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Many algorithms in machine learning and computational geometry require, as input,
the intrinsic dimension of the manifold that supports the probability distribution of
the data. This parameter is rarely known and therefore has to be estimated from
the data. We characterize the statistical difficulty of this problem. Specifically, we
derive upper and lower bounds on the minimax rate for estimating the dimension.
First we consider the problem of testing the hypothesis that the support of the data-
generating probability distribution is a well-behaved manifold of intrinsic dimension
d1 versus the alternative that it is of different dimension d2. With an i.i.d. sample
of size n, we provide an upper bound on the sum of typeI and II errors of order
O
(
n−(d2/d1−1−ε)n) based on the travelling salesman path through the data points,

where ε is an arbitrarily small positive number. We also demonstrate a lower bound
of Ω

(
n−(2d2−2d1+ε)n

)
, for any ε > 0, by applying Le Cam’s lemma with a specific

set of d1-dimensional probability distributions. We then extend these results to get
minimax rates for estimating the dimension of a well-behaved manifolds. We obtain
an upper bound of order O

(
n−( 1

m−1
−ε)n

)
and a lower bound of order Ω

(
n−(2+ε)n

)
,

where m is the embedding dimension.

1. Introduction

Suppose that X1, . . . , Xn is an i.i.d. sample from a distribution P whose support is an unknown
manifold M of dimension d in Rm, where 1 ≤ d ≤ m. Manifold learning refers broadly to a suite
of techniques from statistics and machine learning aimed at estimating M or some of its features
based on the sample.

Manifold learning methods are widely used in high dimensional data analysis mainly to alleviate
the curse of dimensionality. Indeed, manifold learning algorithms typically map the data to a
new, lower dimensional coordinate system [Bellman, 1961, Lee and Verleysen, 2007a, Hastie et al.,
2009]. By using such a mapping, manifold learning can greatly reduce the dimensionality of the
data with little loss in accuracy..

Most manifold learning algorithms require, as input, the intrinsic dimension of the manifold.
However, such quantity is almost never known in advance and therefore has to be estimated.

Various intrinsic dimension estimators have been proposed and analyzed; see, e.g., Lee and
Verleysen [2007b], Koltchinskii [2000], Kégl [2003], Levina and Bickel [2004], Hein and Audibert
[2005], Raginsky and Lazebnik [2005], Little et al. [2009, 2011], Sricharan et al. [2010], Rozza et al.
[2012], Camastra and Staiano [2015]. However, characterizing the intrinsic statistical hardness of
the dimension estimation problem remains an open problem. The traditional way of measuring
the difficulty of a statistical problem is to bound its minimax risk, which is in the present setting
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is defined as the worst possible statistical performance of a best dimension estimator. Formally,
given a class of probability distribution P , the minimax risk Rn = Rn(P) is defined as

(1.1) Rn = inf
d̂

sup
P∈P

EP [I(d̂ 6= d(P ))].

Here d(P ) is the dimension of the support of P , EP denotes the expectation with respect to
the distribution P , I(·) is the indicator function and the infimum is over all estimators d̂ =

d̂(X1, . . . , Xn) (measurable functions of the data) of the dimension. Notice in particular that the
statistical performance or risk EP [I(d̂ 6= d(P ))] of a dimension estimator d̂ is the probability that
d̂ differs from the true dimension d(P ) of the support of the data generating distribution. The
minimax risk, a function of both the sample size n and the class P , quantifies the intrinsic hardness
of the dimension estimation problem in the sense that any dimension estimator cannot have a risk
smaller than Rn uniformly over all P ∈ P . The purpose of this paper is to obtain upper and lower
bounds on the minimax risk.

We start by assuming that the manifold supporting the data generating distribution P has two
possible dimensions, d1 and d2. This assumption is then relaxed to any dimension d(P ) between
1 and the embedding dimension m in Section 5. We will impose several regularity conditions on
the supporting manifold in order to make the problem analytically tractable and also to avoid
intractable or trivial cases, such as space filling manifolds. Our main result may be summarized
as follows. Let X1, . . . , Xn ∼ P be i.i.d., where P belongs to a class P of probability distributions
supported on well-behaved manifolds in Rm, as defined in Section 2.

Theorem 1. The minimax risk Rn satisfies, an ≤ Rn ≤ bn where

an = (C
(5,2)
KI

)nκ−n` min{κ3
`n
−2, 1}n

bn = (C
(5,1)
KI ,Kp,Kv ,Km

)n(1 + κ(m2−m)n
g )n−

n
m−1

where the constants κ`, κg, C
(5,2)
KI

and and C(5,1)
KI ,Kp,Kv ,Km

depends on P and are defined in Section
5.

We now make a few remarks about the result.

• First, as the dimension is a discrete quantity, the rates are exponential in sample size, a
finding consistent with the results obtained by Koltchinskii [2000].
• The key constants that appear in the bounds depend on the local curvature κ` and the global
curvature κg of the manifold, which are defined in Section 2. These curvature parameters
affect the performance of any dimension estimator: a manifold with high curvature may
appear more space filling than a manifold of the same dimension but with low curvature,
thus making the task of resolving the dimension harder. Indeed, our analysis shows formally
that the minimax risk is increasing in the values of the curvatures. Given their crucial role,
we have made the dependence of the minimax risk on the curvatures as explicit as possible.
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• Finally, there is a gap between the lower and upper bound, as the two rates do not match.
Nonetheless, as far as we are aware, these are the most precise bounds on Rn that are
available.

This paper is organized as follows. In Section 2, regularity conditions on distributions and their
supporting manifolds are discussed. In Section 3, we give an upper bound on the minimax rate,
by considering TSP path. In Section 4, we give a lower bound on the minimax rate by applying
Le Cam’s lemma with a specific set of d1-dimensional probability distribution. In Section 5, we
extended our upper bound and lower bound for case where possible intrinsic dimension varies from
1 to m.

2. Definitions and Regularity Conditions

In this section we define the model which consists of the set of distributions that live on manifolds
whose dimension d is between 1 ≤ d ≤ m. The manifolds are required to have an upper bound on
their curvature. The resulting class of distributions is denoted by

P =
m⋃

d=1

Pdκl,κg ,Kp,Kv .

The rest of this section makes the definition precise. Readers who are not interested in the precise
details may skip the rest of the section.

2.1. Notation and Basic Definitions. Throughout the paper, we will use the following notation.
For positive integers n1, n2, d such that 1 ≤ n1 ≤ n2 ≤ d, the coordinate projection map Πn1:n2 :

Rd → Rn2−n1+1 is defined by Πn1:n2(x1, · · · , xd) = (xn1 , xn1+1, · · · , xn2). We let Sn denote the
permutation group on {1, . . . , n}. For any product set Jn ⊂ Rn, Sn acts on Jn and its subsets by
applying a coordinate change, i.e. for σ ∈ Sn and x ∈ Jn, σx := (xσ(1), · · · , xσ(n)), and, for any
A ⊂ Jn, SnA := {σx ∈ Jn : σ ∈ Sn, x ∈ A}. Finally, for a metric space (X, dX) and x ∈ X, we
let BX(x, r) = {y ∈ X : dX(y, x) < r} be the ball with center x and radius r. We will set ωd to
be the volume of the unit ball in the d-dimensional Euclidean space Rd, which can be computed
exactly as ωd = π

n
2

Γ(n2 +1)
.

We next briefly review some key, basic concepts in differential geometry. For more detailed
treatment, we refer the reader to standard textbooks on this topic [see, e.g., ??]. A topological
manifold of dimension d is a topological space M and a family of homeomorphisms xα : Uα ⊂
Rd → Vα ⊂ M from open subset of Rd to open subset of M such that

⋃
α

xα(Uα) = M . If M is a

d-dimensional manifold, such d is unique and is called the dimension of manifold. If, for any pair
α, β, with xα(Uα) ∩ xβ(Uβ) 6= ∅, x−1

β ◦ xα : Uα ∩ Uβ → Uα ∩ Uβ is Ck, then M is Ck-manifold.
Let TpM denote the tangent space to M at p. Given p ∈ M , there exist a set 0 ∈ E ⊂ Tp(M)

and a mapping expp : E ⊂ TpM →M such that t→ expp(tv), t ∈ (−1, 1), is the unique geodesic of
M which, at t = 0, passes through p with velocity v, for all v ∈ E . The map expp : E ⊂ TpM →M

is called exponential map on p.
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2.2. Minimax Theory. The minimax rate is the risk of an estimator that performs best in the
worst case, as a function of the sample size [?, see, e.g.]. Let P be a collection of probability
distributions over the same sample space X and θ : P → Θ be a functional over P taking value
in some space Θ, the parameter space. We can think of θ(P ) as the feature of interest of the
probability distribution P , such as its mean, or, like in our case, the dimension of its support.
For fixed sample size n, suppose X = (X1, · · · , Xn) is an i.i.d. drawn from a fixed probability
distribution P ∈ P . Thus X takes values in the n-fold product space X n = X × . . . × X and is
distributed as P (n), the n-fold product measure. An estimator θ̂n : Rn → Θ is any measurable
function that maps the observations X into parameter space Θ. Let ` : Θ × Θ → R be a
loss function, a non-negative, non-decreasing bounded function that measures how different two
parameters are. Then for a fixed estimator θ̂n and a fixed distribution P , risk of θ̂n is defined as

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
.

Then for fixed estimator θ̂n, its maximum risk is the supremum of its risk over all distribution
P ∈ P , that is,

sup
P∈P

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
.

The minimax risk associated to P , θ, ` and n is the maximal risk of any estimator that performs
best under the worst possible choice of P . Formally, the minimax risk is

(2.1) Rn = inf
θ̂n

sup
P∈P

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
.

The minimax risk Rn is often viewed as a function of sample size n, in which case any positive
sequence ψn such that limn→∞Rn/ψn remains bounded away from 0 and ∞ is called a minimax
rate. Notice that minimax rates are unique up to constants and lower order terms.

The determination of a minimax rate for a given problem requires two separate calculations:
that of an upper bound on Rn and that of a lower bound. In order to derive an upper bound, one
analyzes the asymptotic risk a specific estimator θ̂n. Lower bounds are instead usually computed
by measuring the difficulty of a multiple hypothesis testing problems that entails identifying finitely
many distributions in P that are maximally difficult to discriminate and yet their parameter values
are well-separated under the loss ` [see, e.g. ?, Section 2.2].

For the dimension estimation problem, we obtain an upper bound on the minimax risk by an-
alyzing the performance of an estimator based on the length of the traveling salesman problem,
as described in Section 3. On the other hand, the determination of the lower bound presents
non-trivial technical difficulties, due to the fact that that probability distributions supported on
manifolds of different dimensions are singular to each other, and therefore trivially discriminable.
In order to overcome such an issue, we resort to constructing mixtures of mutually singular distri-
butions. We detail such construction in Section 4.

More detail on how we get the final lower bound?
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Figure 2.1. A manifold M with (a) global curvature less than κg, or (b) local
curvature less than κl.

As anticipated, the lower and upper bounds we derive on the minimax risk are not asymptotic
equivalent. While we do not know which one, if any, is sharp, nonetheless the derivation of such
bounds is of use in understanding the difficulty of the dimension estimation problem.

