
Dynamic Social Network Analysis using Latent
Space Models

Purnamrita Sarkar, Andrew W. Moore
Center for Automated Learning and Discovery

Carnegie Mellon University
Pittsburgh, PA 15213

(psarkar,awm)@cs.cmu.edu

Abstract
This paper explores two aspects of social network modeling. First,
we generalize a successful static model of relationships into a dynamic
model that accounts for friendships drifting over time. Second, we show
how to make it tractable to learn such models from data, even as the
number of entities n gets large. The generalized model associates each
entity with a point in p-dimensional Euclidian latent space. The points
can move as time progresses but large moves in latent space are improb-
able. Observed links between entities are more likely if the entities are
close in latent space. We show how to make such a model tractable (sub-
quadratic in the number of entities) by the use of appropriate kernel func-
tions for similarity in latent space; the use of low dimensional kd-trees; a
new efficient dynamic adaptation of multidimensional scaling for a first
pass of approximate projection of entities into latent space; and an effi-
cient conjugate gradient update rule for non-linear local optimization in
which amortized time per entity during an update is O(log n). We use
both synthetic and real-world data on upto 11,000 entities which indicate
linear scaling in computation time and improved performance over four
alternative approaches. We also illustrate the system operating on twelve
years of NIPS co-publication data. We present a detailed version of this
work in [1].

1 Introduction

Social network analysis is becoming increasingly important in many fields besides sociol-
ogy including intelligence analysis [2], marketing [3] and recommender systems [4]. Here
we consider learning in systems in which relationships drift over time.
Consider a friendship graph in which the nodes are entities and two entities are linked if
and only if they have been observed to collaborate in some way. In 2002, Raftery et al
[5]introduced a model similar to Multidimensional Scaling in which entities are associated
with locations in p-dimensional space, and links are more likely if the entities are close in
latent space. In this paper we suppose that each observed link is associated with a discrete
timestep, so each timestep produces its own graph of observed links, and information is
preserved between timesteps by two assumptions. First we assume entities can move in
latent space between timesteps, but large moves are improbable. Second, we make a stan-
dard Markov assumption that latent locations at time t + 1 are conditionally independent
of all previous locations given the latent locations at time t and that the observed graph at

time t is conditionally independent of all other positions and graphs, given the locations at
time t (see Figure 1).
Let Gt be the graph of observed pairwise links at time t. Assuming n entities, and a
p-dimensional latent space, let Xt be an n× p matrix in which the ith row, called xi, cor-
responds to the latent position of entity i at time t. Our conditional independence structure,
familiar in HMMs and Kalman filters, is shown in Figure 1. For most of this paper we treat
the problem as a tracking problem in which we estimate Xt at each timestep as a function
of the current observed graph Gt and the previously estimated positions Xt−1. We want

Xt = arg max
X

P (X|Gt, Xt−1) = arg max
X

P (Gt|X)P (X|Xt−1) (1)

In Section 2 we design models of P (Gt|Xt) and P (Xt|Xt−1) that meet our modeling
needs and which have learning times that are tractable as n gets large. In Sections 3 and
4 we introduce a two-stage procedure for locally optimizing equation (1). The first stage
generalizes linear multidimensional scaling algorithms to the dynamic case while carefully
maintaining the ability to computationally exploit sparsity in the graph. This gives an
approximate estimate of Xt. The second stage refines this estimate using an augmented
conjugate gradient approach in which gradient updates can use kd-trees over latent space
to allow O(n log n) computation per step.

X1

G1

XT

GT

…X0

G0

Figure 1: Model through time

2 The DSNL (Dynamic Social Network in Latent space) Model
Let dij = |xi−xj | be the Euclidian distance between entities i and j in latent space at time
t. For clarity we will not use a t subscript on these variables except where it is needed. We
denote linkage at time t by i ∼ j, and absence of a link by i 6∼ j. p(i ∼ j) denotes the
probability of observing the link. We use p(i ∼ j) and pij interchangeably.

