–3 can be found in the
supplementary materials.

Algorithm 1 A high-level algorithm determining the ID
1. Obtain the quasi-optimal associated covariance matrix

R̂adj from data covariance R̂. If the data have a negligible
noise, set R̂adj = R̂ and go to Step 3; otherwise, go to the
next step.

2. Given any estimated R̂n, calculate the quasi-optimal
transformation Ŵn and obtain the corresponding quasi-
optimal associated covariance matrix R̂adj.

3. Calculate all eigenvalues of R̂adj: {λ̂T,k}Kk=1 and sort them
in descending order.

4. Choose appropriate thresholds δ and ε.
5. Estimate the spiked population eigenvalues {λ̃i}Li=1 using

(10)–(13) in Theorem 3 from the sample spiked eigenval-
ues {λ̂T,k : λ̂T,k > δ, k = 1, . . . ,K}.

Output: {λ̃i}Li=1 are the estimated population spiked eigenvalues
and the ID equals L.

... Determining Optimal Thresholds δ and ε

Theoretically, the thresholds δ and ε can be learned by the fol-
lowing optimization problem:

{δ, ε} = argmin
δ,ε

∥∥∥∥∥ 1
V

V∑
i=1

Zi(δ, ε) − Z̄

∥∥∥∥∥
2

F

, (14)

where Z = [Z(1), . . . ,Z(T )] denotes the transformed MEG
data, ‖ · ‖F means the Frobenius norm of a matrix, and Zi(δ, ε)

is a random sample distributed with the mean vector Z̄ =
1
T

∑T
t=1 Z(t ) and covariance matrix V̂K by the estimated spiked

population eigenvalues λ̃l ’s from Algorithm 1. Alternatively,
one may use V̂′

K = Ô�V̂KÔ, where Ô comes from the spectral
decomposition of the sample covariance matrix R̂ = Ô��Ô. It
is enough to use V̂K for optimizing ε in (14), since V̂K contains
nearly all information about the eigenvalues. Note that the esti-
mated bulk population eigenvalues can be set as the average of
the sample bulk eigenvalues, that is,

λ̃0 = 1
|�|

∑
λ̂T,k∈�

λ̂T,k, (15)

where set� := {λ̂T,k : λ̂T,k ≤ δ, k = 1, . . . ,K} contains all bulk
sample eigenvalues of R̂adj and |�| denotes as the cardinality of
set �.

A detailed implementation of learning process (14) is pre-
sented in Algorithms 2 and 3, where Algorithm 2 presents an
iterative method of selecting the optimal threshold ε, and Algo-
rithm 3 shows an efficient approach for choosing an appropriate
threshold δ.

Algorithm 2 Determining the optimal threshold ε

Input: Set the iteration index j = 1 and provide an appropriate
threshold δ and an initial threshold ε = ε0.

1. Estimated the spiked population eigenvalues {λ̃i}Li=1
from the spiked sample eigenvalues {λ̂T,k : λ̂T,k > δ, k =
1, . . . ,K} with threshold ε.

2. Generate V random samples {Zi}Vi=1 distributed with the
mean vector Z̄ and covariancematrix V̂K by the estimated
spiked population eigenvalues {λ̃i}Li=1.

3. Compute the relative discrepancy � j =
‖ 1
V

∑V
i=1 Zi(δ, ε) − Z̄‖F/‖Z̄‖F .

4. If ε > λ̂T,1 − λ̂T,K , output the result; otherwise, update
ε = ε + ε0, j = j + 1 and go back to Step 1.

Output: The optimal threshold ε̃ is the one with the minimum
relative discrepancy � j.

Remark: (a) In Algorithm 2, ε0 can be any appropriate value.
Obviously, the smaller ε0, the better estimated ε. However, small
ε0 leads to more iterations in the algorithm. If there are no other
good choices, we suggest using ε0 = λ̂T,K , the smallest sample
eigenvalue. (b) By (12), ε is the radius of set Jl , which determines
the estimation of population spiked eigenvalue λ̂T,l . The stop-
ping criteria in Step 4 describes the maximal possible value of
the radius of Jl . ε = λ̂T,1 − λ̂T,K means the extreme case, when
there is only one spiked eigenvalue and one bulk eigenvalue. All
sample eigenvalues except the smallest one are used to estimate
the population spiked eigenvalue. If the data covariance matrix
has several distinguishable spiked eigenvalues, we may use the
alternative stopping criteria “ε > p · λ̂T,1,” where p should be
chosen from case to case. Usually, p should be greater than 30%.
Obviously, the smaller p is, the fewer iterations it requires. Note
that we have used “ε > 40% · λ̂T,1.” The two criteria provide the
same result in our simulation and real data application.

