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Abstract. This paper presents a framework for individual and joint tests of significance employing non-
parametric estimation procedures. The proposed test is based on nonparametric estimates of partial
derivatives, 1s robust to functional mis-specification for general classes of models, and employs nested
pivotal bootstrapping procedures. Two simulations and one application are considered to examine
size, power relative to mis-specified parametric models, and to test for the linear unpredictability of
exchange rate movements for G7 currencies.
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1. INTRODUCTION

The inability to test hypotheses in a nonparametric framework has remained a source of frus-
tration for many applied researchers and econometricians. The motivation for using nonparametric
methods for both estimation and hypothesis testing comes from the fact that employing a mis-specified
parametric model for the conditional mean and/or the data generating process will typically result
in inconsistent parameter estimates and hypothesis tests that possess asymptotically incorrect size.
Nonparametric estimators are consistent under less restrictive assumptions than those required for
consistency of parametric estimators. Therefore, in the absence of knowledge regarding the true func-
tional forms of the conditional mean and data generating process, nonparametric methods may be
preferred.

The significance test is probably the most frequently used test in applied multivariate regression. In
addition, the significance test is often used to confirm or refute economic theories. However, the use of
mis-specified parametric models for the purpose of significance testing will typically yield tests which
have incorrect size and low power. The likelihood of mis-specification in a parametric framework 1is
high given the fact that most applied researchers choose parametric models on the basis of parsimony
and tractability. Significance testing in a nonparametric framework would therefore have obvious
appeal given that nonparametric techniques are consistent under much less restrictive assumptions
than those required for a parametric approach.

This paper demonstrates how the nonparametric estimation of partial derivatives of an unknown
conditional mean can be used for the purpose of significance testing. Of course, such estimates are
often of direct interest in themselves. The proposed approach is based on the application of pivotal
bootstrapping methods and resolves some important outstanding practical issues regarding hypothesis
testing in a nonparametric framework.

In this paper it is assumed that an unknown conditional mean and associated partial derivatives are
estimated using the nonparametric kernel estimation technique based on the approaches of Nadaraya
(1965) and Watson (1964), henceforth known as the Nadaraya-Watson kernel approach. The proposed
approach can be applied with little or no modification to many other nonparametric and semipara-
metric approaches such as orthogonal series estimators, feedforward neural networks, spline smoothers
and so on.

Given the distribution-free nature of the estimation technique, interest lies in conducting signif-
icance tests which themselves do not rely on distributional assumptions. Methods for hypothesis
testing in a nonparametric kernel framework based on asymptotic results have been recently proposed
in Robinson (1991), Robinson (1994), Lavergne and Vuong (1992), and Rilstone (1991). In each of
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these proposed approaches asymptotic theory is employed to derive the limiting distributions of a
test statistic which is based on a nonparametric kernel estimate. Rilstone (1991), for example, uses
nonparametric kernel estimators of average derivative functionals for hypothesis testing, derives the
asymptotic distribution of the proposed test statistic, and demonstrates that the test has a v/n rate of
convergence, the same rate as that obtained for a semiparametric model. Robinson (1994) builds on
such results for semiparametric averaged derivatives and demonstrates that the rate of convergence of
the finite-sample distribution to the normal limit distribution can equal that of standard parametric
estimates. For related work in this area the reader is referred to Stoker (1989), Hardle and Stoker
(1989), and Powell, Stock and Stoker (1989). Unfortunately, there are a number of drawbacks with
such asymptotic-based approaches which arise in practice.

The most troubling aspect of such asymptotic-based testing procedures is that the null distribution
of such test statistics does not depend on the bandwidth, while the value of the test statistic depends
directly on the bandwidth. This is due in part to the fact that the bandwidth is a quantity which
vanishes asymptotically. This is a serious drawback in practice, since the outcome of such asymptotic-
based tests tends to be quite sensitive to the choice of bandwidth. This has been noted by a number
of authors including Robinson (1991) and Rilstone (1991). Robinson (1991) noted that “substantial
variability in the [test statistic] across bandwidths was recorded”, which would be most troubling in
applied situations due, in part, to numerous competing approaches for data-driven bandwidth choice.
For a current overview of data-based bandwidth selection procedures in the context of kernel density
estimation see Jones, Marron and Sheather (1992).

This paper resolves issues surrounding the asymptotic-based approaches to hypothesis testing in
nonparametric settings by applying pivotal bootstrap resampling. Resampling techniques are em-
ployed to obtain the null distribution of a test statistic which is based on nonparametric estimates
of partial derivatives. Related work on bootstrapping nonparametric point estimates includes that of
Hardle and Marron (1991) who propose the application of a ‘wild bootstrap’ to obtain error bars for
kernel estimators of a conditional mean. For theoretical work on the bootstrap see Bickel and Freed-
man (1981) who derive the asymptotic validity of the bootstrap for a number of situations including
pivotal quantities, empirical and quantile processes, and U-statistics and other von Mises functionals.
For a recent survey of resampling methods see Jeong and Maddala (1993).

