
A Framework for the Analysis of Ratings:

The Expanded Hierarchical Rater Model

1 Overview

The proposed research will extend the hierarchical rater model, a statistical model for mul-
tiple ratings of responses, behavior and performance, (HRM; Casabianca, Junker, & Patz,
2013; Patz, 1996; Patz, Junker, Johnson, & Mariano, 2002), to a modeling framework for
hierarchical and longitudinal designs with multidimensional assessments.

The HRM was introduced within the educational measurement literature for the analysis
of student work on various rating scales, as well as analysis of rater behavior. However, the
potential applications of the HRM are unlimited and the HRM is relevant in any field of
research or practice that relies on ratings, for example, consumer product, psychological, and
medical research.

Recently, another educational application appears most appropriate for analysis with
the HRM; the surge of educational policy interest in teacher accountability has generated
attention to the rating of teachers in classrooms. Often in these scenarios, we must account
for the nesting of classrooms within teachers, teachers within schools, and schools within
districts. Further, teachers are typically observed on multiple occasions during an academic
year. Neither the current HRM nor other approaches such as generalizability theory are
capable of handing these study designs, and we propose to perform the necessary theoretical
advancements to make the HRM flexible for such measurement situations.

Ratings of rich response formats have been a part of the assessment landscape for as long
as there have been assessments. Short answer and multiple choice question formats largely
eliminate extraneous variability in scoring, but in many areas of assessment, rater bias,
variability and other factors affect assessment scores. Unusual rating behavior (DeCarlo,
2008; Patz, Junker, Johnson, & Mariano, 2002; Wolfe & McVay, 2002), factors in raters’
backgrounds (Winke, Gass, & Myford, 2011), the circumstances of rating (Mariano & Junker,
2007), and their effects on procedures for producing and reporting assessment scores (e.g.
Yen, Ochieng, Michaels, & Friedman, 2005) continue to be of central interest.

Many studies of rater effects—including several of those cited above—employ an item
response theory (IRT) model like the generalized partial credit model (Muraki, 1992; Patz
& Junker, 1999b) or the Rasch Facets model (Linacre, 1989). As noted by Patz et al. (2002)
and proven formally by Mariano (2002), however, these approaches have a fundamental flaw:
as the number of raters increase—even for a single item!—the standard error of measurement
for the examinee tends to zero. This cannot be: repeatedly rating the same item response or
task behavior can tell us more about the quality of that particular response, but should not
reduce measurement error for the underlying latent trait variable to zero.

The HRM is an extension of polytomous IRT models for items with multiple ratings or
scores, that corrects this flaw in IRT and Facets models, by composing two measurement
stages: the first stage is a “signal-detection-like” model for measuring the ideal rating of
an item based on multiple raters’ observed ratings; and the second stage is an IRT model
relating the ideal ratings to the underlying examinee proficiency or trait variable. Other
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approaches to correcting this flaw have also been proposed (Bock, Brennan, & Muraki, 2002;
Muckle & Karabatsos, 2009; Wilson & Hoskens, 2001).

In comparison to generalizability theory (Brennan, 2001), the HRM provides richer in-
formation on the rating process, including estimates of bias and reliability for individual
raters, while also considering differences in the rubric indicators or items and overall level
and variance of the responses or performance under study. Specifically, from the HRM we
obtain estimates of item parameters, examinee trait level means and variance, and rater bias
and variance. Since its introduction, the HRM has been extended to accommodate (i) the
fitting of rater covariates permitting the use of the HRM as an explanatory model (Mariano
& Junker, 2007), and (ii) the fitting of rater effects beyond simple rater bias (severity) and
rater variability (consistency) (DeCarlo, Kim, & Johnson, 2011). Large-impact studies such
as the Measures of Effective Teaching (MET; Bill and Melinda Gates Foundation, 2012) use
generalizability theory to decompose the variance in scores from scoring rubrics used in the
classroom. With the proposed HRM framework, we hypothesize the HRM will far outperform
the generalizability theory approach.

We will build on the basic HRM framework by: expanding and extending it for known
problems in the social sciences; developing practical data analysis and computing methodol-
ogy so that other researchers can use the HRM; and illustrating our work through real and
simulated data analyses relevant to education research and policy, particularly with regard
to multidimensional ratings over a duration of time in complex measurement scenarios. In
particular, we seek to:

• Develop approaches to incorporate a time-varying component for longitudinal ratings
and create a mechanism to evaluate pre- and post-test differences;

• Use multidimensional IRT models to properly capture the factor structure of the traits
and items being rated;

• Investigate how the HRM can be used to model complex hierarchical designs and data
structures;

• Generate a maximum likelihood approach for estimation of the full HRM framework
and assess the impact of sample size on the quality of parameter estimation;

• Combine the basic HRM framework and these extensions and expansions into a single
HRM framework with unified notation and formulations;

• Develop and code model fitting algorithms, and assess our work using simulation stud-
ies, as well as analysis of real education data. Data will include teacher ratings from
the MET project (BMGF, 2012), available through the Inter-university Consortium
for Political and Social Research.1

• Write open source code so that our algorithms and models will be accessible to the
research community.