Algorithm 3 Choosing an appropriate threshold δ

1. Set index i = K and δ = λ̂T,K .
2. If condition λ̂T,i−1 − λ̂T,i < ε0/2 holds, go to the next

step; otherwise, output the result.
3. Set i = i − 1 and δ = λ̂T,i. If i < 2, output the error

information “The spiked eigenvalues model cannot be
employed;” otherwise, go back to Step 2.

Output: δ̃ = δ is an appropriate threshold.

Remark: In Algorithm 3, the initial value of δ is suggested to be
λ̂T,K . The algorithm separates the bulk and spiked eigenvalues
and therefore it is an approach to estimate the number of spiked
eigenvaluesM.

... A Demonstration of Algorithms , , and 
We first generate a random (Gaussian) sample matrix (300 ×
6000, that is, K = 300 and T = 6000) with a mean zero and a
covariance matrix

V300 = diag(λ1I20, λ2I10, λ3I40, λ4I30, I200), (16)
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Figure . A demonstration of Algorithms – with different distributions in Step 
of Algorithm . “◦” represents the sample eigenvalues and “�” represents the true
spiked population eigenvalues. “×,” “+,” and “∗”—the estimated spiked popula-
tion eigenvalues with normal distribution, uniform distribution, and t-distribution,
respectively.

where the λ1 = 20, λ2 = 17, λ3 = 10, λ4 = 7 are the four true
spiked population eigenvalues. Then, the eigenvalues of the
sample covariance matrix R̂ (in “◦”) are displayed in Figure 1.
In the same figure, the exact spiked population eigenvalues (in
“�”) and the estimated spiked population eigenvalues (in “×,”
“+,” and “∗”) by different sampling distributions in Step 2 of
Algorithm 2 are also highlighted. The learning process of select-
ing the optimal threshold ε with the initial guess ε0 = 10% · λ̂T,1
is displayed in Figure 2 (the Gaussian distribution is used in
Step 2 of Algorithm 2). The result of the learning process is the
histogram (c) with the smallest relative discrepancy, that is, the

optimal threshold ε̃ = 3 · ε0 = 30% · λ̂T,1. The result also sug-
gests that the Algorithm 1 recovers the true population spiked
eigenvalues well in terms of number and magnitude; specifi-
cally, the optimal estimated spiked population eigenvalues are
(20.42, 16.85, 10.53, 7.9), which implies that the number of
spiked eigenvalues equals four.

However, there could be certain variation in the estimated
population spiked eigenvalues with different sampling distribu-
tions used in tuning ε inAlgorithm2.Weobserve that in Table 1,
with different initial guesses ε0 in the first step and distributions
in Step 2 of Algorithm 2, we have obtained only slightly differ-
ent spiked population eigenvalues. However, the number of esti-
mated spiked population eigenvalues is very stable with respect
to these parameters. The supplementary materials contain more
numerical experiments, including several replicates of the same
setup, and a case of eight dipoles. In all experiments, the num-
ber of estimated spiked population eigenvalues is strictly equal
to the truth, although the actual estimated spiked eigenvalues
may differ due to the randomness. Therefore, it is reasonable to
use it for estimating the sources. Hence, we propose that
(A5) The number of sources in MEG equals the intrinsic

dimensionality of the data.

2.3. Estimation of Noise Covariance

Consider the transform Y(t ) �→ 1√
T
�nY(t ), used to suppress

the effect of noise from the model (1). If �n = I, the above
transformation is the so-called brute-force transformation (BT).
Denote the concentrationmatrix�n = R−1

n . If we have a reason-
ably good estimator �̂n (or R̂n), then Y(t ) �→ 1√

T
�̂

1/2
n Y(t ); this

Figure . The learning process of selecting the optimal threshold ε with the initial guess ε0 = 10% · λ̂T,1 and stopping criteria ε > 40% · λ̂T,1 . (a) Results after the first
iteration.�1 = 1.67. (b) Results after the second iteration.�2 = 1.42. (c) Results after the third iteration.�3 = 1.13. (d) Results after the forth iteration.�4 = 1.26. In each
histogram, all the double arrows remain the same length (except the last one, since all remaining eigenvalues belong to a class with a smaller threshold), which is the
value of the threshold ε in the current iteration. Moreover, the number above each double arrow labels the group of the corresponding spiked eigenvalue, which contains
the sample eigenvalues within a distance of the double arrow length. “×”with labels 1′ , 2′ , . . . representing the estimated population spiked eigenvalues, corresponding
groups with labels , , . . . .
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Table . A demonstration of Algorithm  with different initial guesses ε0 and sampling distributions used in Step  of Algorithm . Each vector with four elements in the
table denotes the estimated spiked population eigenvalues (SPEs) with the corresponding initial guess ε0 and the distribution.