2.3. Regularity conditions on Distributions and Supporting Manifolds. To derive bounds
on minimax risk, we will impose some regularity conditions. First, the supporting manifold M is
assumed to be bounded, that is, M ⊂ I := [−KI , KI ]

m ⊂ Rm, where KI ∈ [1,∞). Second, the
curvature is assumed to be bounded to avoid an arbitrarily complicated manifold. In fact there
are several types of curvature so we will need the following definitions.

Definition 1. Fix 0 ≤ κl ≤ κg <∞ and let Rl := 1
κl
, Rg := 1

κg
∈ (0,∞]. A compact d-dimensional

topological manifold M ⊂ I (with boundary) is of global curvature less than κg, if for all x ∈ Rm

with dRm(x,M) < Rg has unique projection πM(x) to M , i.e. there uniquely exists πM(x) ∈ M
such that d(x, πM(x)) = inf

y∈M
d(x, y). M has local curvature less than κl if for all x ∈ M , there

exists neighborhood Ux ⊂M of x such that Ux is of global curvature less than κl. See Figure 2.1.

Definition 2. We defineMd
κl,κg

to be the set of all d-dimensional topological manifolds in I with
local and global curvature bounded by κl and κg, respectively.

Remark 1. The above definition is equivalent to the following: M is of global curvature ≤ κg if
∀x ∈ M , ∀y ∈ M s.t. y − x ⊥ TxM and ‖y − x‖2 = Rg, BRm(y,Rg) ∩M = ∅, where TxM is

tangent space of M at x.
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We assume that the data are generated from a distribution supported on a manifold M of
dimension d, and with density with respect to the Hausdorff measure volM on M bounded away
from ∞.

Definition 3. Let B(I) be the Borel subsets of I and P be a set of probability measures on
(I,B(I)). Fix Kp ≥ (2KI)

m. Let Pdκl,κg ,Kp be the set of probability distributions P supported
on a d-dimensional manifold M ∈ Md

κl,κg
, absolutely continuous with respect to the restriction

volM of the d-dimensional Hausdorff measure on M and such that supx∈M
dP

dvolM
(x) ≤ Kp. For all

P ∈ Pdκl,κg ,Kp , define dim(P ) := d.

To deal with manifolds with boundary, we further need to assume local geodesic completeness
and essential dimension.

Definition 4. For a manifold M ∈ Md
κl,κg

, the interior intM := M\∂M . intM is said to be
locally (geodesically) complete if for all p ∈ intM and for all q1, q2 ∈ BM(p, 2

√
3Rg), there exists

a geodesic γ joining q1 and q2 whose image lies on intM . Fix Kv ≤ 2−m, then M is said to
be of essential dimension d (with respect to bound Kv) if for all p ∈ M and for all r ≤

√
3Rg,

volM(BM(p, r)) ≥ Kvr
dωd. LetMd

κl,κg ,Kv
:= {M ⊂Md

κl,κg
: M is locally complete and of essential

dimension d}. Corrrespondingly define Pdκl,κg ,Kp,Kv := {P ∈ P : there exists M ∈ Md
κl,κg ,Kv

such
that P � volM and dP

dvolM
≤ Kp}.

Remark 2. For manifolds without boundary, the local completeness condition and the essential
dimension condition always hold. The Hopf Rinow Theorem (Theorem 16 in [Petersen, 2006])
implies that any compact closed manifold without boundary is geodesic complete, which implies
it is locally complete. Also, Lemma 5.3 in [Niyogi et al., 2008] implies that when M ∈Md

κl,κg
and

r ≤ 2Rg, then ∀p ∈M ,

(2.2) volM(BM(p, r)) ≥ rd
(

1−
(κgr

2

)2
) d

2

ωd.

Hence by setting r =
√

3Rg, volM(BM(p, r)) ≥ 2−drdωd, so the essential dimension condition is
satisfied.

The preceding regularity conditions imply additional conditions on both the distribution and
the supporting manifold. These additional conditions, given now in Lemma 2, 3, and 4 will be
used later. The proofs for Lemma 2 and Lemma 4 are in the appendix.

Lemma 2. LetM ∈Md
κl,κg ,Kv

satisfiesM ⊂ A, and let r ≤ Rg. Let Ar := {x ∈ Rm : dRm(x,A) <

r} be r-neighborhood of A in Rm. Then, volume of M is bounded by

(2.3) volM(M) ≤ C
(2,1)
d,m rd−mvolRm(Ar),

where C
(2,1)
d,m depends only on d and m. In particular, considering the case A = I and r =

min
{
Rg,

m−d
d
KI

}
,

(2.4) volM(M) ≤ C
(2,2)
KI ,d,m

(
1 + κm−dg

)
,
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where C(2,2)
KI ,d,m

depends only on KI , d and m.

Lemma 3. LetM ∈Md
κl,κg ,Kv

and r ≤ 4Rg. ThenM can be covered by N radius r balls BM(p1, r),
· · · , BM(pN , r), with

(2.5) N =

⌊
2dvol(M)

Kvrdωd

⌋
.

Proof. See 4.3.1. Lemma 3 in [Ma and Fu, 2012]. �

Lemma 4. Let M ∈Md
κl,κg ,Kv

and let exppk : Ek ⊂ Rm →M be an exponential map, where TpkM
is identified with Rm. Then for all v, w ∈ Ek ∩BRd(0, Rk),

(2.6) ‖ exppk(v)− exppk(w)‖Rm ≤
eκlRk sinhκlRk

κlRk

‖v − w‖Rd .

Under these regularity conditions, and given d1 < d2, the minimax rate Rn is defined as

(2.7) Rn = inf
d̂imn

sup
P∈P

EP (n)

[
`
(

d̂imn(X), dim(P )
)]

where

(2.8) P = Pd1
κl,κg ,Kp,Kv

⋃
Pd2
κl,κg ,Kp,Kv

Here d̂imn is any dimension estimator based on data X = (X1, · · · , Xn), and the loss function
`(·, ·) is 0− 1 loss, so for all x, y ∈ R, `(x, y) = I(x = y).

3. Upper Bound

In this section, we give an upper bound on the minimax rate. Our strategy to accomplish
this task is to focus on a particular estimator d̂imnand demonstrate an upper bound on its risk
uniformly over the class P . This will in turn provides an upper bound on the minimax risk since
since

Rn = inf
d̂im
∗
n

sup
P∈P

EP (n)

[
`
(

d̂im
∗
n(X), dim(P )

)]
≤ sup

P∈P
EP (n)

[
`
(

d̂im
∗
n(X), dim(P )

)]
.

Choosing an appropriate estimator is critical to get a good bound.
For now, the intrinsic dimension of data is assumed to be either d1 or d2.
Our estimator is based on the d1-squared length of TSP (Traveling Salesman Path) generated by

the data, and estimating dimension to be d1 if and only if the length is below a certain threshold:

d̂imn(X) = d1 ⇐⇒ ∃σ ∈ Sn s.t
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)
,

where C
(3,2)
KI ,Kv ,d1,m

is a constant to be defined later. Then in Proposition 7, it is shown that
this estimator d̂imn is always correct when the intrinsic dimension is d1, and makes error with

probability at most O
(
n
−
(
d2
d1
−1
)
n

)
if intrinsic dimension is d2.
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Xσ(1)

Xσ(2)

Xσ(3)

Xσ(n−1)

Xσ(n)

. . .

Y1

Y2

Yn−1

∑
Yi ≤ volM (M)

M

Xσ(n−2)

Yn−2

Figure 3.1. When the manifold is a curve, length of TSP path
n−1∑
i=1

‖Xσ(i+1) −
Xσ(i)‖Rm is bounded by the length of the curve volM(M).

Lemma 5 shows that the estimator d̂imn makes error with probability at most O
(
n
−
(
d2
d1
−1
)
n

)

if the intrinsic dimension is d2. It states that d1-squared length of a piecewise linear path from X1

to Xn,
n−1∑
i=1

‖Xi+1−Xi‖d1
Rm , is bounded with probability O

(
n
−
(
d2
d1
−1
)
n

)
, and hence not likely to be

bounded by any threshold L.

Lemma 5. Let X1, · · · , Xn ∼ P ∈ Pd2
κl,κg ,Kp,Kv

, then

(3.1) P (n)

[
n−1∑

i=1

‖Xi+1 −Xi‖d1 ≤ L

]
≤

(
C

(3,1)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + κ
(m−d2)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 1)!

,

where C(3,1)
KI ,Kp,d1,d2,m

depends only on KI , Kp, d1, d2,m.

Proof. in Appendix B. �

Lemma 6 show that the estimator d̂imn is always correct when intrinsic dimension is d1. Lemma 6
states that d1-squared length of TSP path generated from data is bounded by C(3,2)

KI ,Kv ,d1,m

(
1 + κm−d1

g

)
,

i.e. there exists σ ∈ Sn such that
n−1∑
i=1

‖Xσ(i+1)−Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)
. When d1 = 1,

this lemma is straightforward: length of TSP path is bounded by length of curve volM(M) as in
Figure 3.1, and from Lemma 2 we have volM(M) ≤ C

(2,2)
KI ,d,m

(
1 + κm−1

g

)
, hence C(3,2)

KI ,Kv ,d1,m
can be

set as C(3,2)
KI ,Kv ,d1,m

= C
(2,2)
KI ,d,m

.
When d1 > 1, Lemma 2, 3, and 4, combined with Hölder continuity of d1-dimensional space-

filling curve [Steele, 1997, Buchin, 2007], is used to show Lemma 6.

Lemma 6. Let M ∈Md1
κl,κg ,Kp

and X1, · · · , Xn ∈M . Then there exists C(3,2)
KI ,Kv ,d1,m

which depends
only on m, d1, Kv, and KI , and there exists σ ∈ Sn such that

(3.2)
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)

Proof. in Appendix B. �
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Proposition 7 is a combination of Lemma 5 and Lemma 6.

Proposition 7. Let 1 ≤ d1 < d2 ≤ m. Then

inf
d̂imn

sup
P∈P1∪P2

EP (n)

[
l
(

d̂imn, dim(P )
)]

(3.3)

≤
(
C

(3,3)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + κ

(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
.(3.4)

for some C(3,3)
KI ,Kp,Kv ,d1,d2,m

that depends only on KI , Kp, Kv, d1, d2,m where

P1 = Pd1
κl,κg ,Kp,Kv

, P2 = Pd2
κl,κg ,Kp,Kv

.

Proof. in Appendix B. �

4. Lower Bound

In this section, a lower bound for the minimax rate is derived. The lower bound measures how
hard it is to tell whether the data come from a d1 or d2-dimensional manifold. More precisely, a
subset T ⊂ In and set of distributions Pd1

1 , Pd2
2 are found so that, wheneverX = (X1, · · · , Xn) ∈ T ,

we cannot distinguish the models. T , Pd1
1 and Pd2

2 are linked to the lower bound by using Le Cam’s
lemma[Yu, 1997] which provides lower bounds based on the minimum of two densities q1∧q2, where
q1, q2 are constructed from Pd1

1 and Pd2
2 , respectively.