1MET project data will be made available through restricted use agreements in fall 2013.
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We next provide some background on the HRM and discuss the analysis of ratings in
general and in the specific context of classrooms. In Section 3 we outline our approach to
developing the longitudinal HRM, and in Section 4 we provide preliminary results from a
simulation showing that our approach is feasible for the longitudinal analysis of ratings.
In Sections 5 and 6 we outline our approach to extending the HRM for multidimensional
assessments as well as complex hierarchical study designs. In Section 7 we discuss another
goal, which is to develop an alternate estimation approach to make the HRM framework
accessible to researchers. Section 8 details our research questions, plans, and broader impacts
of our proposed activities.

2 The Hierarchical Rater Model

2.1 Model Formulation and Notation

The basic HRM is composed of a three-level hierarchy. We present the hierarchy in the context
of classroom observation where the indicators on classroom observation scoring protocols or
rubrics are considered the “item” and an “item response” is simply the sampling of teachers’
instruction that relates to a particular indicator.

The first level of the hierarchy models the distribution of ratings given the quality of
response (i.e. teaching/instruction), the second level models the distribution of a teacher’s
response (or a teacher’s teaching) given their latent trait, and the third level models the
distribution of the latent trait θp. The hierarchy is given by

Xpir ∼ a polytomous signal detection model, r = 1, . . . , R, for each p, i.
ξpi ∼ a polytomous IRT model, i = 1, . . . , I, for each p
θp ∼ i.i.d. N (µ, σ2) , p = 1, . . . , P

 (1)

Here, θp, the latent trait for teacher p (p = 1, . . . , P ) is normally distributed with mean
µ and σ2, ξpi is the ideal rating for teacher p on indicator i (i = 1, . . . , I) and Xpir is the
observed rating given by rater r for teacher p’s response to indicator i. Note that specifying
a normal distribution for the latent trait is a popular choice, but alternatives could be used
instead.

This hierarchy connects a two-stage measurement process; the first stage is a “signal-
detection-like” model for measuring the ideal rating of an indicator based on multiple raters’
observed ratings; and the second stage is an IRT model relating the ideal ratings to the latent
trait variable, in this context, the quality of teaching. In other words, the teacher’s teaching
is videotaped/observed so that a set of I indicators may be judged (with ideal ratings) and
then a series of R raters evaluate the video/observation, giving ratings conditional on the
teachers’ instruction. This notation is for the completely crossed design where all raters score
each indicator. Within this framework incomplete designs are treated as missing completely
at random (MCAR; Mislevy & Wu, 1996; Rubin & Little, 2002). Models for informative
missingness (e.g. Glas & Pimentel, 2008; Holman & Glas, 2005) could also be incorporated
directly into the HRM if needed.
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Figure 1: Hierarchy in the basic HRM

Figure 1 pictorially shows the HRM as it was introduced originally; here we have p
teachers (or more generally, examinees), and within each is a latent trait, ideal ratings per-
item, and observed ratings per-item from each rater. The white dashed line in this figure
represents the distinction between the structure of the data, here, just teachers with no
nesting, and the estimated and observed parameters, θp, ξpi, and Xpir. Two additional sets
of parameters are estimated for raters, (φr, ψr), and items/indicators, (αi, βi, γi).

In the second level, the ideal ratings ξpi represent the quality of teacher p’s response to
indicator i, and are latent variables modeled using a polytomous IRT model, such as the
A-category generalized partial credit model (GPCM; Muraki, 1992). From the GPCM com-
ponent of the HRM we estimate αi, the indicator discrimination, βi, the indicator location,
and γia, the ath threshold parameter for indicator i, or the locations on the scale of the
latent trait distinguishing points between discrete score levels. Note that other polytomous
IRT models can be used in this level, and that A, the number of response categories per
indicator, need not be constant across items. With ideal rating ξpi and A possible scores
(a = 1, . . . , A), the GPCM is given by:

P [ξpi = ξ|θp, αi, βi, γiξ] =

exp

{
ξ∑

a=1
αi (θp − βi − γia)

}
A−1∑
h=0

exp

{
h∑
a=1

αi (θp − βi − γia)
} . (2)