Estimated SPEs Gaussian Uniform t-distribution

ε0 = 5% · λ̂T,1 (.,.,.,.) (.,.,.,.) (.,.,.,.)
ε0 = 10% · λ̂T,1 (.,.,.,.) (.,.,.,.) (.,.,.,.)
ε0 = 15% · λ̂T,1 (.,.,.,.) (.,.,.,.) (.,.,.,.)

is the whitening transformation (WT) that we have used in (6).
This being said, challenges remain on how to obtain a good �̂n.
Our heuristic is that if we can estimate Rn reasonably well, par-
ticularly the diagonal of the Rn, the resultant denoised covari-
ance R̂adj can be used as a good candidate for finding spiked
eigenvalues. In this article, we mainly consider �̂n = R̂−1

n , given
an estimate R̂n. Note that the estimationmight vary case by case;
only WT is considered. We are now in position to discuss three
algorithms of noise estimation accommodating the three kinds
of correlations that possibly exist in the data: inner-sensor, inter-
sensor, and the combined one.

The first noise estimation algorithm to use is Fourier trans-
form. The idea is to estimate the noise variance on its frequency
domain while the MEG data is sampled in the time domain.
The second algorithm is based on residual analysis (Roger and
Arnold 1996). We estimate the inverse of noise variance instead
of the original one. The last algorithm aims to estimate the noise
covariance by thresholding methods (Bickel and Levina 2008),
which has been recently employed on MEG data by Zhang
and Su (2015). Our updated approach results in a nondiago-
nal noise covariance matrix. A detailed description of the above
three noise estimation algorithms can be found in supplemen-
tary materials.

2.4. AIC, MDL, andMalinowski’s Method

The information-theoretical criteria AIC (Wax and Kailath
1995) and MDL (Schwarz 1978) will be used for comparison.
Determining the number of signals is equivalent to finding the
number of free parameters in the model (1). For a fair compari-
son, we will evaluate AIC and MDL based on the eigenvalues of
the R̂adj,

AIC(N) = −2 log

⎛
⎝ ∏K

j=N+1 λ̂
1

K−N
T, j

1
K−N

∏L
j=N+1 λ̂T, j

⎞
⎠

(K−N)T

+ 2N(2K − N)

MDL(N) = − log

⎛
⎝ ∏L

j=N+1 λ̂
1

K−N
T, j

1
K−N

∏K
j=N+1 λ̂T, j

⎞
⎠

(K−N)T

+ 1
2
N(2K − N) logT,

where N is the number of free parameters. In our case, N refers
to the number of signal sources. If the noise is independent and
identically distributed, the problemof finding the number of sig-
nal sources can be achieved by minimizing,

Number of sources = argmin
N

AIC(N)

Number of sources = argmin
N

MDL(N).

Malinowski’s method (Malinowski 1977b), a popular factor
analysis method, is also used here for comparison, where an
empirical indicator function (EIF) (Malinowski 1977a) is intro-
duced as a criterion

EIF(N) =
(∑K

j=N+1 λ̂T, j

)1/2

T 1/2 (K − N)3/2

and the number of sources is estimated by

Number of sources = argmin
N

EIF(N).

Each of the AIC, MDL and EIF methods tend to overes-
timate the number of signal sources, since they rely on the
independence and normality assumption. In Section 3, their
performances are compared with our method.

3. Simulation Study

3.1. Computer Simulation

Before running our algorithms on a real dataset, we tested a sim-
plified case. In this example, we created a channel-level MEG
data using a dipole configuration with four dipoles at specified
locations in the head. The location and moments parameters of
these simulated dipoles are summarized in Table 2. We simu-
lated 128 electrodes (magnetometers) by randomly placing them
on the upper part of the unit spherewith a radius of 100mm.The
head was modeled by a concentric three-sphere volume con-
ductor. The radii of three spheres in the conductor is, respec-
tively, 88, 92, and 100mm, with its corresponding conductivity
1, 1/80, 1. The geometrical information and the simulated sig-
nal are visualized in Figure 3. Note that the associated param-
eters for each dipole, such as the locations, did not vary during
the simulation. In other words, each dipole contributed a dif-
ferent but constant signal at the same sensor. However, to work
with time-varying dipoles, we applied a different frequency to
the magnitudes of each dipole so that we could create a distinct
time course for each dipole. The time course of each dipole with

Table . Illustration of dipole simulation. The location of each dipole (a total of four)
is expressed in terms of spherical coordinates (r, θ, φ), where r is radial distance, θ
is inclination, and φ is azimuth.m1 andm2 are the dipole moment parameters. s is
the strength parameter of a dipole.