There are two important and quite distinct reasons why a resampling approach might be preferable
to an asymptotic one for the purposes of hypothesis testing in a nonparametric framework. First,
given the relatively slow rates of convergence of kernel estimators, the use of resampling techniques
may be preferred for small to moderate sample sizes because resampling techniques might be expected
to perform better in finite sample situations than an asymptotic-based counterpart (Efron 1983). This
rate-of-convergence related problem has been discussed by many authors, for instance Mammen (1992)
(pp. 4-5) who emphasizes the poorness of the asymptotic approximations in this context for moderate
sample sizes. To quote, “Often the asymptotic distributions of these functionals cannot be calculated
explicitly or explicit approximations are so poor that, typically, they cannot be used in practice for
moderate sample sizes.”

Another reason for using resampling techniques is that there exist cases in which a resampling
approach works under weaker conditions than those necessary for asymptotic approximations to hold.
Bickel and Freedman (1983) demonstrate this result for linear models to which the bootstrap has been
applied. Such results justify the use of bootstrapping through appeal to robustness arguments in the
sense of being robust to departures from assumptions underlying the modeling procedure.

The remainder of this paper proceeds as follows. The test statistic and algorithms to obtain its null
distribution are presented in Section 2. Simulation results and applications are considered in Section
3, while Section 4 summarizes and concludes.



2. A NONPARAMETRIC SIGNIFICANCE TEST

The most commonly used regression-based hypothesis test is the test of significance. Rejecting
or failing to reject the null is often used as evidence confirming or refuting a theory, and can have
important practical and theoretical implications. Applied researchers typically choose parametric
models on the basis of tractability and ease of interpretation, not on the basis of any prior knowledge
regarding the unknown DGP. Such models are typically mis-specified to some degree. It i1s well
known that hypothesis tests based on functionally mis-specified parametric regression models will
have asymptotically incorrect size. That is, the probability of a Type I error will not equal the
assumed nominal value regardless of the sample size. In addition, hypothesis tests based on mis-
specified models will suffer from low power and thereby fail to detect departures from the null.

In the absence of knowledge regarding the true functional form for the conditional mean nonpara-
metric Nadaraya-Watson Kernel methods will be used which are robust to functional mis-specification
among the class of twice-continuously differentiable functions. The important features of the proposed
approach are that the null distribution of the nonparametric-based test will have correct size and the
test will have power in the direction of the class of twice-continuously differentiable alternatives.

2.1. The Test Statistic. Let f(Y, X) denote the joint density of a set of random variables of interest
(Y, X) where Y € R and X € RP,p € N and let (y;, #;) be a realization of (¥, X). The density of ¥
conditional on X will be denoted ¢(Y|X) = f(Y, X)/f1(X) where f1(X) denotes the marginal density
of X. The conditional mean of ¥ with respect to X is defined as E(Y|X) = [yg(y|X)dy. The
gradient of the conditional mean with respect to the conditioning variables is defined as VE(Y|X) =
JE(Y|X)/0X where VE(Y|X) € RP. Tt is assumed that the reader is interested in a model of the
form M (z;) = E(Y|z;) and in partial derivatives of the form f(x;) = VE(Y|z;) where |;, is taken to
mean conditional on the random vector X assuming the realization z; € IRP.

For notational simplicity, partition the vector X into two parts, the variables whose significance is
to be tested X(;) and all other conditioning variables X(_;, excluding X;y. The partitioned matrix
of conditioning variables is written as X = (X(_;, X(;)) where X_;) € RP=J and Xy € RJ. If the
conditional mean F(Y|X) is independent of a variable or group of variables in question, X(;), then
the true but unknown vector of partial derivatives of the conditional mean of the dependent variable
with respect to these variables is zero. This condition for independence of F(Y'|X) and X(;) is stated
as

DE(Y]X)

(1) E(Y|X) LX) <
VT axy,)

=0 a.s.

where 9E(Y|X)/9X(jy € RI and where L denotes orthogonality or independence.

Nonparametric estimation techniques yield partial derivatives which are permitted to vary over
their domain. Contrast this with parametric multivariate linear regression techniques in which the
partial derivative is typically assumed to be constant over its domain. This has implications for the
type of test statistic used in a nonparametric context. In particular, tests must be formulated to
detect whether a partial derivative equals zero over the entire domain of each variable in question.

Noting explicitly that the partial derivatives vary over their domain, the null hypothesis can be
stated in terms of the vector of partial derivatives of the conditional mean as

Hy: MZOforaerX
@) 0X ()
E(Y|X
Hy M;&Oforsomexe)(

9X(j)
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Since a test statistic in this context must necessarily involve some aggregate measure of the derivative
over its domain, an aggregate L, norm measure will be used. This norm is adopted based on power
considerations.