Note, the ideal rating is the rating that teacher p would receive on indicator i, by a rater
exhibiting no rater bias and perfect rating consistency. In the HRM the deviations between
actually observed ratings Xpir and these ideal ratings ξpi are modeled using a discrete sig-
nal detection model which is specified to represent the quality of the response. A matrix of
response probabilities defines the relationship between the observed and ideal rating prob-
abilities such that pξar = (Rater r rates a|ideal rating ξ). A simple signal detection model
uses a discrete unimodal distribution for each row of the matrix to give the probability of
observed rating Xpi given ideal rating ξpi. The mode of this distribution is the rater bias or
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severity, φr, and the spread of this distribution is the rater variability or unreliability, ψr.
The signal detection model can be specified such that probabilities in each row of the matrix
are proportional to a Normal density with mean ξ + φr and standard deviation ψr:

pξar = P [Xpir = a|ξpi = ξ] ∝ exp

{
− 1

2ψ2
r

[a− (ξ + φr)]
2

}
. (3)

The severity parameter φr indicates a rater’s deviation from the ideal rating; values near 0
indicate no deviation, negative values indicate severity (negative bias), and positive values
indicate leniency (positive bias). The spread parameter ψr indicates a rater’s variability;
values near 0 indicate high consistency or reliability in rating (to the rubric or scoring
guidelines) and high values indicate poorer consistency in rating.

2.1.1 Covariates

Characteristics of the observation or rating process, examinees, raters, and/or of raters’ rat-
ings, have the potential to influence rater bias and variability. We incorporate covariates into
the HRM within the signal detection model component to represent any of these character-
istics (see Mariano & Junker, 2007, for more details). Covariates may be fixed for all ratings
from the same rater (e.g. gender, race, hours of rater training) or they may differ over ratings
from the same rater (e.g. time to complete rating or scoring mode). Non-zero rater covariate
effects reveal areas in which attention is needed; analysis of bias and variability effects of
these covariates may be useful for an audit of the rating process to adapt features of the
rating design while the study is in progress (e.g. rater training/calibration). It could also be
useful to compare the effects of changing scoring procedures.

2.1.2 Estimation

The HRM begins with the hierarchy in Equation 1, an IRT model such as the GPCM in Equa-
tion 2 for ideal ratings, and the signal detection model in Equation 3 connecting observed
ratings to ideal ratings. Estimating the Bayesian HRM with MCMC is a straightforward
extension of the MCMC approach to estimating a GPCM (Patz & Junker, 1999a,b); the
extension must include the additional parameters for rater bias and variability and the ideal
ratings (see Patz et al., 2002, for an in-depth discussion of MCMC for HRM). Additional
modifications for rater covariates are discussed by Mariano and Junker (2007). To use the
Bayesian framework, we must also specify priors for seven sets of parameters: GPCM item
parameters αi, βi, and γia, for i = 1, . . . , I and a = 0, . . . , A − 1; rater parameters φr , ψr,
r = 1, . . . , R; and examinee proficiency distribution parameters µ, σ2. Typically we use some
noninformative parameters for the HRM parameters to reflect little prior knowledge. The
prior distributions for the GPCM specified in Equation 2 should account for location indeter-
minacy by constraining either the latent proficiency mean µ, or the item difficulty parameters
βi. A similar scale indeterminacy problem can be addressed by constraining either the item
discrimination parameters αi or the latent proficiency variance σ2. These constraints may be
hard linear constraints, or soft constraints imposed through prior distributions.

The HRM has also been fitted with marginal maximum likelihood (MML; Hombo &
Donoghue, 2001). DeCarlo et al. (2011) fitted the a variation of the HRM using posterior
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modal estimation (PME) implemented with an Expectation-Maximization algorithm (EM,
Dempster, Laird, & Rubin, 1977; Wu, 1983). Although the HRM has been estimated with
maximum likelihood methods (Hombo & Donoghue, 2001), the literature has predominantly
treated HRM as the Bayesian model (Patz et al., 2002) described here. Faster, more scalable
ML methods for the HRM have not yet been developed.

2.2 The HRM in a Specific Context: Ratings from Classroom Observation

While the HRM can be applied in any field, much of our work is motivated by applying
the HRM in the analysis of teacher ratings. States and districts are increasingly introducing
classroom observation scoring protocols as measures of teaching quality into their teacher
accountability systems. Ratings from multiple lessons are aggregated to derive measures
of an individual teacher’s teaching. There are specific issues related to using ratings from
classroom observation including the complex hierarchy of studying multiple instances of
teaching within classrooms within schools, within districts, where there are multiple raters
with differing levels of education, training and experience. There are very high stakes attached
to the proper measurement of teaching practice.

A major factor that may impact teacher ratings is the trend in rating over time; in other
words, how raters change in their use of the score scale (Casabianca, Lockwood, & McCaffrey,
2013; Casabianca, et al., 2012; Leckie & Baird, 2011; Myford & Wolfe, 2009). Other influences
varying from lesson-to-lesson include idiosyncrasies in the observation and/or rating process
that may affect the dynamics of the classroom observation or the rater. For example, lessons
for which the video or audio equipment was poor quality. Day-to-day variation in classroom
activities, and variation in curricula and contexts across different classrooms (e.g. middle
school teachers who teach multiple sections or courses each year), mean that a small sample
of lessons could vary widely on scores even when scored by a common rater.

