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CHAPTER 1

GENERAL INTRODUCTION
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1.1 Perspectives on High-Dimensional Variable Selection

1.1

Perspectives on High-Dimensional Variable Selection

Advances in research technologies over the past few decades have encouraged the prolifera-
tion of massive datasets, revolutionizing statistical perspectives on high-dimensionality. High-
throughput technologies have become pervasive in diverse scientific disciplines and continued
to generate data of increasingly complex phenomena, altering the course of statistical devel-
opments both in methodology and theory. A major focus of the intensive methodological re-
search has centered around variable selection, which has become fundamental to knowledge
extraction from such challenging data.

The problem of variable selection refers to the statistical endeavor of selecting a subset of
observed characteristics, which collectively provide a good description of an observed phe-
nomenon. Of particular interest are settings where such a subset is parsimonious. We take
the perspective of regarding variable selection as a special form of model selection within
a given regression framework, where models differ in their configuration of the contribut-
ing variables. Diverse model optimality criteria can be specified to tailor variable selection
to a specific problem at hand. However, there are two main tasks in high-dimensional sta-
tistical analysis, where variable selection has become essential to knowledge discovery: (a)
construction of an effective method to predict future observations, (b) accurate estimation of
model parameters in order to gain insights on the contributions of individual variables to the
response. Achieving both of these goals simultaneously is typically not possible, since predic-
tion accuracy is often compromised by conciseness and interpretability of the data analyzer.
Optimal prediction will be rarely achieved by a single regression model without some form
of model averaging. In this respect, variable selection cannot and should not be regarded a
general-purpose technique but rather as a means to find useful middle ground or solutions for
a specific purpose. Conceptually related methodological developments encompassing such
versatile variable selection solutions have occurred in the context of penalized likelihood es-
timation and Bayesian variable selection, the latter being the focus of this thesis.

High-dimensional data are plentiful in contemporary research disciplines traversing fields
as diverse as computational biology or financial risk management. The statistical character-
ization of high-dimensionality describes the property of growing data dimension along with
sample size, where the number of measured attributes typically greatly exceeds the number
of observations. Such settings have necessitated reconsideration of traditional asymptotics
as well as systematic investigation of finite-sample operational characteristics. Performance
properties of statistical procedures can be characterized by aspects as important as accuracy
of statistical inference or computational complexity. Whereas in the familiar situation, when
n (number of observations) exceeds p (number of variables), neither of these two properties
needs to be sacrificed for the benefit of the other. The reverse scenario (p much larger than
n) has required careful design of statistical procedures and in depth understanding of their
strengths and limitations. The challenge high-dimensional data pose result from multiple, in-
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1. General Introduction

tricate factors. The data size demands (a) examination of the excess limits in dimensionality,
where such methods are no longer meaningful to consider, (b) characterization of relevant
optimality attributes of variable selection procedures, and (c) implementation of reliable in-
ferential tools that scale efficiently with the dimensionality. In this thesis we focus on this
third objective and address how deterministic methods can be used to provide flexible compu-
tationally efficient analogues to stochastic methods for Bayesian learning in high-dimensional
variable selection.

In the instance of a limited amount of data, there is concern that the dimensionality of
parametrization will still yield an adequate representation of the phenomenon. One of the
crucial assumptions, which facilitates statistical inference in such situation, is the one of spar-
sity, where the regression function can be parametrized using only a few coefficients, which
correspond to the essential covariates that should not be disregarded by the model. The notion
of sparsity is central to the implementation of variable selection, which can provide insights
into the properties of the observed phenomenon and effectively recover a sparse underlying
structure, whenever it exists. The assumption of sparsity is not unreasonable in many practical
contexts including genomic applications, where it is generally believed that only a fraction of
measured genomic features actually impact the observed response. The analysis of genomic
data is a recurrent theme in this thesis, in which we provide numerous demonstrations of
practical instances where variable selection generates meaningful interpretation of the data
and where sparsity is in concordance with biological intuition.

In the remainder of this chapter, we lay down the groundwork for the forthcoming chap-
ters. We begin by describing the principle of penalization and its connection to Bayesian
regularization and variable selection, ideas which will reappear in the next chapters. We con-
fine our explanation to the basic principles, leaving more detailed outlines to the introductory
paragraphs of each chapter. The connecting thread throughout this thesis is the proposal of
deterministic computational methods for rapid posterior calculations in Bayesian shrinkage
estimation and variable selection, crossing the borders from the linear regression framework
to multivariate statistical techniques for retrieving sparse genomic networks.

1.2

The Statistical Concept of Penalization

We will be dealing mostly with the case of multiple linear regression, where it is of interest
to find a linear model representation for a (n× 1) response vector Y in terms of a subset of
potential predictors X = [X1, . . . ,X p]. Penalized likelihood methods for inferring the active
variables set rely on the full model specification Y ∼ Nn(Xβ ,σ2In), where redundant vari-
ables are eliminated by determining which regression coefficient estimates are zero. Such
regularized sparse solutions are obtained by constraining the set of admissible coefficient vec-
tors, where the the boundary optima possess the variable selection property. In situations
when p > n, some restrictions need to be imposed on the model solutions in order to guaran-
tee problem determinacy. Apart from sparsity, various requirements can be induced to reflect
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1.2 The Statistical Concept of Penalization

personalized preferences on the solutions, such as limited model size, limited length of the
regression vector, smoothness among coefficients or linear constraints for cost-restricted vari-
able selection. The constrained optimization is typically solved by the method of Lagrange
multipliers, where the Lagrangian corresponds to the penalized log-likelihood function. One
form of the penalized log-likelihood problem in linear regression arises as solving the follow-
ing optimization

max
β∈Rp

{
−1

2
||Y −Xβ ||2−

p

∑
j=1

penλ (|β j|)
}
, (1.2.1)

where || · ||2 denotes the l2 norm and penλ (·) designates the penalty function indexed by the
regularization parameter λ ≥ 0. The last few decades of intensive statistical research have wit-
nessed an explosion of penalized likelihood approaches, as is evidenced by the emergence of
increasingly intricate penalties motivated by arguments from asymptotic theory. A lingering
issue is to characterize non-asymptotic justifications for these procedures.

By finding the optimum of the penalized likelihood function (1.2.1), we hope to simul-
taneously perform variable selection (by determining the nonzero coefficient estimates) as
well as estimate the associated regression coefficients with as little bias as possible. Of inter-
est are penalties that posses the variable selection property such as the l0 penalty l0

λ
(|β j|) =

λ I(|β j| 6= 0), which arises naturally in many classical model selection methods such as AIC
or BIC. However, computation of the l0 optimization problem has NP complexity due to the
many combinatorial possibilities when evaluating all 2p model configurations. Pragmatic al-
ternatives have emerged in the form of continuous approximations to the l0 penalty, such as
the bridge penalty lq

λ
(|β j|) = λ |β j|q for 0< q≤ 2 (Frank and Friedman, 1993), which bridges

the best subset l0 regularization and the l2 ridge regression. The particular case for q = 1 cor-
responds to the LASSO variable selection (Tibshirani, 1994), which has become one of the
benchmark feature extraction methods.

With the availability of so many penalty function it has become easy to be misled. To
address this issue, Fan and Li (2001) advocated penalty functions fulfilling the following
three properties: (a) sparsity, where the estimator automatically sets unimportant coefficients
to zero and thereby accomplishes variable selection; (b) unbiasedness, where the estima-
tor avoids overshrinkage of large effects and thereby avoids unnecessary modeling bias; (c)
continuity in data, which makes the estimator robust against small perturbations in the data
which may cause instability in prediction. Antoniadis and Fan (2001) characterized formally
the three conditions in terms of behavior of the penalty function. Namely, (a) sparsity is
guaranteed whenever mint≥0{t + pen′

λ
(t)} > 0, (b) the near unbiasedness occurs whenever

pen′
λ
(t)→ 0 with t → ∞, (c) continuity applies if and only if argmint≥0{t + pen′

λ
(t)} = 0,

where penλ (·) is nondecreasing and continuously differentiable on R+. According to these
criteria, a good penalty function should have a singularity at the origin (needed to generate
sparse solutions) and should be concave to reduce estimation bias. It is well recognized that
bridge penalties fall short in fulfilling all these three conditions simultaneously (Fan and Lv,
2010). The lq penalty does not satisfy: the sparsity condition for q > 1, the unbiasedness
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1. General Introduction

condition for q = 1, the continuity condition for 0 ≤ q < 1. This observation has motivated
proposals for more elaborate penalties which do possess all three desirable characteristics
(such as the smoothly slipped absolute deviation penalty (SCAD) of Fan and Li (2001) or the
minimax concave penalty (MCP) of Zhang (2010). Under certain conditions on the concave
penalty functions and with the regularization parameter behaving appropriately, the penalized
likelihood estimators guarantee the variable selection consistency property and asymptotic
normality, which serves as a prerequisite for uncertainty assessment, both in the finite pa-
rameter case (Fan and Li, 2001) and with a diverging number of parameters (Peng and Fan,
2004).

Similar criteria can be applied for the assessment of Bayesian procedures and will be
examined in Chapter 4 in the context of Bayesian shrinkage priors.

1.3

Bayesian Analogues to Penalization

A wide spectrum of sparsity inducing penalty functions emerge naturally in hierarchical
Bayesian models for shrinkage estimation. This follows from the well known observation that
penalized likelihood estimation can be cast as the problem of maximum a posteriori (MAP)
estimation within the Bayesian framework, the advantage there being that one can leverage
the extensive methodology developed for this field. Determining the shrinkage properties then
transfers to the study of properties of prior distributions on the regression coefficients π(|β j|),
where it is the part of logπ(|β j|) depending on |β j| that gives rise to the frequentist penalties.

Preferable have become heavy-tailed prior densities arising as scale mixtures of nor-
mals, which bypass implementation difficulties by allowing for computationally tractable
Bayesian mechanisms, both stochastic and deterministic. In conjugate Bayesian linear models
Y ∼ Nn(Xβ ,σ2In) with a hierarchical prior on the regression coefficients β ∼ Np(0p,σ

2λ 2)
with λ 2 ∼ π(λ 2) distributed accordingly, the posterior distribution π(β ,σ | y) corresponds to
recognized penalized likelihood methods (1.2.1). A broader overview of such prior specifi-
cations is postponed until Chapter 2. As a modification to the conjugate formulation, many
authors recommend replacing σ2 in the prior variance for regression coefficients by a so-
called global shrinkage parameter τ2, which is assigned an independent distribution inducing
substantial mass near zero (Polson and Scott, 2010). Such “global-local" specifications are
often better suited for negotiating underlying sparsity, where the small global parameter pulls
unimportant coefficients towards zero and the heavy tails of the local parameter simultane-
ously provide enough support for large coefficients to escape the gravitation and avoid over-
shrinkage. Recent proposals include among others (Carvalho and Polson, 2010; Armagan
et al., 2012) variants of normal-exponential distributions (Griffin and Brown, 2012). An ex-
tension of the Normal-Exponential-Gamma (NEG) prior to account for grouping information
is proposed in Chapter 4.
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1.4 Bayesian Variable Selection Priors

1.4

Bayesian Variable Selection Priors

The absolutely continuous shrinkage priors outlined in the previous section offer computa-
tional advantages allowing for the implementation of standard deterministic or stochastic
search inferential techniques. However, although the MAP parameter estimates associated
with shrinkage priors are sparse, stochastic search samples from the posterior distribution are
not. This may create practical difficulties when it is of interest to determine which param-
eters are exactly zero. Better characterization of variable selection uncertainty is obtained
by priors which induce positive probability on sparse solutions. Such prior specifications al-
low uncertainty assessment not only around coefficient estimates, but also around the models
themselves. A natural choice of such a prior is the “spike and slab" two component mixture
prior, where the first component drives the coefficients to zero and the second component al-
lows for nonzero entries. The mixing proportion between the two components can be regarded
as an analogue to the global shrinkage parameter, quantifying probabilistically the degree of
overall sparsity and determining the shrinkage properties of the prior. The accurate character-
ization of sparsity within the spike and slab framework demands the spike distribution to be
concentrated at zero, whereas the slab constitutes is a uniform proper prior or a heavy tailed
distribution. Although labeled as a methodological ideal (Carvalho and Polson, 2010), the
point mass spike and slab formulation poses significant computational difficulties. Practically
useful relaxations have been proposed which replace the Dirac delta spike at zero by a con-
tinuous prior with a small variance (the Stochastic Search Variable Selection (SSVS) prior of
George and McCulloch (1993)). A more detailed overview of spike and slab formulations is
presented in Chapter 2. In Chapter 3 we adopt the Bayesian variable selection perspective
using the SSVS continuous relaxation of the point mass prior and formulate an adaptation of
the EM algorithm for rapid, dynamic posterior inference.

1.5

Computational Aspects

1.5.1 Non-convex Optimization for Bayesian MAP Estimation

Computation in penalized likelihood problems, or equivalently Bayesian posterior mode find-
ing, is challenging unless the penalty function is convex, in which case the problem translates
as a convex optimization task that is easily addressed by existing powerful algorithms (Efron
et al., 2004). As one possible approach to solving (1.2.1) for the case of concave penalties,
Zou and Li (2008) propose to proceed iteratively by solving a series of reweighted convex pe-
nalization problems using either local linear or local quadratic approximations to the penalty
function.
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1. General Introduction

The latter entails approximating the penalty by a quadratic function at the current param-
eter vector β

(k), where for each β j ≈ β
(k)
j we have

penλ (|β j|)≈ penλ (|β
(k)
j |)+

pen′
λ
(|β (k)

j |)
2|β (k)

j |

(
β

2
j −β

(k)2
j

)
. (1.5.2)

Substituting the term which depends on β j on the right hand side of (1.5.2) into the penalized
likelihood (1.2.1), we obtain generalized ridge regression with coefficient-specific penalties
that depend on the derivative of the penalty function, which admits a closed form solution.
Hunter and Li (2005) note that the local quadratic approximation (LQA) is an instance of
the EM algorithm (Dempster et al., 1977) and more generally a minorization/maximization
algorithm, by pointing out that the approximated penalized likelihood is a convex minorizing
function. For various penalty functions arising from hierarchical Bayesian shrinkage priors,
Griffin and Brown (2005) formulate an EM algorithm, which corresponds to LQA. An exten-
sion of this algorithm to account for grouping among predictors is proposed in Chapter 4.
Whereas LQA has been considered exclusively for absolutely continuous shrinkage priors, in
Chapter 3 we note that LQA approximation can be exploited also for continuous spike and
slab mixture priors. There we propose a novel dynamic model exploratory mechanism based
on the EM algorithm for simultaneous MAP estimation and posterior model mode detection.
We refer to our proposed method as EMVS, the EM approach to variable selection. The core
practical ingredient in the EMVS procedure is expeditious updating of ridge regression so-
lutions, where exact answers may be too costly if both n and p are considerably large. In
Chapter 3 we describe a variant of the EM algorithm, which involves rapid approximative
ridge solutions obtained with the assistance of a conjugate stochastic dual coordinate ascent
algorithm (Shalev-Shwartz and Zhang, 2013).