Dipole index    

r (mm)   −  
φ . . − . − .
θ  . − . .
m1   . 
m2  . . .
s (mA)  . . 
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Figure . The sensor map and the simulated signal. (a) The simulated MEG sensors on the skull. (b) The simulatedmagnetic signal generated by the four dipoles at various
sensors (vertical view).

unique frequency was modeled by either a sine or cosine func-
tion, as follows:

sin
(

2π
1/10

t
)

, cos
(

2π
1/15

t
)

, sin
(

2π
1/20

t − π

4

)
,

cos
(

2π
1/30

t − π

4

)
,

where 1 ≤ t ≤ T . The pure magnetic signal produced by each
dipole at each sensor was calculated using the Biot–Savart equa-
tion. The total length (T) of each trial is 1000 timesteps. The
magnetometer data were obtained by adding up the contribu-
tions fromeach dipole and the simulated noise across all sensors.
To work with different noise levels, we control

SNR = σ 2
signal/σ

2
noise,

whereσ 2
signal andσ 2

noise are the variance of the signal and the noise
within each trial, respectively. Here, we essentially have X = I
and SNR = IR,Rn (I).

We generated five trials of the data, as follows. In each
trial, we calculated the variance of pure signal σ 2

signal,k
at each sensor k (1 ≤ k ≤ K). Then, for a given SNR
(1, 0.1, 0.01, 0.001, 0.0001), we set the corresponding variance
of noise by σ 2

noise,k = σ 2
signal,k/SNR. Furthermore, by adding

Gaussian noise components with the calculated variance to the
simulated data, we obtained the noised signal with an expected
SNR in each trail. Finally, we averaged the corresponding noised
signals over the five trials. Our method, based on the spiked
population eigenvalue (SPE), was tested against PCA and other
methods such as AIC, MDL, and EIF on this averaged data.

The performance of each method is summarized in Table 3,
in terms of the estimated number of dipoles. We can see that

SPE successfully recovers the correct number of dipoles by esti-
mating the number of spiked population eigenvalues, and it out-
performs all other methods regardless of the SNR levels. PCA
seems to pick up a number of dipoles which is more or less accu-
rate when the SNR is large, but it tends to detect more dipoles
for small SNRs. This phenomenon was expected, as the sam-
ple eigenvalues of the covariance matrix become increasingly
unreliable as a measure of the number of dipoles when the SNR
decreases. To illustrate this, we have zoomed in on the distribu-
tion of the sample eigenvalues (in “◦”) and the spiked population
eigenvalues (in “∗”) in Figure 4, for SNR = 1, 0.1, 0.01, 0.001,
where the sample eigenvalues of the covariance matrix R̂ and
the quasi-optimal transformed covariance matrix R̂adj are dis-
played, respectively. From Figure 4, we also see that PCA uses
the sample eigenvalues that become closer and closer in mag-
nitude, either from R̂ or R̂adj, and thus it tends to overestimate
the number of dipoles. The spiked population eigenvalues of
R̂adj estimated by SPE are superimposed, accordingly. It is sug-
gested that, as the SNR decreases, the role of spiked population
eigenvalues becomes dramatically more significant. In particu-
lar, when the SNR= 0.001, it is impossible to separate the sample
eigenvalues, while the SPE still finds the right number of dipoles.
Both the AIC and MDL largely overestimate the dipoles across
all SNRs, while the number of dipoles estimated by EIF shows
a reasonable range that covers the right number of dipoles but
still overestimates. More experiments under the same setup can
be found in the supplementary materials, to support the accu-
racy of the performance of SPE.

3.2. Hunting Unknown Signal in theMEG Room

For real MEG data on human subjects, we cannot clarify the
accuracy of our methods, since the truth of how many sources
may be present in the data is unknown. However, it would still

Table . Comparison of results fromPCA, AIC, MDL, and EIF and spiked population eigenvalues (SPE) with simulated data. The first column shows the signal-to-noise ratios.
The second to eighth columns are the estimated number of dipoles from the simulated data, where the true number of dipoles is four.

SNR PCA (././.) AIC MDL EIF SPE (FFT) SPE (RS) SPE (TH)

Noise=  // – – –   
 // – – –   
. // – – –   
. // – – –   
. // – – –   
. // – – –   
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Figure . Illustration of spiked eigenvalues estimated from the covariancematrix R̂ and the adjusted covariancematrix R̂adj at four different SNRs (totally 4 × 4 subplots).
Row : in each subplot (from left to right), the estimated spiked population eigenvalues are labeled as “∗”and the sample eigenvalues are labeled as “◦”at SNR of , ., .,
and .. The Rows – give the same information for R̂adj , estimated, respectively, by Fourier transform, residual analysis, and thresholding method.

be quite interesting to see the performance of our methods on
specific MEG data where we do know the truth. In the follow-
ing analysis, a dataset from an empty MEG room will be used,
that is, there is no subject in the MEG room. To our knowledge,
all the devices in the room that might cause electric potential
were turned off, but one device was constantly producing energy
around 60 Hz. The magnetic field distribution was recorded by
a 306-channel system. A small portion of the dataset, 5000 ms
long with only 102 channels (magnetometers), was used in our
analysis. Conservatively speaking, there was only one source (60
Hz), or at least one, with high frequency in our data. Our attempt
was to verify the existence of this high-frequency source, and to
estimate the number of active sources in the room, using our
proposed method on this data.