Using this Lo aggregate based on the unknown derivatives, the null and alternative hypotheses can
be stated as

2
Ho: A=E/ LE(YP() =0
3 X
OE(Y]X)?
Hy: A=FE/|/———2 [ >0
X

where ¢ denotes a unit vector of length j, and 8E(Y|X)/6X(j)2 is intended to mean that this is a
vector of squared derivatives. If the null hypothesis is true then A will be identically equal to zero.
Otherwise, A will exceed zero.

The proposed test statistic is obtained by constructing the sample analogue of Equation (3) in
which the unknown derivatives are replaced with nonparametric estimates, B(J:Z) ERI i=1,...,n.
The resulting test statistic will be denoted by X and is written as

. T 2
(4) A=n"t ZZ [511(1‘2)] :
i=1 h=j
The finite sample properties of this test statistic are not known at this time, however it is fully expected
that this will yield a consistent test under standard regularity conditions.

2.2. Obtaining The Null Distribution of A. To conduct tests based on the proposed statistic
a sampling distribution under the null must be obtained. One option at this point would be to
work on obtaining an asymptotic approximation to this distribution. Robinson (1991) employed
asymptotic approximations for his analytically simpler semiparametric average derivative and noted
that “substantial variability in the [test statistic] across bandwidths was recorded” | which is troubling
for reasons outlined in Section 1. Against this backdrop a resampling approach is pursued. As will be
seen, the resulting test will have correct size and will be extremely insensitive to very large deviations
from the optimal bandwidth.

The sampling distribution of A under the null will be estimated using Efron’s bootstrap (Efron
1983). Percentiles of the test statistic under the null can then be obtained from this estimated
distribution, and one-sided tests can then be performed by comparison of the test statistic with the
appropriate percentile obtained from the estimated distribution.

2.3. Pivotal Resampling. Recent modifications of the bootstrap are known to give more reliable
percentiles than the standard bootstrap. The best approaches (as argued by Beran (1988) and Hall
(1986)) are known as pivotal methods (also known as percentile-t methods). A statistic is (asymptot-
ically) pivotal if its limiting distribution does not depend on unknown quantities (Hall 1992, p. 83).
The general idea is that instead of bootstrapping a raw statistic 6, a studentized statistic (é L 9)/5(@)
is bootstrapped where s(é) is a consistent estimate of the standard error of (é 1 6). For most applica-
tions, s(é) is a /n consistent estimator. The bootstrap does a better job of estimating the distribution
of a pivotal statistic than it does a non-pivotal one, and this pivotal bootstrap approach been shown
to be asymptotically superior to non-pivotal bootstrap approaches (Hall 1988). In particular it has
been shown (Beran 1988) that the pivotal bootstrap distribution coincides through order 1/n with the
Edgeworth expansion of the exact finite sample distribution. In addition, Beran (1988) has demon-
strated that critical values obtained from a pivotal approach will result in tests with finite sample
sizes closer to the nominal size than tests based on asymptotic critical values.
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There are two potential applications of pivoting for the test statistic at hand. First, our statistic
is an average of (squared) pointwise derivative estimates Bh(xl) These estimates can be pivoted by
pointwise dividing by their standard errors based on asymptotic approximations, SE(Bh (2;)). The
test statistic based on the pivoted derivative estimates would therefore be given by

(5) =Yy

i=1 h=j

SE 5h ))]

Secondly, the statistic A can be pivoted by dividing by its standard error. The asymptotic distribution
of the proposed statistic A is not known, hence an estimator of the statistic’s variance based on
asymptotic results cannot be used. An estimate of the statistic’s variance can, though, be computed via
resampling (I am most grateful to an anonymous referee for noting this point). Efron and Tibshirani
Efron and Tibshirani (1993, p. 162) note that “standard error formulae exist for very few statistics, and
thus... [for] more complicated statistic[s]... we would need to compute a bootstrap estimate of standard
” Following
this approach a nested pivotal bootstrap procedure is applied to estimate the null distribution of

(6) i=

error for each bootstrap sample [which] implies two nested levels of bootstrap sampling.

A
SE(N)
as opposed to ;\, where SE(X) is the estimated standard error of A which is itself obtained via nested
resampling. It will be seen that pivoting the derivative estimates and the test-statistic itself will yield
a test procedure which is remarkably insensitive to bandwidth choice. Section 3.1 and Appendix A
present simulation results which demonstrate the improvements in empirical size from pivoting both
with and without the pivoting of the derivative estimates.

There 1s an 1ssue of the bias of the nonparametric estimator Bh(xl) which could be raised since,
though Bh(xl) is consistent, it is biased in small samples. There are three common approaches to
addressing this problem. The first involves explicit bias correction, the second involves the use of
higher order kernels, while the third involves undersmoothing of the estimate. It will be seen that the
third approach will have obvious advantages in this context. This is due to the fact that the proposed
test is insensitive to the choice of bandwidth, therefore if one is concerned with the adverse effects
of bias one can simply choose to undersmooth the estimated derivatives and this will not adversely
affect the size of the test. This being said, either of the three approaches mentioned above may be
utilized if one is concerned with the adverse consequences of small sample bias.