An alternative to LQA can be obtained by approximating the penalty locally by a linear
function, where for each β j ≈ β

(k)
j we have

penλ (|β j|)≈ penλ (|β
(k)
j |)+pen′

λ
(|β (k)

j |)
(
|β j|− |β (k)

j |
)
. (1.5.3)

This approximation replaces the ridge optimization at every iteration by the adaptive LASSO
optimization, for which efficient computational methods exist (Efron et al., 2004). In continu-
ous sparsity priors, the linear approximation is of great practical advantage since it possesses
variable selection property by generating solutions with zeroes at every iteration. Similarly
as LQA, the local linear approximation (LLA) also corresponds to the EM algorithm (Hunter
and Li, 2005), where it provides the minimum (tightest) convex minorant of the concave ob-
jective function. A particular implementation of LLA is proposed in Chapter 4 in the context
of Bayesian group shrinkage estimation.
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1.5.2 Sampling Schemes

Although the analytical intractability of the posterior distributions in Bayesian variable selec-
tion and shrinkage estimation precludes exact inference, approximate answers can be obtained
by sampling from the posterior with the assistance of MCMC methods (Robert and Casella,
1999), which have become pervasive in Bayesian inference. Whereas Bayesian shrinkage
models often admit efficient implementation of the Gibbs sampler (Geman and Geman, 1984),
posterior calculations in spike and slab models are typically more involved, since they entail
simultaneous exploration of parameter and model space and face difficulties in traversing di-
mensions. George and McCulloch (1993) were the first to introduce the Gibbs sampler in the
context of spike and slab variable selection, where they laid down the foundations for stochas-
tic model search. In order to avoid expensive updating of the regression coefficient vector in
high-dimensions, Smith and Kohn (1996) and George and McCulloch (1997) suggested in-
tegrating over the regression parameters to sweep only through the model space. One-site
Gibbs samplers and Metropolis Hastings routines (George and McCulloch, 1997; Madigan
et al., 1994) have been successively applied to rapidly evaluate posterior model selection un-
certainty in problems of a manageable size. Spatial dependence between variable inclusion
probabilities was introduced in the context of the Ising prior by Smith et al. (2003), Smith
and Fahrmeir (2007) and more generally by Li and Zhang (2010), who considered predictors
forming an undirected graph and characterized one-site Gibbs sampling algorithm. Goldsmith
et al. (2013) considered a variant of their sampler, which does not require costly computation
of matrix determinants. A more detailed overview of recent methodological contributions in
stochastic search is given in Chapter 2.

Despite these elaborations of stochastic search posterior model inference techniques, the
practicality of their implementation has remained a challenge in high-dimensional applica-
tions. In Chapter 3 we present a deterministic model exploration tool, which is based on the
EM algorithm (EMVS procedure) and which identifies high-probability models at a fraction
of time required for MCMC computation.

1.6

Structured Variable Selection

Variable selection procedures which treat each explanatory variable individually fail to ac-
count for knowledge on existing structural organization among the predictors such as hierar-
chy, network topology, competitive predictors or grouping. In the context of penalized like-
lihood estimators, custom-made penalties have been proposed, which induce (a) similarity in
coefficients that are neighbors on a lattice or an undirected graph (Li and Li, 2008; Pan et al.,
2010), (b) homogeneity in within-group coefficients (Meier et al., 2008) or (c) hierarchical
constraints using structured analogues of the LASSO penalty (Choi et al., 2010). The implicit
assumption in many of these methods being that related regression coefficients are similar or
at least sign-consistent, which may not be realistic in many practical situations (Li and Zhang,
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2010). Another known problem associated with LASSO-based approaches for grouped vari-
able selection (Meier et al., 2008; Jacob et al., 2009) is their inability to produce estimates that
are sparse within groups. Recent proposals have corrected for this (Friedman et al., 2010a) by
incorporating an additional within group penalty. Another approach is presented in Chapter
4, which embeds grouping (possibly with overlap) into sparsity inducing regularization using
a particular Bayesian shrinkage prior.

Whereas incorporation of prior knowledge on the sparsity patterns is less intuitive in the
penalized likelihood framework, Bayesian variable selection constitutes a coherent framework
for transmitting such information by re-distributing probabilities over the model space. Before
proceeding, it is useful to distinguish between two types of prior structural knowledge.

The first type arises in the form of strict structural constraints as dictated by commonly
used principles of a model building process such as heredity when dealing with interactions
(Choi et al., 2010; Chipman, 1996). For instance, the strong inheritance principle requires the
presence of both main terms in order that the interaction be allowed in the model (Yuan et al.,
2009). Another situation, admitting only a subset of model configurations, arises in determin-
ing the order of auto-regression in transition longitudinal models, where configurations that
are not triangular (monotone with no intermittent patterns of zeroes) are typically not allowed.
Limiting the size of the model as well as dealing with competing (mutually exclusive) pre-
dictors also imposes zero probabilities on certain models. Such strict constraints may hamper
the required irreducibility of some model states and thereby complicate posterior calculation
using sampling techniques.

Instead of considering models as either permitted or allowed, the structural information
can be used to smoothly re-distribute the prior distribution on the model space, so that certain
combinations of predictors are more likely to occur together. The underlying assumption there
being that predictors are more probable to be true positives if they cluster within groups or
are connected on a graph. Structured model prior distributions have been proposed in the
Bayesian variable selection literature, where spatial or within-group smoothing is induced on
variable selection probabilities (Stingo and Vannucci, 2011; Li and Zhang, 2010). Introducing
smoothness at the penalty level rather than within the regression coefficients is a distinguishing
feature of Bayesian analogues to structured penalized likelihood methods.

In Chapter 3 we discuss the Ising prior on the model space for covariates that lie on an
undirected graph, as well as the independent logistic regression prior to incorporate grouping
in the context of the EMVS procedure. We demonstrate that our proposed algorithm gears
the model search towards models that are more homogeneous with respect to the underlying
structural architecture. In Chapter 5 we propose a structured prior on the model space, where
competitiveness is introduced in the variable inclusion probabilities. This prior is considered
in the context of clustering multiple responses in the sparse factor modeling framework.
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1.7

Variable Selection in Biomedical Sciences

The practical relevance of variable selection in biomedical sciences is enormous, encom-
passing tasks as important as biomarker discovery, prognostic assessment, design of risk-
stratification rules, or modeling association networks. Conclusions drawn from variable se-
lection may have serious practical implications, particularly in disciplines where statistical
analysis is followed by a series of costly validation experiments. In cancer research, variable
selection generates valuable targets for therapeutic decisions, where careful considerations
need to be exercised to draw valid conclusions from data that may not be optimally powered.
The mainstream statistical practice typically requires implementation of standard tools, where
novel approaches have only begun to permeate. The proliferation of the Bayesian methods,
particularly in genomic applications, is increasing and will be accelerated with the emergence
of rapid computational techniques. With the availability of so many inferential methods, it
has become difficult to establish a single preferential tool and even simplistic methods can
very often lead to valid conclusions. Towards the end of the thesis we turn to the clinical
and bioinformatics applications of variable selection and we present one standard analysis in
Chapter 6, which has had profound clinical implications.

This thesis presents numerous analyses using data on patients diagnosed with acute my-
eloid leukemia (AML). The past decades of intensive biomedical research at the department
of hematology at Erasmus Medical Centre in Rotterdam gave rise to a unique collection of
high-throughput and clinical data on what is undoubtedly one of the biggest cohorts of pa-
tients with this very rare disease. We had the excellent opportunity to combine expertise in
both statistics and biology to enhance existing knowledge about AML.

1.7.1 Variable selection in Acute Myeloid Leukemia

Acute myeloid leukemia describes a heterogeneous group of hematopoietic disorders, which
are collectively characterized by a proliferation of immature myeloid blood cells. The past
years of intensive research have accumulated a large body of evidence for multifactorial patho-
genesis of AML. The multiple contributing factors engage molecular mechanisms as diverse
as epigenetic alterations, cytogenetic abnormalities and other genetic aberrations leading to
impaired expression of oncogenic genes. The characterization of molecular processes un-
derlying AML is far from being completed, as is evidenced by the continuous emergence of
novel prognostic markers. The intricate biological mechanisms involved in AML pathogene-
sis have engaged biomedical researchers for decades and despite a lot has been learned there
is still far more to be discovered. A role of a statistician in these efforts has been instru-
mental in (a) providing supporting evidence about validity of biological hypotheses and (b)
generating targets for biological validation. The first of the two objectives is exemplified by
an integrative analysis of established molecular and genomic markers in Chapter 6. With
the assistance of variable selection, we discern a few relevant markers that are capable of
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stratifying otherwise very heterogeneous patients into two populations with similar survival
outcomes. The result of this analysis has had impacts as important as including one particular
marker in a daily diagnostic practice. The analysis is revised in Chapter 2, where consistent
findings were generated using Bayesian methods. The second objective is exemplified by an
analysis in Chapter 5, where we set out to discover associations between two sets of genomic
features. Recent studies have begun associating microRNAs with specific AML regulatory
mechanisms. MicroRNAs are negative regulators of gene expression, decreasing the stability
of target RNAs or limiting their translation (Fabian et al., 2010). The AML dataset provides
a set of snapshot gene and microRNA expression measurements. This rich collection of ex-
pression data has motivated our work presented in Chapter 5, where by proposing a novel
integrative model in conjunction with the fast EM algorithm for variable selection, we intro-
duce a new framework for Bayesian learning about the likely “dynamics" of the microRNA
mediated gene regulation.
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CHAPTER 2

HIERARCHICAL BAYESIAN FORMULATIONS FOR SELECTING

VARIABLES IN REGRESSION MODELS

Adapted version of a research article:
Rockova, V., Lesaffre, E., Luime, J. and Löwenberg, B. 2011. Hierarchical Bayesian for-
mulations for selecting variables in regression models. Statistics in Medicine 31:213-232
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2.1 Introduction

Abstract

The objective of finding a parsimonious representation of the observed data by a statistical

model that is also capable of accurate prediction is commonplace in all domains of statistical

applications. The parsimony of the solutions obtained by variable selection is usually counterbalanced

by a limited prediction capacity. On the other hand, methodologies that assure high prediction

accuracy usually lead to models that are neither simple nor easily interpretable. Regularization

methodologies have proven to be useful in addressing both prediction and variable selection problems.

The Bayesian approach to regularization constitutes a particularly attractive alternative as it is

suitable for high-dimensional modeling, offers valid standard errors and enables simultaneous

estimation of regression coefficients and complexity parameters via computationally efficient MCMC

techniques. Bayesian regularization falls within the versatile framework of Bayesian hierarchical

models, which encompasses a variety of other approaches suited for variable selection such as spike

and slab models and the MC3 approach. In this chapter, we review these Bayesian developments

and evaluate their variable selection performance in a simulation study for the classical small p

large n setting. The majority of the existing Bayesian methodology for variable selection deals only

with classical linear regression. Here we present two applications in the contexts of binary and

survival regression, where the Bayesian approach was applied to select markers prognostically relevant

for the development of rheumatoid arthritis and for overall survival in acute myeloid leukemia patients.

2.1

Introduction

The simultaneous assessment of the associations between multiple disease factors and a health
outcome is an important topic in epidemiological research. The two fundamental objectives
implicit in these investigations are: (a) determining which predictors are prognostically or
diagnostically important, (b) selecting a combination of factors capable of accurate prediction
of the disease outcome. The two goals are somewhat at odds with each other. Models that
possess high prediction accuracy are usually not easily interpretable, might even contain in-
significant variables and their estimated effects may be biased (Copas, 1983). When the focus
shifts from prediction to explanation, usually parsimonious models are preferred consisting of
only variables that are truly influential for the outcome. Finding such a model in the regression
framework can be recast as a problem of variable selection.

The customary variable selection strategies involving the sequential search (forward se-
lection, backward elimination or stepwise selection) or all-subset regression using different
optimization criteria have several well-acknowledged deficiencies. They become increasingly
ineffective and impractical in higher dimensions and they exhibit high sensitivity towards
small changes in the data (Breiman, 1996; Fan and Li, 2001). The stepwise selection proce-
dures are also prone to getting trapped in locally optimal models (Hocking, 1976) and face
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problems in designs with complex patterns of multicollinearity (Hans et al., 2007). Despite
the drawbacks, they are still the immediate choice in routine data analysis.

Recently, a great deal of attention has been devoted to the development of different regu-
larization methods for simultaneous variable selection and coefficient estimation (Tibshirani,
1994; Yuan and Lin, 2006; Zou and Hastie, 2005). The statistical concept of regularization
can be vaguely characterized as imposing additional requirements on the regression solutions
in that the more “useful" solutions are preferred over other ones. What is meant by “use-
ful" depends on the purpose. If variable selection is the ultimate goal, sparse solutions (i.e.
solutions with the redundant coefficients effectively zeroed out) are more desirable. The pref-
erence requirements can take the form of restrictions on the space of the solutions (which is
equivalent to imposing the frequentist penalty term to the log-likelihood being maximized) or,
in a Bayesian way, putting a suitable prior on the regression coefficients.