Historical and recent research has used generalizability theory models to analyze differ-
ent facets of teacher ratings (see, for example, BMGF, 2012; Hill, Charalambous, & Kraft,
2012); that approach falls short in accommodating some of the complexities in classroom
observation. That is, in addition to not providing estimates of latent traits, item parame-
ters, or rater parameters, frequently, univariate models are run for rubric indicators, thereby
ignoring multidimensional structure of the rubric. Traditional G study models also fail to
incorporate a time-varying component for lessons, thereby ignoring information about time
trends in scores. (Casabianca, Lockwood, & McCaffrey, 2013, are currently using more com-
plicated “G study” models to investigate time trends, but this approach will not be pursued
as part of the propsed work here.) Additionally, generalizability theory analysis provides an
analysis of the sources of error variance, but covariates are not incorporated into the model
to explain the variance decomposition and score reliabilities.

3 Developing the HRM for Multiple Timepoints: the Longitudinal

HRM

To explicitly model changes in the latent trait or changes in rating behavior (rater bias and
reliability) we add a level for time to the hierarchy.
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Figure 2: The longitudinal HRM: the addition of multiple lessons per teacher suggests another
layer to the hierarchy that could result in multiple parameters for the trait, as well as multiple
parameters to examine how raters’ ratings change over time (in terms of bias and reliability).

Figure 2 is an augmented version of Figure 1 for the basic HRM; here we have a layer
of lessons observed within each teacher. In this figure, the trait level is indexed with t for
time, and so are the rater parameters, φrt, ψrt. This is so because the additional level could
be specified in such a way that: (i) multiple traits are estimated (one at each timepoint)
and the ideal ratings differ because it is assumed that the trait level (or teaching quality) is
improving (or declining); (ii) rater parameters are estimated at each timepoint in order to
study the changes in bias and reliability (e.g. due to rater learning and experience) over the
study duration; or (iii) we can estimate a trait level for each timepoint and a set of rater
parameters for each rater at each timepoint. We acknowledge that both the trait level and
rater behavior can change over time, and there is a conflation between these trends, therefore
scenario (iii) is the most challenging because of the need to parse the concurrent trends.

The additional level for time could be specified using a variety of models for time trends;
we will investigate time series models (Hamilton, 1994; Hershberger, Molenaar, & Corneal,
1996) and growth curve models (Raudenbush & Bryk, 2002).

3.1 Time Series Model Approaches

In an initial time series model approach, we treat time ordinally with a simple autoregressive
time series model of order 1. The trait for subject p at time point t (where t = 1, . . . , T ) is

θpt = η0 + η1θp(t−1) + εpt. (4)

Here, η0 is the baseline increase or decrease in θpt, η1 is the autocorrelation between θpt
and θp(t−1), and εpt represents the noise or variation for subject p at timepoint t which follow
a normal density, εpt ∼ N (0, σ2), with constant variance. We estimate the θpt as well as the
η0 and η1 parameters.
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Note that under this formulation, the longitudinal HRM has T timepoints with ideal and
observed ratings at time t nested within each θpt. A similar model will be used to evaluate
change in the rater parameters. Additionally, different time series models will also be explored
including autoregressive models of different orders and moving average models.

A preliminary feasibility study (see Section 4) demonstrates that we can successfully
estimate trends with this approach (Casabianca & Junker, 2013).

3.2 Growth Curve Model Approaches

Growth curve models use a hierarchical linear model for repeated observations. Unlike time
series models, however, growth curve models use an interval scale so that the actual duration
in between observations could be incorporated in the model for estimating time trends. A
simple model for quadratic growth is

θpt = γ0p + γ1pt+ γ2pt
2 + εpt, (5)

where, as before, θpt is the trait for person p at time t, γ0p is the initial status at time
t = 0, γ1p is the growth trajectory, t is a temporal dimension that here is assumed to be
the same for all individuals, γ2p is the curvilinearity of the growth trajectory, and εpt is the
disturbance term which is i.i.d.

We provide a model for quadratic growth as recent research shows quadratric, cubic,
and even quartic polynomial trends in teacher ratings (Casabianca et al, 2012; Casabianca,
Lockwood, & McCaffrey, 2013). However, we will explore a number of different growth curve
modeling approaches for changes in the trait (as shown above), changes in rater parameters,
and changes in both types of parameters.

4 Proof of Concept: Pilot Study for the Longitudinal HRM

We are currently performing a pilot simulation study to evaluate and understand some
preliminary longitudinal HRMs for changes in traits (Casabianca & Junker, 2013). To de-
termine how the model performs under various conditions we vary the following: (i) Sam-
ple size, P = 80, 250, 500, 1500; (ii) Number of time points, T = 3, 5, 7; (iii) Number of
items/indicators, I = 5, 13; and (iv) Number of raters, R = 2, 4, 6.