Finally, there is the question of how valid the pivotal bootstrap procedure is in this context. The
above modifications of the standard bootstrap utilize improvements known to be the best currently
available. Horowitz (1991) bootstrapped a smoothed maximum score estimator which, like the kernel
estimator, is not v/n consistent. His Monte Carlo evidence suggests that critical values based on the
percentile-t are much more accurate than those obtained from first-order asymptotic theory. The
validity of the pivotal bootstrap in this context can be checked via Monte Carlo results, and this issue
is addressed in Section 3.1.

2.4. The Resampling Algorithm. The algorithm presented here is for the case of iid random
variables. FExtension to the case of general stationary observations would follow by replacing the
bootstrap below with the more sophisticated resampling procedure found in Kiinsch (1989), while the
proposed test procedure would remain unchanged.

The bootstrapping algorithm for obtaining the null distribution of the test statistic ¢ proceeds as
follows:

1. Estimate the ‘restricted” conditional mean E(Y'|x(_;y;, Z(j);). The resulting fitted conditional
mean is denoted M(x(_j)i, Z(jy), 1 = 1,...,n. Note that since the null is F(Y|X) L X;), this
5



restricted conditional mean does not vary with the variables whose significance are to be tested
(X(;)) since they are held constant at their means for all i = 1,... n.

2. Generate residuals ¢; = y; L M(x(_j)i, Z(j)i), ¢ =1,...,n, then re-center them around the value
zero (Freedman 1981). Note that these residuals are constructed under the null.

3. Generate the empirical distribution F which has probability mass 1/n at ¢;. That is,

1
F: mass —até, 1=1
n

R %

4. Draw a ‘bootstrap residual sample’ from F' by sampling with replacement from F and call this
bootstrap sample {ef 7.

5. Generate a ‘null bootstrap data sample’ with dependent variable generated from

y:< IM(l‘(_])Z,i‘(])2)+€:, 221,,77,

The bootstrap sample will be {y7, #;}7_,, where the conditioning variables are those from the
original sample and therefore contain both X(;y and X(_;).

6. Obtain the bootstrap estimators B(J:Z)* and SE(B(JL‘Z)*) using {yr, z; }7,. Using these bootstrap
estimators, calculate £* = A*/SE(A\*) where SE()X*) is obtained according to Section 2.5 below.
This will yield one bootstrap replication ‘null’ value of the test statistic ¢ under Hy.

7. Independently repeat Step 6 a large number of times obtaining bootstrap replications %, ¢3,
e t}l where Bj is the number of bootstrap replications.

2.5. Pivoting the Test Statistic via Resampling. The standard error of the test statistic denoted
by o5 is required, an estimate of which can be obtained via nested resampling. Resampling proceeds
from the {Y, X} pairs used to compute a given value of the statistic, and proceed as follows:

1. For a sample {Y, X} used to compute the test statistic ;\, draw a resample maintaining the
(Y, X]) pairs. That is, resample 7] = (V;, X/). Call a given resample {Y*,X*I}.

2. Given the resample {Y*,X*I}, compute ;\*, the test statistic based on this resample.

3. Repeat steps 1 and 2 By times, and call the resampled test statistics ;\T, A;, ce ;\E2~ Note
that since the variance 1s being estimated rather than tail percentiles; a fairly small number of
resamples will be required.

4. Given the By resampled values of a given value of the test statistic, compute their standard
deviation, and call this SE(X)

5. The pivotal value of a given value of the test statistic will therefore be given by ¢ = (A L
Xo)/SEX) = A/SE().

This approach can be applied for both the test statistic and those values of the test statistic

computed under the null. The pivoted value of the test statistic is denoted by ¢ = ;\/SE(;\), and the
pivoted values of the test statistic under the null by ¢} = ;\;“/SE(;\;"), i=1,2,..., By.

2.6. Decision Rules for the Proposed Test. Having computed and pivoted the test statistic A
and having obtained the empirical sampling distribution of this test statistic under the null, the (1 L)
percentile ¢]__, can be obtained where ¢7_ is that value of ¢ such that

(7) Prit>ti_,]=«

A test of size v can therefore be conducted by obtaining the null distribution for ¢ as outlined above
and then determining whether ¢ > ¢7__. If so Hy is rejected, otherwise we fail to reject Hy.
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2.7. Appropriate Number of Bootstrap Resamples and Bootstrap Pivot Resamples. The
number of bootstrap replications is always context dependent. If one uses the percentile method for
obtaining confidence intervals or empirical p-values, a large number of replications might be necessary
to get reasonable accuracy in the tails of the distribution. However, if one is not obtaining tail
percentiles but is simply estimating low-order moments, then a small number of replications can
suffice. For recent work on the appropriate number of bootstrap replications, see Hall and Titterington
(1989).