The two regularization concepts are closely related to each other. The general principle
behind the frequentist regularization is to maximize logLik(θ |y)−pen(θ) with respect to the
vector of unknown parameters θ = (θ1, . . . ,θq)

′, where logLik(·) denotes the logarithm of
the likelihood and pen(·) is a regularization term, which controls the complexity of the so-
lution. The most popular penalty terms are the lp penalties, lp(θ) = ∑

q
i=1 |θi|p, with p = 1

(the LASSO penalty (Tibshirani, 1994)) and p = 2 (the ridge penalty (Hoerl and Kennard,
1970)). The solution to the penalized maximum likelihood estimation using the lp penalties
possesses a Bayesian interpretation (Tibshirani, 1994; Park and Casella, 2008). It coincides
with the mode of the joint posterior distribution of regression coefficients arising from inde-
pendent individual priors of the form p(θ j|η j)≈ exp(−τ j|η j|p), better known as exponential
power priors (Frank and Friedman, 1993; Fu, 1998). However, the fully Bayesian approach
to regularization entails evaluation of the whole posterior distribution, rather than finding just
its mode. Such exploration is most often achieved by Markov Chain Monte Carlo (MCMC)
methodology.

The Bayesian regularization constitutes only a fraction of Bayesian methodology cur-
rently available for variable selection. In the Bayesian paradigm, the task of variable selection
is recast as parameter estimation in hierarchical models. In fact, the classical variable selection
methods based on penalization of likelihood with a fixed multiple of model dimension (e.g.
using AIC, Cp and BIC criteria) can be regarded as special cases of hierarchical Bayesian
model selection under a particular class of priors with fixed choices of hyper-parameters
(George and Foster, 1997). Alternatively, George and Foster (1997) proposed to estimate
the hyper-parameters from the data to obtain adaptive penalty criteria. The versatility of the
hierarchical formulations together with the availability of numerous sophisticated MCMC
techniques have lead to the development of a variety of Bayesian variable selection strategies
(Carlin and Chib, 1995; Ishwaran and Rao, 2003; Mitchell and Beauchamp, 1988; George and
McCulloch, 1993, 1997). The appeal of the Bayesian approach resides in several features: (a)
the inference is purely probabilistic, as opposed to the frequentist hypotheses testing, (b) it
provides a natural framework for the assessment of model uncertainty and thereby creates a
basis for eventual model averaging, (c) it enables the incorporation of past external informa-
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tion through priors, (d) it extends naturally to settings with multivariate responses and (e) it is
applicable for high-dimensional variable selection (“small n large p" setting).

In this chapter we provide an overview of several Bayesian variable selection methods in
the unified framework of Bayesian hierarchical models and we highlight discrepancies and
connections between them. The empirical performance (with regard to variable selection
accuracy) of the presented Bayesian methods was evaluated and compared to the classical
strategies in a simulation study. The results demonstrate that Bayesian variable selection of-
fers improved performance in detecting the true underlying model. The majority of Bayesian
developments for variable selection occurred in the context of the classical linear model. The
concept can be applied in other regression settings as well. To illustrate the application of
Bayesian variable selection in binary and survival regression, we present an application from
rheumatoid arthritis and from acute myeloid leukemia.

2.2

Bayesian Hierarchical Formulations for Variable Selection

Consider an outcome random variable Y that we want to relate to the set of explanatory vari-
ables X1, . . . ,Xp by means of a regression model. The regression framework encompasses a
variety of modeling platforms for different types of responses (Gaussian, time-to-event, bi-
nary), where the distribution of the response is related to the linear combination of covariates
in a way which is specific for the type of outcome. Most often, only a subset of the available
predictors play an important role in explaining the variability of the response and the goal of
the analysis is to identify these variables.

Each regression model is uniquely characterized by a vector of binary inclusion variables
γ = (γ1, . . . ,γp)

′ indicating whether or not the variable enters the model. Each model γ is then
characterized by a specific linear combination of covariates of the form β0 +X ′γ β γ , where Xγ

and β γ denote subvectors of covariates and model parameters corresponding to the configu-
ration γ and β0 is the intercept.

In the Bayesian framework, variables are selected based on posterior information ob-
tained from hierarchical mixture models. Given the set of all plausible models {γs : s ∈ S},
the hierarchical setup starts by assigning a prior probability p(γs) to each of the individual
models, proceeds with choosing a prior distribution p(β γ |γ = γs) over coefficients within
each model and is completed by the specification of the likelihood p(Y |β γ ,γ). The various
Bayesian variable selection strategies emerge by considering different prior specifications and
by choosing the actual posterior processing strategy.

2.2.1 The “Model Space" Approach

A natural way to compare models is by inspecting the individual posterior model probabilities

p(γs|Y ) =
p(Y |γs)p(γs)

∑k∈S p(Y |γk)p(γk)
,
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where
p(Y |γk) =

∫
p(Y |γk,β0,β γ )p(β0,β γ |γ)d(β0,β γ ) (2.2.1)

denotes the marginal likelihood. The posterior model probabilities quantify the posterior evi-
dence for selecting each particular model and as such immediately suggest models with the
highest values as suitable candidates. With an increasing number of predictors, the exhaustive
evaluation of the whole model space to find these models becomes impractical. As an alterna-
tive to the deterministic solutions based on stepwise search (Madigan et al., 1994) stochastic
alternatives have been suggested that exploit MCMC techniques to simulate a chain of mo-
dels to find interesting regions of the model space with an accumulation of posterior mass.
The most popular and intuitively appealing MCMC strategy adapted for this setting is MC3

(Markov Chain Monte Carlo Model Composition) originally proposed in the context of graph-
ical models (Madigan et al., 1995). The procedure results in a sequence γ(1),γ(2), . . . ,γ(T )

of visited models, which are generated according to the Metropolis-Hastings (MH) routine
(Metropolis et al., 1953; Hastings, 1970). The MH proposal distribution is concentrated at
close proximity of the current state γ , thereby restricting to models differing by an inclusion or
exclusion of just one variable. The candidate model γ∗ sampled from the proposal distribution
is then accepted with probability α = min

[
1, p(γ∗|Y )

p(γ|Y )
]
. The posterior model ratio is obtainable

in closed form in conjugate regression designs. Otherwise, suitable approximations to the
marginal likelihood in (2.2.1), e.g. BIC approximation, (Schwarz, 1978) can be used.

The prior distribution over models p(γ) is an important ingredient in MC3 and other
Bayesian variable selection procedures. The common choice of this prior distribution as-
sumes independence amongst the binary inclusion indicators γ1, . . . ,γp and follows a product
of individual Bernoulli distributions, i.e.p(γ) = ∏

p
j=1 wγ j

j (1−w j)
1−γ j , where w j is the prior

probability that the j-th variable is in the model. In some hierarchical setups the probability
of inclusion w j is assigned another prior layer. Keeping the parameters w j fixed and equal to
1/2, we obtain a uniform prior on the model space.

The actual variable selection can proceed in several ways. Two strategies most often
applied in practice are: (a) to pick a model with the highest estimated posterior probability
p̂(γ|y) = ∑

T
t=1 I(γ(t) = γ)/T (the highest posterior density (HPD) model), (b) to pick variables

with estimated posterior marginal inclusion probabilities p̂(γk|y) = ∑
T
t=1 I(γ(t)k = 1)/T higher

than 0.5 (the median probability model (MPM) (Barbieri and Berger, 2004)). The appro-
priateness of HPD model selection was studied by Barbieri and Berger (2004). The authors
have shown that in orthogonal linear regression settings the optimal model from a Bayesian
predictive viewpoint was the MPM rather than the HPD model.

The model space approach can also be implemented using some other MCMC samplers
such as reversible jump (RJ) MCMC (Green, 1995; Gramacy and Pantaleo, 2010; Lunn et al.,
2009) that explores simultaneously model and parameter space and dynamically adjusts for
the differences in dimensionality of the sampled vectors β γ . Another strategy, based on the
Gibbs sampler, was proposed by Carlin and Chib (1995).

18 Veronika Ročková
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2.2.2 Elaborations on the Model Space Approach

One of the limitations of the stochastic search for variable selection is their inability to es-
cape from steep local posterior peaks, or to discover relevant but isolated regions of the
model space. The difficulties with multimodal posterior landscapes can be mitigated with
the assistance of population-based MCMC algorithms (Jasra et al., 2007). The main idea
is to run a population of chains in parallel, each chain typically associated with a particu-
lar “heated/tempered version" of the target distribution. In the model selection context, the
natural target distribution is the posterior distribution over the model space. A useful approxi-
mation to the posterior model probability p(γ|Y ) can be obtained using the BICγ criterion of
a model γ , where p(γ|Y )≈C exp(− 1

2 BICγ ). The heated approximate target distribution for a
given temperature t is then naturally defined as pt(γ|Y ) ∝ exp

(
− 1

2t BICγ

)
. The tempering has

the effect of flattening the peaks of the true target distribution. The higher the temperature t,
the easier it is for the chain to escape from abrupt peaks. Furthermore, the parallel chains inter-
act and learn from each other, making the exploration of the model space more efficient. The
interaction is achieved by altering/swapping model configurations between/within the chains
with different temperature at each MCMC iteration. Liang and Wong (2000) suggested a hy-
brid procedure that combines the idea of parallel tempering together with genetic algorithms
in the method called Evolutionary MCMC (EMC). See also Bottolo and Richardson (2010)
for the application of EMC in Bayesian model selection.

Parallel tempering is closely related to simulated annealing (Kirkpatrick et al., 1983),
where only a single chain is used to sample from a joint distribution of the temperatures and
the target distribution and where only values with a “zero" temperature are recorded.

Alternative to parallel tempering techniques, Hans et al. (2007) suggested Shotgun Sto-
chastic Search (SSS) that is capable of sampling from vast discrete spaces of regression mo-
dels. SSS can be regarded as a hybrid procedure that combines Occam’s razor principle with
Metropolis-Hastings ingredients. Similar to the Occam’s window (Madigan et al., 1994), SSS
neither focuses on finding a point estimate nor it aims at closely approximating the posterior
model distribution. The goal is rather to determine a bigger set of best models. As opposed
to Occam’s window the search is not entirely deterministic, since the explored models are
subject to a randomized proposal mechanism (similarly as in the MH routines). In compari-
son to one-site Metropolis-Hasting routines (Madigan et al., 1994), in SSS all models from
the neighborhood of the current state are evaluated and multiple models are stored at each
iteration. In direct parallel to Occam’s window, at each iteration the set of best models is
deterministically updated by better models found in the neighborhood.

2.2.3 Spike and Slab Models

In many practical situations it is desirable to estimate the values of selected coefficients after
the model configuration has been chosen. In MC3 and related strategies the focus rests purely
on variable selection, leaving the inference about model parameters aside. The parameter
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estimates then can be obtained by “post-model selection estimation" (using e.g. posterior
means or least square estimates). However, such strategy leads to biased estimates as it ignores
the uncertainty in the model selection (George and Foster, 1997). Alternatively, one could
consider estimates that are not conditional on one selected model but rather averaged over
all or highly probable models. Model averaging on the other hand does not provide sparse
representation as it yields nonzero estimates of all coefficients regardless of how many of
them are actually zero. A convenient solution would be to combine the model averaging and
variable selection in one estimation process. This can be achieved in the Bayesian context
using the so called variable selection priors.

Variable selection priors, better known as spike and slab priors (George and McCulloch,
1993, 1997; Ishwaran and Rao, 2003), induce a positive prior probability on the hypotheses
H0 : βk = 0. In the original formulation (Leamer, 1978; Mitchell and Beauchamp, 1988),
the spike and slab distribution is defined as a mixture of a Dirac measure concentrated at
zero and a uniform diffuse component. Similarly as in Ishwaran and Rao (2005), we will
slightly deviate from the original definition here. By a spike and slab prior we understand any
prior that is a mixture of two continuous distributions, implying high prior probability close to
zero. These peak-shaped mixtures can be regarded as approximations to the point mass priors,
which are computationally feasible for more conventional MCMC samplers. Such priors can
be represented as conditionally Gaussian, i.e. normal scale mixtures specified through the
prior on hyper-variances. The different variants of the spike and slab formulations emerge by
considering different priors for the hyper-variance (a two-point or continuous distribution).
We now elaborate in more detail on the two most popular spike and slab priors: Stochastic
Search Variable Selection prior of George and McCulloch (1993) and Normal Mixture of
Inverse Gamma of Ishwaran and Rao (2003).

2.2.3.1 � Stochastic Search Variable Selection (SSVS)

Stochastic Search Variable Selection (SSVS) was proposed by George and McCulloch George
and McCulloch (1993) for variable selection in the context of linear regression. In SSVS, the
model coefficients βk are assumed to have a mixture prior of “spike" and “slab" Gaussian com-
ponents. The mathematical formulation of the SSVS hierarchical prior setup is the following:

βk|λk ∼ N(0,λk),

λk|ck,τ
2
k ,γk ∼ (1− γk)δτ2

k
(·)+ γkδc2

k τ2
k
(·),

γk|wk ∼ Bernoulli(wk),

wk ∼ Uniform[0,1],

where δx(·) denotes the Kronecker delta concentrated at point x. The “spike" element con-
centrates closely around zero, reflecting the actual absence of the variable in the model (γk
equals zero). The “slab" component has a sufficiently large variance to allow the “nonzero"
coefficients to spread over larger values.
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The degree of separation between the two components is regulated by two tuning parame-
ters τk and ck, where τ2

k > 0 is the variance in the spike component and c2
kτ2

k > 0 the variance
in the slab component. In order to guide the choice of τk and ck, it helps to note that the

two Gaussian densities intersect at the points±δk = τkεk, where εk =
√

2(logck)c2
k/(c

2
k −1).

The point δk can be regarded as a threshold for declaring practical significance in that all
coefficients falling into the interval [−δk,δk] can be interpreted as “practically zero". Given
the parameter ck, the variance τ2

k can be selected such that the intersection point reflects our
perception of practical significance.