The magnitude of the raw data (Figure 5(a)) in the empty
room is in the range of −1.6 × 104 fT to 1.3 × 104 fT. We can
see that the white lines are equally distant in the modulus plot
(Figure 5(b)) of complex Fourier coefficients truncated to 2000
for raw data. This is a clear indication of a periodic source at
about 60 Hz in the data. To see if the number of sources that our
method detects includes the 60 Hz one, it is necessary for us to
run the same analysis in an environment when the 60 Hz is not
available. This means we need to filter the 60 Hz signal from
the raw data. In fact, we filtered all frequencies above 50 Hz.
Figure 6(a) shows the modulus plot of the Fourier coefficients
after filtering all frequencies above 50 Hz; all the white lines
associated with 60 Hz, 120 Hz, 180 Hz, and so on, disappear.
The image after filtering (shown in Figure 6(b)) is reconstructed

Figure . Raw data (empty room) and the modulus plot of the data after the Fourier transform. (a) The grayscale plot of the raw data of  ms. The horizontal axis is
time (milliseconds); the vertical axis is the channel number ( channels in total). (b) The modulus plot of the complex-valued Fourier coefficients of the raw data. The
horizontal axis is time (milliseconds); the vertical axis is frequency.
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Figure . Raw data of the empty room after filtering. (a) The modulus plot of the complex-valued Fourier coefficients after filtering all frequencies above  Hz truncated
to . The horizontal axis is time (milliseconds); the vertical axis is frequency. (b) The grayscale plot of the real part of inverse Fourier transform after filtering coefficients,
that is, the data after all coefficients above  Hz are zeroed out.

by the inverse Fourier transform of the real part after filtering.
We do not show the imaginary part of the filtered inverse trans-
formed data, because the figures are all nearly zero (less than
10 × 10−11 fT).

Note that the values of the measurements are very small in
the empty room, and this is particularly true for the data after
filtering. To avoid possible round-off error due to floating-point
arithmetic, we proceed to normalize the original covariance
matrix R̂ by

R̂∗ = φ(K) · R̂
‖R̂‖2

where K is the number of sensors (K = 128 in this experiment)
and function φ describes the contribution of the dimension to
the problem. In practice, one can choose φ(K) = 1,K,K2 (we
set φ(K) = K here).

Remark: (1) For the noise estimation, we use the corresponding
normalized data by Ynorm(t ) =

√
K/‖R̂‖2 · Y(t ). (2) When

the noise effect is negligible, no optimal SNR transformation is
needed since a bad noise estimation may even deteriorate the
accuracy of the result.

A summary of the performance of the different methods
(PCA, AIC, MDL, EIF, and SPE) applied on this data (before fil-
tering and after filtering) is shown in Table 4. Both the AIC and
MDL underestimate the number of signal sources, while the EIF
overestimates the number of signal sources. All are not able to
tell the difference in the number of sources before and after fil-
tering. Both PCA and SPE provide a reasonable estimate of the
number of sources: four before filtering and three after filtering
for PCA, three before filtering and two after filtering for SPE,
while PCA tends to pick upmore sources. This leads us to believe
that there is at least one (or even two) other active sources (< 50
Hz) that exist in the MEG room.

Table . Comparison of results from PCA, AIC, MDL, EIF, and SPE with the raw data
of the empty room.

PCA AIC MDL EIF SPE (FFT/RS/TH)

Before filtering    – 
After filtering  – – – 

4. Brain-Controlled Interfaces Data

The real data analysis reports results of finding varying brain
sources in a Brain-Controlled Interfaces (BCI) experiment. The
data consist of 28,000 ms recordings collected at the Center for
Advanced Brain Magnetic Source Imaging (CABMSI) at Pres-
byterian University Hospital in Pittsburgh. In the first part of
the experiment, the subjects were asked to imagine performing
the “center-out” task using the wrist (imaginedmovement task),
and in the second part, the subjects controlled a 2D cursor using
the wrist to perform the center-out task following a visual target
(overt movement task). The subject, as illustrated in Figure 7
(the time scale in the real experiment can be different), holds
the 2D cursor and waits for the cursor to go to the center. To
complete the trial successfully, the cursor stays at the center for
a short period until the peripheral target appears. The cursor
needs to move out to the target and stays there for another short
period. The target changes color when hit by the cursor, and dis-
appears when the holding period has finished.

The analysis is based on the raw MEG data from 102 mag-
netometers, without performing spatial filtering or smoothing.
The goal is to investigate the dynamics of the sources in the data.

Figure . A BCI experiment chart. The bottom trace shows the speed profile of
the cursor from a representative trial, and the dotted lines delimit the premove-
ment/planning period.
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Figure . Estimation of the number of signal sources in the BCI data. The horizontal axis is time (seconds); the vertical axis is number of estimated sources. (a) the noise
estimation is based on the Fourier transform; the blue curve shows the estimated number of sources for each moving window with a length of  ms; the estimated
number of sources at each equidistant partition ( ms) of the data is also shown as a diamond in red. (b) and (c) display the same information, but with the noise
estimated by the residual analysis and thresholding methods, respectively. (d) displays the same result with no noise estimation.