The proposed approach adopts the percentile method and, in addition, requires the estimation of
a variance for pivoting. Therefore, in this context 1,000 replications are recommended for obtaining
the tail percentiles, while 100 replications are recommended for estimation of the variance. Clearly,
the higher the number of replications the better, but these suggested values appear sufficient to get
extremely good accuracy of empirical size across a wide range of settings and sample sizes.

Although intuitively one would expect the bootstrap to provide consistent estimates of the distri-
butions of the test statistics considered in the paper, this has yet to be rigorously proven. The results
of Hall and others would indicate that this is the case.

3. APPLICATIONS

3.1. Empirical Size. As noted in Section 1, the nonparametric asymptotic-based testing procedures
suffer from the fact that the outcome of the tests are sensitive to the choice of bandwidths since the
null distributions do not depend on the bandwidth. The proposed test should not suffer from this
drawback since the null distribution depends explicitly on the bandwidth. In this section the empirical
size of the proposed test is examined when the bandwidths deviate significantly from their optimal
values. Given the inherent sampling variability of data-driven bandwidth selection procedures this is
perhaps the single most important practical issue to be addressed and it can only be examined via
simulation.

All computations which follow were performed on a 90mhz Pentium. Source code was written in
ANSI C, and was compiled using gce 2.6.3. The multivariate Gaussian kernel was used throughout.
Tests were conducted with nominal sizes of & = 0.01,0.05,0.10. The sample size was set at n = 50.
There were 1,000 bootstrap replications (By = 1,000), 100 pivot (Bz = 100) replications, and 1,000
Monte Carlo replications. The following DGP was simulated for the experiment:

(8) yi = sin(2wx1;) + ¢

A variable X5 was generated which was unrelated to F(Y|X). The data for X; and X3 were distributed
U[0,1] and the disturbance term was distributed N(0,0.25).
The estimated model was of the form

(9) yi = E[Y|z1i, 225] + €

We wish to test whether the variable X is significant or not, and the null is Hy : E(Y|X) L Xs.

For what follows, the scaling factor for the bandwidth for variable j refers to the constant ¢; in the
formula for the optimal bandwidth for the kernel employed, ¢; an_l/(4+p), where p is the number of
conditioning variables (in this case p = 2) and where o; denotes the standard deviation of X;. The
unknown constant ¢; depends on the joint distribution of X and on the kernel function. However, this
constant can be obtained by data-driven methods such as leave-one-out cross-validation (CV). For an
overview of CV see Stone (1974).

For this simulated DGP, bandwidth choice via CV was investigated to determine the likely range
of values for ¢; and ¢s which would be encountered in a practical setting. For the 1,000 simulated
data sets for which CV was applied the mean of ¢; was 0.24, and the mean of ¢; was 5 x 10°. These
mean values will be referred to as the ‘optimal values’ for the following simulations.
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Given the need to use data-driven methods for bandwidth selection for almost all practical settings,
and given the inherent sampling variability in bandwidths obtained by such methods, it is highly
desirable that the outcome of any proposed test not depend on bandwidth choice. Therefore, the
empirical size of the proposed test was calculated for 0.18 < ¢; < 0.30, and for 0.5 < ¢ < 10.0. Note
that for ¢ > 10.0 the results do not differ quantitatively from those for ¢s = 10.0 and hence are not
reported. These ranges for the bandwidths include the likely range of values which would be chosen
by CV for this DGP.

Table 1 below considers the effects of deviations of the bandwidths from their optimal values on
empirical size of the proposed test. Scaling is linear in its effect, therefore, going from ¢s = 1.0
to ¢ = 5.0 represents a 500% increase in the bandwidth. The upper left values in Table 1 denote
empirical size when the conditional mean 1s dramatically undersmoothed, while those in the lower
right corner correspond to oversmoothing. Boldface entries denote empirical size for the optimal
bandwidth, while values marked with an asterisk differ significantly from nominal size at the 1% level.
Appendix B presents some of the estimated conditional means for the range of bandwidths found in
the table below in order to convey the effect of the range of bandwidths considered.

Nominal Size: 0.01
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.01 | 0.01 |0.02]| 0.01
0.24 | 0.01 | 0.01 | 0.02]0.01
0.30 | 0.01 | 0.01 | 0.02 ] 0.01
Nominal Size: 0.05
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.05 | 0.07* | 0.06 | 0.05
0.24 | 0.06 | 0.06 | 0.06 | 0.05
0.30 | 0.06 | 0.05 | 0.06 | 0.05
Nominal Size: 0.10
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.11 | 0.14* | 0.11 | 0.10
0.24 | 0.10 | 0.12 | 0.11 | 0.10
0.30 | 0.12 | 0.10 | 0.10 | 0.10

Table 1: Empirical sizes of the proposed test, &

For this example, CV yields a range of bandwidths for which nominal size does not differ significantly
from the actual size. These values are found in the rightmost column of Table 1. Large deviations
of the bandwidths from their optimal values leave the test’s size virtually unaffected, highlighting the
practical appeal of the proposed test given the need to use data-driven bandwidth selection techniques
in practice. These results demonstrate that the proposed test is remarkably insensitive to the choice
of the bandwidth, unlike the asymptotic tests.