Lemma 8. (Le Cam’s Lemma) Let P be a set of probability measures on (Ω,F), and P1,P2 ⊂ P
be such that for all P ∈ Pi, θ(P ) = θi for i = 1, 2. For any Qi ∈ co(Pi), let qi be density of Qi

with respect to measure ν. Then

(4.1) inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ ∆

4

ˆ
[q1(x) ∧ q2(x)]dν(x),

where ∆ = d(θ1, θ2).

Proof. See Chapter 29.2, Lemma 1 in [Yu, 1997]. �

Lemmas 9 and Lemma 10 below are ingredients for constructing subset T ⊂ In and the sets of
distributions P1, P2 of d1- and d2- dimension.

Lemma 9. Let M ∈ Md
κl,κg

be d-dimensional manifold of global curvature ≤ κg, local curvature
≤ κl, which is imbedded in Rm−∆d. Then

(4.2) M × [−KI , KI ]
∆d ∈Md+∆d

κl,κg
,

which is imbedded in Rm.

Proof. in Appendix C. �

Lemma 10. Let X : [−Kδ, Kδ]→ I be parametrized curve which is C1 and piecewise C2. Suppose
that, for all t ∈ [−Kδ, Kδ],

(4.3) ‖X ′′(t)‖ < ‖X ′(t)‖2
2κl.
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Then image(X) is of local curvature ≤ κl.

Proof. in Appendix C. �

Corollary 11. Let X be C1 curve which is piecewise line or arc of circle of radius≥ Rl. Then
image(X) is of local curvature ≤ κl.

Proof. Follows from Lemma 10. �

Lemma 12 below is for constructing the subset T ⊂ In and the sets of distributions P1, P2.
Claim 13 is for showing that whenever X = (X1, · · · , Xn) ∈ T , it is both likely that X is sampled
from some distribution P that is either in P1 or P2. From Le Cam’s lemma, a lower bound is given
by
´
q1(x)∧q2(x). Hence if q1(x) ≥ Cq2(x) for every x ∈ T with C < 1, then q1(x)∧q2(x) ≥ Cq2(x),

hence C
´
q2(x) can serve as lower bound of minimax rate. This inequality q1(x) ≥ Cq2(x) is shown

in Claim 13. This intuitively means that if X ∈ T , it is hard to determine whether X is sampled
from distribution P in either P1 or P2.

In Lemma 12, as in Figure C.2, we construct Ti’s that are cylinder sets aligned along boundary

of [−KI , KI ]
d2 , and then T is constructed as T = Sn

n∏
i=1

Ti, where the permutation group Sn acts

on
n∏
i=1

Ti as a coordinate change. And it is also shown in Lemma 12 that for any x ∈ ∏Ti, there

exists a manifold M ∈Md2
κl,κg ,∞ that passes through x1, · · · , xn.

Then in Proposition 14, P1 is constructed as set of distributions that are supported on such a
manifold, and P2 is a singleton set consisting of the uniform distribution on [−KI , KI ]

d2 .

Lemma 12. Suppose Rl ≤ KI . There exists T1, · · · , Tn ⊂ [−KI , KI ]
d2 such that

(1) each Ti’s are distinct
(2) For each Ti, there exists isometry Φi such that

(4.4) Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]×BRd2−d1 (0, w)
)
,

where c =
⌈
KI+Rl

2Rl

⌉
, a = KI−Rl

(d+ 1
2)
⌈

n

cd2−d1

⌉ , and w = min

{
Rl,

d2(KI−Rl)2

2Rl(d+ 1
2)

2
(⌈

n

cd2−d1

⌉
+1
)2

}
.

(3) ∃M : (BRd2−d1 (0, w))n →Md1
κl,κg ,Kv

one-to-one such that for each Yi ∈ BRd2−d1 (0, w), 1 ≤ i ≤
n, M (Y1, · · · , Yn) ∩ Ti = Φi([−KI , KI ]

d1−1 × [0, a]× {Yi}). Hence for any X1 ∈ T1, · · · , Xn ∈ Tn,
M ({Π−1

(d1+1):d2
Φ−1
i (Xi)}1≤i≤n) passes through X1, · · · , Xn.

Proof. in Appendix C. �

Claim 13. Let T = Sn
n∏
i=1

Ti. Then for all x ∈ intT , there exists rx > 0 such that for all r < rx,

(4.5) Q1

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
≥ 2(1−d1)n

κ
(d2−d1)n
l K

(d2−d1)n
I

Q2

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
.

Proof. in Appendix C. �

Proposition 14 is a combination of Le Cam’s lemma, Lemma 12, and Claim 13.
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Proposition 14. Suppose Rl < KI , then

inf
d̂im

sup
P∈Pd1κl,κg,Kp,Kv∪P

d2
κl,κg,Kp,Kv

EP (n) [l(d̂imn, dim(P ))](4.6)

≥
(
K

(4,1)
d1,d2,KI

)n
κ
−(d2−d1)n
l min

{
κ

2(d2−d1)+1
l n−2, 1

}(d2−d1)n

,(4.7)

for some constant K(4,1)
d1,d2,KI

that depends only on d1, d2, and KI .

Proof. in Appendix C. �

5. Upper bound and Lower bound for General case

Now we generalize our results to allow the intrinsic dimension to be any integer between 1 and

m. Thus the model is P =
m⋃
d=1

Pdκl,κg ,Kp,Kv . The estimator we consider to derive an upper bound is

the simply the smallest integer d between 1 and m such that (3.2) holds. As for the lower bound,
we simply use the lower bound derived in Section 4 with d1 = 1 and d2 = 2.

Proposition 15.

inf
d̂imn

sup
P∈P

EP (n)

[
l
(

d̂imn, dim(P )
)]
≤
(
CKI ,Kp,Kv ,Km

)n (
1 + κ(m2−m)n

g

)
n−

1
m−1

n(5.1)

for some C(5,1)
KI ,Kp,Kv ,Km

that depends only on KI , Kp, Kv,m.

Proof. in Appendix D. �

Proposition 16. Suppose Rl < KI , then

(5.2) inf
d̂im

sup
P∈P

EP (n) [l(d̂imn, dim(P ))] ≥
(
C

(5,2)
KI

)n
κ−nl min

{
κ3
l n
−2, 1

}n

for some C(5,2)
KI

that depends only on KI .

Proof. in Appendix D. �

6. Conclusion

On a logarithmic scale, the leading terms of the lower and upper bounds have the form

−nc log κ

for some constant c, where κ is the global curvature for the upper bound and the lower curvature
for the lower bound. This shows that the difficulty of the problem of estimating the dimension
goes to 0 rapidly with sample size, in a way that depends on the curvature of the manifold. It is
an open question whether oen can obtain tighter bounds on Rn.

References

Richard. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.



12

M.R. Bridson and A. Häfliger. Metric Spaces of Non-Positive Curvature. Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen. Springer, 1999. ISBN 9783540643241.

Kevin. Buchin. 2. Space-Filling Curves, chapter 2, pages 5–29. Freien Universität Berlin, 2007.
Francesco Camastra and Antonio Staiano. Intrinsic dimension estimation: Advances and open
problem. Information Sciences, (38):26–41, 2015.

Trevor. Hastie, Robert. Tibshirani, and Jerome Friedman. 14. Unsupervised Learning, chapter 14,
pages 485–586. Springer-Verlag, 2009.

Matthias. Hein and Jean-Yves Audibert. Intrinsic dimensionality estimation of submanifolds in
Rd. In 22nd International Conference on Machine Learning, 2005.

Balázs Kégl. Intrinsic dimension estimation using packing numbers, 2003.
V. I. Koltchinskii. Empirical geometry of multivariate data: a deconvolution ap-
proach. Ann. Statist., 28(2):591–629, 04 2000. doi: 10.1214/aos/1016218232. URL
http://dx.doi.org/10.1214/aos/1016218232.

John A. Lee and Michel. Verleysen. 1. High-Dimensional Data, chapter 1, pages 1–16. Springer
New York, 2007a.

John A. Lee and Michel. Verleysen. 3. Estimation of the Intrinsic Dimension, chapter 3, pages
47–68. Springer New York, 2007b.

Elizaveta Levina and Peter J Bickel. Maximum likelihood estimation of intrinsic dimension. In
Advances in neural information processing systems, pages 777–784, 2004.

Anna V Little, Yoon-Mo Jung, and Mauro Maggioni. Multiscale estimation of intrinsic dimension-
ality of data sets. In AAAI Fall Symposium: Manifold Learning and Its Applications, 2009.

Anna V Little, Mauro Maggioni, and Lorenzo Rosasco. Multiscale geometric methods for estimat-
ing intrinsic dimension. Proc. SampTA, 2011.

Yunqian Ma and Yun Fu. Manifold Learning Theory and Applications. CRC Press, 2012.
Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of sub-
manifolds with high confidence from random samples. Discrete & Computational Geom-
etry, 39(1-3):419–441, 2008. ISSN 0179-5376. doi: 10.1007/s00454-008-9053-2. URL
http://dx.doi.org/10.1007/s00454-008-9053-2.

Peter Petersen. Riemannian Geometry. Springer New York, 2006. doi: 10.1007/978-0-387-29403-2.
Maxim Raginsky and Svetlana Lazebnik. Estimation of intrinsic dimensionality using high-rate
vector quantization. In Advances in neural information processing systems, pages 1105–1112,
2005.

Alessandro Rozza, Gabriele Lombardi, Claudio Ceruti, Elena Casiraghi, and Paola Campadelli.
Novel high intrinsic dimensionality estimators. Machine learning, 89(1-2):37–65, 2012.

Kumar Sricharan, Raviv Raich, and AO Hero. Optimized intrinsic dimension estimator using
nearest neighbor graphs. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pages 5418–5421. IEEE, 2010.

J. Michael Steele. 2. Concentration of Measure and the Classical Theorems, chapter 2, pages 27–51.
Society for Industrial and Applied Mathematics, 1997. doi: 10.1137/1.9781611970029.ch2. URL



13

http://epubs.siam.org/doi/abs/10.1137/1.9781611970029.ch2.
Bin Yu. Assouad, fano, and le cam. In David Pollard, Erik Torgersen, and GraceL. Yang, editors,
Festschrift for Lucien Le Cam. Springer New York, 1997.



14

M
(i)
r

Qi

Qj1 Qj2

r

Figure A.1. {Q1, · · · , Ql} is a disjoint cover of M , and each Qi is a projection of
M

(i)
r on M .

Appendix A. Proofs for Section 2

Lemma. 2. Let M ∈ Md
κl,κg ,Kv

satisfies M ⊂ A, and let r ≤ Rg. Let Ar := {x ∈ Rm :

dRm(x,A) < r} be r-neighborhood of A in Rm. Then, volume of M is bounded by

(A.1) volM(M) ≤ C
(2,1)
d,m rd−mvolRm(Ar),

where C
(2,1)
d,m depends only on d and m. In particular, considering the case A = I and r =

min
{
Rg,

m−d
d
KI

}
,

(A.2) volM(M) ≤ C
(2,2)
KI ,d,m

(
1 + κm−dg

)
,

where C(2,2)
KI ,d,m

depends only on KI , d and m.