Figure 8 presents the evolution of the number of possible active
sources estimated during the experiment. As can be expected,
there tend to be more active sources during the imaginedmove-
ment task period than overt movement task period. This reveals
a possible delay of the observed magnetic signal reaching its
peak. This can also be partially explained by the fact that the sub-
ject was engaged in the imagined movement task by the experi-
menter, that is, catch trials were inserted. The data also serve to
show that there are still some active sources presented after the
movement, which might come from the holding period of the
subject preparing for the next task.

To illustrate the effect of partition of the data on the esti-
mation, a dual-scale point of view is used: (1) the equidistant
partition of the data, (2) a moving window scheme. For the
equidistant partition, we equally divide the data into several
chunks, each with a length of 2000 ms; for the moving window,
we choose the window of the same length (2000 ms) and move
the window from 0 ms at the rate of 600 ms per move. The
numbers of the sources estimated by these two methods are
depicted in Figure 8, respectively. The effects of choosing which
partition to use are not so apparent in this particular data. In
this case, we can see that there is no significant change to the
estimated sources by moving the window, suggesting that the
estimated number of sources at each separate time interval
seems good enough to represent the dynamics of the number
of sources. This provides us with some flexibility in using
the dual-scale point of view when presenting the number of
sources. The difference with respect to the number of sources
lying in-between the overt and imagined movements shown in
our analysis has been consistent with that in Wang et al. (2010),
where the main finding is to decode the intended movement
direction in the absence of overt movement using MEG.

We further examine the effect of noise estimation on the
number of sources. Interestingly, Figure 8(a)–8(c) shows that
noise estimation has generally detected additional active sources
rather than no noise estimation (Figure 8(d)). Since the data
have been normalized beforehand, any change of the num-
ber of the estimated spiked eigenvalues would imply a change
of the sources. This phenomenon is expected as there might
be some hidden eigenvalues from the signal part that may
not be easily revealed when the noise presents. We note that,
during the time period of 24,000–25,999 ms, the eigenval-
ues before and after noise estimation (i.e., Fourier transform)
are (102, 3.5, 0.8, 0.1, . . .) (see dotted line in Figure 8(a)) and
(102, 10.5, 3.3, 0.4, . . .) (see dotted line in Figure 8(d)), which
suggests that the eigenvalue 10.5 is possibly from a potential
source. Similar conclusions can be drawn for the other two
methods of noise estimation. This further indicates that the opti-
mal SNR transformation is helpful in estimating the number of
sources.

5. Discussion

The determination of the number of signal sources in the MEG
data is a very challenging problem. Due to the noisy character-
istics of the MEG data, effective methods for dealing with this
problem are lacking. Conventional approaches such as PCA-
based methods or methods involving information criteria are
essentially not helpful in deciding the dimensionality of the data.
The difficulty lies in the fact that those approaches simply use
the sample eigenvalue distribution, where the sample eigenval-
ues are not consistent estimators of the population counterparts
when the dimension of the data is proportional to the sample
size. As is the case with the MEG data, the sample eigenvalues
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are still mixtures of the signal and noise in the data, and it is
quite hard to detect the energy that such a signal contributes to
the eigenvalues, compared with the noise.

With the aim of proposing a framework that allows the flex-
ible estimation of the intrinsic dimensionality of the data in
MEG, we introduced the notation of spiked covariance model.
We showed the importance of estimating the eigenvalues of the
population covariance matrix, and the difference if this method
from only using the sample counterparts. The spiked eigenval-
ues were found to be interpretable as a measure of the number
of signal sources in the MEG data. Depending on how the SNR
varies, the spiked covariance model was seen to be more reli-
able in estimating the number of signal sources. In this sense, it
can be thought of as a significant improvement on the methods
which use the sample eigenvalue distribution.

We show that the optimality of the eigenvalue distribution is
achieved on the transformed datamatrix rather than the original
data matrix. However, the optimal SNR transformation requires
a reasonably acceptable accuracy of the noise estimation. There
have always been difficulties in defining noise in neurological
experiments; in particular, for the MEG data, the noise struc-
ture is very complicated. This article is mainly focused on two
noise structures: the independent noise (Fourier method), and
the correlated noise (residual method, thresholding method),
where in both situations, we aim to recover themain diagonal of
the noise covariance matrix at the sensors. In the examples we
considered, the estimated covariance matrices under the opti-
mal SNR yielded visually apparent population eigenvalues that
were remarkably different from the sample eigenvalues. From
case to case, both methods seemed to capture particularly rel-
evant underlying influential eigenvalues of the data, while the
sample eigenvalues were seen as quite noisy. In fact, we noted
that the spiked eigenvalues estimated from either method did
not have much of an effect on the actual number of the spiked
eigenvalues. This points to the potential for future work, on a
further investigation of the noise estimation and its influence on
the estimated spiked eigenvalues.

