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· Repetitive use of “above”.  It becomes ambiguous what the antecedent of “above” is.  
· In the first case we could say “this minimization problem” and in the second, “minimizing this objective function”.  If space permitted, setting the objective function out as a numbered equation might also help.
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· Not clear which cumulant generating function is meant.
· Not clear what the appropriate differentiations are.

In the typical household survey, each individual with the attribute would be reported by one and only one household in population $\pi$ --- the household of which he is a resident. Hereafter, this will be referred to as the conventional survey. Consider next the household survey with multiplicity. In this type of survey, each individual with the attribute would be reported by at least one household---the household of which he is a resident. In addition, he would be reported by other households in population $\pi$ of which he is a nonresident as specified by the multiplicity rule adopted in the survey. The total number of households in population $\pi$ reporting the individual is referred to as his multiplicity. For example, if the survey adopts the multiplicity rule, ``siblings report each other,'' the multiplicity of an individual is equal to the number of different households in $\pi$ in which either he or one of his siblings is a resident.

· This paragraph is trying to convey a complex concept, and it is very confusing the first time you read it. It is difficult to keep track of which household, which individual, and which attribute he is referring to. He doesn't define what a counting rule is, and if you know about survey methodology this might be easy to understand, but if you are not used to reading literature in that subfield it is frustrating jargon.
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· The italic in-line header is an unfamiliar convention.
· The variables are defined earlier in the article, but “let $\alpha_i$ be prefix of $\alpha$” may have a grammatical error (“the” prefix?), overloads the notation $\alpha$, and does not define what a prefix is.
· The un-numbered equations use e and \epsilon together, which can be confusing.  Also, using “e” for this function is unusual in the literature, which uses “s” or “d” instead.
·  Equation (1) is laid out in a way that is difficult to parse.
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· The author missed the preliminary introductions to some of the terms, or at least the citations of these terms.

[bookmark: _GoBack]The condition that elicits superior discriminability is the one with the ROC curve farthest from the chance diagonal. The statistical evaluation of ROC curves involves comparing the areas under the respective curves, with the condition exhibiting superior discriminability reflected by the largest area under the ROC curve. Lineup ROCs are constructed using only suspect IDs (perpetrator and innocent suspect); foil IDs are excluded, just as they are from probative value calculations, because they involve the identification of known innocents. However, the exclusion of foil IDs means that the resulting lineup ROCs are truncated, because as the response bias becomes more liberal the increased likelihood of choosing results in more foil and suspect choosing, not just more suspect choosing. Consequently, a partial area under the lineup ROCs (pAUC) must be computed. That is, rather than computing the area under an ROC curve as the false ID ranges from 0 to 1, researchers compute the pAUC by restricting the range of the false IDs (see Gronlund et al., 2014 for a tutorial). 
· Under-explained concepts
· phrases and terms used that weren't explained previously in the article. 
· Ideas weren't fully explained before moving on to the next topic, which made it hard to see what point they were trying to make.

[image: partial rejection.png]
· Paragraph form not as transparent as numbered or bulleted list for describing a procedure or algorithm.
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· This paper is not so bad in the text; but what I really wanted out of it was some update equations.  In the extract these are given in the course of a paragraph and just looking at it as a wall of text is intimidating.  I had to end up rewriting it as a table to actually begin to understand what was going on.

Spatial micro-simulation is a methodology aiming to simulate entities such as households, individuals or businesses in the finest possible scale. This process requires the use of individual based microdatasets. The package presented in this work facilitates the production of small area population microdata by combining various datasets such as census data and individual based datasets. This package includes a parallel implementation of random selection with optimization to select a group of individual records that match a macro description. This methodological approach has been used in a number of topics ranging from measuring inequalities in educational attainment (Kavroudakis, Ballas, and Birkin 2012) to estimating poverty at small area levels (Tanton, McNamara, Harding, and Morrison 2007). The development of the method over recent years is driving computational complexity to the edge as it uses modern computational approaches for the combination of data. The R package sms presented in this work uses parallel processing approaches for the efficient production of small area population microdata, which can be subsequently used for geographical analysis. Finally, a complete case study of fitting geographical data with the R package is presented and discussed.
· It was unclear to me what the major contribution of this paper was. It introduces itself as a spatial micro-simulation paper, but it seems after re-reading the goal is to provide data-sets for individuals to use for spatial micro simulation. If this were the case, it's unclear what types of "macro description" were meant, and what exactly was being processed in parallel. In the end, reading the abstract of this raised many questions about the main idea. 
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2.2. The slice theorem and killing vector fields

In all applications we know of, M/G is a Hausdorff space which means that
all fibers [p] are closed in M. This is the case if G acts properly on M, i.e., if for
all pn,p,p’ € M, gn € G, n € N with gnpy — p', pp — p:

gn has a point of accumulation g € G with gp = p'.