3.2. Mis-Specification and Power. Suppose you are presented with a sample of data {y;, z1;, z2;}
of size n = 100. In the absence of prior knowledge about the true DGP the following linear regression
model is estimated using the method of least squares.

(10) Yi = Bo+ Br1x1i + Poai + Fa3x1i%2 + &
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| Coeflicient | Estimate | Standard Error | {-statistic |

Bo -0.015677 0.41287 -0.037971
B -0.33105 0.69603 -0.47562
8o -0.013421 0.69603 -0.019282
B3 0.61423 1.1734 0.52346

R? -0.0217439

Fs 06 0.297721

log L -157.679

Table 2: Summary of Parametric Test Results

The parameters (1, f2, and (3 are not significant based on this model, either individually or jointly.
Based on this model it is concluded that E[Y|X] L Xy, Xs.

Now the above hypotheses is tested using the proposed test. The following table summarizes
the results of three tests - one for E[Y|X] L Xy, one for E[Y|X] L X5, and one joint test for
E[Y|X] L X1, X2. Bandwidths were chosen via leave-one-out CV.

| Variable | t | 1§ o5 | D |
X 6.57 | 2.81 | p < 0.001
Xs 3.45 | 2.26 | p < 0.001
Xi1,Xs [10.1|4.00|p<0.001

Table 3: Summary of Proposed Test Results

The results are clear rejection that X;, X, and (X7, X2) jointly are independent of the conditional
mean of Y.

Now suppose that the true state of nature 1s revealed. The true DGP for the data used above is
given by
1 yi = E(Y|z1, 29) + &
(11) = 8.0 x cos(2.0mxy;) X (x%l L)+ (2 L x%l) + ¢

where X, ~ U[0,1], X3 ~ UJ[0,1] and ¢; ~ N(0,0.5). Note that this is a highly nonlinear function
and is twice continuously differentiable. This DGP is graphed below.

Figure 1: Actual DGP

Having had the true state of nature revealed to us, it i1s seen that the linear parametric model
is clearly mis-specified. In fact, the estimated linear model is a horizontal plane through the data,
hence the estimated parameters/derivatives will be close to zero. In this case the mis-specification of
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the functional form of the conditional mean E[Y|x1, 25] has led to tests which are not asymptotically
valid and which possess incorrect size and low power regardless of the sample size. In this example,
the parametric model would lead one to believe that the conditioning variables X; and X» do not
help explain movements in the dependent variable Y. In fact, quite the opposite is true. Clearly the
parametric model above would fail the most simple specification test, however, it is very unlikely that
the true model would be found in practice. Hence tests based on any other parametric model other
than Equation (11) would not be, strictly speaking, valid.

The point to be made is that parametric models will always be mis-specified to some degree, and
a practitioner might likely encounter situations such as that above in which inference based on the
parametric model is incorrect and hence misleading.

3.3. Testing for the Unpredictability of Exchange Rates. The market efficiency hypothesis
applied to foreign exchange rates is typically interpreted to mean that there is no information contained
in past percentage changes in exchange rates which can be used to predict future percentage changes
in exchange rates. This hypothesis is referred to as ‘unpredictability of exchange rates’.

The linear unpredictability of exchange rates has a long history going back to early work on efficient
markets such as that by Fama (1965) and Cootner (1964). In addition, conditional heteroskedasticity
in exchange rates has been repeatedly documented (Diebold 1988). The typical parametric charac-
terization of exchange rate dynamics has been that of linear conditional means with nonlinearities
working through the conditional variance in the form of autoregressive conditional heteroskedasticity
(ARCH) and related effects.

Recent work by Diebold and Nason (1990) has questioned two related aspects of this parametric
approach. First, there is the question of whether the conditional mean is truly linear. Second, there
is the question of whether the ARCH effects may be an artifact of neglected nonlinearities in the
conditional mean. Since both of these questions are concerned with potential mis-specification of the
conditional mean process, this would appear to be a good application for the proposed test. Diebold
and Nason (1990) do not attempt any direct testing and they simply compare out-of-sample predictions
of locally weighted regression (LWR) (Cleveland, Devlin and Grosse 1988) versus a parametric random
walk specification. The approach presented in this paper goes beyond the work of Diebold and Nason
(1990) and allows us to actually test the market efficiency hypothesis without assuming the functional
form for the conditional mean.