2.1 Observation Model

The likelihood score function P (Gt|Xt) intuitively measures how well the model explains
pairs of entities which are actually connected in the training graph as well as those that are
not. Thus it is simply

P (Gt|Xt) =
∏

i∼j

pij

∏

i6∼j

(1 − pij) (2)

Following [5] the link probability is a logistic function of dij and is denoted as pL
ij , i.e.

pL
ij =

1

1 + e(dij−α)
(3)

where α is a constant whose significance is explained shortly. So far this model is similar
to [5]. To extend this model to the dynamic case, we now make two important alterations.
First, we allow entities to vary their sociability. Some entities participate in many links
while others are in few. We give each entity a radius, which will be used as a sphere of
interaction within latent space. We denote entity i’s radius as ri. We introduce the term
rij to replace α in equation (3). rij is the maximum of the radii of i and j. Intuitively, an
entity with higher degree will have a larger radius. Thus we define the radius of entity i
with degree δi as, c(δi + 1), so that rij is c × (max(δi, δj) + 1), and c will be estimated
from the data. In practice, we estimate the constant c by a simple line-search on the score
function. The constant 1 ensures a nonzero radius.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Simple
Logistic

New
Linkage
Probability

−2−101−2−101
0

10

20

30

40

50

60

70

(A) (B)

Figure 2: A. The actual logistic function, and our kernelized version with ρ = 0.1. B.The actual
(flat, with one minimum), and the modified (steep with two minima) constraint functions, for two
dimensions, with Xt varying over a 2-d grid, from (−2,−2) to (2, 2), and Xt−1 = (1, 1)

The second alteration is to weigh the link probabilities by a kernel function. We alter the
simple logistic link probability pL

ij , such that two entities have high probability of linkage
only if their latent coordinates are within distance rij of one another. Beyond this range
there is a constant noise probability ρ of linkage. Later we will need the kernelized function
to be continuous and differentiable at rij . Thus we pick the biquadratic kernel.

K(dij) = (1 − (dij/rij)
2)2, when dij ≤ rij

= 0, otherwise (4)

Using this function we redefine our link probability pij as pL
ijK(dij) + ρ(1 − K(dij)) .

This is equivalent to having,

pij =
1

1 + e(dij−rij)
K(dij) + ρ(1 −K(dij)) when dij ≤ rij

= ρ otherwise (5)

We plot this function in Figure 2A.
2.2 Transition Model
The second part of the score penalizes large displacements from the previous time step. We
use the most obvious Gaussian model: each coordinate of each latent position is indepen-
dently subjected to a Gaussian perturbation with mean 0 and variance σ2. Thus

logP (Xt|Xt−1) = −

n
X

i=1

|Xi,t −Xi,t−1|
2/2σ2 + const (6)

3 Learning Stage One: Linear Approximation

We generalize classical multidimensional scaling (MDS) [6] to get an initial estimate of the
positions in the latent space. We begin by recapping what MDS does. It takes as input an
n × n matrix of non-negative distances D where Di,j denotes the target distance between
entity i and entity j. It produces an n × p matrix X where the ith row is the position
of entity i in p-dimensional latent space. MDS finds arg minX |D̃ −XXT |F where | · |F
denotes the Frobenius norm [7]. D̃ is the similarity matrix obtained fromD, using standard
linear algebra operations. Let Γ be the matrix of the eigenvectors of D̃, and Λ be a diagonal
matrix with the corresponding eigenvalues. Denote the matrix of the p positive eigenvalues
by Λp and the corresponding columns of Γ by Γp. From this follows the expression of
classical MDS, i.e. X = ΓpΛ

1

2

p .
Two questions remain. Firstly, what should be our target distance matrix D? Secondly,
how should this be extended to account for time? The first answer follows from [5] and

defines Dij as length of the shortest path from i to j in graph G. We restrict this length to
a maximum of three hops in order to avoid the full n2 computation of all-shortest paths. D
thus has a dense mostly constant structure.
When accounting for time, we do not want the positions of entities to change drastically
from one time step to another. Hence we try to minimize |Xt − Xt−1|F along with the
main objective of MDS. Let D̃t denote the D̃ matrix derived from Gt. We formulate the
above problem as minimization of |D̃t −XtX

T
t |F +λ|Xt −Xt−1|F , where λ is a parameter

which controls the importance of the two parts of the objective function. The above does
not have a closed form solution. However, by constraining the objective function further,
we can obtain a closed form solution for a closely related problem. The idea is to work
with the distances and not the positions themselves. Since we are learning the positions
from distances, we change our constraint (during this linear stage of learning) to encourage
the pairwise distance between all pairs of entities to change little between each time step,
instead of encouraging the individual coordinates to change little. Hence we try to minimize

|D̃t −XtX
T
t |F + λ|XtX

T
t −Xt−1X

T
t−1|F (7)

which is equivalent to minimizing the trace of (D̃t −XtX
T
t)T (D̃t −XtX

T
t) + λ(XtX

T
t −

Xt−1X
T
t−1)

T (XtX
T
t − Xt−1X

T
t−1). The above expression has an analytical solution: an

affine combination of the current information from the graph and the coordinates at the last
timestep. Namely, the new solution satisfies,