The performance of different methods on estimating the
number of signal sources was examined in a simulated example,
with varying SNRs. In all cases, the spiked population eigen-
values estimated gave quite robust results consistent with the
true number of the sources; based on the same transformed
covariance data matrix, the PCA as well as AIC, MDL, and EIF
approaches only worked reasonably well for just a few cases,
when the SNR was large, and failed for most situations. We also
attempted to hunt for unknown sources existing in a shielded
MEG room. We confirmed the existence of a single 60 Hz
source in the room. In addition, another one or two potential
sources were detected. One advantage of using our method is
that we could possibly detect the hidden signal sources that are
different in frequency, which can be further used in identifying
high-frequency oscillation in the evaluation of epilepsy or other
presurgical operations. In the BCI data, because the number of
sources may change over time, the associated data covariance
in the model would change as well. This fact, together the
necessity of noise estimation incorporated in the optimal SNR
transformation, suggests that a dynamic implementation of the
estimation is preferable. We have shown that it is not necessary
to estimate the number of sources from the entire data at once,

but rather that attempting to estimate it for each time point
sequentially can also produce very stable results.

In conclusion, we have been trying to find a way of estimat-
ing the number of signal sources in the MEG data. Though the
number of spiked population eigenvalues appears to be a useful
means of guiding the practitioners’ choice on the sources before
further applying localizationmethods, it is certainly not the only
choice. The issue of assessing which criterion is the most infor-
mative one to decide on the intrinsic dimensionality of the data
deserves further scrutiny. Our method can serve as a reference.

Appendix A: Proof of Theorem 1

Proof. For any fixed X ∈ R
K×K , there exists a positive number C

such that ‖X‖2 ≤ C. Define

θ1 = 1 − 2
C (λmax‖Rn‖2 + ‖R‖2) and θ0 = (1 − θ1) ·C‖R‖2 + 1.

(A.1)
Note that 1 = θ0 − (1 − θ1) ·C‖R‖2 and θ1 < 1, we obtain

‖XTRX − X‖2 ≤ ‖XTRX‖2 + ‖X‖2 = ‖XTRX‖2
+ (θ0 − (1 − θ1) ·C‖R‖2) ‖X‖2

≤ ‖XTRX‖2 + θ0‖X‖2 − (1 − θ1)

· ‖X‖2 · ‖R‖2 · ‖X‖2
≤ ‖XTRX‖2 + θ0‖X‖2 − (1 − θ1) · ‖XTRX‖2
= θ0‖X‖2 + θ1‖XTRX‖2,

which implies that

‖XTRX‖2 ≤ ‖XTRX−X‖2+‖X‖2 ≤ θ0‖X‖2+θ1‖XTRX‖2+‖X‖2
= (1 + θ0)‖X‖2 + θ1‖XTRX‖2.

Hence, we obtain

‖XTRX‖2 ≤ 1 + θ0

1 − θ1
‖X‖2. (A.2)

Furthermore, define (note that R is nonsingular by the assump-
tion)

θ2 = −1 − λmax
‖Rn‖2
‖R‖2 . (A.3)

By definitions of θ0, θ1, and θ2 in (A.1) and (A.3), respectively, we
have

(1 − θ2)C‖Rn‖2 + (1 + θ0)(1 + θ2)

(1 − θ1)λmax
= 0,

which implies that

(1 − θ2)‖XTRnX‖2 + (1 + θ0)(1 + θ2)

(1 − θ1)λmax
‖X‖2

≤ (1 − θ2)C‖X‖2‖Rn‖2 + (1 + θ0)(1 + θ2)

(1 − θ1)λmax
‖X‖2

=
{
(1 − θ2)C‖Rn‖2 + (1 + θ0)(1 + θ2)

(1 − θ1)λmax

}
‖X‖2 = 0.
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Then, using the following inequalities

‖XTRnX − X‖2 ≤ ‖XTRnX‖2 + ‖X‖2
= θ2‖XTRnX‖2 + (1 − θ2)‖XTRnX‖2

+
(
1 − (1 + θ0)(1 + θ2)

(1 − θ1)λmax

)
‖X‖2

+ (1 + θ0)(1 + θ2)

(1 − θ1)λmax
‖X‖2

≤
(
1 − (1 + θ0)(1 + θ2)

(1 − θ1)λmax

)
‖X‖2 + θ2‖XTRnX‖2

+
{
(1 − θ2)C‖Rn‖2 + (1 + θ0)(1 + θ2)

(1 − θ1)λmax

}
‖X‖2

=
(
1 − (1 + θ0)(1 + θ2)