Due to the non-conjugacy, the analytical simplification of posterior distributions p(βk|y)
and p(γk|y) is not tractable. George and McCulloch (George and McCulloch, 1993) suggested
a MCMC approximation to the posteriors using the Gibbs sampler, which yields a chain of
regression coefficients and visited models (β (1),γ(1)), . . . ,(β (T ),γ(T )). Variable selection is
then achieved through posterior model probabilities, posterior inclusion probabilities or the
posterior distribution of the individual regression coefficients. Processing the MCMC infor-
mation in p(βk|y) is complicated by the fact that the distribution can be multimodal, which
makes the interpretation of posterior summary statistics less meaningful. Nevertheless, in case
of strong evidence against the inclusion of the variable, the spike will dominate the posterior
which will effectively shrink the posterior mean towards zero. The decision on whether or
not a variable enters the model can be done by hard shrinkage (hard thresholding/selection
shrinkage) (Fan and Li, 2001; Johnstone and Silverman, 2004), where variables are included
whenever the absolute value of the estimated coefficient (e.g. posterior mean) exceeds some
threshold value.

One particular variant of SSVS called Gibbs variable selection (GVS) was considered
by Dellaportas (Dellaportas et al., 2002), who suggested introducing the binary inclusion
indicators also in the likelihood so that only the variables that are literally present in the model
contribute to the linear predictor, which now equals β0 +∑

q
j=1 γ jβ jX j. Apart from that, the

prior setup for regression coefficients is analogous to SSVS. Examples of an application of
SSVS priors in other than linear regression settings can be found in George et al. (1996) and
(Ntzoufras et al., 2000).

2.2.3.2 � Normal Mixture of Inverse Gamma (NMIG)

In the SSVS prior formulation, the variances λk have a discrete distribution with a support
{τ2

k ,ckτ2
k }, which implies a two-point Gaussian mixture prior for the regression coefficient.

In the context of linear regression, Ishwaran and Rao (2003) suggested to move the spike
and slab element down in the hierarchy and place it on the variances rather than on the re-
gression coefficients. They argued that considering a continuous bimodal distribution for
the variance introduces more uncertainty, which might potentially diminish the sensitivity to-
wards the tuning of hyper-parameters. In the original formulation (Ishwaran and Rao, 2003,
2005), the variance was parametrized as a product of two random variables, one having a two
point distribution and the second one having an inverse gamma (IG) distribution. Similarly as

Bayesian Variable Selection 21



2. Hierarchical Bayesian Formulations for Selecting Variables in Regression Models

Fahrmeir et al. (Fahrmeir et al., 2010) we adopt a different parametrization using a two-point
mixture of inverse gammas. This yields the following hierarchical model

βk|λk ∼ N(0,λk),

λk|v0,v1,γk,a,b∼ (1− γk)IG
(

a,
v0

b

)
+ γkIG

(
a,

v1

b

)
,

γk|wk ∼ Bernoulli(wk),

wk ∼ Uniform[0,1].

The role of τ2
k and ck in SSVS is now taken by the parameters v0 and v1. Ishwaran and Rao

(2003) suggested to use v1 = 1 by default for standardized covariates and rescaled responses
in the linear model. Similarly as in SSVS the “practical significance" argument can be applied
to specify the other hyper-parameters. Note that the marginal prior for the regression coeffi-
cients obtained by integrating out the variance is a two-point mixture of scaled t-distributions

(with 2a degrees of freedom and respective scales s1 =
√

bv0
a and s2 =

√
bv1
a ). The two den-

sities intersect at the points δ =±
√

2a(1−r)
r

s2
2
− 1

s2
1

, where r =
(

s2
s1

) 2
2a+1 . Similarly as in SSVS, the

preferred threshold for practical significance can be achieved by a suitable constellation of the
hyper-parameters a,b,v0 and v1. The extensions to non-Gaussian and hazard rate models
were considered by Konrath et al. (2008, unpublished manuscript). For an application in the
context of additive regression models see Fahrmeir et al. (2010).

2.2.4 Bayesian Regularization

In spike and slab hierarchies, all possible models are embodied within one hierarchical for-
mulation and the inference for variable selection can be done model-wise or from selec-
tion shrinkage. Whereas in the spike and slab formulations the peaked shape of the prior
is achieved somewhat artificially by assuming a mixture distribution, it is possible to ap-
proximate the spike and slab shape with just one continuous prior component, e.g. using
the exponential power priors (Park and Casella, 2008; Box and Tiao, 1973) of the form
p(β j|η j) ≈ exp(−η j|β j|p), where p > 0 and η j is some variance-related parameter. The
most popular powered exponential priors are the Laplace prior (Tibshirani, 1994; Park and
Casella, 2008) with p = 1 and the ridge prior with p = 2. If 0 < p ≤ 1, the prior has a sin-
gularity at origin, which promotes an intensive shrinkage towards the zero prior mean. For
0 < p≤ 2, these distributions can be represented as scale mixtures of normals (Andrews and
Mallows, 1974). The class of normal scale mixtures has been recognized to generate many
popular procedures for regularized regression, most notably the LASSO (Tibshirani, 1994;
Park and Casella, 2008), which is equivalent to the MAP estimation under normal/exponential
(Laplace) prior. More recent normal scale mixture priors proposed for the shrinkage estima-
tion in linear regression are the normal/gamma (Griffin and Brown, 2010), the normal/Jeffreys
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(Bae and Mallick, 2004; Figueiredo, 2002) or the horseshoe prior (Carvalho and Polson,
2010), where the mixing density belongs to the class of inverted beta distributions.

Unlike in the model space or spike and slab approaches, the sparsity approach avoids the
specification of priors over models or individual hypotheses H0k : βk = 0. The variable se-
lection rests purely on the inspection of the posterior behavior of the model coefficients. The
posterior summary measures (mean or median) are never zero with a positive probability and
zeroing the redundant variables out then needs to be done through hard shrinkage. Several
authors augmented the shrinkage priors to include a point mass at zero (Hans, 2010). Con-
ceptually, these approaches belong to the spike and slab framework discussed in the previous
section.

2.2.4.1 � Bayesian LASSO: The Laplace Prior

The Laplace (LASSO) prior arises as a scale normal mixture assuming exponentially dis-
tributed variances (Andrews and Mallows, 1974). A conjugate variant

βk|λk ∼ N(0,σ2
λk),

λk|τ2
k ∼

τ2
k
2

e−λkτ2
k /2I(λk > 0),

which corresponds to a conditional Laplace prior p(βk|σ2,τk)=
τk
2σ

e−τk |βk |/σ , was considered
in the context of linear regression by multiple authors including Carlin and Polson (1991),
Park and Casella (2008) or Hans (2009). Instead of considering separate shrinkage parameters
it is customary to assume that τ2

1 = · · ·= τ2
p = τ2. The parameter τ2 then takes the role of the

complexity parameters in the frequentist LASSO (Tibshirani, 1994). Whereas the frequentist
perception of regularization assumes the shrinkage parameter fixed, the Bayesian LASSO
allows to learn about the amount of shrinkage from the data by treating the parameter τ2 as a
random variable with its own prior distribution. Hans (2010) complemented the LASSO prior
with the point mass at zero and provided Gibbs sampling schemes alternative to the approach
of Park and Casella (2008) (see also (Hans, 2009)).

Keeping the variances λk equal and fixed, the MAP estimation corresponds to the frequen-
tist ridge regression. However, such prior is not flexible enough to accommodate different
shrinkage patterns for the individual coefficients. Assuming priors for the idiosyncratic vari-
ances assures more adaptivity. The fully Bayesian setup for ridge regression assumes the
conjugate inverse gamma prior distribution for the variances, which implies a marginal scaled
Student prior distribution for the individual regression coefficients.

Recent efforts in generalizing the penalization methodology to more complex data struc-
tures crystalized in several innovations of LASSO, which can be in turn transformed into
MAP estimation in Bayesian hierarchical models. In linear regression setting, Tibshirani et al.
(2005) proposed fused LASSO for predictors that have a natural ordering, where the penalty
is a linear combination on l1 penalty on coefficients themselves and l1 penalty on their first
order differences. Such penalty induces similarity between neighboring coefficients. In case
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grouping among regression coefficients is suspected, but unknown, Zou and Hastie (2005)
suggested elastic net, which combines LASSO and ridge into one penalty and as such tends
to keep the related variables in the model as a group. When the groups among predictors
are known (e.g. group of dummy variables or spline coefficients), Yuan and Lin (2006) pro-
posed a grouped LASSO, which penalizes elliptical norms of the coefficients for each group.
The Bayesian counterparts of these LASSO alternatives emerge by considering adequate al-
ternations of powered exponential priors, that can be again represented as scale mixtures of
normals (Kyung et al., 2010).

2.2.4.2 � The Elastic Net Prior

Bayesian elastic net, proposed by (Zou and Hastie, 2005; Li and Lin, 2010) in the context
of linear regression, constitutes a compromise between the LASSO and ridge enjoying the
advantages of the two. The elastic net prior inherits the sparsity property from the LASSO,
since it is also not differentiable at zero, and at the same time encourages grouping as typical
for the ridge prior. By a grouping effect we refer to the ability to retain a group of highly
correlated variables in a model and keeping their estimated coefficients nearly equal (up to a
change of sign for negatively correlated ones). This behavior is appreciated in modeling, for
instance, gene expression data where related genes should enter the model as a group. The
frequentist penalty term lnet for the “naive" elastic net (Zou and Hastie, 2005) is the linear
combination of l1 and l2 penalties, i.e. lnet(β )= a1 ∑

q
k=1 |βk|+a2 ∑

q
k=1 β 2

k , which corresponds
to the marginal MAP estimation implied by the following prior hierarchy:

βk|τk ∼ N

(
0,
[

a2

σ2
τk

τk−1

]−1
)
,

τk ∼ Gamma

[
0.5,

8a2σ2

a2
1

,(1,∞)

]
,

where Gamma[a,b,(c,d)] refers to the truncated gamma distribution with shape a, scale b
and with a support restricted to the interval (c,d). Diffuse hyperpriors for the two penaliza-
tion parameters a1 and a2 can be added in the formulation to circumvent the uncertainty in
their selection. Similarly as for the LASSO prior, Hans (2008, unpublished manuscript) aug-
mented the elastic net prior to include the point mass at zero and suggested a Gibbs sampling
algorithm in Gaussian regression models.

2.2.5 Extensions to Other than Linear Regression Settings

The variable shrinkage/selection priors outlined in the previous sections can be applied in
other regression modeling settings where the response is not Gaussian. In probit regression,
data augmentation strategies (Albert and Chib, 1993) assuming a linear model on latent con-
tinuous data greatly facilitate the implementation of efficient MCMC schemes. A similar
approach can be adapted for handling ordered categorical data (Albert and Chib, 1993). Data
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augmented Bayesian logistic regression was enabled by the introduction of Kolmogorov-
Smirnov random variables (Holmes and Held, 2006). Holmes and Held (2006) further de-
scribe variable selection approach in logistic regression using reversible jump MCMC. The
regularized logistic regression was dealt by Gramacy and Polson (2012). Variable selection in
binary regression models was considered by many authors including (Sha et al., 2004; Yang
and Song, 2010; Zhou et al., 2004; Bae and Mallick, 2004). In survival regression context,
Sha et al. (2006) applied the variable selection priors in accelerated failure time model.

2.3

Simulation Study

The empirical variable selection performance of the outlined Bayesian methodology (SSV S,
NMIG, GV S, MC3, Bayesian LASSO, ridge and elastic net) was evaluated in a simulation
study carried out to: (a) compare the classical versus Bayesian variable selection, (b) assess
the sensitivity of spike and slab priors to the choice of tuning parameters, (c) to compare the
different approaches to processing of the posterior information. The simulation study was
performed on data with binary responses, generated according to the latent variable probit
regression scheme

Zi
ind∼ N(x′iβ ,σ

2),

Yi = I(Zi > 0), (i = 1, . . . ,n),

which is equivalent to assuming Yi ∼ Bernoulli
[
Φ(x′iβ/σ)

]
. We assume four linear re-

gression models for the latent continuous data Z, which reflect settings with different de-
gree of sparsity, magnitude of the main effects and the pattern of collinearity among the
predictors. The first three designs were adopted from the original LASSO paper of Tib-
shirani Tibshirani (1994). The predictors were drawn independently from N8(0,Σ) with
Σ = (σi j)i, j and σi j = ρ |i− j|. The first and third model (Design 1 and Design 3) mimic
rather sparse situations with relatively large values of nonzero coefficients. The parameters
were chosen as follows: β = (3,1.5,0,0,2,0,0,0)′ with ρ = 0.5 and σ = 3 in Design 1 and
β = (5,0,0,0,0,0,0,0)′ with ρ = 0.5 and σ = 2 in Design 3. In Design 2, all the 8 predictors
are weakly informative, i.e. β = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)′,ρ = 0.5 and
σ = 3. In the last design, the predictors were generated as follows: xi j = mi j +z1, j = 1, . . . ,5,
xi j = mi j +z2, j = 6, . . . ,10, and xi j = mi j +z3, j = 11, . . . ,15, where mi were drawn indepen-
dently from N15(0, I15) with I15 the identity matrix and zi (i = 1,2,3) are standard normal.
Such specification induces correlations of about 0.5 within the three blocks of predictors. The
vector of coefficients was chosen equal to β = (3,3,3,3,3,0,0,0,0,0,−3,−3,−3,−3,−3)′.

For modeling the relationship between the binary response and the predictors, we used
probit regression (data augmentation formulation (Albert and Chib, 1993), which assumes the
latent normal linear model).
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Figure 2.1: Tuning parameters for the SSVS mixture priors

For each of the four models 50 datasets were simulated, each consisting of n = 100 ob-
servations. To evaluate the variable selection properties, we keep track of the following quan-
tities: (1) FDN (number of false discoveries), which is the number of coefficients falsely
identified as nonzero, (2) FNN (number of false nondiscoveries), which stands for the num-
ber of unrevealed nonzero coefficients and (3) DIM (dimension of the model), which is the
number of nonzero coefficients.