We generate data by drawing the baseline trait level θp0 from a N (0, 4) distribution and
using the time series model with η0 = η1 = 1 to compute the additional θpt. In other words,
we modeled a 1-unit increase in trait location at each t so that the average true trait values
were roughly θp0 = 0, θp1 = 1, and θp2 = 2. Then, the ideal ratings are generated using the
θpt and GPCM item parameters derived from classical test theory-based item indices from
real teacher ratings on a widely-used classroom observation scoring rubric under study in
Casabianca, et al (2012). Lastly, the observed ratings are generated using the generated ideal
ratings and true rater parameters reflecting raters with high and low levels of rater bias and
reliability. The design is fully crossed so that each combination of factors is evaluated.

Thus far we have tested the new model formulation under one condition; we fit the
longitudinal HRM as specified in Equation 4 with three timepoints T = 3, and P = 500,
R = 3, I = 5, using MCMC estimation in Winbugs with 2,000 iterations and burn-in of 1,000.
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Figure 3: Estimated trait distributions at each time t. Mean(t = 1)=-0.04, SD(t = 1)=1.69;
Mean(t = 2)=1.10, SD(t = 2)=2.43; Mean(t = 3)=2.44, SD(t = 3)=2.98.

The MCMC estimation converged for all parameters and rater and item parameters were
recovered fully and stably. The purpose of this test was to determine if the HRM specified
with the autoregressive time series model would recover latent traits following the trend used
to generate the simulation data.

Figure 3 gives posterior densities for θpt at each time point such that: θp1 = η0+η1θp0+εp1;
θp2 = η0+η1θp1+εp2; and, θp3 = η0+η1θp2+εp3. We observe a shift of over one unit on the θpt
scale between t = 1 to 2 and t = 2 to 3. The variability of the estimates increased with each
timepoint and there is positive skew at t = 2 and t = 3. The expected growth trends were
indeed captured by this parameterization of the longitudinal HRM. Since the longitudinal
HRM yielded estimated traits that increased with time we can conclude that the HRM model
formulation as we introduced it here is feasible and warrants further study. Full results of
this pilot research will be presented at a national conference in April 2013 (Casabianca &
Junker, 2013) and will inform the proposed extension of the HRM for multiple timepoints.

5 Extending the HRM to Multidimensional Measures

Complex IRT models that incorporate the multidimensional structure of assessments are
becoming more accessible and popular in practice. Currently, the HRM utilizes a unidimen-
sional IRT model for polytomous responses. To analyze assessments with groups of items
related to multiple factors or traits, we must estimate multiple HRMs; this approach is not
desirable. We will extend the current formulation of the HRM to include multidimensional
IRT (MIRT; Reckase, 2009) models for polytomous items. This extension will increase the
generality of the HRM so that the framework can handle assessments and rubrics with com-
plex factor structure.

An example of a strightforward MIRT model is the noncompensatory multidimensional
IRT model is given by:

P (Xpi = 1|θp;αi, βi) =
D∏
d=1

exp(αdiθdp + βdi)]

1 + exp(αdiθdp + βdi)]
, (6)
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Figure 4: The HRM for multidimensional assessments. In this scenario, there are multiple
traits; each trait is estimated based on a group of items. It is also possible to allow rater
parameters to vary by trait dimension if it is believed that rater behavior (bias and reliability)
change by the type of trait being measured.

where p, i, and d subscript represents examinees, indicators, and traits/dimensions, re-
spectively, θp represents a vector of latent trait variables for examinee p, αi represents mul-
tiple discrimination parameters associated with indicator i, and βi represents an indicator’s
location on an item response surface.

Two examples of multidimensional assessments are the Advanced Placement (AP) for-
eign language exams (College Board, n.d.) and the Classroom Assessment Scoring System-
Secondary (CLASS-S; Pianta, Hamre, Haynes, Mintz, & Paro, 2007) for teacher/classroom
evaluation. The AP language exams have listening, reading, oral, and speaking sections;
portions of these sections are based on observed performance or essays and consequently
rated by trained raters. To incorporate these four distinct constructs for language ability
into the analysis, we would estimate four HRMs. The multidimensional HRM extension will
be flexible such that only one model would be needed to estimate the parameters assuming
four latent traits.

The CLASS-S is a popular classroom observation scoring protocol, which is frequently
used longitudinally; it is very widely-used, even for evaluating teachers in Federal programs
such as Head Start (Head Start Program Final Rule, 2011). Lessons are evaluated on 10
dimensions of teaching, and each dimension is related to one of three domains: Emotional
Support, Instructional Support, or Classroom Organization. Currently, three HRMs would
be estimated (one for each domain score). Of course, an alternative to estimating multiple
HRMs is to ignore the multidimensionality completely and use a unidimensional model with
all indicators included.