Proof. Let Mr := {x ∈ Rm : d‖·‖1(x,M) < r} be r-neighborhood of M in Rm, then trivially

(A.3) volRm(Mr) ≤ volRm(Ar).

Suppose {Q1, · · · , Ql} is a disjoint cover of M , i.e. {Q1, · · · , Ql} are measurable subset of M that

Qi∩Qj = ∅,
l⋃

i=1

Qi = M , and each Qi is equipped with chart maps X(i) : Ui → Qi. Such a triangu-

lation is always possible. For each Qi, define M
(i)
r := {x ∈ Rm : πM(x) ∈ Qi, d‖·‖Rm,1(x,M) ≤ r}

so that each Qi is a projection of M (i)
r on M , as in Figure A.1. Then,

(A.4) volRm(Mr) =
l∑

i=1

volRm(M (i)
r ).

Fix i ∈ {1, · · · , l}. M (i)
r can be parametrized as Y (i) : Ui ×B‖·‖Rm−d,1(0, r)→M

(i)
r with

(A.5) Y (i)(u, t) = X(i)(u) +R(i)(u)t = X(i)(u) +
m−d∑

j=1

tjR
(i,j)(u),
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where R(i)(u) : Rm−d → (TX(i)(u)M)⊥ is a linear isometry for each u ∈ U , and can be identified as
an m× (m− d) matrix, and R(i,j)(u) is jth column of R(i)(u). Then, because of the isometry,

(A.6) R(i)(u)TR(i)(u) = Im−d.

Let Y (i)
u = ∂Y (i)

∂u
=
(
∂Y (i)

∂u1
, · · · , ∂Y (i)

∂ud

)
∈ Rm×d be partial derivatives with respect to u and Y (i)

t =

∂Y (i)

∂t
as well. define X(i)

u , X(i)
t , R(i,j)

u , R(i,j)
t similarily. Then, since image(R(i)(u)) ⊂ (TX(i)(u)M)⊥,

(A.7) R(i)(u)TX(i)
u (u) = 0.

Also from R(i)(u)TR(i)(u) = Im−d,

(A.8) ∀j, R(i)(u)TR(i,j)
u (u) = 0.

Then from the fact that

(A.9) Y (i)
u (u, t) = X(i)

u (u) +
m−d∑

j=1

tjR
(i,j)
u (u)

and

(A.10) Y
(i)
t (u, t) = R(i)(u),

we have

(A.11) Y
(i)
t (u, t)TY (i)

u (u, t) = R(i)(u)TX(i)
u (u) +R(i)(u)TR(i)

u (u)t = 0.

Also,

(A.12) Y
(i)
t (u, t)TY

(i)
t (u, t) = R(i)(u)TR(i)(u) = Im−d.

Now let’s consider Y (i)
u (u, t)TY

(i)
u (u, t). Since R(i,j)

u (u)TR(i)(u) = 0, column space generated by
R

(i,j)
u (u) is < R

(i,j)
u (u) >⊂ TX(i)(u)(M) = span(X

(i)
u (u)). Therefore, there exists Λ(i,j)(u) : d × d

matrix such that

(A.13) R(i,j)
u (u) = X(i)

u (u)Λ(i,j)(u).

Then,

(A.14) Y (i)
u (u, t) = X(i)

u

(
I +

m−d∑

j=1

tjΛ
(i,j)(u)

)
.

M being of global curvature ≤ κg implies Y (i)
u (u, t) is of full rank for all t ∈ BRm−d(0, Rg). Hence

this implies I +
m−d∑
j=1

tjΛ
(i,j)(u) is invertible for all t ∈ BRm−d(0, Rg), and this implies all singular

values of Λ(i,j)(u) is bounded by κg. Hence ∀v ∈ Rd,

(A.15)
∣∣vTΛ(i,j)(u)v

∣∣ ≤ κg‖v‖2
2.
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From this, ∀v ∈ Rd,
∣∣∣∣∣v
T

(
I +

m−d∑

j=1

tjΛ
(i,j)(u)

)
v

∣∣∣∣∣ ≥ ‖v‖
2
2 −

m−d∑

j=1

|tj|
∣∣vTΛ(i,j)(u)v

∣∣(A.16)

≥ (1− ‖t‖1κg) ‖v‖2
2,(A.17)

Hence for any singular values σ of I +
m−d∑
j=1

tjΛ
(i,j)(u), |σ| ≥ 1− ‖t‖1κg. And since ‖t‖1 ≤ Rg,

(A.18)

∣∣∣∣∣I +
m−d∑

j=1

tjΛ
(i,j)(u)

∣∣∣∣∣ ≥ (1− ‖t‖1κg)
d.

Then determinant of Riemannian metric tensor is lower bounded by

| det(gij)|2 =

∣∣∣∣
(
Y (i)
u (u, t) Y

(i)
t (u, t)

)T (
Y (i)
u (u, t) Y

(i)
t (u, t)

)∣∣∣∣(A.19)

=

∣∣∣∣∣
Y

(i)
u (u, t)TY

(i)
u (u, t) Y

(i)
u (u, t)TY

(i)
t (u, t)

Y
(i)
u (u, t)TY

(i)
t (u, t) Y

(i)
t (u, t)TY

(i)
t (u, t)

∣∣∣∣∣(A.20)

=
∣∣∣ Y (i)

u (u, t)TY
(i)
u (u, t)

∣∣∣(A.21)

≥ (1− ‖t‖1κg)
d.(A.22)

Hence

volRm(M (i)
r ) =

ˆ
Ui×B‖·‖Rm−d,1

(0,r)

| det(gij)|dudt(A.23)

≥
ˆ
Ui

ˆ
B‖·‖Rm−d,1

(0,r)

(1− ‖t‖1κg)
d
2dtdu(A.24)

= vol(Ui)

ˆ r

0

ˆ
t1+···+tm−d−1≤s

(1− sκg)
d
2dt1 · · · dtm−d−1ds(A.25)

=
1

(m− d− 1)!
vol(Ui)

ˆ r

0

sm−d−1(1− sκg)
d
2ds(A.26)

≥ 1

C
(2)
d,m

rm−dvol(Ui),(A.27)

where C(2)
d,m depends only on d and m. Therefore,

volRm(Mr) ≥
1

C
(2)
d,m

rm−d
l∑

i=1

vol(Ui)(A.28)

=
1

C
(2)
d,m

rm−dvolM(M)(A.29)

and hence we have following result:

(A.30) volM(M) ≤ C
(2)
d,mr

d−mvolRm(Mr) ≤ C
(2)
d,mr

d−mvolRm(Ar).
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�

Jisu: remove next lemm unless it is needed

Lemma. (Now this seems useless) Let M ∈ Md
κl,κg ,∞ and x, y ∈ M . Let M1 be geodesic path

connecting x, y ∈M . Then M1 ∈M1
κl,4κg ,∞.

Proof. Since M1 is geodesic on M and the local curvature is ≤ κl, we have that M1 is also of local
curvature ≤ κl. Hence we only need to show that global curvature is ≤ 4κg.

Assume to the contrary, so that there exists x ∈ Rm such that d(x,M1) = r < Rg
4

with at least
two projection on M1, i.e. there exists p 6= q ∈ M1 such that ‖x− p‖Rm = ‖x− q‖Rm = r. Define
X1 : [−1, 1]→M as

(A.31) X1(λ) =




πM(−λp+ (1 + λ)x) λ ∈ [−1, 0]

πM(λx+ (1− λ)q) λ ∈ [0, 1]
.

Such projection is well defined and X1 is continuous since M is of global curvature ≤ κg. Let
dλ = ‖p−X1(λ)‖Rm . Then for λ ∈ [−1, 0],

‖(−λp+ (1 + λ)x)− πM(−λp+ (1 + λ)x)‖Rm < ‖(−λp+ (1 + λ)x)− p‖Rm(A.32)

= |1 + λ|‖x− p‖Rm ≤ |1 + λ|r,(A.33)

we have

‖p−X1(λ)‖Rm ≤ ‖p− (−λp+ (1 + λ)x)‖Rm + ‖(−λp+ (1 + λ)x)− πM(−λp+ (1 + λ)x)‖Rm
(A.34)

< 2|1 + λ|‖x− p‖Rm ≤ 2r.(A.35)

For λ ∈ [0, 1], we have similarily ‖(λx+ (1− λ)q)− πM(λx+ (1− λ)q)‖Rm ≤ |λ|r, so

‖p−X1(λ)‖Rm(A.36)

≤ ‖p− x‖Rm + ‖x− (λx+ (1− λ)q)‖Rm + ‖(λx+ (1− λ)q)− πM(λx+ (1− λ)q)‖Rm(A.37)

< ‖p− x‖Rm + (1− λ)‖p− x‖Rm + λ‖p− x‖Rm(A.38)

= 2‖x− p‖Rm = 2r.(A.39)

Hence we have for all λ ∈ [−1, 1],

(A.40) dλ ≤ 2r < 2 · Rg

4
=

1

2
Rg.

Let cλ : [0, sλ] → M be (arc length parametrized) geodesic connecting p and X1(λ), so that
cλ(0) = p, cλ(s) = X1(λ), and dM(p,X1(λ)) = sλ. Then from M being of global curvature≤ κg,



18

‖c′′(t)‖ ≤ κg. Then from

cλ(sλ)− cλ(0) =

ˆ sλ

0

c′λ(t)dt(A.41)

=

ˆ s

0

c′λ(0)dt+

ˆ sλ

0

ˆ t

0

c′′λ(u)dudt,(A.42)

we have

dλ = ‖cλ(sλ)− cλ(0)‖Rm(A.43)

≥ ‖
ˆ sλ

0

c′λ(0)dt‖ −
ˆ sλ

0

ˆ t

0

‖c′′λ(u)‖dudt(A.44)

≥ sλ −
ˆ sλ

0

ˆ t

0

κgdudt = sλ −
1

2
κgs

2
λ(A.45)

hence we have

(A.46) s2
λ − 2Rgsλ + 2Rgdλ ≥ 0.

This is satisfied if and only if sλ ≤ Rg − Rg

√
1− 2κgdλ or sλ ≥ Rg + Rg

√
1− 2κgdλ (Note that

1−2κgdλ > 1−κg ·Rg = 0). Then since sλvaries continuously by λ and s0 = 0, so for all λ ∈ [0, 1],

(A.47) sλ ≤ Rg −Rg

√
1− 2κgdλ =

2dλ

1 +
√

1− 2κgdλ

Then in particular,

dM(p, q) = s1 ≤
2d1

1 +
√

1− 2κgd1

(A.48)

≤ 2d1.(A.49)

On the other hand, since c1(t) is geodesic path joining p and q, c1([0, s1]) ⊂ M1. Then since
p = arg min

p′∈M1

d(x, p′), ‖c1(t)− x‖2 = (c1(t)− x)T (c1(t)− x) is minimized at t = 0. Hence

(A.50) c′1(0)T (p− x) =
d

dt
(c1(t)− x)T (c1(t)− x)|t=0 = 0.