2.3.1 Settings

In order to assess the sensitivity of the spike and slab priors to the choice of tuning parameters
we considered three sets of hyperparameters. For SSVS, these were selected considering
different values of the intersection point δ of the two normal mixture components and different
ratio c2 of the slab versus spike variance. We have the following settings: (a) δ = 0.05
and c = 100 (spike variance Var sp = 0.00027 and slab variance Var sl = 2.7), (b) δ = 0.1
and c = 100 (Var sp = 0.001, Var sl = 10) and (c) δ = 0.1 and c = 10 (Var sp = 0.0021 and
Var sl = 0.21). The three mixture densities are depicted in Figures 2.1(a), 2.1(b) and 2.1(c).
Similar settings were used in NMIG, where the parameters were chosen so that the intersection
point of the scaled t-distributions and the ratio of the variances match to each of the three
previous SSVS settings. The NMIG mixture variance priors are depicted in Figures 2.2(a),
2.2(b) and 2.2(c). The mixture prior for GVS was selected as in SSVS (b). In the Bayesian
LASSO and Bayesian elastic net, the regularization parameters τ,a1 and a2 are assigned prior
Exp(0.01), where Exp(µ) denotes the exponential distribution with the expectation 1/µ . A
noninformative prior N(0,1000) is used for the intercept term. Whenever applicable, we
used the uniform prior on the model space.

For spike and slab models as well as for GVS, the highest posterior model (HPD) selec-
tion, the median probability model (MPM) selection and the hard shrinkage rule (HS) were
investigated. Bayesian regularization (LASSO, ridge regression and elastic net) enables only
HS selection, whereas only MPM and HPD are applicable in MC3. The interval decision cri-
terion for HS was based on one standard deviation interval around the posterior mean. Only
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Figure 2.2: Tuning parameters for the NMIG mixture priors

coefficients whose decision interval covers zero were excluded from the final model. Finally,
the Bayesian methodology was contrasted with F-to-out backward selection with p = 0.05
(STEP1) and p = 0.1 (STEP2) and exhaustive evaluation using AIC. The MC3 variable se-
lection was based on the run of 1000 MCMC iterations. The remaining Bayesian hierarchical
models were estimated using 10000 iterations with 1000 burn-in period and 10 fold thinning.

2.3.2 Software

The majority of the available software for Bayesian variable selection deals only with linear
regression models. Shrinkage estimation using sparsity priors (ridge, Laplace, normal/gamma,
horseshoe) coupled with the reversible jump variable selection is obtainable through the R
package monomvn of Gramacy and Pantaleo (2010). Spike and slab variable selection with
NMIG priors can be found in the package spikeSlabGAM of Scheipl (2011, manuscript
under revision). Bayesian model averaging as well as MC3 for linear regression models has
been implemented in the package BMA Madigan et al. (1994). Bayesian regularized logis-
tic regression applicable for high-dimensional data has been implemented in the package
regloglogit of Gramacy and Polson (2012). The frequentist regularization for gene-
ralized linear models can be found in package glmnet Friedman et al. (2010b). A hy-
brid spike and slab variable selection procedure for linear (high-dimensional) regression has
been made available in the package spikeslab of Ishwaran and Rao (2010, unpublished
manuscript). To implement the spike and slab models, Bayesian regularization and GVS in
the probit (Weibull) regression context, we used WinBUGS. The code for SSVS has been
adapted from the BUGS code of Ntzoufras (Ntzoufras, 2002). The MC3 for probit (Weibull)
regression has been implemented in R.

2.3.3 Results

The results for median probability model selection are summarized in Figure 2.4 and for hard
shrinkage in Figure 2.5. For each of the methods, the figures present a triplet of bars. The
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Figure 2.3: Left panel: minus logarithm of the three SSVS mixture priors; middle panel: minus logarithm of
SSVS(a) prior and NMIG(a) prior; right panel: SSVS(a) and NMIG(a) priors

left one represents the number of times a correct model has been identified (out of the 50
simulated datasets). These numbers relate to the vertical axis on the left. The middle and
right bars correspond to the average FDN and FNN, respectively. These values relate to the
vertical axis on the right from each graph. The average model dimension estimated by each
of the methods is attached at the top of the three bars. Results for the highest posterior model
selection greatly overlap with the median probability model selection in first three designs
(results not presented). The difference, however, emerged in Design 4, where the HPD model
selection for all spike and slab models as well as MC3 and GV S did not correctly identify the
right model in any of the 50 repetitions.

Looking at the two figures, several observations can be made:

(1) The difference between HS and MPM model selection is less apparent in the first three
designs. Discrepancies again occur in Design 4, where MPM in “properly calibrated"
spike and slab models outperforms the regularization priors. In Design 4, as expected,
the elastic net performed the best among the regularization priors in including the
groups of correlated regressors in the model.

(2) The choice of tuning parameters is influential on spike and slab variable selection,
which is particularly evident in Design 2 and Design 4, where the performance in-
creases with a decreasing variance in the slab component. This is a little at odds with
the intuition that high hypervariance represents the prior belief that the coefficient can
attain “arbitrarily" large values. To explain this behavior, it suffices to note that in spike
and slab models the high slab hypervariance induces a stronger penalization on weak
nonzero effects and hence expresses the prior opinion that many of the coefficients
will be zero. To support this statement, we plotted the three mixture (SSVS) densities
(Figure 2.3(a)) as well as their minus logarithms, which are proportional to the frequen-
tist penalty functions (Figure 2.3(b)). Among the mixture priors, the setting with the
lowest slab variance (SSVS (c)) places more prior emphasis on smaller effects. This
forces the penalty to elevate more gradually with an increasing distance from origin
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Figure 2.4: Simulation results: MPM model selection

and indeed causes the small nonzero effects to be penalized to a lesser extend. On the
other hand, the shape of the penalty function arising from the “narrow spike wide slab"
prior (setting (a)) provides the closest approximation to the l0 type of penalty, which
penalizes nonzero effects equally regardless their magnitude.

(3) The distributional assumption underlying the constitution of spike and slab can in-
fluence the variable selection. Comparing the Gaussian and Student mixtures with
matched variances and intersection points, the t-mixture implies weaker penalization
of larger effects due to heavier slab tails (Figure 2.3(c)). The impact of this behavior
is particularly evident in the non-sparse designs (Design 2 and Design 4). On the other
hand, the two spike and slab models exhibit similar mixing properties (evaluated by
the number of visited models) in all the four designs and their computation time in our
implementation was comparable.

(4) The classical frequentist variable selection was outperformed by spike and slab variable
selection (regardless the posterior inference) in the two sparse regression designs. The
Bayesian regularization, on the other hand, emerged as more accurate (compared to the
backward selection and AIC full subset selection) in finding the true underlying model,
as long as there were many nonzero effects.
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Figure 2.5: Simulation results: HS model selection

2.4

The Data

The Bayesian methodology for variable selection is applied here on two datasets. The goal
of the first analysis is to identify markers predictive for development of rheumatoid arthritis,
whereas the second analysis deals with joint assessment of prognostic capability of preselected
mutation and gene expression markers for overall survival in patients with acute myeloid
leukemia.

2.4.1 REACH Data

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial in-
flammation and destruction of cartilage and bone in the joints. The Rotterdam Early CoHort
study (REACH) was initiated in 2004 to investigate the development of RA in patients with
early manifestations of joint impairment. Information regarding basic patient characteristics,
serological measurements and patterns of disease involvement at baseline has been gathered
in 681 recruited patients. It is of interest to know which of the following 12 factors are poten-
tially associated with the development of rheumatoid arthritis considered as a binary (yes/no)

30 Veronika Ročková
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outcome: ACCP (cyclic citrullinated peptide antibody), age, ESR (erythrocyte sedimentation
rate), DC (duration of complaints in days), stiffness (duration of morning stiffness in
minutes), RF (rheumatoid factor), gender, Sym (symmetrical pattern of joint inflammation
yes/no), SJC (swollen joint count), TJC (tender joint count), BCPH (bilateral compression
pain in hands yes/no) and BCPF (bilateral compression pain in feet yes/no).

The standard approach to analyze these data would be to use logistic/probit regression
combined with some off-the-shelf variable selection method. The F-to-out backward selec-
tion with p = 0.05 yields a model with the following variables: ACCP, ESR, DC, Sym, SJC,
BCPH. The model with the most favorable value of the AIC criterion selected after an exhaus-
tive model evaluation contains two extra variables: RF and stiffness. Which of these
models provides the best approximation to the true underlying relationships is, if at all pos-
sible, difficult to assess. In the Bayesian approach, however, these individual models can be
effectively compared using one particular measure, the posterior model probability, which
quantifies the amount of confidence in each of the given models. The Bayesian analysis of the
REACH data is presented in Section 4.

2.4.2 AML Data

Acute myeloid leukemia (AML) describes a group of hematopoietic disorders characterized
by the expansion of immature myeloid blood cells. Risk stratification and therapy decision
making is nowadays based mainly on karyotype information. However, about 45 percent of
patients lack any cytogenetical aberration. These patients exhibit various responses to the-
rapy and therefore more targeted treatment protocols are required to improve their survival
outcome. Identification of prognostic markers associated with survival in these “intermediate
risk" patients would contribute to improved risk stratification. Recently, various markers have
been individually identified as prognostically relevant. These include various mutation mar-
kers (FLT3ITD, FLT3TKD, NPM1, NRAS, IDH1, IDH2 and CEBPA single (SM) and double
(DM) mutation) as well as gene expression markers (ABCB1, BCL2, BAALC, ERG, EVI1,
CD34, MN1, FLT3, INDO and WT1). These markers were assessed and/or measured in a
series of 318 AML patients with normal karyotype or a karyotype of no recognized prognostic
value. Here we focus on the joint assessment of the prognostic importance and the selection
of a combination of the markers to be used for prediction/stratification.

For modeling the relationship between the markers and survival, we used a parametric
Weibull model. Backward selection (p = 0.05) identified variables CD34, ERG, BCL2 and
CEBPA DM as relevant, whereas the AIC selection selects in addition also NPM1, FLT3ITD
and IDH2.

In the Bayesian approach, the research question can be formulated and answered in a
variable specific way rather than model-wise. The conclusion about which variables are im-
portant for the survival outcome then again follows from posterior probabilities rather than
from p-values. The Bayesian analysis of this data is presented in Section 4.
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ACCP Age ESR DC Stiff. RF Sex Sym. SJC TJC BCPH BCPF
Highest posterior model selection

SSVS1 � � � � � � � � � � � �
SSVS2 � � � � � � � � � � � �
SSVS3 � � � � � � � � � � � �
NMIG1 � � � � � � � � � � � �
NMIG2 � � � � � � � � � � � �
NMIG3 � � � � � � � � � � � �
MC3 � � � � � � � � � � � �
GVS � � � � � � � � � � � �

Hard shrinkage
SSVS1 � � � � � � � � � � � �
SSVS2 � � � � � � � � � � � �
SSVS3 � � � � � � � � � � � �
NMIG1 � � � � � � � � � � � �
NMIG2 � � � � � � � � � � � �
NMIG3 � � � � � � � � � � � �
BLASSO � � � � � � � � � � � �
ELASTIC � � � � � � � � � � � �
RIDGE � � � � � � � � � � � �

Frequentist
STEP1 � � � � � � � � � � � �
STEP2 � � � � � � � � � � � �
AIC � � � � � � � � � � � �

Table 2.1: The table of models selected by the different BVS methods

2.5

Data Analysis

In the previous section, we presented the frequentist analysis of the two datasets. Whereas
in the classical approach, the emphasis is often put on finding a single representation of the
data by one model, the Bayesian approach enables to assess uncertainty surrounding such
decision and prepares grounds for the eventual model averaging. In the analysis of the REACH
data, we apply the Bayesian model selection and uncertainty assessment via posterior model
probabilities, as well as the shrinkage and MPM variable selection. In the AML data we
elaborate further on the shrinkage approaches and the “model averaged" Bayesian variable
selection. In both the analyses, all continuous regressors were standardized. The estimation
was based on Markov chains of the length 10000 for MC3 and 15000 with a burn-in 5000
thinned by 10 for all the other Bayesian models.

2.5.1 Bayesian Analysis of REACH Data

In the simulation study, we have seen that the variable selection (implied by hard shrinkage,
posterior inclusion probabilities, or posterior model probabilities) is influenced by the prior
specification, both in terms of the choice of the prior (mixture) distribution and hyperparame-
ter calibration. To amplify this point, we applied the same prior settings on the REACH data.
Variables selected by the highest posterior model selection and hard shrinkage, if applicable,
for each of the Bayesian variable selection method are presented in Table 2.5. The median
probability model selection is not presented separately as it yields the same models as the
HPD selection for all the methods.

Again, we see how sensitive the Bayesian variable selection can be towards the prior
settings. In HPD variable selection, this “sensitivity" connects to the mixing properties of the
chain sampling individual models. There the actual model selection depends on the chain’s
ability to find interesting regions of the posterior model space. One particular stochastic
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Figure 2.6: MC3 stochastic approximation to the posterior distribution over all models for the REACH data; figure
plots a heatmap of posterior probabilities, where all possible models have been sorted in a matrix and similar models
are located close to each other; each entry in the matrix corresponds to a single model, where darker shades of grey
correspond to a higher accumulation of posterior density

approximation to the posterior model distribution for the REACH data, which was obtained
by MC3, is depicted on Figure 2.6. The individual models were sorted in a matrix, where the
simplest one (no covariates at all) is located in the lower right corner and the full model in
the upper left corner. The logic of the sorting is so that related models create blocks in the
matrix. The darker the grey color of each squared spot (model), the more often the model was
visited by the MC3 Markov chain. The darkest spot then corresponds to the estimated HPD
model (with covariates ACCP, ESR, DC, Sym, SJC and BCPH), which the chain occupied 576
times during the run of 10000 iterations. There are clearly more candidate models with a high
number of visits. In fact, the second most frequent model was visited 571 times. Therefore, the
posterior evidence contained within the estimated model probabilities from MC3 does not vote
unequivocally for the selection of just one model. Out of the 4096 possible models, only 229
different models were encountered by the MC3 Markov chain. The number of visited models
in GVS was only 33, whereas in the three versions of SSVS (resp. NMIG) there were 80,56
and 175 (resp. 126,74 and 176) different models among the 1000 recorded MCMC iterations.
The fast mixing ability of the last SSVS and NMIG specification is to be expected, since the
variance of the slab is sufficiently small allowing the chain to escape from the spike more
easily. The sharpness of the prior spike together with the magnitude of the prior slab variance
hence influence how many models will be visited and implicitly determine the shape of the
posterior distribution of individual coefficients. If models with a particular variable included
were not often encountered in the sequence of sampled models, the spike will dominate the
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Figure 2.7: Approximation to the posterior distribution of three selected coefficients

posterior shape of the corresponding coefficient, which will result in shrinkage of the posterior
mean towards zero.