Figure 4 displays the HRM hierarchy with multidimensional assessment structure for
an assessment such as the CLASS-S. Here we display trait levels for multiple dimensions
denoted by θpd. Ideal and observed ratings are indexed within these traits to indicate the
correspondence between ratings and the trait categories. We will explore how to vary rater
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parameters by trait dimension as well by estimating φrd and ψrd.

Inherently, we know that adding a MIRT model to the HRM is a very challenging
task; MIRT and other complex IRT models are plagued with issues surrounding identifi-
ablity (Azevedo, 2009; Haberman, 2005; Maris & Bechger, 2009), parameterization (Mart́ın,
González, Tuerlinckx, 2009), and estimation (Partchev, 2009). Using a MIRT model within
a hierarchical framework, and with a timing component, could prove troublesome, espe-
cially with the potential for parameterizations under which the parameters vary by the trait
dimension. However, other, very complex, latent variable model frameworks, for example,
the general diagnostic model (von Davier, 2005), also include MIRT models. Part of our
expansion will include rigorous testing using simulations to determine model performance
under various situations. We will provide guidelines for best practice in terms of how the
HRM framework should be used (e.g. How many traits are too many?; What is the required
sample size to obtain valid and precise estimates? etc.).

6 Extending the HRM to More Complex Hierarchies

Given the potential for vast application in many fields, the HRM framework needs to ac-
commodate hierarchical data structures that may appear in these fields to maximize the
flexibility and therefore accessibility of the model. Thus far in our narrative, we have dis-
cussed a sample of teachers with no hierarchy or nesting. Additional hierarchical structure
that may be found in educational settings includes classrooms, schools and districts. In ad-
dition, often the unit of observation on rubrics for classroom observation are in segments;
multiple subsets, or segments, of lessons are observed so that there are multiple ratings for
each lesson. Figure 6 shows that addition of classrooms and segment of observation as new
levels to the HRM hierarchy.

Another example where the HRM framework would be useful is in a study by Khan et al
(2011); their research compared ratings from radiologists and surgeons in their judgments on
computer tomography (CT) imaging features, and found low to moderate agreement using
a simple Cohen kappa coefficient. In this type of scenario there may be groups of medical
personnel in different departments and/or hospitals participating in the study. This type of
structure is not accommodated and therefore not accounted for by the current formulation
of the HRM.

Research tells us that ignoring hierarchical structure in data results in underestimation of
the variance of the estimated coefficients. Other problems could manifest as well. Therefore,
while we may not at all be interested in estimating parameters for different levels of the
hierarchy (e.g. overall traits for a specific school), we still want to incorporate it into anal-
ysis. This will entail developing formulae for the HRM that extends the data into a 3-level
hierarchy (in addition to the structure already in the HRM). [NOT SURE WHAT ELSE TO
PUT HERE]
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Figure 5: The complete HRM framework with complex data hierarchy, time-varying compo-
nents, and multidimensional assessment.

7 Making the HRM More Accessible with Maximum Likelihood Es-

timation Techniques

Estimating the HRM as a Bayesian model with MCMC is not straighforward; knowledge
of Bayesian statistics and MCMC is required, and the parameter estimates are sensitive to
priors and therefore, are not unique.

While the HRM is traditionally estimated in this way, ML equations have been used
in research (Hombo & Donoghue, 2000). There are advantages and disadvantages to each
estimation approach, however, we feel that accessibility to researchers is limited because
syntax and software for applying ML estimation equations are unavailable. To rectify this,
we will write ML equations within an EM (Demspter, Laird, & Rubin, 1977) algorithm
for the most complex case where there are multiple timepoints, multidimensional traits, and
complex hierarchical structure. The ML equations will be coded to estimate the HRM within
an R package, and made publicly available.

As in a traditional IRT model, typically a practitioner will perform multiple estimation
routines to obtain estimates of different types of parameters; for example, item parameter
calibration will provide estimates of IRT item parameters, and IRT scoring will provide
estimates of latent traits. We expect the ML approach for the HRM framework to require
the user to run a specific set of routines or algorithms (as series of EM algorithms) to obtain
the desired estimates.

Much like the other components in this proposal, developing ML methods for the full
HRM framework will be a challenge due to the parameterization and the number of estimated
parameters. However, ML methods have been used for other complex frameworks as well
(GDM, von Davier, 2005), and therefore, development of these techniques is feasible. One
possible route to ensure success is to consider the use of parsimonious nonparametric methods
for ML estimation (Casabianca, 2011; Casabianca & Junker, 2013; Casabianca & Lewis, 2012;
Casabianca, Xu, Jia, & Lewis, 2010).
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8 Research Plan

We propose to develop and disseminate the methodology, application and software for fitting
the framework of Hierarchical Rater Models over a three-year period.