Let θ be angle between p, x, and q, i.e. θ = ∠pxq. Then ∠xpq = π
2
− θ

2
and angle between pq and

TpM1 is θ
2
, as in figure ?. Now, decompose q − p by components parallel to p− x and orthogonal

to p− x, i.e.

(A.51) q − p = Πp−x(q − p) + (I − Πp−x)(q − p),

where Πp−x = 1
‖p−x‖2Rm

(p− x)(p− x)T is projection matrix. Then from ∠xpq = π
2
− θ

2
,

(A.52) ‖(I − Πp−x)(q − p)‖Rm = sin
θ

2
‖q − p‖Rm .
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Since c′1(0) is orthogonal to p− x, c′1(0)T (Πp−x(q − p)) = 0, hence

|c′1(0)T (q − p)| = |c′1(0)T (I − Πp−x)(q − p)|(A.53)

≤ ‖c′1(0)‖Rm‖(I − Πp−x)(q − p)‖Rm(A.54)

= sin
θ

2
‖q − p‖Rm .(A.55)

Now, let v := − (I−Πp−x)c′1(0)

‖(I−Πp−x)c′1(0)‖ , then

(A.56) vT c′1(0) ≤ − sin
θ

2
,

then from

(A.57) (c1(s1)− c1(0))Tv = 0,

we have

0 =

ˆ s1

0

c′1(0)Tvdt+

ˆ s1

0

ˆ t

0

c′′1(u)Tvdudt(A.58)

≤ −s1 sin
θ

2
+

ˆ s1

0

ˆ t

0

‖c′′1(u)‖Rmdudt(A.59)

≤ −s1 sin
θ

2
+

1

2
κgs

2
1(A.60)

Therefore we have

(A.61) s1 ≥ 2Rg sin
θ

2
=
Rg

r
d1 > 4d1.

Hence

(A.62) 4d1 < s1 ≤ 2d1,

which is a contradiction. �

Lemma 17. (Toponogov comparison theorem, 1959) Let (M, g) be a complete Riemannian mani-
fold with sectional curvature≥ k, and let Sk be a surface of constant Gaussian curvature k. Given
any geodesic triangle with vertices p, q, r ∈ M forming an angle α at q, consider a (comparison)
triangle with vertices p̄, q̄, r̄ ∈ Sk such that d(p̄, q̄) = d(p, q), d(r̄, q̄) = d(r, q), and ∠pqr = ∠p̄q̄r̄.
Then d(p, r) ≤ d(q, r).

Proof. See Theorem 79 in [Petersen, 2006], p.339. Note that for a manifold with boundary, the
complete Riemannian manifold condition can be relaxed to requiring the existence of a geodesic
path joining p and q whose image lies on intM . �

Lemma 18. (Hyperbolic law of cosines) Let Hκ be a hyperbolic plane whose Gaussian curvature
is −κ2. Then given a hyperbolic triangle ABC with angles α, β, γ, and side lengths BC = a,
CA = b, and AB = c, the following holds:

(A.63) cosh(κa) = cosh(κb) cosh(κc)− sinh(κb) sinh(κc) cosα.
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Rlr2

Rlr1

2α
pk q1

q2

dM (q1, q2)

M
(a) triangle in M

Rlr2

Rlr1

2α
p̄k q̄1

q̄2

dHκl (q̄1, q̄2)

Hκl

(b) comparison trian-
gle in Hκl

Figure A.2. (a) triangle inM formed by pk, q1, q2, and (b) its comparison triangle
in Hκl .

Proof. See 2.13 The Law of Cosines in Mn
κ in [Bridson and Häfliger, 1999], p.24. �

Lemma. 4. Let M ∈ Md
κl,κg ,Kv

and let exppk : Ek ⊂ Rm → M be an exponential map, where
TpkM is identified with Rm. Then for all v, w ∈ Ek ∩BRd(0, Rk),

(A.64) ‖ exppk(v)− exppk(w)‖Rm ≤
eκlRk sinhκlRk

κlRk

‖v − w‖Rd .

Proof. Let q1 = exppk(v) and q2 = exppk(w). Let dM(pk, q1) = Rlr1, dM(pk, q2) = Rlr2, and
∠q1pkq2 = 2α with 0 ≤ α ≤ π. Then

‖v − w‖Rd1 = Rl

√
r2

1 + r2
2 − 2r1r2 cos 2α(A.65)

= Rl

√
sin2 α(r1 + r2)2 + cos2 α(r1 − r2)2.(A.66)

Let Hκl be a surface of constant sectional curvature −κ2
l , and let p̄k, q̄1, q̄2 ∈ Hκl be such that

dHκl (p̄k, q̄1) = dM(pk, q1), dHκl (p̄k, q̄2) = dM(pk, q2), and ∠q̄1p̄kq̄2 = ∠q1pkq2, so that 4p̄kq̄1q̄2

becomes a comparison triangle of pkq1q2, as in Figure A.2. Then since (sectional curvature of
M) ≥ −κ2

l , from the Toponogov comparison theorem in Lemma 17,

(A.67) dM(q1, q2) ≤ dHκl (q̄1, q̄2).

From the hyperbolic law of cosines in Lemma 18,

coshκldMκl
(q̄1, q̄2) = cosh r1 cosh r2 − sinh r1 sinh r2 cos 2α(A.68)

= (sin2 α) cosh(r1 + r2) + (cos2 α) cosh(r1 − r2).(A.69)

Therefore,

(A.70)
dHκl (q̄1, q̄2)

‖v − w‖Rd
=

cosh−1
(
sin2 α cosh(r1 + r2) + cos2 α cosh(r1 − r2)

)
√

(sin2 α)(r1 + r2)2 + (cos2 α)(r1 − r2)2
.

Let F (a, b, λ) = f−1(λf(a)+(1−λ)f(b)) and G(a, b, λ) = g−1(λg(a)+(1−λ)g(b)), with 0 ≤ a < b,
λ ∈ [0, 1], f(t) = cosh t and g(t) = t2. Toponogov’s theorem implies F (a, b, λ) ≥ G(a, b, λ), and f
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and g being strictly increasing function implies a < G(a, b, λ) ≤ F (a, b, λ) < b. Also,

∂

∂a
log

F (a, b, λ)

G(a, b, λ)
(A.71)

=
λf ′(a)

f ′(F (a, b, λ))F (a, b, λ)
− λg′(a)

g′(G(a, b, λ))G(a, b, λ)
(A.72)

=
λ

F (a, b, λ)
exp

(
−
ˆ F (a,b,λ)

a

(log f ′)′(t)dt

)
− λ

G(a, b, λ)
exp

(
−
ˆ G(a,b,λ)

a

(log g′)′(t)dt

)
.(A.73)

Then (log f ′)′(t) = coth t > (log g′)′(t) = 1
t
and F (a, b, λ) ≥ G(a, b, λ) implies

(A.74) 0 < ∀a < b,
∂

∂a
log

F (a, b, λ)

G(a, b, λ)
< 0.

Hence

(A.75)
F (a, b, λ)

G(a, b, λ)
≤ F (0, b, λ)

G(0, b, λ)

and by plugging in a = |r1 − r2|, b = r1 + r2, λ = cos2 α implies

dHκl (q̄1, q̄2)

‖v − w‖Rd1

(A.76)

≤ cosh−1
(
sin2 α cosh(r1 + r2) + cos2 α

)
√

(r1 + r2)2 sin2 α

(A.77)

=
cosh−1

(
1 + 2 sinh2

(
r1+r2

2

)
sin2 α

)

(r1 + r2) sinα

(A.78)

=
log
(

1 + 2 sinh2
(
r1+r2

2

)
sin2 α + 2 sinh

(
r1+r2

2

)
sinα

√
1 + sinh2

(
r1+r2

2

)
sin2 α

)

(r1 + r2) sinα

(A.79)

≤
2 sinh

(
r1+r2

2

)
sinα

[
sinh

(
r1+r2

2

)
sinα +

√
1 + sinh2

(
r1+r2

2

)
sin2 α

]

(r1 + r2) sinα
(using log(1 + x) ≤ x)

(A.80)

≤ er sinh r

r
, with r =

r1 + r2

2
.

(A.81)

Then since t 7→ et sinh t
t

is increasing function of t and r = r1+r2
2
≤ κlRk, so

(A.82)
dHκl (q̄1, q̄2)

‖v − w‖Rd1
≤ eκlRk sinhκlRk

κlRk

.
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Therefore,

(A.83) ‖ exppk(v)− exppk(w)‖Rm ≤ dM(q1, q2) ≤ dHκl (q̄1, q̄2) ≤ eκlRk sinhκlRk

κlRk

‖v − w‖Rd .

�

Appendix B. Proofs for Section 3

Lemma. 5. Let X1, · · · , Xn ∼ P ∈ Pd2
κl,κg ,Kp,Kv

, then

(B.1) P (n)

[
n−1∑

i=1

‖Xi+1 −Xi‖d1 ≤ L

]
≤

(
C

(3,1)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + κ
(m−d2)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 1)!

,

where C(3,1)
KI ,Kp,d1,d2,m

depends only on KI , Kp, d1, d2,m.

Proof. Let Yi := ‖Xi+1 −Xi‖d1
Rm , i = 1, · · · , n− 1. Then

P (n) (Yn−1 ≤ y|X1, · · · , Xn−1)(B.2)

= P (n)
(
Xn ∈ BRm

(
Xn−1, y

1
d1

)
| X1, · · · , Xn−1

)
(B.3)

=

ˆ
M∩

(
BRm

(
Xn−1,y

1
d1

)) fXn (xn) dvolM(xn)(B.4)

≤ KpvolM

(
M ∩B

(
Xn−1, y

1
d1

))
(B.5)

≤ KpC
(2)
d2,m

min
{
y

1
d1 , Rg

}d2−m
volRm

(
B
(
Xn−1, y

1
d1 + min

{
y

1
d1 , Rg

}))
(Lemma 1)(B.6)

= KpC
(2)
d2,m

ωm


y

d2
d1 2mI(y

1
d1 ≤ Rg) + y

d2
d1

(
Rg

y
1
d1

)d2−m(
1 +

(
Rg

y
1
d1

))m

I(y
1
d1 > Rg)


(B.7)

≤ KpC
(2)
d2,m

ωm2m

(
y
d2
d1 I(y

1
d1 ≤ Rg) + y

d2
d1

(
Rg

2KI

√
m

)d2−m

I(y
1
d1 > Rg)

)
(B.8)

≤ C
(3,1,1)
KI ,Kp,d2,m

(
1 + κm−d2

g

)
y
d2
d1(B.9)

where C(3,1,1)
KI ,Kp,d2,m

= KpC
(2)
d2,m

ωm2m (2KI

√
m)

m−d2 . Then since
n−1∑
i=2

Yi is function of X1, · · · , Xn−1,
so

(B.10) P (n)

(
Yn−1 ≤ y|

n−1∑

i=2

Yi

)
≤ C

(3,1,1)
KI ,Kp,d2,m

(
1 + κm−d2

g

)
y
d2
d1 .
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Hence

P (n)