A sufficient condition for a proper action is that G is compact. Even if M/G is
Hausdorff the dimensions of the fibers may vary along M. Then, M/G will fail
to have a natural manifold structure. This is the case for Kendall’s shape spaces
of three and higher-dimensional configurations. In case of a Lie group G acting
isometrically and properly on a finite-dimensional manifold M, Mostov’s Slice
Theorem, cf., Palais (1960, p.108) and Palais (1961), asserts that for an open
disk D about the origin in H,, the twisted product G x, D is diffeomorphic to
a tubular neighborhood of [p] in M. As a consequence,

Iy is a subgroup of I, for p’ € exp,(D). (2.2)

Hence in case of a free action, H,M is locally diffeomorphic to M/G at [p].
Then, M/G has a unique manifold structure compatible with its quotient topol-
ogy (Abraham and Marsden (1978, p.266)), making the projection (2.1) a Rie-
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‘The ABC PRC algorithm requires that we choose both a forward
and a backward transition kernel. We denote the forward kernel
as a density function gy (-19*) and the backward kernel as g5 (-16°").
We use ¢/ (-/6°) to perturb the particle 6° to 6°*, and then, with
6™, we simulate data X and compare X to the observed data Y by
computing p(X, Y). If the particle 6** passes inspection (if p(X , Y)
isless than some &), then we keep itand give it aweightwhichwi
determine the probability of sampling it on subsequent iterations.
If the particle does not pass inspection (if p(X,Y) > eo). it is
discarded, and the process is repeated until wie obtain a particle
that does pass inspection. The weight w given to the new particle
o*is

_ 10)80710™)

7@ @10
This process is repeated until the pool consists of N new particles,
each satisfying the requirement that p(X. Y) < €.

If we stop now, after recreating the pool once, then ABC PRC is
equivalent to the ABC rejection sampler (Algorithm 1). However,
we will repeat the process multiple times. On each iteration we
sample particles with probabilities based on the weights they
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To facilitate inference, approximations 1o p(y|®) are developed. ‘Let 1; be the number of time
points in bin b, and define Ry, € RCEHD*CLHD with entries Ry ik = YjbtYiv kit
Yje i yj at time point ¢ in windowbin b. Let @7 = @, = Xy * (Zkr,m,kﬂm)»
the residual after all but the contribution from the j* neuron have been removed. and define let
vyl € R with entries v, = A& Y0, yjuwagi for i € {~L,...,L}. Both Ry and v,
can be efficiently estimated with the FFT. For each time bin b, we can write: log p(x;” |yju. djs)
const— 5] ~ Sy yisasedis 0)? = const = T (dl Ryjod — 2(v;)) Tdyn)

‘To define the key updates. let yf, = 3, rjepjitjo. and 277 = 20—, i + ks Saw denotes
the block in Sy indexing the b and the b’ bins, which is efficiently calculated because Ej is a block
tri-diagonal matrix from the first-order autoregressive process, and explicit equations exist. Letting
Ni = 52, vy then q(Vi) is updated by are ay. = 1+ N, b = 3+ S5 _y ., Nf. For g(Cs). the
parameters are updated rx = 1+ 3, trace(R s (@106, + Seas)). and pizx = 1" 3, T, R
The clustering latent variables are updated sequentially by:

log(rje) o ,g D g+ (Rn(T B+ aisa,)) —2pie(277) (ysRenans))] + Eqla ()]
O

and y;™* can be used to calculate g(Aj). The mean of the distribution g(A,) is evaluated
using the forward filtering-backward smoothing algorithm, and 33 is a block tridiagonal matrix,
enabling efficient computations. Further details on updating q(A7) are found in Section A of the
Supplemental Material. Approximating distributions g(3)., g(c) and g(7) are standard [14,15).
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defines D;; as length of the shortest path from 4 to j in graph G. We restrict this length to
a maximum of three hops in order to avoid the full n? computation of all-shortest paths. D
thus has a dense mostly constant structure.