The regularization priors such as ridge, elastic net or LASSO induce rather “soft" shrink-
age, leading to many nonzero selected coefficients, whereas the shrinkage from spike and slab
priors is more aggressive, especially when the slab versus spike variance ratio is sufficiently
large. If the preference is to select a model with all the included variables strongly associated
with the outcome, we might opt for spike and slab variable selection with a “sharp spike and
flat slab" shape. In this case we would end up with a model with only 4 covariates ACCP, ESR,
Sym and BCPH. Relaxing the requirements for the model parsimony and giving preference to
a model suitable rather for prediction, we might choose the model indicated by the Bayesian
regularization, which contains one extra variable compared to the AIC model.

A similar interplay between the model complexity and practical significance of included
factors can be achieved by selecting different significance thresholds in stepwise selection.
However, the Bayesian variable selection (HS and MPM) in spike and slab models accounts
for the uncertainty introduced by the model selection process, since the posterior distribution,
on which the decision is based on, is averaged over more candidate models.

2.5.2 Bayesian Analysis of AML Data

Unlike the analysis of REACH data, where we applied all three types of posterior inference for
variable selection (i.e. HPD, MPM and HS), in the AML data we assess the variable selection
only via posterior inclusion probabilities (MPM) and hard shrinkage (HS). We suspect that
the approximation to the posterior model distribution provided by the spike and slab models
may not be sufficiently accurate to find the highest posterior model in the setting with this
many variables. Furthermore, the posterior inclusion probabilities and posterior distribution
of coefficients provide model-averaged decision criterion that is potentially more reliable than
just comparing individual model probabilities.

The results of BVS applied on the AML data are summarized in Figure 2.8. The upper
panel depicts estimated marginal inclusion probabilities. According to the median probability
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Figure 2.8: AML data: in the upper panel there are estimated inclusion probabilities for each of the markers, the
lower panel depicts the estimated coefficients together with ± sd interval
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model selection rule, a variable is included in a model whenever the inclusion probability
exceeds 0.5 (indicated by the horizontal line). The lower panel displays point estimates (pos-
terior means) for each regression coefficient, accompanied with ±sd inclusion interval. The
point estimates are weighted averages of estimated posterior means arising from visited mod-
els with underlying slab (resp. spike) prior on the present (resp. absent) coefficients. The
weights are determined from the frequencies of visits of each model. Intervals which exclude
zero (again marked by the horizontal line) imply the inclusion of the variable in the model by
the hard shrinkage rule. The NMIG appeared to show poorer mixing (358, 23 and 118 visited
models for each of the settings compared to 763, 127 and 626 models for SSVS). That is why
we present the results only from SSVS spike and slab models, as we believe they are more
reliable.

To compare the different shrinkage behavior of the spike and slab and regularization pri-
ors, we depicted the approximations to the posterior distribution of three selected coefficients
(for variables FLT3ITD, CEBPA DM and IDH2) on Figure 2.7. For the first coefficient
(FLT3ITD), the evidence for the inclusion is not strongly convincing and therefore the spike
and slab posteriors are bimodal. We observe the sharpest posterior spike (i.e. the strongest
penalization of larger values) for the SSVS with the biggest prior slab variance (setting (b)).
Less stringent penalization of the SSVS setting (c) is evident from the pronounced bimodal
shape of the posterior. In case of CEBPA DM, the Bayesian regularization places heavier
penalties on larger effects (compared to the inflated-slab-variance priors), which inevitably
introduces estimation bias.

Conclusively, the Bayesian approach gives strong evidence for the two markers CEBPA
DM and CD34. The variables FLT3ITD, ERG or BCL2 were included by some of the meth-
ods, but their estimated effects are rather small. In the frequentist approach, we ended up with
models that are quite complex, whereas the Bayesian approach points at more parsimonious
models, enables to quantify the importance of each individual marker by means of a poste-
rior inclusion probability or posterior distribution of the coefficients. These summaries are
averaged over posterior model uncertainty and therefore provide more objective quantitative
assessment than p-values.

2.6

Discussion

The purpose of this chapter was to survey the evolution of Bayesian variable selection and
highlight some of its recent developments. The list of the discussed methodology is surely not
exhaustive as the methodology is continuously evolving and its potential has only begun to
be realized. We have restricted our attention to the general discussion on the principles rather
than technical details on implementation using sophisticated MCMC techniques. We have
omitted discussion on the nonparametric relaxations of considered hierarchical models using
the Dirichlet process priors (Nott, 2008a,b; Kim et al., 2009) as well as application of the prior
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hierarchies on factor analytic models Carvalho and Polson (2010), additive regression models
(Fahrmeir et al., 2010) etc.

The practical utility of the Bayesian methodology (regularization and spike and slab mod-
els) would be particularly appreciated in the analysis of high-dimensional data (genomics,
proteomics), where the estimation in Bayesian hierarchical models constitutes a coherent al-
ternative to approaches based on corrections of multiple testing. Here, we have confined our
application to the classical regression settings and in the simulation study demonstrated that
non-negligible practical gain can be obtained also in these, yet less involved, modeling tasks.
Among the outlined methodology, the spike and slab models constitute an approach that is
particularly conceptually appealing. They are closely connected to the Bayesian regulariza-
tion in the sense that they provide a Bayesian framework that gives rise to the similar type of
penalties as the l0 frequentist complexity penalty. The Bayesian formalism for these penal-
ties has been pursued by Abramovich et al. (2007) in the context of high-dimensional normal
means models. The spike and slab models, however, provide a different perspective on the l0
frequentist penalization. The connection between penalized l0 estimation and Bayesian spike
and slab models follows quite analogously as between Bayesian MAP estimates from the
Laplace priors and the frequentist LASSO. The frequentist implementation of the optimiza-
tion problem in l0 penalized models is hampered by the non-singularity and discontinuity of
this penalty at origin. Continuous approximations to this frequentist penalty have been sug-
gested that facilitate the computation (Liu and Wu, 2007). On the other hand, the penalty
induced by the Bayesian mixture priors (which is proportional to the logarithm of the mixture
prior) can be regarded as another type of continuous approximation to the l0 type of penalty.
The advantage of the Bayesian formulation is that the MCMC machinery can be used to ob-
tain the approximation to the whole posterior distribution, which is typically feasible when
p < n.

In this chapter we have restricted our attention to p < n setting. Nevertheless, the mod-
ern applications of Bayesian variable selection deal mostly with high-dimensional data. The
complexity of such problems renders several presented Bayesian variable selection methods
less appealing from the computational time and storage efficiency standpoints. Adaptations
of SSVS algorithm suitable for high-dimensional data that avoid sampling the individual re-
gression coefficients have been considered by Kwon et.al Kwon et al. (2011) and Yang and
Song (2010). Despite the advances in high-dimensional stochastic model search (Hans et al.,
2007; Bottolo and Richardson, 2010), the shrinkage approaches (eventually accompanied with
the reversible jump sampling) might be preferred in such situations (Gramacy and Pantaleo,
2010). Alternatively, the involved MCMC computation in hierarchical shrinkage models can
be avoided using EM algorithm (Kiiveri, 2003). A proposal of an EM approach for variable
selection is presented in the next chapter.

We exemplified the Bayesian hierarchical models for variable selection in probit regres-
sion and Weibull regression. Previously, the BVS methods have been discussed in the context
of probit regression models by e.g. Sha et al. (2004), Kwon et al. (2007), Yang and Song
(2010), Zhou et al. (2004), Bae and Mallick (2004) and in survival models by Sha et al.
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(2006). Despite our WinBUGS programs offer a working solution to fitting the hierarchi-
cal models with sparsity/variable selection priors in low-dimensional settings, customized
algorithms/implementations are needed in higher dimensions. For instance, the Bayesian re-
gularized logistic regression has been implemented in package reglogit. Nevertheless,
the majority of the discussed hierarchical constructions are still awaited to be transferred
to/implemented in other than linear regression settings.

In the simulation study we demonstrated that Bayesian variable selection leads to im-
proved performance in identifying the true underlying model, when compared with the fre-
quentist methods. We used several Bayesian variable selection approaches, none of which
could be postulated as the methodological ideal for all the considered simulation settings
and neither it should be. The choice of the particular Bayesian approach should be context
dependent as some of the discussed methodologies are customized for particular data struc-
tures (groups of correlated predictors) and inferential goals (prediction rather than variable
selection). Information regarding the correlation structure and the expected dimension of the
solution can be beneficial when finding the “true" pattern of sparsity.

In the theoretical discussion we focused mainly on absolutely continuous priors, also
within the spike and slab context. The point mass spike and slab priors (Gramacy and Panta-
leo, 2010; Mitchell and Beauchamp, 1988) on the other hand offer a correct characterization of
the model uncertainty and avoid making subjective choices on tuning hyperparameters. These
facts have contributed to the fact that the point mass priors have begun to be realized as bench-
mark for Bayesian variable selection. Recently, point mass shrinkage priors have been made
available through standard software (Gramacy and Pantaleo, 2010) for linear regression.

Despite the conceptual appeal of Bayesian variable selection, the wide acceptance of BVS
as the preferred variable selection strategy has been hampered by the unavailability of im-
plementation in standard software. Catalyzed by advances in the MCMC computation, the
methodology has become no longer problematic to implement in Bayesian software such as
WinBUGS for the classical regression settings. However, the computational challenges in-
crease with the dimensionality of the data, where developments in numerical approximations
and/or MCMC techniques will hopefully make the methodology more approachable for more
practically oriented users.
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CHAPTER 3

EMVS: THE EM APPROACH TO BAYESIAN VARIABLE SELECTION

Adapted version of a research article:
Rockova, V., George, E. 2012. EMVS: The EM Approach to Bayesian Variable Selec-
tion. Tentatively accepted by the Journal of the American Statistical Association (Theory and
Methods)
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3.1 Introduction

Abstract

Despite rapid developments in stochastic search algorithms, the practicality of Bayesian variable

selection methods has continued to pose challenges. High-dimensional data are now routinely

analyzed, typically with many more covariates than observations. To broaden the applicability of

Bayesian variable selection for such high-dimensional linear regression contexts, we propose EMVS,

a deterministic alternative to stochastic search based on an EM algorithm which exploits a conjugate

mixture prior formulation to quickly find posterior modes. Combining a spike-and-slab regularization

diagram for the discovery of active predictor sets with subsequent rigorous evaluation of posterior

model probabilities, EMVS rapidly identifies promising sparse high posterior probability submodels.

External structural information such as likely covariate groupings or network topologies is easily

incorporated into the EMVS framework. Deterministic annealing variants are seen to improve the

effectiveness of our algorithms by mitigating the posterior multi-modality associated with variable

selection priors. The usefulness the EMVS approach is demonstrated on real high-dimensional data,

where computational complexity renders stochastic search to be less practical.

3.1

Introduction

Bayesian variable selection for the normal linear model typically requires two main ingredi-
ents, a prior to induce a posterior distribution over subsets of potential predictors, and an ap-
proach to extract information from this posterior in order to identify promising subset models.
When the number of potential predictors is large and/or the posterior is simply intractable,
this latter step is often carried out by some form of Markov chain Monte Carlo (MCMC)
stochastic search that is used to discover high probability models. See, for example, Bottolo
and Richardson (2010), Hans et al. (2007), Li and Zhang (2010) and Stingo and Vannucci
(2011) from the large literature about such methods.

The main thrust of this chapter is to propose an approach called EMVS (EM Variable
Selection), a deterministic alternative to MCMC stochastic search based on the EM algo-
rithm, that can be used to rapidly identify promising high posterior models. Ideally suited for
high-dimensional “p > n” settings with many potential predictors, EMVS succeeds in finding
interesting candidate models at a fraction of the time required for stochastic search. Fur-
thermore, EMVS can be deployed to effectively identify the sparse high probability models,
which are of increasing interest in high-dimensional settings.

EMVS is based on one of the earliest Bayesian variable selection prior formulations, the
continuous conjugate version of the “spike-and-slab” normal mixture formulation underlying
the SSVS (Stochastic Search Variable Selection) approach of George and McCulloch (1993,
1997). The continuity of the spike distribution is essential in the derivation of rapidly com-
putable closed form expressions for the EM algorithm. Furthermore, increasing the variance
of the spike distribution serves to absorb negligible coefficients, thereby reducing posterior
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multimodality and exposing sparse high probability subsets. The speed of the algorithm makes
it feasible to carry out dynamic posterior exploration for the identification of posterior modes
over a sequence of mixture priors with increasing spike variances. For the visualization of
the progressively sparser sequence of associated high probability submodels, we propose new
spike-and-slab regularization diagrams. To further determine which of the discovered sub-
models is best supported by the data, we return to a point mass spike distribution for model
evaluation.

Although EMVS is anchored by the original SSVS prior, extension to more modern elab-
orations of the prior are straightforward. Heavy tailed slab distributions such as the Cauchy
or double exponential are obtained with little computational cost by extending the algorithm
to average the slab distribution variance over an additional prior. Structured priors on variable
inclusion probabilities at the top level of the hierarchical model such as the logistic regression
product prior of Stingo et al. (2010) or the Markov random field prior of Li and Zhang (2010)
are also easily incorporated. Finally, the performance of EMVS can be further enhanced by a
deterministic annealing variant, which improves upon the potential problem of entrapment in
local modes.

3.2

Conjugate Spike-and-Slab Formulations for EMVS

The data for the setup under consideration consists of y, an n× 1 response vector, and X =
[x1, . . . ,xp], an n× p matrix of p potential predictors. We assume throughout that y is related
to X by a Gaussian linear model

f (y |α,β ,σ) = Nn(1nα +Xβ ,σ2 In), (3.2.1)

where 1n is an n× 1 vector of 1’s, α is an unknown scalar intercept, β is a p× 1 vector of
unknown regression coefficients, and σ is an unknown positive scalar. It will often be sensible
to standardize the predictors to have mean zero and variance one before proceeding.