(
n−1∑

i=1

|Xi+1 −Xi|d1 ≤ L

)
(B.11)

= P (n)

(
n−1∑

i=1

Yi ≤ L

)(B.12)

=

ˆ L

0

P (n)

(
Yn−1 ≤ yn−1|

n−2∑

i=1

Yi = L− yn−1

)
dFn−2∑

i=1
Yi

(L− yn−1)

(B.13)

≤ C
(3,1,1)
KI ,Kp,d2,m

(
1 + κm−d2

g

) ˆ L

0

y
d2
d1
n−1dFn−2∑

i=1
Yi

(L− yn−1)

(B.14)

= C
(3,1,1)
KI ,Kp,d2,m

(
1 + κm−d2

g

)


[
−y

d2
d1
n−1P

(
n−2∑

i=1

Yi ≤ L− yn−1

)]L

0

+

ˆ L

0

P

(
n−2∑

i=1

Yi ≤ L− yn−1

)
d

(
y
d2
d1
n−1

)


(B.15)

= C
(3,1,1)
KI ,Kp,d2,m

(
1 + κm−d2

g

) ˆ L

0

P

(
n−2∑

i=1

Yi ≤ L− yn−1

)
d2

d1

y
d2−d1
d1

n−1 dyn−1

(B.16)
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By repeating this argument, we get

P (n)

(
n−1∑

i=1

|Xi+1 −Xi|d1 ≤ L

)
(B.17)

≤
(
d2

d1

C
(3,1,1)
KI ,Kp,d2,m

(
1 + κm−d2

g

))n−1 ˆ
n−1∑
i=1

yi≤L

n−1∏

i=1

y
d2−d1
d1

i dy

(B.18)

≤
(

2d2

d1

C
(3,1,1)
KI ,Kp,d2,m

)n−1

L
d2
d1

(n−1) (
1 + κ(m−d2)(n−1)

g

) ˆ
n−1∑
i=1

yi≤1

(
1

n− 1

n−1∑

i=1

yi

) (d2−d1)(n−1)
d1

dyn−1 · · · dy1

(B.19)

=

(
C

(3,1)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + κ
(m−d2)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)

ˆ 1

0

ˆ
n−2∑
i=1

yi≤z
z

(d2−d1)(n−1)
d1 dyn−2 · · · dy1dz

(B.20)

=

(
C

(3,1)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + κ
(m−d2)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 2)!

ˆ 1

0

z
d2(n−1)

d1
−1
dz

(B.21)

≤

(
C

(3,1)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + κ
(m−d2)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 1)!

,

(B.22)

where C(3,1)
KI ,Kp,d1,d2,m

= 2d2

d1
C

(3,1,1)
KI ,Kp,d2,m

. �

Lemma 19. (Space-filling curve) There exists a surjective map ψd : R → Rd which is Hölder
continuous of order 1/d, i.e.

(B.23) 0 ≤ ∀s, t ≤ 1, ‖ψd(s)− ψd(t)‖Rd ≤ 2
√
d+ 3|s− t|1/d.

Such a map is called a space-filling curve.

Proof. See chapter 2.1.6 in [Buchin, 2007]. �

Lemma. 6. LetM ∈Md1
κl,κg ,Kp

and X1, · · · , Xn ∈M . Then there exists C(3,2)
KI ,Kv ,d1,m

which depends
only on m, d1, Kv, and KI , and there exists σ ∈ Sn such that

(B.24)
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)
.
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Proof. When d1 = 1, length of TSP path is bounded by length of curve volM(M) as in Figure
3.1, and from Lemma 2 we have volM(M) ≤ C

(2,2)
KI ,d,m

(
1 + κm−1

g

)
, hence C(3,2)

KI ,Kv ,d1,m
can be set as

C
(3,2)
KI ,Kv ,d1,m

= C
(2,2)
KI ,d,m

, as described before.
Consider d1 > 1. By scaling the space-filling curve in Lemma 19, there exists a surjective map

ψd1 : [0, 1]→ [−r, r]d1 and ψm : [0, 1]→ [−KI , KI ]
m that satisfies

0 ≤ ∀s, t ≤ 1, ‖ψd1(s)− ψd1(t)‖Rd1 ≤ 4r
√
d1 + 3|s− t|1/d1(B.25)

0 ≤ ∀s, t ≤ 1, ‖ψm(s)− ψm(t)‖Rm ≤ 4KI

√
m+ 3|s− t|1/m(B.26)

Let r := 2
√

3Rg. From Lemma 3,M can be covered by N balls of radius r, denoted by BM(p1, r),
· · · , BM(pN , r), with N =

⌊
2d1volM (M)

Kvrd1ωd1

⌋
. Since ψm : [0, 1] → [−KI , KI ]

m is surjective, we can find
a right inverse Ψm : [−KI , KI ]

m → [0, 1] that satisfies ψm(Ψm(p)) = p, i.e.

(B.27) [0, 1]
ψm

..
[−KI , KI ]

m.
Ψm

mm

Reindex pk so that

(B.28) Ψm(p1) < · · · < Ψm(pN).

Now fix k. Then for all p ∈ BM(pk, r), since dM(pk, p) < r, we can find ϕk(p) ∈ BRd1 (0, r) such
that exppk(ϕk(p)) = p. So this shows

(B.29) BM(pk, r) ⊂ exppk (BRd1 (0, r)) .

Now consider the map exppk ◦ψd1 : [0, 1]→M . Then

(B.30) BM(pk, r) ⊂ exppk (BRd1 (0, r)) ⊂ exppk
(
[−r, r]d1

)
= exppk ◦ψd1 ([0, 1]) .

So exppk ◦ψd1 : [0, 1]→M is surjective on BM(p, r), so we can find right inverse Ψk : BM(pk, r)→
[0, 1] that satisfies (exppk ◦ψd1)(Ψk(p)) = p, i.e.

(B.31) [0, 1]

ψd1
--
[−r, r]

exppk ..
M ⊃ BM(pk, r).

Ψk

ll
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Then, reindexX1, · · · , Xn as {Xk,j}1≤k≤l, 1≤j≤nk , whereXk,1, · · · , Xk,nk ∈ BM(pk, r) and Ψk(Xk,1) <

· · · < Ψk(Xk,ni). Then for all 1 ≤ k ≤ l,
nl−1∑

j=1

‖Xk,j+1 −Xk,j‖d1
Rm ≤

nl−1∑

j=1

‖(exppk ◦ψd1)(Ψk(Xk,j+1))− (exppk ◦ψd1)(Ψk(Xk,j))‖d1
Rm(B.32)

≤
(
eκlr sinhκlr

κlr

)d1 nk−1∑

j=1

‖ψd1(Ψk(Xk,j+1))− ψd1(Ψk(Xk,j))‖d1

Rd1(B.33)

≤
(

4
√
d1 + 3eκlr sinhκlr

κlr

)d1

rd1

nk−1∑

j=1

|Ψk(Xk,j+1)−Ψk(Xk,j)|(B.34)

≤
(

4
√
d1 + 3eκlr sinhκlr

κlr

)d1

rd1 .(B.35)

And
N−1∑

k=1

‖Xk+1,1 −Xk,nl‖d1
Rm(B.36)

≤
N−1∑

k=1

(
‖Xk+1,1 − pk+1‖d1

Rm + ‖pk+1 − pk‖d1
Rm + ‖pk −Xk,nl‖d1

Rm
)

(B.37)

≤ 2(N − 1)rd1 +
N−1∑

k=1

‖ψm(Ψm(pk+1))− ψm(Ψm(pk))‖d1

Rd1(B.38)

≤ 2(N − 1)rd1 + 4
√
m+ 3KI

N−1∑

k=1

|Ψm(pk+1)−Ψm(pk)|
d1
m(B.39)

≤ 2(N − 1)rd1 + 4
√
m+ 3KI

(
N−1∑

k=1

|Ψm(pk+1)−Ψm(pk)|
d1
m
×m
d1

) d1
m
(
N−1∑

k=1

1
m

m−d1

)m−d1
m

(B.40)

≤ 2(N − 1)rd1 + 4
√
m+ 3KI(N − 1)1− d1

m ,(B.41)

where the second from the last inequality comes from Hölder’s inequality. Hence, by ordering as
X1,1, · · · , X1,n1 , X2,1, · · · , X2,n2 , · · · , Xl,1, · · · , Xl,n2 ,

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm(B.42)

≤
N∑

k=1

nl−1∑

j=1

‖Xk,j+1 −Xk,j‖d1
Rm +

N−1∑

k=1

‖Xk+1,1 −Xk,nl‖d1
Rm(B.43)

≤ N

(
4
√
d1 + 3eκlr sinhκlr

κlr

)d1

rd1 + 2(N − 1)rd1 + 4
√
m+ 3KI(N − 1)1− d1

m .(B.44)
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Then, since κlr ≤ 2
√

3 and the fact that t 7→ et sinh t
t

is increasing function on t ≥ 0, we have

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm

(B.45)

<



(

4
√
d1 + 3e2

√
3 sinh 2

√
3

2
√

3

)d1

+ 2


 rd1N + 4

√
m+ 3KIN

1− d1
m

(B.46)

<
2d1

(
4
√
d1 + 3e2

√
3 sinh 2

√
3
)d1

+ 2d1+1

Kvωd1

volM(M) +
4
√
m+ 3KI2

d1(1− d1
m )

(
Kv

(
2
√

3
)d1

ωd1

)1− d1
m

κ
d1(1− d1

m )
g (volM(M))1− d1

m

(B.47)

≤ C
(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)(B.48)

by some C(3,2)
KI ,Kv ,d1,m

which depends only on m, d1, Kv, and KI , where the last line comes from
inequality in Lemma 2. �

Proposition. 7. Let 1 ≤ d1 < d2 ≤ m. Then

inf
d̂imn

sup
P∈Pd1κl,κg,Kp,Kv∪P

d2
κl,κg,Kp,Kv

EP (n)

[
l
(

d̂imn, dim(P )
)]

(B.49)

≤
(
C

(3,3)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + κ

(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
.(B.50)

for some C(3,3)
KI ,Kp,Kv ,d1,d2,m

that depends only on KI , Kp, Kv, d1, d2,m.