8.1 Year 1

In year 1, we plan to conduct research contributing answers to the following three questions.

Question 1.1 Which longitudinal models should be used to incorporate an additional level
to the HRM to properly analyze longitudinal assessments in education research and research
in other fields?

Preliminary results provided in Section 4 suggest that an additional level in the HRM is
feasible, at least with the time series model in Equation 4. A full feasibility study will be
conducted for the HRM for both time series and growth curve models, using simulation condi-
tions that mimic large-scale testing situations, teacher evaluation, and longitudinal research
studies in psychology and medicine. In addition to data simulations for feasibility, we will
use the MET project data (BMGF, 2012) to evaluate our longitudinal model formulations
with actual teacher ratings. We may also use longitudinal functioning magnetic resonance
imaging (fMRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for real
data evaluation.

Question 1.2 How can we best model simultaneous changes in trait and rater behavior
over time?

We hypothesize that the addition of a time-varying component will be straightforward for
examining the change in the trait or rater parameters (assuming the other remains constant).
However, the longitudinal HRM, as part of the full HRM framework, should be capable of
modeling concurrent changes in traits and in rater behavior. We will develop a model formu-
lation that allows both to vary over time. We will evaluate the formulation with simulations
and using the MET project dataset, which is appropriate as there are observed trends in
teaching quality and rater behavior.

Question 1.3 By what mechanism can we evaluate differences between timepoints using
the longitudinal HRM?

There are several possible research designs where ratings are used to evaluate an inter-
vention involving the examinees (educational program) or the raters (rater calibration and
training). We will develop hypothesis tests and effect sizes for evaluating the impact of an
intervention on traits and/or rater behavior (in terms of rater bias and reliability). The de-
veloped methods for hypothesis tests and effect sizes will also be evaluated with simulations;
real intervention data will be acquired to determine feasibility and performance with actual
data.
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8.2 Year 2

In year 2, we plan to conduct research contributing answers to the following three questions.

Question 2.1 How can we incorporate MIRT models into the HRM framework?

Currently, a univariate HRM is fitted for each latent trait in a multidimensional asses-
ment, or all indicators are combined and the multidimensional structure is ignored. We will
analytically explore model formulations for a variety of MIRT models to be included in the
HRM framework. In doing so we will also explore the impact on the rater parameters and
determine parameterizations for estimating fixed rater parameters or a set of rater parame-
ters for each trait. Simulations and real data applications using the MET project data, which
uses five different multidimensional classroom observation tools, will be used to evaluate our
formulations.

Question 2.2 What is the impact of adding levels to the hierarchy to represent complex
structure in the data?

As it stands, the ‘hierarchy” in the HRM refers to the multiple observed ratings associ-
ated with a single, latent, ideal rating for an item. This hierarchy ignores any hierarchical
structure or nesting in the data design. We will design an expanded HRM up to three three
levels representing data structure, for example, schools, teachers, and classrooms. With sim-
ulations we will analyze the differences in estimated parameters with and without accounting
for hierarchical data structure.

Question 2.3 How can we fully integrate the basic HRM, with covariates, time-varying
components, multidimensional assessments and up to three levels of hierarchical stucture,
into a unifed model formulation for the full HRM framework?

Creating the full HRM framework will be possible after we address the aforementioned
research questions. Our goal is to derive a model equation that is generalized enough such
that most measurement scenarios for ratings data can be captured and fitted as a special case
of the full framework. Creating the full model framework will involve extensive mathematical
and analytical work.

The full HRM framework will accommodate a measurement scenario that, for example,
has three timepoints, a four dimensional rating scale, and a three-level hierarchy. We will
evaluate the performance of the model using simulations and determine the constraints in
terms of estimation as a Bayesian model in regard to the number of items, dimensions/traits,
examinees, raters, ratings, etc. We will demonstrate the applicability of the model with real
data.

In addition we will begin considering ML estimation in anticipation of Year 3 work.

8.3 Year 3

In year 3, we plan to conduct the following two research activities which are related to pro-
viding an alternative to estimating the HRM as a Bayesian model.
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Activity 3.1 Developing and coding ML estimation algorithms, and assessing our work
using simulation studies as well as analyses of real ratings data. There are extant applica-
tions of maximum likelihood for estimation of the HRM (DeCarlo, Johnson, & Kim, 2011;
Hombo & Donoghue, 2000), however, there is no real documentation of the ML equations
and they are unavailable in software. We will have started to consider ML algorithms in
Year 2; in Year 3, we will develop ML algorithms for the unified, full, HRM framework.
We anticipate there to be some numerical problems to work out, and possibly some trouble
with identifiability (Haberman, 2005). However, with this in mind, we will explore differ-
ent routes of ML estimation including more parsimonious estimation models (Casabianca,
2011; Casabianca & Junker, 2013; Casabianca & Lewis, 2012; Casabianca, Xu, Jia, & Lewis,
2010). Analysis of real and simulated data, to understand the operating characteristics of
our models and fitting algorithms, will also be ongoing throughout the project.