As with many Bayesian variable selection approaches for this problem, EMVS is facil-
itated by the introduction of a vector of binary latent variables γ = (γ1, . . . ,γp)

′, γi ∈ {0,1},
where γi = 1 indicates that xi is to be included in the model. Combined with suitable prior
distributions over α,β , σ and γ , the induced posterior distribution π(γ|y) then summarizes all
post-data variable selection uncertainty.

The EMVS approach is anchored by prior formulations stemming from the conjugate
version of the hierarchical SSVS prior of George and McCulloch (1997), (hereafter GM97).
The cornerstone of this formulation is the “spike-and-slab” Gaussian mixture prior on β ,

π(β |σ ,γ,v0,v1) = Np(0,Dσ ,γ ), (3.2.2)

where Dσ ,γ = σ2diag(a1, . . . ,ap) with ai = (1− γi)v0 + γiv1 for 0 ≤ v0 < v1. GM97 recom-
mended setting the hyper-parameters v0 and v1 to be small and large fixed values, respectively,
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to distinguish those βi values which warrant exclusion of xi from those that warrant inclusion
of xi.

Although the variance parameter v0 of the spike distribution is commonly set equal to
zero in practice, GM97 proposed consideration of small but positive v0 > 0 to encourage the
exclusion of unimportant nonzero effects. We make use of both v0 specifications, first using a
sequence of v0 > 0 values to identify promising subsets, and then using v0 = 0 to evaluate the
submodels corresponding to those subsets. As will be seen, positive v0 values not only tend
to expose the sparser subsets by increasing their posterior probability, but also allow for the
construction of a closed form EM algorithm that can rapidly identify those subsets.

For the variance parameter v1 of the slab distribution, we consider two possibilities: (i)
fixing it at a large enough value to accommodate all plausible β values, or (ii) treating it
as random with respect to a prior π(v1) to induce heavy tailed slab alternatives such as the
double exponential or Cauchy distributions. As will be seen, such a π(v1) can be incorporated
by folding it iteratively into our EM algorithm, which is at each step based on fixed values of
v0 and v1.

For the prior on α we adopt a uniform improper prior over α . This prior is formally
justified here because α is a location parameter that appears in every submodel (when v0 = 0),
and the improper uniform prior is the right-Haar prior for the location invariance group. See
Berger et al. (1998) for details. To facilitate our development, we will from here on assume
that α has been margined out with respect to this prior, and proceed with the induced marginal
likelihood f (y |β ,σ). This is equivalent to centering Y at 0 and treating it as a constrained
multivariate Gaussian realization with mean Xβ .

For the prior on σ2, we follow GM97 and use an inverse gamma prior

π(σ2 | γ) = IG(ν/2,νλ/2) (3.2.3)

with ν = 1 and λ = 1 to make it relatively noninfluential. Further choices of ν and λ as
recommended by GM97 may also be of interest.

The remaining component of the hierarchical prior specification is completed with a prior
distribution π(γ) over the 2p possible values of γ . For this purpose, we shall be interested in
hierarchical specifications of the form

π(γ) = Eπ(θ)π(γ |θ) (3.2.4)

where θ is a (possibly vector) hyperparameter. In the absence of structural information about
the predictors, i.e., when their inclusion is apriori exchangeable, a useful default choice for
π(γ |θ) is the i.i.d. Bernoulli prior form

π(γ |θ) = θ
|γ|(1−θ)p−|γ|, (3.2.5)

where θ ∈ [0,1] and |γ| = ∑i γi. With this form, any marginal π(γ) in (3.2.4) will be ex-
changeable on the components of γ . Of particular interest to us will be the exchangeable
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priors obtained with a beta prior π(θ) ∝ θ a−1(1−θ)b−1, a,b > 0, (3.2.5) which yields beta-
binomial priors π(γ) that favor parsimony, see Scott and Berger (2010). As will be seen,
EMVS can be applied to locate promising candidate subsets under these priors by exploiting
the conditional independence of the intermediate Bernoulli form.

Beyond (3.2.5), when structural information about the predictors is available, more flex-
ible priors can be used to transmit this information. In particular two recent useful forms of
π(γ | θ) for this purpose are the logistic regression product prior considered by Stingo et al.
(2010) and the Markov random field prior considered by Li and Zhang (2010) and Stingo and
Vannucci (2011), both of which were used to incorporate external biological information in a
genetic context. We will consider these forms further in Section 3.7 and show how they can
be folded into EMVS.

3.3

A Closed Form EM Algorithm

EMVS is based on an EM algorithm alternative to the commonly used MCMC stochas-
tic search approaches to extracting information from the posterior distribution induced by
the prior formulations described in Section 2. Geared towards finding posterior modes of
the parameter posterior π(β ,θ ,σ |y) rather than simulating from the entire model posterior
π(γ|y), the EM algorithm derived here offers potentially enormous computational savings
over stochastic search alternatives, especially in problems with a large number p of potential
predictors. In Section 4, we show how EMVS threshholds the modal estimates of (β ,θ ,σ) to
identify the associated high posterior loci of π(γ|y) when v0 = 0.

Our implementation of the EM algorithm maximizes π(β ,θ ,σ |y) indirectly, proceeding
iteratively in terms of the “complete-data” log posterior, logπ(β ,θ ,σ ,γ | y), where the la-
tent inclusion indicators γ are treated as “missing data”. As this function is unobservable,
it is at every iteration replaced by its conditional expectation given the observed data and
current parameter estimates, the so called E-step. This is followed by an M-step that en-
tails the maximization of the expected complete-data log posterior with respect to (β ,θ ,σ).
Iterating between these two steps, the EM algorithm generates a sequence of parameter esti-
mates, which under regularity conditions converge monotonically towards a local maximum
of π(β ,θ ,σ | y).

More precisely, our EM algorithm indirectly maximizes π(β ,θ ,σ |y) by iteratively maxi-
mizing the objective function

Q
(

β ,θ ,σ |β (k),θ (k),σ (k)
)
= Eγ|·

[
logπ(β ,θ ,σ ,γ|y) |β (k),θ (k),σ (k),y

]
(3.3.6)

where Eγ|·(·) denotes the conditional expectation E
γ|β (k),θ (k),σ (k),y(·). At the kth iteration,

given (β (k),θ (k),σ (k)), an E-step is first applied, which computes the expectation of the right
side of (3.3.6) to obtain Q. This is followed by an M-step, which maximizes Q over (β ,θ ,σ)

to yield the values of (β (k+1),θ (k+1),σ (k+1)).
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For the conjugate spike-and-slab hierarchical prior formulations described in Section 2,
the objective function Q in (3.3.6) is of the form

Q
(

β ,θ ,σ |β (k),θ (k),σ (k)
)
=C+Q1

(
β ,σ |β (k),θ (k),σ (k)

)
(3.3.7)

+Q2

(
θ |β (k),θ (k),σ (k)

)
, (3.3.8)

where

Q1

(
β ,σ |β (k),θ (k),σ (k)

)
=− (y−Xβ )′(y−Xβ )

2σ2 − n−1+ p+ν

2
log(σ2)

− νλ

2σ2 −
1

2σ2

p

∑
i=1

β
2
i Eγ|·

[
1

v0(1− γi)+ v1γi

]
,

Q2

(
θ |β (k),θ (k),σ (k)

)
=

p

∑
i=1

log
(

θ

1−θ

)
Eγ|·γi

+(a−1) log(θ)+(b+ p−1) log(1−θ).

Note that Q2 above corresponds to the beta-binomial prior on γ . Different expressions for Q2
will be described in Section 3.7 where we consider alternative forms for π(γ |θ).

Two features of this objective function lead to substantial simplifications which facilitate
the E-step and M-step calculations described below. First, for the E-step calculation of the
expectation in (3.3.6), the hierarchical posterior distribution of γ given (β (k),θ (k),σ (k),y)
depends on y only through the current estimates (β (k),θ (k),σ (k)), so that

Eγ|·(·) = E
γ|β (k),θ (k),σ (k),y(·) = E

γ|β (k),θ (k),σ (k)(·). (3.3.9)

Second, the separability of (3.3.7) into a pair of distinct functions, Q1 of (β ,σ) and Q2 of θ ,
yields an M-step that is obtained by maximizing each of these functions separately.

3.3.1 The E-step

The E-step proceeds by computing the conditional expectations Eγ|·γi and Eγ|·
[

1
v0(1−γi)+v1γi

]
and for Q2 and Q1, respectively. Considering the latter first, it follows from (3.3.9) that

Eγ|·γi = P(γi = 1 |β (k),θ (k),σ (k)) = p?i , (3.3.10)

where

p?i =
π(β

(k)
i |σ (k),γi = 1)P(γi = 1 |θ (k))

π(β
(k)
i |σ (k),γi = 1)P(γi = 1 |θ (k))+π(β

(k)
i |σ (k),γi = 0)P(γi = 0 |θ (k))

, (3.3.11)
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Under (3.2.5), the conditional independence of the γi’s (i = 1, . . . , p) leads to P(γi =
1 |θ (k)) = θ (k), greatly facilitating the computation of p?i . Note that (3.3.11) is equivalent to
the posterior update of mixing proportions for fitting a two-point Gaussian mixture to β

(k)

with the conventional EM algorithm.
The other conditional expectation is computed simply as a weighted average of the two

precision parameters with weights determined by the posterior distribution π(γi|β (k),σ (k),θ),
i.e.

Eγ|·

[
1

v0(1− γi)+ v1γi

]
=

Eγ|·(1− γi)

v0
+

Eγ|·γi

v1
=

1− p?i
v0

+
p?i
v1

= d?
i . (3.3.12)

3.3.2 The M-step

Maximization with respect to (β ,σ) is facilitated by the separability of the objective function,
as noted above, and by the conjugacy of the prior formulation which led to the tractable closed
form expressions. Beginning with the maximization of Q1, the β

(k+1) value that globally
maximizes Q1, regardless of σ (k+1), is obtained quickly by the well-known solution to the
ridge regression problem

β
(k+1) = argminβ∈Rp{||y−Xβ ||2 + ||D?1/2

β ||2}, (3.3.13)

where || · ||2 is the l2 norm and D?1/2 denotes the square root of the p× p diagonal matrix
D? = diag{d?

i }
p
i=1 with diagonal entries d?

i > 0 from (3.3.12). The solution

β
(k+1) = (X ′X +D?)−1X ′y (3.3.14)

is a generalized ridge estimator (GRR) with ridge matrix D? which allows a unique penalty
parameter d?

i for each individual coefficient βi. This induces a “selective shrinkage" property
which shrinks the smaller coefficient estimates much more sharply towards zero compared
to the larger coefficients, a consequence of the spike-and-slab prior, see Ishwaran and Rao
(2005). An important property of the estimator (3.3.14) is that it is well defined even when
X ′X is not invertible.

In problems where p >> n, the calculation cost of (3.3.14) can be substantially reduced
by using the Sherman-Morrison-Woodbury formula to obtain

β
(k+1) =

[
D?−1−D?−1X ′

(
In×n +XD?−1X ′

)−1
XD?−1

]
X ′y, (3.3.15)

an expression which requires an n× n matrix inversion rather than a p× p matrix inversion.
Alternatively, as described in Section 3.8, the solution of (3.3.13) can be obtained even faster
with the stochastic dual coordinate ascent algorithm of Shalev-Shwartz and Zhang (2013).
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The maximization of Q1

(
β ,σ |β (k),θ (k),σ (k)

)
with respect to (β ,σ) is then completed

with the simple update

σ
(k+1) =

√
||y−Xβ

(k+1)||2 + ||D?1/2β
(k+1)||2 +νλ

n+ p+ν
. (3.3.16)

Note that the convenient M-step forms for β
(k+1) and σ (k+1) resulted from proceeding

conditionally on σ throughout the EM algorithm. Had we initially margined out σ over its
prior, the resulting posterior under spike-and-slab mixtures of t distributions would have been
prohibitively expensive to maximize.

Turning to Q2, its maximization is obtained by the closed form solution of

θ
(k+1) = argmaxθ∈R

{ p

∑
i=1

p?i log
(

θ

1−θ

)
+(a−1) log(θ)

+(p+b−1) log(1−θ)
}
,

namely

θ
(k+1) =

∑
p
i=1 p∗i +a−1
a+b+ p−2

.

The EM algorithm has been previously considered in the context of Bayesian shrinkage
estimation under sparsity priors (Figueiredo (2003)), Kiiveri (2003), Griffin and Brown (2012,
2005). Literature on similar computational procedures for spike and slab models is far more
sparse. EM-like algorithms using point mass variable selection priors were considered by
Hayashi and Iwata (2010) and Bar et al. (2010), but were limited by the unavailability of the
closed form E-step.

3.4

The EMVS Approach

In this section we outline the EMVS approach for variable selection. This entails dynamic
posterior exploration over a sequence of nested spike-and-slab priors as v0 > 0 is gradually
increased. For each value of v0, the EM algorithm is deployed to identify a posterior mode
(β̂ , θ̂ , σ̂) which is then thresholded to obtain a closely associated submodel. The detailed
description of the thresholding rule to obtain the lower dimensional submodels is given in
Section 3.4.1. Section 3.4.2 then describes the “spike-and-slab regularization diagram", which
captures the evolution of the modal estimates as well as the model configurations and their
posterior probabilities over the sequence of different v0 > 0.

For clarity of exposition, we illustrate the various steps of this approach with a simple
simulated dataset consisting of n = 100 observations and p = 1000 predictors. Predictor
values for each observation were simulated from Np(0,Σ) where Σ = (ρi j)

p
i, j=1 with ρi j =
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Figure 3.1: Modal estimates of the regression coefficients; (a) beta binomial prior, (b) Bernoulli prior with fixed
θ = 0.5.