Proof. Suppose X = (X1, · · · , Xn) ∈ In is observed, then define d̂im(X) as

(B.51) d̂imn(X) :=




d1 if ∃σ ∈ Sn s.t

n−1∑
i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)

d2 otherwise

Then for all P ∈ Pd1
κl,κg ,Kp,Kv

and X1, · · · , Xn ∼ P , by Lemma 6,

(B.52)
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)

holds for some σ ∈ Sn, hence d̂imn(X) = d1 = dim(P ), i.e. P (n)
[
d̂imn(X1, · · · , Xn) = d2

]
= 0.
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On the other hand, for all P ∈ Pd2
κl,κg ,Kp,Kv

,

P (n)
[
d̂imn(X1, · · · , Xn) = d1

]
(B.53)

= P

[ ⋃

σ∈Sn

n−1∑

i=1

|Xσ(i+1) −Xσ(i)| ≤ C
(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)
]

(B.54)

≤
∑

σ∈Sn

P

[
n−1∑

i=1

|Xσ(i+1) −Xσ(i)| ≤ C
(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)
]

(B.55)

= n!P

[
n−1∑

i=1

|Xi+1 −Xi| ≤ C
(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)
]

(B.56)

=
n
(
C

(2,2)
Kp,d1,d2,m

)n−1 (
C

(3,2)
KI ,Kv ,d1,m

(
1 + κm−d1

g

)) d2d1 (n−1) (
1 + κ

(m−d2)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(by Lemma 5).(B.57)

Therefore,

inf
d̂imn

sup
P∈Pd1κl,κg,∞∪P

d2
κl,κg,Kp,Kv

EP (n)

[
l
(

d̂imn, dim(P )
)]

(B.58)

n

(
C

(2,2)
Kp,d1,d2,m

(
C

(3,2)
KI ,Kv ,d1,m

) d2
d1

)n−1(
1 + κ

(
d2
d1
m+m−2d2

)
(n−1)

g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(B.59)

≤
(
C

(3,3)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + κ

(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n(B.60)

for some C(3,3)
KI ,Kp,Kv ,d1,d2,m

that depends only on KI , Kp, Kv, d1, d2,m. �

Appendix C. Proofs for Section 4

Lemma. 9. Let M ∈ Md
κl,κg

be d-dimensional manifold of global curvature ≤ κg, local curvature
≤ κl, which is imbedded in Rm−∆d. Then

(C.1) M × [−KI , KI ]
∆d ∈Md+∆d

κl,κg
,

which is imbedded in Rm.

Proof. Let x ∈ Rm be with dRm(x,M × [−KI , KI ]
∆d) < Rg, and let πM×[−KI ,KI ]∆d(x) be its closest

point in M × [−KI , KI ]. We will show that πM×[−KI ,KI ]∆d(x) is unique. Then as in Figure C.1,

(C.2) dRm
(
x, πM×[−KI ,KI ]∆d(x)

)
≥ dRm−∆d

(
Π1:m−∆d(x),Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

))

where equality holds iff Π(m−∆d+1):m

(
πM×[−KI ,KI ]∆d(x)

)
= Π(m−∆d+1):m(x). Also,

(C.3) dRm−∆d (Π1:m−∆d(x),M) = dRm(x,M × [−KI , KI ]
∆d) < Rg.
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x

πM×[−KI ,KI ]∆d(x)

Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

)
= πM (Π1:m−∆d(x))

Π1:m−∆d(x)

M

2KI

Figure C.1. πM×[−KI ,KI ]∆d satisfies Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

)
= πM (Π1:m−∆d(x)).

Hence there uniquely exists πM (Π1:m−∆d(x)) ∈M . And from Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

)
∈M ,

(C.4) dRm−∆d

(
Π1:m−∆d(x),Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

))
≥ dRm−∆d (Π1:m−∆d(x), πM (Π1:m−∆d(x)))

where equality holds iff Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

)
= πM (Π1:m−∆d(x)), as in Figure C.1. Hence

πM×[−KI ,KI ]∆d is uniquely determined as πM×[−KI ,KI ]∆d(x) =
(
πM (Π1:m−∆d(x)) , Π(m−∆d+1):m(x)

)
.
�

Lemma. 10. Let X : [−Kδ, Kδ] → I be a paramatrized curve which is C1 and piecewise C2.
Suppose that, for all t ∈ [−Kδ, Kδ],

(C.5) ‖X ′′(t)‖ < ‖X ′(t)‖2
2κl.

Then image(X) is of local curvature ≤ κl.

Proof. ∀p ∈ image(X), let ε > 0 be sufficiently small and Up = B(p, ε) ∩ image(X) be an ε-
neighborhood of p. Let Up = X(a, b), and x ∈ Rm be such that d(x, Up) < Rl− ε. Then ∀t ∈ (a, b),
if X ′′(t) exists,

d

dt
(X(t)− x)T (X(t)− x) = X ′(t)T (X(t)− x)(C.6)

d2

dt2
(X(t)− x)T (X(t)− x)|t=t0 = X ′′(t0)T (X(t0)− x) + ‖X ′(t0)‖2

2(C.7)

> −‖X ′′(t0)‖Rl + ‖X ′(t0)‖2
2 > 0(C.8)

Since X is piecewise C2, ‖X(t) − x‖2
2 is strictly convex function of t ∈ (a, b). Hence a unique

global minimizer t0 exists, X(t0) = πUp(x), which is the unique projection of x to Up. Therefore,
image(X) is of local curvature ≤ κl + ε, for all ε > 0. And this asserts that image(X) is of local
curvature ≤ κl. �

Lemma. 12. Suppose Rl ≤ KI . There exists T1, · · · , Tn ⊂ [−KI , KI ]
d2 such that

(1) each Ti’s are distinct
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T1 T2

T4 T3

T5 T6

T8 T7

w

a

Rl

b

R1 R2 R3

R4R5R6

R7 R8 R9

R10R11R12

A1

A2

A3

2KI

2KI

(a) alignment of Ti, Ri, and Ai

T1 T2

X4

X1

X6

X2

X3

X5

X7X8

(b) manifold passing through Xi’s

Figure C.2. This figure illustrates the case where d1 = 1 and d2 = 2. (A) shows
how Ti, Ri, and Ai’s are aligned in a zigzag. (B) shows for given X1 ∈ T1, · · · , Xn ∈
Tn(represented as blue points), how M ({Π−1

(d1+1):d2
Φ−1
i (Xi)}1≤i≤n)(represented as a

red curve) passes through X1, · · · , Xn.

(2) For each Ti, there exists isometry Φi such that

(C.9) Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]×BRd2−d1 (0, w)
)
,

where c =
⌈
KI+Rl

2Rl

⌉
, a = KI−Rl

(d+ 1
2)
⌈

n

cd2−d1

⌉ , and w = min

{
Rl,

d2(KI−Rl)2

2Rl(d+ 1
2)

2
(⌈

n

cd2−d1

⌉
+1
)2

}
.

(3) ∃M : (BRd2−d1 (0, w))n →Md1
κl,κg ,Kv

one-to-one such that for each Yi ∈ BRd2−d1 (0, w), 1 ≤ i ≤
n, M (Y1, · · · , Yn) ∩ Ti = Φi([−KI , KI ]

d1−1 × [0, a]× {Yi}). Hence for any X1 ∈ T1, · · · , Xn ∈ Tn,
M ({Π−1

(d1+1):d2
Φ−1
i (Xi)}1≤i≤n) passes through X1, · · · , Xn.

Proof. By Lemma 9, we only need to show the case for d1 = 1. Let b = 2d(KI−Rl)
(d+ 1

2)
(⌊

n

cd2−d1

⌋
+1
) , so that

b ≥ 2
√

2wRl and 2Rl +
⌊

n
cd2−d1

⌋
a+

(⌊
n

cd2−d1

⌋
+ 1
)
b = 2KI holds.

With such values of a, b, and w, align Ti, Ri, and Ai in a zigzag; see Figure C.2.
Then from the definition of Ti, it is apparent that (1) the Ti’s are distinct and (2) for each Ti,

there exists an isometry Φi such that Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]×BRd2−d1 (0, w)
)
. There exists

isometry Ψi such that Ri = Ψi

(
[−KI , KI ]

d1−1 × [0, b]×BRd2−d1 (0, w)
)
as well.

Now define M : (BRd2−d1 (0, w))n →Md1
κl,κg

as follows. For each Yi ∈ BRd2−d1 (0, w), 1 ≤ i ≤ n,
4⋃
i=1

Ai ⊂M (Y1, · · · , Yn) ⊂
(

4⋃
i=1

Ai

)⋃(⋃
i=1

Ti

)⋃(⋃
i=1

Ri

)
. The intersection of M (Y1, · · · , Yn) and

Ti is a line segment Φi([−KI , KI ]
d1−1 × [0, a] × {Yi}). Our goal is to make M (Y1, · · · , Yn) be C1

and piecewise C2.
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(0, p)

(b, q)

Ri

M(y)

M(y)

R

R

(a) A

(0, p) C1

C2

C3Rl

(0, p−Rl)

(b, q +Rl)

(b, q)

t0

(b) B

Figure C.3. (A) We need to find C2 curve with curvature ≤ Rl that starts from
(0, p) ∈ R2, ends at (b, q), and velocity at each end points are both parallel to (1, 0).
(B) C1 and C2 are arcs of circles of radius Rl, and C3 is the cotangent segment of
two circles.

Given that M (Y1, · · · , Yn)∩
((

4⋃
i=1

Ai

)⋃(⋃
i=1

Ti

))
is determined, two points on M (Y1, · · · , Yn)∩

∂Ri is already determined. By translation and rotation if necessary, ∀p, q with −w ≤ q ≤ p ≤ w,
we need to find C2 curve with curvature ≤ Rl that starts from (0, p) ∈ R2, ends at (b, q) ∈ R2, and
velocity at each end points are both parallel to (1, 0) ∈ R2, as in Figure C.3a.

Let

(C.10) t0 = cos−1

(
2Rl (2Rl − (p− q)) + b

√
b2 − (p− q) (4Rl − (p− q))

b2 + (2Rl − (p− q))2

)
,

and

(C.11) C1 = {(0, p−Rl) +Rl (sin t, cos t) | 0 ≤ t ≤ t0} .

Then C1 is an arc of circle of which center is (0, p−Rl), and starts at (0, p) when t = 0 and ends
at (Rl sin t0, p−Rl(1− cos t0)) when t = t0. Also, velocity of C1 at (0, p) is (1, 0). Similarily, let

(C.12) C2 = {(b, q +Rl)−Rl (sin t, cos t) | 0 ≤ t ≤ t0} .

Then C2 is an arc of a circle of whose center is (b, q +Rl), and starts at (b, q) when t = 0 and ends
at (b−Rl sin t0, q +Rl (1− cos t0)) when t = t0. Also, the velocity of C2 at (b, q) is (−1, 0). Let
(C.13)
C3 = {(1− s) (Rl sin t0, p−Rl(1− cos t0)) + s (b−Rl sin t0, q +Rl (1− cos t0)) | 0 ≤ s ≤ 1} ,

so that C3 is a segment joining (Rl sin t0, p−Rl(1− cos t0)) and (b−Rl sin t0, q +Rl (1− cos t0)).
Then,

(C.14) cos t0 (q − p+ 2Rl (1− cos t0)) + sin t0 (b− 2Rl sin t0) = 0



32

implies that (b− 2Rl sin t0, q − p+ 2Rl (1− cos t0)) is parallel to (cos t0,− sin t0), and hence C3 is
cotangent to both C1 and C2. Therefore from Corollary 11, C1∪C2∪C3 is of local curvature ≤ κl.
Refer to Figure C.3b.

Hence by defining M (Y1, · · · , Yn) ∩ Ri as appropriate translation and rotation of C1 ∪ C2,
M (Y1, · · · , Yn) is of local curvature ≤ κl. �

Claim. 13. Let T = Sn
n∏
i=1

Ti. Then for all x ∈ intT , there exists rx > 0 such that for all r < rx,

(C.15) Q1

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
≥ 2(1−d1)n

κ
(d2−d1)n
l K

(d2−d1)n
I

Q2

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
.