Following the methodology of Diebold and Nason (1990), data for nominal weekly dollar spot rates
for the G7, Friday average, (Sy) were collected from Citibase. All data are measured in cents per
unit of foreign currency. Fach series contains 636 observations, and each series begins 1/4/1980.
Following Diebold and Nason (1990), interest focuses on percentage exchange rate changes Alog.S;,
thereby avoiding potential problems associated with estimation of nonstationary regression functions
and highly collinear conditioning variables. It is worth noting that this transformed exchange rate
series Alog.S; may not in fact be an iid series, however, for this application I shall proceed under the
assumption that it is. Diebold and Nason (1990) consider lag structures of one, three, and five lags.
Their findings were unaffected by using different lag structures, and they conclude that “Our findings
bode poorly for recent conjectures that exchange rates contain nonlinearities exploitable for enhanced
point prediction”.

Results of the proposed test of the hypothesis Hy : F[AlogS;|AlogSi—1] L AlogS;_1 correspond-
ing to the one lag structure of Diebold and Nason (1990) are given in the following table. Bandwidths
were chosen via leave-one-out CV. Estimated critical values for &« = 0.05 are given along with the
value of the test statistic and the empirical p-value. Graphs of the estimated conditional means are
found in Appendix C.
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| Country | t | 16 o5 | p
Canada | 2.92 | 1.52 | p<0.01
France 3541141 | p<0.01
Germany | 3.69 | 1.46 | p < 0.01

Italy 3.48 | 152 | p<0.01
Japan 4531138 | p<0.01
UK 416|138 | p<0.01

Table 4: Predictability Test for G7 Exchange Rates

For each series for the period considered, the hypothesis EF[AlogS;|AlogS;—1] L AlogS;_1 was
rejected at all conventional levels. The estimated derivatives average from 0.2 to 0.3, and there is
strong evidence of a significant and positive relationship between E[Alog S;|AlogS;—1] and AlogS;—_1
given the outcome of the proposed test for this data.

Given this statistically significant rejection of the null for all six series, the root mean squared
prediction error (RMSPE) was then computed for the one-step forecasts based on both the random
walk hypothesis (RW) and the nonparametric forecasts (NP). The model was fit on the first 7= 500
observations, and ex-ante one-period forecasts were computed for the remaining observations in the
series which were not included in the estimation sample. That is, given AlogSy, the fitted model
was used to forecast AlogSi41, 1 = 501,502, ...,633. The bandwidth was selected by leave-one-out
CV for the observations on which the model was fit, making this a completely ex-ante approach. The
following table presents RMSPE for the RW and NP forecasts.

Canada France Germany
RW NP RW NP RW NP
0.004471 | 0.004277 | 0.013248 | 0.012848 | 0.013915 | 0.013479
Italy Japan UK
RW NP RW NP RW NP
0.012802 | 0.012346 | 0.011611 | 0.010959 | 0.014016 | 0.013587

Table 5: One-Step Forecast RMSPE for G7 Exchange Rates

The significant nonlinear relationship detected by the proposed test can, in this instance, be ex-
ploited for improved one-step-ahead forecasting over that obtained assuming that Alog.S; follows a
random walk. These results were robust to a very wide range of fitting/evaluation splits in the series.
These results suggest that, for the exchange rate series considered and for the time-period considered,
percentage changes in weekly exchange rates possess small but significant nonlinear persistence which
can be exploited for one-step-ahead forecasting. These results run counter to the findings of Diebold
and Nason (1990). Whether these findings can be exploited accounting for both risk and transactions
costs remains an open question.

4. CONCLUSION

The test of significance is probably the most widely used test statistic in the context of multivariate
regression. Its importance stems partly from the fact that the significance test is often used to confirm
or refute theories and so incorrect size or low power would have important practical and theoretical
implications. In this paper the test of significance is considered in the context of nonparametric kernel
regression. The approach taken is based on the application of resampling methods and resolves some
important outstanding practical issues regarding hypothesis testing in a nonparametric framework.

The motivation for using nonparametric instead of parametric methods for both estimation and
hypothesis testing derives from the fact that employing a mis-specified parametric model will typi-
cally result in inconsistent parameter estimates and significance tests possessing both asymptotically
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incorrect size and low power. The utility of nonparametric estimation techniques is due to the fact
that they are robust to functional mis-specification for a wide class of data generating processes.
Hypothesis tests based on such models do not therefore suffer from the adverse effects of functional
mis-specification.

The proposed test statistic is based on nonparametric estimates of derivatives of an unknown
conditional mean with respect to the conditioning variables. A resampling technique known as nested
pivotal bootstrapping is used to derive the null distribution of the test statistic.

Competing approaches in the context of nonparametric regression have been based on derivations
of the asymptotic or limiting distribution of similar test statistics. The application of resampling tech-
niques resolves one extremely troublesome aspect of tests based on limiting distributions, that the test
statistics’ value depends on a bandwidth while the limiting distribution does not, and hence the out-
come of a test based on limiting distributions is highly sensitive to bandwidth choice. The test statistic
proposed in this paper and the associated null distribution depends explicitly on the bandwidth, and
the proposed test is therefore remarkably insensitive to the choice of bandwidth. Furthermore, the
empirical size of the test based on cross-validated bandwidths does not differ significantly from the
nominal size for the simulation undertaken and is expected to be the case in general.