Activity 3.2 Writing open source code so that our algorithms and models will be acces-
sible to the research community To made the full HRM framework available to researchers,
we will develop and make available an R library, comparable in functionality to an IRT
library such as ltm, that will make it possible for practitioners to fit and make inferences
from ratings data, using some of our algorithms and models. We expect that this library
will consist of a mixture of R functions that serve as a direct interface for users who wish to
use our methods. We also expect that this library will be revised and extended during and
beyond the course of this project, if it is funded, eventually becoming similar to, or perhaps
a component of, a package such as statnet (Handcock et al., 2008).

8.4 Data Application: Measures of Effective Teaching (MET) Project

The Bill and Melinda Gates Foundation’s Measures of Effective Teaching (MET) project is
one of the largest and most extensive studies of classroom teaching ever undertaken in the
United States. MET researchers collected a variety of indicators of teaching quality over a
two-year period (2009-2011) in the classrooms of more than 2,500 fourth- through ninth-
grade teachers working in 317 schools located in 6 large school districts in the United States.
The data collected on teachers and their teaching include video-recorded lessons taught by a
teacher and scored by independent observers using multiple classroom observation protocols.
These data will become available in fall 2013. Casabianca has been working with simiar data
in recent studies (Casabianca, et al, 2012; Casabianca, Lockwood, & McCaffrey, 2013).

8.5 Broader Impacts of the Proposed Activities

The HRM framework will be developed so that it can be applied in any context where
there are raters observing and judging performance. In truth, the potential for the appli-
cation of the HRM is limitless. In education, applications may include: ratings of student
work (Casabianca, Junker, & Patz, 2013; Mariano & Junker, 2007), judgments made in
educational standard settings (Kalinski et al, 2012), or evaluations of teachers’ teaching
(Casabianca et al, 2012; Hill et al, 2012). In other disciplines, some measurement scenarios
that would benefit from the HRM framework include: consumer product ratings (Horn &
Salvendy, 2006), ratings of psychological traits (Clare, Gudjonsson, Rutter, & Cross, 2011;
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Edens, Boccaccini, & Johnson, 2010) and and ratings of medical personnel performance and
reasoning (Berger et al, 2012; Yeates, O’Neill, Mann, & Eva, 2012).

Extant approaches used to analyze ratings in the aforementioned contexts typically in-
volve descriptive numerical summaries, traditional estimates of rater reliability, and gener-
alizability studies. The HRM framework would be useful in this scenario, to estimate latent
traits, parameters describing rubric indicators or items, and rater parameters to investigate
and possibly reveal information that would contribute to subsequent alignment between
raters.

8.6 Work Flow and Dissemination

Casabianca will take the lead on directing the project, under consultation from Junker, and
will be responsible for organizing and implementing the study.

In all three years of the project, planning and coordination of work will take place in
weekly or biweekly meetings among Casabianca, Junker, and two graduate research assistants
(RA).

In Years 1 and 2 we expect to publish 2–4 peer-reviewed articles deriving from the
project per year, in methodological journals such as the Journal of the American Statisti-
cal Association and Annals of Applied Statistics, to domain-specific research journals like
Psychometrika, Journal of Educational and Behavioral Statistics, Psychological Assessment,
as well as journals related to the disciplines of teacher evaluation and Alzheimer’s disease.
In Year 3, publication will also include an R package for doing analyses with the HRM, in
addition to peer-reviewed journal articles.

We will also make the work known through conference presentations, graduate coursework
and seminars, and (under)graduate research projects.

9 Prior NSF Support

Junker received the NSF Award #SES-1229271, “Hierarchical Models for the Formation and
Evolution of Ensembles of Social Networks”, for the period September 2012–August 2014.
The total award amount is $169,999.

9.1 Intellectual Merit

We are assembling candidate data sets for analysis for the goal of assessing how hierarchical
network models can best be employed to model multiple social networks in social science and
education settings. Candidates include the AddHealth and Spillane data mentioned in the
proposal, as well as additional data sets on adolescent bullying in the US and on friendship
ties in Afghanistan. In addition, we are beginning theoretical work on (a) assessing power to
detect interventions on networks; and (b) understanding the relationship between network
size and effect size in multiple network settings.
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9.2 Broader Impact

We plan to publish widely and disseminate free software, in order to maximize the impact of
our work. We will also train junior personnel, but because the award was made so recently
we have not yet identified a suitable trainee.

9.3 Publications and other accomplishments

Because the award is so new, there are no publications to report at this time.
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