Proof. By symmetry, we can assume that x ∈
n∏
i=1

Ti, i.e. x1 ∈ T1, · · · , xn ∈ Tn. Choose rx small

enough so that B(x, rx) ⊂ intUn. Then ∀r < rx,

Q1

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
=

ˆ
P1

P (n)

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
dµ1(P )(C.16)

=

ˆ
Cn

Φ(y)(n)

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
λCn(y)(C.17)

=

ˆ
Cn

n∏

i=1

λM (y)

(
B‖‖Rd2 ,∞(xi, r)

)
λCn(y)(C.18)

Then since M (y) ∩ Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]× {yi}
)
,

M (y) ∩B‖‖Rd2 ,∞(xi, r)(C.19)

=





Φi

(
B‖·‖Rd2 ,∞

(
Π1:d1(Φ−1

i (xi)), r
)
× {yi}

)
if
∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 < r

∅ otherwise.
(C.20)

Hence

(C.21) λM (y)

(
B‖‖Rd2 ,∞(xi, r)

)
=

rd1

(2KI)d1−1an
I
(∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 ,∞ < r

)
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and

Q0

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
(C.22)

=

ˆ
Cn

n∏

i=1

rd1

(2KI)d1−1an
I
(∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 ,∞ < r

)
λCn(y)(C.23)

=
rd1n

(2KI)(d1−1)n(an)n

n∏

i=1

ˆ
C

I
(∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 ,∞ < r

)
λC(yi)(C.24)

=
rd1n

(2KI)(d1−1)n(an)n

(
(2r)d2−d1

wd2−d1ωd2−d1

)n
(C.25)

=
2(d2−2d1+1)nrd2n

K
(d1−1)n
I w(d2−d1)n(an)nωnd2−d1

(C.26)

≥ 2(d2−2d1+1)nrd2n

κ
(d2−d1)n
l K

(2d2−d1)n
I ωnd2−d1

,(C.27)

where the last inequality uses an ≤ cdKI ≤ K
d2−d1+1
I

R
d2−d1
l

and w ≤ KI .

On the other hand, Q2

(
n∏
i=1

B‖‖Rd2 ,∞(xi, r)

)
=
(

2r
2KI

)d2n

= rd2n

K
d2n
I

, so

Q1

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
≥ 2(d2−2d1+1)n

κ
(d2−d1)n
l K

(d2−d1)n
I ωnd2−d1

Q2

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
(C.28)

≥ 2(1−d1)n

κ
(d2−d1)n
l K

(d2−d1)n
I

Q2

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
(C.29)

holds. �

Proposition. 14. Suppose Rl < KI . Then

inf
d̂im

sup
P∈Pd1κl,κg,Kp,Kv∪P

d2
κl,κg,Kp,Kv

EP (n) [l(d̂imn, dim(P ))](C.30)

≥
(
C

(4,1)
d1,d2,KI

)n
κ
−(d2−d1)n
l min

{
κ

2(d2−d1)+1
l n−2, 1

}(d2−d1)n

,(C.31)

for some constant C(4,1)
d1,d2,KI

that depends only on d1, d2, and KI .

Proof. Let J = [−KI , KI ]
d2 . Let Sn be the permutation group, and Sn y Jn by coordinate change,

i.e. σ ∈ Sn, x ∈ Jn, σx := (xσ(1), · · · , xσ(n)). For any set A ⊂ Jn, let SnA := {σx ∈ Jn : σ ∈
Sn, x ∈ A}.

Let Ti be Ti’s from Lemma 12. Let T := Sn
n∏
i=1

Ti, and V :=
n⋃
i=1

Ti = Π1:d2(T ). (Intuitively, T is

the set of points x = (x1, · · · , xn) where xi lies on one of the Tj.)
Let C = BRd2−d1 (0, w), and let P1 = {P ∈ Pd1

κl,κg
: there ∃M ∈M (Cn) such that P is uniform

on M}, and let P2 = {λJ} ⊂ Pd2
κl,κg

.
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Define Φ : Cn → P1 by Φ(y1, · · · , yn) = λM (y1,··· ,yn), i.e. the uniform measure on M (y1, · · · , yn).
Impose a topology and probability measure structure on P1 by the pushforward topology and the
uniform measure on Cn, i.e. P ′ ⊂ P1 is open iff Φ−1(P ′) is open in Cn, P ′ ⊂ P1 is measurable iff
Φ−1(P ′) ∈ B(Cn), and µ1(P ′) = λCn(Φ−1(P ′)).

Define a probability measure Q1, Q2 on (Jn,B(Jn)) by Q1(A) :=
´
P1
P (n)(A)dµ1(P ) and Q2 =

λJn . Fix P ∈ P1, let x = Φ−1(P ). Then P (n)(A) = λ
(n)
M (x)(A) is a measurable function of x and

Φ is a homeomorphism. Hence, p(n)(A) is measurable function and Q1(A) is well defined. Define
ν = Q1 + λJ . Then Q1, Q2 � ν, so there exist densities q1, q2 with respect to ν.

Then from Claim 13, ∀x ∈ intT , ∃rx > 0 s.t. ∀r < rx,

(C.32) Q1

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
≥ 2(1−d1)n

κ
(d2−d1)n
l K

(d2−d1)n
I

Q2

(
n∏

i=1

B‖‖Rd2 ,∞(xi, r)

)
.

Hence q1 satisfies q1(x) ≥ 2(d2−2d1+1)n

κ
(d2−d1)n
l K

(d2−d1)n
I ωd2−d1

q2(x) if x ∈ T (and q1(x) = 0 if x /∈ T ). Then,

Q1(ψ 6= 0) +Q2(ψ 6= 1)

2
≥ 1

4

ˆ
T

min

{
2(1−d1)n

κ
(d2−d1)n
l K

(d2−d1)n
I

, 1

}
q2(x)dν(x) (by lemma)(C.33)

=
2(1−d1)n−2

κ
(d2−d1)n
l K

(d2−d1)n
I

λJn (T )(C.34)

Then from a = KI−Rl
(d+ 1

2)
⌈

n

cd2−d1

⌉ and w = min

{
Rl,

d2(KI−Rl)2

2Rl(d+ 1
2)

2
(⌈

n

cd2−d1

⌉
+1
)2

}

λJn

(
Sn

n∏

i=1

Ti

)
= n!λJ1(T1)n = n!

(
(2KI)

d1−1ωd2−d1aw
d2−d1

(2KI)d2

)n
(C.35)

≥
(
C

(4,1,1)
d1,d2,KI

)n
min

{
κ

2(d2−d1)+1
l n−2, 1

}(d2−d1)n

,(C.36)

for some constant C(4,1,1)
d1,d2,KI

that depends only on d1, d2, and KI . Hence

(C.37) inf
d̂im

sup
P∈P1∪P2

EP [l(d̂imn, dim(P ))] ≥
(
C

(4,1)
d1,d2,KI

)n
κ
−(d2−d1)n
l min

{
κ

2(d2−d1)+1
l n−2, 1

}(d2−d1)n

,

for some constant C(4,1)
d1,d2,KI

that depends only on d1, d2, and KI . Then

(C.38) inf
d̂im

sup
P∈Pd1κl,κg,Kp,Kv∪P

d2
κl,κg,Kp,Kv

EP [l(d̂imn, dim(P ))] ≥ inf
d̂im

sup
P∈P1∪P2

EP [l(d̂imn, dim(P ))],

which completes the proof. �

Appendix D. Proofs For Secton 5

Proposition. 15.

inf
d̂imn

sup
P∈P

EP (n)

[
l
(

d̂imn, dim(P )
)]
≤
(
CKI ,Kp,Kv ,Km

)n (
1 + κ(m2−m)n

g

)
n−

1
m−1

n(D.1)
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for some C(5,1)
KI ,Kp,Kv ,Km

that depends only on KI , Kp, Kv,m.

Proof. define d̂im(X) as
(D.2)

d̂imn(X) := min

{
d ∈ [1,m] : ∃σ ∈ Sn s.t

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖dRm ≤ C
(3,2)
KI ,Kv ,d,m

(
1 + κm−dg

)
}
.

Then for all P ∈ Pdκl,κg ,Kp,Kv and X1, · · · , Xn ∼ P , by Lemma 6,

(D.3)
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖dRm ≤ C
(3,2)
KI ,Kv ,d,m

(
1 + κm−dg

)

holds for some σ ∈ Sn, hence

(D.4) d̂imn(X) ≤ d = dim(P ).

Therefore,

P (n)
[
d̂imn(X1, · · · , Xn) 6= d

]
(D.5)

= P (n)

[
max

{
d ∈ [1,m] : ∃σ ∈ Sn s.t

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖dRm ≤ C
(3,2)
KI ,Kv ,d,m

(
1 + κm−dg

)
}
< d

](D.6)

≤
d−1∑

k=1

P (n)

[
∃σ ∈ Sn s.t

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖kRm ≤ C
(3,2)
KI ,Kv ,k,m

(
1 + κm−kg

)
](D.7)

≤
d−1∑

k=1

(
C

(3,3)
KI ,Kp,Kv ,k,d,m

)n(
1 + κ

( dkm+m−2d)n
g

)
n−( dk−1)n

(D.8)

≤
(
C

(5,1)
KI ,Kp,Kv ,m

)n (
1 + κ(m2−m)n

g

)
n−

1
m−1

n,

(D.9)

for some C(5,1)
KI ,Kp,Kv ,m

that depends only on KI , Kp, Kv,m. Therefore,

inf
d̂imn

sup
P∈P

EP (n)

[
l
(

d̂imn, dim(P )
)]
≤
(
C

(5,1)
KI ,Kp,Kv ,m

)n (
1 + κ(m2−m)n

g

)
n−

1
m−1

n.(D.10)

�

Proposition. 16. Suppose Rl < KI , then

(D.11) inf
d̂im

sup
P∈P

EP (n) [l(d̂imn, dim(P ))] ≥
(
C

(5,2)
KI

)n
κ−nl min

{
κ3
l n
−2, 1

}n

for some C(5,2)
KI

that depends only on KI .
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Proof. For any d1 and d2, from Proposition 14,

inf
d̂im

sup
P∈P

EP (n) [l(d̂imn, dim(P ))] ≥ inf
d̂im

sup
P∈Pd1κl,κg,Kp,Kv∪P

d2
κl,κg,Kp,Kv

EP (n) [l(d̂imn, dim(P ))](D.12)

≥
(
C

(4,1)
d1,d2,KI

)n
κ
−(d2−d1)n
l min

{
κ

2(d2−d1)+1
l n−2, 1

}(d2−d1)n

(D.13)

Hence by plugging in d1 = 1 and d2 = 2, we have

inf
d̂im

sup
P∈P

EP (n) [l(d̂imn, dim(P ))] ≥
(
C

(5,2)
KI

)n
κ−nl min

{
κ3
l n
−2, 1

}n(D.14)

with C(5,2)
KI

= C
(4,1)
d1=1,d2=2,KI

.
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