The main contributions of the proposed approaches are threefold. First, the proposed significance
test has correct size and in addition possesses power in the direction of the class of twice-continuously
differentiable alternatives. Second, both the test statistic and its null distributions depend explicitly on
the bandwidth, a feature lacking if the null distributions are derived using asymptotic theory. Third,
it is believed that the test statistic has the same rate of convergence as those based on parametric
models due to the form of averaging employed in the construction of the statistics, though this is
beyond the scope of this paper and remains the subject of ongoing research.

This paper represents part of an ongoing project whose goal is that of working towards a unified
approach to estimation, inference, and hypothesis testing in a nonparametric context. The test of
significance is widely used and can have important practical and theoretical implications, but clearly
there is much to be done before a sound, unified, and workable nonparametric framework exists.
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APPENDIX A. EMPIRICAL SIZES OF NON-P1voTAL TEST STATISTICS

It is clear that the pivotal approach taken in this paper is more computationally intensive than
the standard bootstrap. The question arises as to the practical benefit of the application of pivotal
bootstrapping for the situation at hand. To answer this question, the empirical size for two test
statistics is considered. The first is the unpivoted statistic given in Equation (4), while the second
is the pivoted version of Equation (4). Note that the proposed statistic involves first pivoting the
derivative estimates and then considering a pivoted version of this pivoted statistic.

Table A therefore gives the empirical size for the statistic for which no pivoting occurs,

2 1 n o 2
(12) P (320 ]
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Table A
Nominal Size: 0.01
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.07* | 0.14* | 0.10* | 0.10*
0.24 | 0.02 | 0.07* | 0.04* | 0.04*
0.30 | 0.01 | 0.05* | 0.03* | 0.04*
Nominal Size: 0.05
Cl|62 05 10 50 100
0.18 | 0.22* | 0.34* | 0.29* | 0.28*
0.24 | 0.12* | 0.22* | 0.18* | 0.18*
0.30 | 0.09* | 0.17* | 0.13* | 0.15*
Nominal Size: 0.10
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.36" | 0.50* | 0.44* | 0.43*
0.24 | 0.23* | 0.37* | 0.30* | 0.29*
0.30 | 0.18* | 0.29* | 0.24* | 0.23*

Table A.1: Empirical Size.

Note that the empirical sizes for the raw statistic are so poor as to render the test statistic in this
form virtually unuseable.
Table B gives the empirical size for the statistic for which there is no pivoting of the derivative

estimates, but the statistic A given in Equation (12) is pivoted, that is,

Des>

(13) t= 2
SE(X)

Table B
Nominal Size: 0.01
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.01 | 0.01 | 0.01| 0.01
0.24 | 0.01 ] 0.01 |0.01] 0.01
0.30 | 0.01 | 0.01 | 0.01] 0.01
Nominal Size: 0.05
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.06 | 0.03* | 0.04 | 0.03*
0.24 | 0.04 ] 0.04 | 0.04| 0.04
0.30 | 0.05 | 0.04 | 0.05| 0.05
Nominal Size: 0.10
Cl|62 0.5 1.0 5.0 10.0
0.18 | 0.11 | 0.07* | 0.08 | 0.08
0.24 | 0.10 | 0.08 | 0.09 | 0.08
0.30 | 0.11 | 0.09 | 0.10 | 0.09

Table A.2: Empirical Size.

Note that pivoting the statistic given in Equation (4) yields a dramatic improvement in empirical
size. These results are just slightly worse than that for the proposed statistic.
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APPENDIX B. DEGREE OF SMOOTHING AND SIZE

One of the main contributions of this paper is the fact that the proposed test is remarkably insen-
sitive to bandwidth choice. The estimates plotted below are those for the center row of Table 1 in
Section 3.1. The empirical sizes for tests based on each of these estimated conditional means differ
by at most 2%, yet clearly these differ greatly in the amount of smoothing occurring. The estimates
range from a severely undersmoothed estimate (¢; = 0.24, ¢; = 0.5) to an appropriately smoothed one
(¢1 = 0.24, ¢3 > 10). Note that for all of these cases, the empirical size is very close to the nominal size.
Finally, again note that when using CV, the empirical and nominal sizes do not differ significantly,
and these values are to be found in the rightmost column of Table 1.

Ch=0.24,C,=05

Figure B.1: Range of Bandwidths and Degree of Smoothing.

APPENDIX C. DEGREE OF SMOOTHING AND SIZE

The following graphs present the data and kernel estimates of the conditional mean
E[Alog Si|AlogS;—1] for GT exchange rates for the case of one lag.
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