(1 − θ1)λmax

)
‖X‖2 + θ2‖XTRnX‖2,

we deduce that ‖XTRnX − X‖2 ≤ θ3‖X‖2 + θ2‖XTRnX‖2, where
θ3 = (1 − (1+θ0 )(1+θ2 )

(1−θ1 )λmax
). This implies

‖XTRnX‖2 ≥ ‖X‖2 − ‖XTRnX − X‖2
≥ ‖X‖2 − θ3‖X‖2 − θ2‖XTRnX‖2
= (1 − θ3)‖X‖2 − θ2‖XTRnX‖2,

which leads to the inequality

‖XTRnX‖2 ≥ 1 − θ3

1 + θ2
‖X‖2. (A.4)

Since 1−θ3
1+θ2

= 1+θ0
(1−θ1 )λmax

> 0, combine (A.2) and (A.4) to get

IR,Rn (X) = ‖XTRX‖2
‖XTRnX‖2 ≤

1+θ0
1−θ1
1−θ3
1+θ2

= λmax,

which yields the boundedness of IR,Rn .
Finally, let us show that transformations Xopt

i (i = 1, 2) in (4)–
(5) are the required solutions. Denote by IK a K-dimensional iden-
tity matrix. By noting that �n and �adj are unitary matrices, we
obtain

IR,Rn (X
opt
2 )

= ‖(Xopt
2 )TRXopt

2 ‖2
‖(Xopt

2 )TRnX
opt
2 ‖2

=
‖�T

adj�
−1/2
n �T

nR�n�
−1/2
n �adj‖2

‖�T
adj�

−1/2
n �T

nRn�n�
−1/2
n �adj‖2

= ‖�−1/2
n �T

nR�n�
−1/2
n ‖2

‖�−1/2
n �T

nRn�n�
−1/2
n ‖2

(
= ‖WT

nRWn‖2
‖WT

nRnWn‖2 = IR,Rn (X
opt
1 )

)

= ‖�adj‖2
‖IK‖2 = λmax,

which yields the required result and we prove the theorem com-
pletely. �

Appendix B: Proof of Theorem 2

Proof. By condition (7) and the boundedness of ‖�−1/2
n ‖ we have

‖�̂n�̂
−1/2
n − �n�

−1/2
n ‖

≤ ‖�̂n�̂
−1/2
n − �̂n�

−1/2
n ‖ + ‖�̂n�

−1/2
n − �n�

−1/2
n ‖

≤ ‖�̂n‖ · ‖�̂−1/2
n − �−1/2

n ‖ + ‖�̂n − �n‖ · ‖�−1/2
n ‖ ≤ (1 +C)ω

which implies that ‖Ŵn − Wn‖ = ‖�̂n�̂
−1/2
n − �n�

−1/2
n ‖ ≤ (1 +

C)ω.
Similarly, it is easy to obtain the following inequality

‖�̂−1/2
n ‖ ≤ ‖�̂−1/2

n − �−1/2
n ‖ + ‖�−1/2

n ‖ ≤ ω +C.

Then, using the above inequalities and definitions of Radj and
R̂adj, we conclude that

‖R̂adj − Radj‖ = ‖ŴT
n R̂Ŵn − WT

nRWn‖
≤ ‖ŴT

n R̂Ŵn − ŴT
n R̂Wn‖ + ‖ŴT

n R̂Wn − ŴT
nRWn‖

+‖ŴT
nRWn − WT

nRWn‖
≤ ‖ŴT

n R̂‖ · ‖Ŵn − Wn‖ + ‖ŴT
n ‖ · ‖R̂ − R‖

· ‖Wn‖ + ‖ŴT
n − WT

n ‖ · ‖RWn‖
= (‖ŴT

n R̂‖ + ‖RWn‖
) ‖Ŵn − Wn‖ + ‖Ŵn‖

· ‖Wn‖ · ‖R̂ − R‖
≤ (‖(�̂n�̂

−1/2
n )T R̂‖ + ‖R(�n�

−1/2
n )‖) (1 +C)ω

+‖�̂n�̂
−1/2
n ‖ · ‖�n�

−1/2
n ‖ω

≤ (‖�̂n‖ · ‖�̂−1/2
n ‖ · ‖R‖ + ‖R‖ · ‖�n‖ · ‖�−1/2

n ‖)
× (1 +C)ω

+‖�̂n‖ · ‖�̂−1/2
n ‖ · ‖�n‖ · ‖�−1/2

n ‖ · ω

≤ ((ω +C)‖R‖ + ‖R‖C) (1 +C)ω + (ω +C)Cω

= (
2C(1 +C)‖R‖ +C2) ω + ((1 +C)‖R‖ +C) ω2

= O(ω),

which yields the required result. �

Supplementary Materials

A brief description of the forward and inverse problems in MEG, a com-
plete integration of Algorithms 1–3 in Section 2.2, and detailed descriptions
of the three algorithms for noise estimation can be found in the online sup-
plementary materials.
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