XtX
T
t =

1

1 + λ
D̃t +

λ

1 + λ
Xt−1X

T
t−1 (8)

We plot the two constraint functions in Figure 2B. When λ is zero, XtX
T
t equals D̃t ,

and when λ → ∞, it is equal to Xt−1X
T
t−1. As in MDS, eigendecomposition of the right

hand side of equation 8 yields the solution Xt which minimizes the objective function in
equation 7.
We now have a method which finds latent coordinates for time t that are consistent with
Gt and have similar pairwise distances as Xt−1. But although all pairwise distances may
be similar, the coordinates may be very different. Indeed, even if λ is very large and we
only care about preserving distances, the resulting X may be any reflection, rotation or
translation of the original Xt−1. We solve this by applying the Procrustes transform to the
solution Xt of equation 8. This transform finds the linear area-preserving transformation
of Xt that brings it closest to the previous configuration Xt−1. The solution is unique
if XT

t Xt−1 is nonsingular [8], and for zero centered Xt and Xt−1, is given by X∗
t =

XtUV
T , where XT

t Xt−1 = USV T using Singular Value Decomposition (SVD).
Before moving on to stage two’s nonlinear optimization we must address the scalability of
stage one. The naive implementation (SVD of the matrix from equation 8) has a cost of
O(n3), for n nodes, since both D̃t, and XtX

T
t , are dense n × n matrices. However in [1]

we show how we use the power method [9] to exploit the dense mostly constant structure of
Dt and the fact that XtX

T
t is just an outer product of two thin n× p matrices. The power

method is an iterative eigendecomposition technique which only involves multiplying a
matrix by a vector. Its net cost can be shown to be O(n2f + n + pn) per iteration, where
f is the fraction of non-constant entries in Dt.

4 Stage Two: Nonlinear Search
Stage One places entities in reasonably consistent locations which fit our intuition, but it is
not tied to the probabilistic model from Section 2. Stage two uses these locations as ini-
tializations for applying nonlinear optimization directly to the model in equation 1. We use
conjugate gradient (CG) which was the most effective of several alternatives attempted. The
most important practical question is how to make these gradient computations tractable,
especially when the model likelihood involves a double sum over all entities. We must

compute the partial derivatives of logP (Gt|Xt) + logP (Xt|Xt−1) with respect to all values
xi,k,t for i ∈ 1...n and k ∈ 1..p. First consider the P (Gt|Xt) term:

∂ logP (Gt|Xt)

∂Xi,k,t

=
X

j,i∼j

∂ log pij

∂Xi,k,t

+
X

j,i6∼j

∂log(1 − pij)

∂Xi,k,t

=
X

j,i∼j

∂pij/∂Xi,k,t

pij

−
X

j,i6∼j

∂pij/∂Xi,k,t

1 − pij

(9)

∂pij/∂Xi,k,t =
∂(pL

ijK + ρ(1 −K))

∂Xi,k,t

= K
∂pL

ij

∂Xi,k,t

+ pL
ij

∂K

∂Xi,k,t

− ρ
∂K

∂Xi,k,t

= ψi,j,k,t

(10)

However K, the biquadratic kernel introduced in equation 4, evaluates to zero and has a
zero derivative when dij > rij . Plugging this information in (10), we have,

∂pij/∂Xi,k,t =

{

ψi,j,k,t when dij ≤ rij ,

0 otherwise. (11)

Equation (9) now becomes
∂ logP (Gt|Xt)

∂Xi,k,t

=
X

j,i∼j
dij≤rij

ψi,j,k,t

pij

−
X

j,i6∼j
dij≤rij

ψi,j,k,t

1 − pij

(12)

when dij ≤ rij and zero otherwise. This simplification is very important because we
can now use a spatial data structure such as a kd-tree in the low dimensional latent space to
retrieve all pairs of entities that lie within each other’s radius in timeO(rn+n log n) where
r is the average number of in-radius neighbors of an entity [10, 11]. The computation of the
gradient involves only those pairs. A slightly more sophisticated trick, omitted for space
reasons, lets us compute logP (Gt|Xt), in O(rn + n log n) time. From equation(6), we
have

∂ logP (Xt|Xt−1)

∂Xi,k,t

= −
Xi,k,t −Xi,k,t−1

σ2
(13)

In the early stages of Conjugate Gradient, there is a danger of a plateau in our score
function in which our first derivative is insensitive to two entities that are connected, but
are not within each other’s radius. To aid the early steps of CG, we add an additional term
to the score function, which penalizes all pairs of connected entities according to the square
of their separation in latent space, i.e.