When accounting for time, we do not want the positions of entities to change drastically
from one time step to another. Hence we try to minimize |X; — X;—1|r along with the
main objective of MDS. Let D; denote the D matrix derived from G;. We formulate the
above problem as minimization of |D; — X; X[ |r + A|X; — X:_1|r, Where X is a parameter
which controls the importance of the two parts of the objective function. The above does
not have a closed form solution. However, by constraining the objective function further,
we can obtain a closed form solution for a closely related problem. The idea is to work
with the distances and not the positions themselves. Since we are learning the positions
from distances, we change our constraint (during this linear stage of learning) to encourage
the pairwise distance between all pairs of entities to change little between each time step,
instead of encouraging the individual coordinates to change little. Hence we try to minimize

|Dr,—XtX?|F+A|XtXtT—Xt71X£1‘F @)

which is equivalent to minimizing the trace of (D, — X, X/)¥(D; — X, X7T) + A(X: X} —
X XE DT (XeXT — Xi—1XE,). The above expression has an analytical solution: an
affine combination of the current information from the graph and the coordinates at the last
timestep. Namely, the new solution satisfies,
r_ 1 = A T
X Xi = T )\Dt + T )\Xt—lxt—l ®)
We plot the two constraint functions in Figure 2B. When A is zero, X; X/ equals Dy,
and when A — oo, it is equal to Xt,lXtT_ 1- As in MDS, eigendecomposition of the right
hand side of equation 8 yields the solution X; which minimizes the objective function in
equation 7.

We now have a method which finds latent coordinates for time ¢ that are consistent with
G and have similar pairwise distances as X;_;. But although all pairwise distances may

1 oe
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3.2. Solution of partial differential equation

The first moments of the compartments, p;(f) = K[N;(f)], are particu-
larly interesting. A system of equations describing the p.(f) may be derived
by (1) expanding the c.g.f. in terms of its cuwmulants and expanding the
exponential terms in powers of the 6, , (2) performing the appropriate dif-
ferentiations on both sides of the equation, and finally (3) equating coefficients
of 8, through 6,, . Let M”"(t) be the m-vector of expected values, [u;(f), -+ ,
un(®)], and define an m X m matrix B = (b;,) such that b;; , for 7 5% j, are the
previously introduced transition probabilities and

bn = —‘Z b;‘.' .
i=0

IET

Note that b;; is a linear combination of all rates leaving compartment <.
With these definitions, the system of equations derived from (4) to describe
the first moments may be written

M'(1) = BM(@), (6)

where M’(t) designates the derivative of M(¢). Equation (6), however, is
identical to the deterministic equations of a general m-compartment system
(see Sheppard [1962] p. 80). Thus by appealing to uniqueness properties,
the following proposition is proven, which though not surprising, is nonethe-
less important subsequently:
Proposition 1. The expected value, u,({), of the number of units in each
compartment 7 of a stochastic m-compartment system is identically equal to
its deterministic solution.

Matis and Carter [1970] have solved for the second moments of a 2-
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unless the number of common characters ¢ = 0,
in which case the similarity value is 0.

There are three modifications to this basic
string comparator that are currently in use.
Similar Characters The J-W string compara-
tor program contains a list of 36 pairs of charac-
ters that have been judged to be similar, so that
they are more likely to be substituted for each
other in misspelled words. After the common
characters have been identified, the remaining
characters of the strings are searched for simi-
lar pairs (within the search distance d). Each
pair of similar characters increases the count of
common characters by 0.3. That is the similar
character count is given by

cs =c+0.3s

where s is the number of similar pairs. The
basic Jaro-Winkler formula is then adjusted by

1 - - i_t
e — (Cs } cs+c )
3\m n c

Common Prefiz This adjustment increases the
score when the two strings have a common pre-
fix. If pis the length of the common prefix, up
to 4 characters, then the score z is adjusted to
p by

p(l—x)

10
Longer String Adjustment Finally there is one
more adjustment in the default string compara-
tor that adjusts for agreement between longer
strings that have several common characters
besides the above agreeing prefix characters.
The conditions for using the adjustment are

Tp =2+

[} cC P8 Contacts (] Translate X Brian W. Junker [ corre

Standard Edit Distance The standard edit dis-
tance (or Levenshtein distance) [1] between two
strings is the minimum number of edit steps re-
quired to convert one string to the other, where
the allowable edit steps are insertion, deletion,
and substitution. If we let a; be the prefix of
of length 4, 3; be the prefix of 3 of length 7, and
€ be the empty string, then we can initialize the
edit distance algorithm with the distances

e(aj,e) = i
e(e,B;) = J
ele,e) = 0

indicating the number of insertions/deletions
to convert a string to the empty string. We
can then build up the cost of converting longer
prefixes by computing

€ (awﬁ]) =
e (o, B;) +1
€ (aiaﬁj—l) +1

win e (ai—lvﬁj—l) if a; = b]
e(i—1,Bj_1) +1 ifa; #b;
(1)

where a; denotes the i character of a and b; is
the j* character of . The final minimum edit
cost is then given by e («, 8) = e (am, B,,)-

While the edit distance function is a true
metric on the space of strings, it is not a sim-
ilarity function. We note that the maximum
edit length between two strings is n (m substi-
tutions and n—m insertions/deletions), so that
the comparator score
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