∑

i∼j d
2
ij . Weighting this by a constant pConst,

our final CG gradient becomes
∂Scoret

∂Xi,k,t

=
∂ logP (Gt|Xt)

∂Xi,k,t

+
∂ logP (Xt|Xt−1)

∂Xi,k,t

− pConst× 2
X

j
i∼j

(Xi,k,t −Xj,k,t)

5 Results

We report experiments on synthetic data generated by a model described below and the
NIPS co-publication data 1. We investigate three things: ability of the algorithm to re-
construct the latent space based only on link observations, anecdotal evaluation of what
happens to the NIPS data, and scalability results on large datasets from Citeseer.

5.1 Comparing with ground truth

We generate synthetic data for six consecutive timesteps. At each timestep the next set of
two-dimensional latent coordinates are generated with the former positions as mean, and a
gaussian noise of standard deviation σ = 0.01. Each entity is assigned a random radius.
At each step , each entity is linked with a relatively higher probability to the ones falling
within its radius, or containing it within their radii. There is a noise probability of 0.1, by

1See http://www.cs.toronto.edu/∼roweis/data.html

which any two entities i and j outside the maximum pairwise radii rij are connected. We
generate graphs of sizes 20 to 1280, doubling the size every time. Accuracy is measured
by drawing a test set from the same model, and determining the ROC curve for predicting
whether a pair of entities will be linked in the test set. We experiment with six approaches:

A. The True model that was used to generate the data (this is an upper bound on the perfor-
mance of any learning algotihm).

B. The DSNL model learned using the above algorithms.
C. A random model, guessing link probabilities randomly (this should have an AUC of 0.5).
D. The Simple Counting model (Control Experiment). This ranks the likelihood of being

linked in the testset according to the frequency of linkage in the training set. It can be
considered as the equivalent of the 1-nearest-neighbor method in classification: it does not
generalize, but merely duplicates the training set.

E. Time-varying MDS: The model that results from running stage one only.
F. MDS with no time: The model that results from ignoring time information and running

independent MDS on each timestep.

Figure 3 shows the ROC curves for the third timestep on a test set of size 160. Table 1
shows the AUC scores of our approach and the five alternatives for 3 different sizes of the
dataset over the first, third, and last time steps.

0 2000 4000 6000 8000 10000 12000 14000
0

100

200

300

400

500

600

False Positive

T
ru

e
P

os
iti

ve

True Model
Random Model
MDS without time
Time−varying MDS
Model Learned
Control Experiment

Figure 3: ROC curves of the six different
models described earlier for test set of size
160 at timestep 3, in simulated data.

Table 1. AUC score on graphs of size n for six
different models (A) True (B) Model learned
by DSNL,(C) Random Model,(D) Simple
Counting model(Control), (E) MDS with time,
and (F) MDS without time.

Time A B C D E F
n=80

1 0.94 0.85 0.48 0.76 0.77 0.67
3 0.93 0.88 0.48 0.81 0.77 0.65
6 0.93 0.82 0.50 0.76 0.77 0.67

n=320
1 0.86 0.83 0.50 0.70 0.72 0.65
3 0.86 0.79 0.51 0.70 0.72 0.62
6 0.86 0.81 0.50 0.71 0.74 0.64

n=1280
1 0.81 0.79 0.50 0.68 0.61 0.70
3 0.80 0.79 0.50 0.69 0.74 0.71
6 0.81 0.78 0.50 0.68 0.70 0.70

In all the cases we see that the true model has the highest AUC score, followed by the
model learned by DSNL. The simple counting model rightly guesses some of the links in
the test graph from the training graph. However it also predicts the noise as links, and ends
up being beaten by the model we learn. The results show that it is not sufficient to only
perform Stage One. When the number of links is small, MDS without time does poorly
compared to our temporal version. However as the number of links grows quadratically
with the number of entities, regular MDS does almost as well as the temporal version:
this is not a surprise because the generalization benefit from the previous timestep becomes
unnecessary with sufficient data on the current timestep. Further experiments we conducted
[1] show that the experiments initialized with time-variant MDS converges almost twice as
fast as those with random initialization, and also converges to a better log-likelihood.

5.2 Visualizing the NIPS coauthorship data over time

For clarity we present a subset of the NIPS dataset, obtained by choosing a well-connected
author, and including all authors and links within a few hops. We dropped authors who

appeared only once and we merged the timesteps into three groups: 1987-1990 (Figure 4A),
1991-1994(Figure 4B), and 1995-1998(Figure 4C). In each picture we have the links for
that timestep, a few well connected people highlighted, with their radii. These radii are
learnt from the model. Remember that the distance between two people is related to the
radii. Two people with very small radii, are considered far apart in the model even if they
are physically close. To give some intuition of the movement of the rest of the points, we
divided the area in the first timestep in 4 parts, and colored and shaped the points in each
differently. This coloring and shaping is preserved throughout all the timesteps.
In this paper we limit ourselves to anecdotal examination of the latent positions. For ex-
ample, with BurgesC and V apnikV we see that they had very small radii in the first four
years, and were further apart from one another, since there was no co-publication. However
in the second timestep they move closer, though there are no direct links. This is because
of the fact that they both had co-published with neighbors of one another. On the third time
step they make a connection, and are assigned almost identical coordinates, since they have
a very overlapping set of neighbors.
We end the discussion with entities HintonG, GhahramaniZ , and JordanM . In the first
timestep they did not coauthor with one another, and were placed outside one-another’s
radii. In the second timestep GhahramaniZ , and HintonG coauthor with JordanM .
However since HintonG had a large radius and more links than the former, it is harder
for him to meet all the constraints, and he doesn’t move very close to JordanM . In the
next timestep however GhahramaniZ has a link with both of the others, and they move
substantially closer to one another.

5.3 Performance Issues
Figure 4D shows the performance against the number of entities. When kd-trees are used
and the graphs are sparse scaling is clearly sub-quadratic and nearly linear in the number
of entities, meeting our expectation of O(n log n) performance. We successfully applied
our algorithms to networks of sizes up to 11,000 [1]. The results show subquadratic time-
complexity along with satisfactory link prediction on test sets.

6 Conclusions and Future Work
This paper has described a method for modeling relationships that change over time. We
believe it is useful both for understanding relationships in a mass of historical data and also
as a tool for predicting future interactions, and we plan to explore both directions further.
In [1] we develop a forward-backward algorithm, optimizing the global likelihood instead
of treating the model as a tracking model. We also plan to extend this to find the posterior
distributions of the coordinates following the approach used by [5].
Acknowledgments
We are very grateful to Anna Goldenberg for her valuable insights. We also thank Paul
Komarek and Sajid Siddiqi for some very helpful discussions and useful comments. This
work was partially funded by DARPA EELD grant F30602-01-2-0569.

References

[1] P. Sarkar and A. Moore. Dynamic social network analysis using latent space models. SIGKDD
Explorations: Special Issue on Link Mining, 2005.

[2] J. Schroeder, J. J. Xu, and H. Chen. Crimelink explorer: Using domain knowledge to facilitate
automated crime association analysis. In ISI, pages 168–180, 2003.

[3] J. J. Carrasco, D. C. Fain, K. J. Lang, and L. Zhukov. Clustering of bipartite advertiser-keyword
graph. In ICDM, 2003.

[4] J. Palau, M. Montaner, and B. López. Collaboration analysis in recommender systems using
social networks. In Eighth Intl. Workshop on Cooperative Info. Agents (CIA’04), 2004.

Burges
C

Ghahramani
Z

Hinton
G

Jordan
M

Koch
C

Manwani
A

Sejnowski
T

Vapnik
V

Viola
P

Burges
C

Ghahramani
Z

Hinton
G

Jordan
M

Koch
C Manwani

A

Sejnowski
T

Vapnik
VViola

P

(A) (B)

Burges
C

Ghahramani
Z

Hinton
G

Jordan
M

Koch
C

Manwani
A

Sejnowski
T Vapnik

V

Viola
P

300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of entities

T
im

e
in

 S
ec

on
ds

quadratic score
score using kd−tree

(C) (D)

Figure 4: NIPS coauthorship data at A. Timestep 1: green stars in upper-left corner, ma-
genta pluses in top right, cyan spots in lower right, and blue crosses in the bottom-left. B.
Timestep 2. C. Timestep 3. D. Time taken for score calculation vs number of entities.

[5] A. E. Raftery, M. S. Handcock, and P. D. Hoff. Latent space approaches to social network
analysis. J. Amer. Stat. Assoc., 15:460, 2002.

[6] R. L. Breiger, S. A. Boorman, and P. Arabie. An algorithm for clustering relational data with
applications to social network analysis and comparison with multidimensional scaling. J. of
Math. Psych., 12:328–383, 1975.

[7] I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer-Verlag, 1997.
[8] R. Sibson. Studies in the robustness of multidimensional scaling : Perturbational analysis of

classical scaling. J. Royal Stat. Soc. B, Methodological, 41:217–229, 1979.
[9] David S. Watkins. Fundamentals of Matrix Computations. John Wiley & Sons, 1991.

[10] F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer, 1985.
[11] A. G. Gray and A. W. Moore. N-body problems in statistical learning. In NIPS, 2001.