0.6|i− j|. Response values were then generated according to the linear model y = Xβ + ε

where β = (1,2,3,0,0, . . . ,0)′ and ε ∼ Nn(0,σ2In) with σ2 = 3.
Beginning with an illustration of the EM algorithm from Section 3.3, we apply it to the

simulated data using the spike-and-slab prior (3.2.2) with a single value v0 = 0.5, v1 = 1000,
and the beta-binomial variable inclusion prior with θ ∼U(0,1). The starting values for the
EM algorithm were set to β

(0) = 1p and σ (0) = 1. After merely 4 iterations, the algorithm
obtained the modal coefficient estimates β̂ depicted in Figure 3.1(a). Note that although they
are all nonzero because of v0 > 0, many of them are small in magnitude, a consequence of
the ridge regression shrinkage induced by the spike-and-slab prior. The associated modal
estimates of θ̂ and σ̂ were 0.003 and 0.037, respectively.

For comparison, we applied the same formulation except with the Bernoulli prior (3.2.5)
under fixed θ = 0.5 (Figure 3.1(b)). Note the inferiority of the estimates near zero due to the
lack of adaptivity of the Bernoulli prior in determining the degree of underlying sparsity.

3.4.1 Thresholding the EM Output for Variable Selection

Looking at Figure 3.1(a), it seems intuitively reasonable that the submodel most closely asso-
ciated with the EM estimate β̂ is the one that includes only the variables corresponding to the
three large estimates. This intuition is supported by defining the submodel γ̂ associated with
(β̂ , θ̂ , σ̂) to be the most probable γ given (β ,θ ,σ) = (β̂ , θ̂ , σ̂), namely

γ̂ = argmax
γ

P(γ | β̂ , θ̂ , σ̂). (3.4.17)
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To obtain γ̂ , note that

P(γ | β̂ , θ̂ , σ̂) =
p

∏
i=1

P(γi | β̂i, θ̂ , σ̂), (3.4.18)

where the component conditional inclusion probabilities are given by

P(γi | β̂i, θ̂ , σ̂) =
π(β̂i | σ̂ ,γi)P(γi | θ̂)

π(β̂i | σ̂ ,γi = 1)P(γi = 1 | θ̂)+π(β̂i | σ̂ ,γi = 0)P(γi = 0 | θ̂)
. (3.4.19)

Thus, (3.4.17) is obtained by maximizing each component probability, namely

γ̂i = 1 ⇐⇒ P(γi = 1 | β̂ , θ̂ , σ̂)≥ 0.5. (3.4.20)

It may be of interest to note that γ̂ is a local version of the median probability model of
Barbieri and Berger (2004).

Selection of γ̂ via (3.4.20) is equivalent to thresholding the β̂i values because P(γi =

1 | β̂i, θ̂ , σ̂) is a monotone increasing function of |β̂i|. This thresholding can be seen to occur
at the intersection points ±β ∗i of the P(γi = 1 | θ̂) weighted mixture of the spike-and-slab
priors, namely

±β
∗
i (v0,v1, θ̂ , σ̂) =±σ̂

√
2v0 log(ωic)c2/(c2−1), (3.4.21)

where c2 = v1/v0 and ωi = [1−P(γi = 1 | θ̂)]/P(γi = 1 | θ̂). Thus, (3.4.20) is equivalent to

γ̂i = 1 ⇐⇒ |β̂i| ≥ β
∗
i (v0,v1, θ̂ , σ̂). (3.4.22)

Applying this thresholding rule to the estimates in Figure 3.1(a) yields the correct three
predictor submodel, in contrast to Figure 3.1(b) where some of the small coefficients are
not thresholded out. The increased weighting on parsimonious models induced by the beta-
binomial formulation has proved to be beneficial here.

We should point out that although (3.4.21) may vary across variables with different inclu-
sion probabilities, it will not vary under the beta-binomial prior, where P(γi = 1 | θ̂)≡ θ̂ , the
overall conditional probability of inclusion. Because the values of P(γi = 1 | β̂ , θ̂ , σ̂) accumu-
late around zero and one for β̂i’s far from either of ±β ∗i , it is likely that such selection will
not be too sensitive to the threshold of 0.5 in (3.4.20). Nonetheless, it may be useful to also
consider larger threshold values to obtain sparser models.

3.4.2 Variable Selection with a Spike-and-Slab Regularization Plot

Rather than restricting attention to selection based on a single value for v0, the speed of the
EM algorithm makes it feasible to consider a sequence of selected submodels as v0 is var-
ied over a set V of values, a strategy we recommend for EMVS. The effect of increasing v0
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Figure 3.2: (a) plot of estimated regression coefficients for varying choices of v0, red lines correspond to the varying
benchmark threshold; (b) logarithm of g(γ) for models with selected variables outside the threshold.

serves to absorb more of the negligible coefficients into the spike distribution, thereby re-
ducing posterior multimodality and exposing sparse high probability subsets for thresholding
identification.

To illustrate how this works with our simulated data, we consider the grid of v0 values
V = {0.01+k× 0.01 : k = 0, . . . ,50} again with v1 = 1000 fixed and the same beta-binomial
inclusion prior. Figure 3.2(a) shows the modal estimates of the regression coefficients ob-
tained for each v0 ∈ V . As v0 increases, more variables fall within the ±β ∗i threshold limits
depicted by the two red lines, and the estimates of the large effects stabilize. It it worth noting
the difficulty of subset identification when v0 is small and no clear model emerges.

By analogy with LASSO regularization plots that display the effect of an increasing
penalty parameter (Tibshirani, 1994), we refer to plots such as Figure 3.2(a) as (spike-and-
slab) regularization plots since they provide a visualization of the effect of an increasing v0.
Indeed, both the LASSO penalty and v0 serve to pull coefficient estimates towards zero al-
though they do so in very different ways. Increasing the LASSO penalty parameter corre-
sponds to decreasing the variance of single unimodal prior thereby shrinking all coefficients
towards zero. In contrast, an increasing v0 corresponds to increasing the variance of the spike
component of the spike-and-slab mixture. This has the effect of shrinking the smaller coef-
ficients with the spike distribution without very much affecting the larger coefficients which
are supported more by the slab distribution.

For each v0 ∈ V , the thresholded EM output determines an active set of variables Sv0 =

{xi : |β̂i|> β ∗i (v0,v1, θ̂ , σ̂}. Letting γ̂v0
denote the submodel identified by Sv0 , the full proce-

dure thus effectively generates a solution path {γ̂v0
: v0 ∈V} through model space. To select
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the “best” γ from this solution path, a natural criterion is the marginal probability of γ under
the prior with v0 = 0, a marginal we denote by π0(γ |y). The appeal of π0(γ |y) is that it eval-
uates γ = (γ1, . . . ,γp)

′ according to the submodel containing only those variables for which
γi = 1. This would not be the case for the marginal probability under v0 > 0, which would
always evaluate γ on the basis of a full model where coefficient estimates corresponding to
γi = 0 were shrunk only to be small. In effect, we are contemplating that the statistician would
have preferred a full comparison of all models using π0(γ | y), but to avoid the difficulties as-
sociated with the implementation of such an analysis, has used the thresholded EM procedure
as a device to identify promising submodels.

As shown by GM97, except for an unknown normalizing constant C, a rapidly computable
closed form

g0(γ) =C π0(γ | y) (3.4.23)

is available. This g0(γ) serves our purposes perfectly since it suffices for identifying the
γ ∈ {γ̂v0

: v0 ∈ V} for which g0(γ) is largest. To illustrate how this would work on our
simulated dats, Figure 3.2(b) plots logg0(γ) values for all models visited along the solution
path. We observe a clearly escalating trend, where the largest posterior probability is obtained
by the correct model, namely the model which includes only x1,x2 and x3.

3.4.3 A Speed Comparison with Stochastic Search

It may be of interest to consider how stochastic search Bayesian variable selection would fare
on the same simulated data used throughout this section. For this purpose, we considered the
same conjugate spike-and-slab prior with v0 = 0, v1 = 1000 and beta-binomial model prior
with θ ∼ U(0,1), and implemented a Metropolis-Hastings (MH) sampler with a one-step
random scan proposal to simulate from the marginal posterior on γ . To put EMVS and the
MH sampler on equal footing in terms of initialization, we started the sampler at γ(0) = 01000,
which is the local median probability model obtained by thresholding the EMVS initialization
β
(0) = 11000, σ (0) = 1, θ (0) = 0.5 when v0 = 0.5 and v1 = 1000.

We ran the MH algorithm for the same amount of time it took EMVS to generate the
entire regularization path (consisting of 51 v0 values) in Figure 2. In this time, the MH algo-
rithm generated 50000 iterations with an acceptance rate 0.0001 for v1 = 1000. The model
including only the predictors {2,3}, rather than {1,2,3}, was obtained as both the maxi-
mum g0(γ) model and the median probability model. Repeating the stochastic search with
v1 = 1,10,100 yielded higher acceptance rates, but still always identified {2,3} as the model
and median model. Repeating the stochastic search initialized at the full model γ(0) = 1p, (the
local median probability model for the EMVS initialization with v0 = 0.1), was disappointing.
Performing merely 10 iterations with a zero acceptance rate due to the complexity of evaluat-
ing g0(γ) for rich models, the MH sampler never identified a model even close to {1,2,3}. In
a setting where EMVS rapidly identified the correct model, the MH sampler failed to do so in
a comparable amount of time, even when initialized in the close vicinity of the true mode. It
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Figure 3.3: Posterior distribution p(β |Y ) arising from a conjugate SSVS model with v0 = 0.005,v1 = 1000 together
with EM iterative steps for 4 different initializations.

should also be noted that, in contrast to the MH sample, the deterministic nature of the EMVS
computation would always yield reproducible results.

3.5

Mitigating Multimodality with Deterministic Annealing

A potential drawback of the EM algorithm occurs in multimodal posterior landscapes where
it can be prone to entrapment in local maximum modes. To illustrate this undesirable phe-
nomenon, we investigate the performance of the EM algorithm on a simple simulated ex-
ample. We construct n = 100 observations on p = 2 predictors according to Np(0,Σ) with
Σ =

(
ρi j
)p

i, j=1 and ρi j = 0.9|i− j|. We consider the following regression vector β = (1,0)′ and

generate responses according to Nn(Xβ ,σ2In) with σ2 = 3. The resulting maximum likeli-
hood estimates are β̂ MLE = (0.52,0.4)′ and σ̂MLE = 1.8. For this problem, we apply the EM
algorithm for posterior modal estimation under the conjugate SSVS model. For small enough
values v0 we expect the posterior distribution p(β |Y ) to be multimodal, partially due to the
high correlation between the predictors. Setting v1 = 1000 and v0 = 0.005, we proceed to
explore the posterior distribution p(β |Y ) using the Gibbs sampler as described in GM97.

Figure 3.3 depicts the MCMC approximation to the posterior distribution p(β |Y ) ob-
tained after 100000 iterations. The accumulation of the posterior probability is displayed in
various degrees of grey, where darker areas are associated with higher posterior modes. The
global mode (marked with a red dot) is located at the point β̂MAP = (0.86,0.03)′. As op-
posed to the maximum likelihood estimate, the posterior mode better recovers the underlying
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regression structure, a consequence of the selective shrinkage property of the spike and slab
prior. Figure 3.3 also plots the iterative process of the EM algorithm using 4 different starting
points (β (0) = (0,0)′,β (0) = (0,1)′,β (0) = (1,0)′ and β

(0) = (1,1)′). Expectedly, we observe
that for initial values located at the close vicinity of local modes, the EM algorithm fails to
converge to the global maximum.

To mitigate this issue, a general recommendation (McLachlan and Basford, 2004) is to
run the algorithm for a wide choice of starting values. To further improve the chances of
finding a global mode, one might also consider the deterministic annealing variant of the EM
algorithm (DAEM) proposed by Ueda and Nakano (1998).

Using the principle of maximum entropy and an analogy with statistical mechanics, the
DAEM algorithm aims at finding a minimum of a tempered version of the objective function,
often called the free energy function. In our context, this is equivalent to finding the maximum
of the negative free energy function

Ht(β ,θ ,σ) =
1
t

log∑
γ

π(β ,θ ,σ ,γ | y)t with 0 < t ≤ 1, (3.5.24)

which embeds the actual log incomplete posterior as a special case when t = 1. In (3.5.24),
1/t corresponds to a temperature parameter and determines the degree of separation between
the multiple modes of Ht . Starting with large enough temperatures which smooth away the
local modes of Ht , as the temperature is decreased, multiple modes begin to appear and Ht
gradually resembles the actual incomplete posterior. Thus, the influence of poorly chosen
starting values can be weakened by keeping the temperature high at the early stage of com-
putation and gradually decreasing it during the iteration process. Alternatively, (3.5.24) can
be optimized for a decreasing sequence of temperature levels 1/t1 > 1/t2 > · · ·> 1/tk, where
the solution at 1/ti serves as the starting point for the computation at 1/ti+1. Provided that the
new global maximum is close to the previous one, this strategy can increase the chances of
finding the true global maximum.

To extend our EM algorithm to incorporate DAEM iterations, the M-step remains un-
changed. However, the E-step requires the computation of the expected complete log posterior
density with respect to a modified posterior distribution. This distribution, derived using the
maximum entropy principle, is proportional to a current estimate of the conditional complete
posterior given the observed data raised to the power t. Particularly easy to derive for mixtures
(Ueda and Nakano, 1998), in our context this distribution is simply obtained by replacing p?i
in (3.3.11) with

p?i,t =
π(β

(k)
i |σ (k),γi = 1)tP(γi = 1 |b(k))t

π(β
(k)
i |σ (k),γi = 1)tP(γi = 1 |b(k))t +π(β

(k)
i |σ (k),γi = 0)tP(γi = 0 |b(k))t

.

(3.5.25)

The deterministic annealing version of EMVS, which we shall refer to as DAEMVS,
is obtained by making this substitution in (3.3.11). At high temperatures (t close to zero)
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Figure 3.4: Regularization plots for the simulated example from Section 3.4 using EMVS and the deterministic
annealing EMVS (DAEMVS) considering randomly generated starting vector β

(0) ∼ N1000(0, I)

the probabilities (3.5.25) become nearly uniform, as can be seen from the limiting behavior
limt→0 p?i,t ≡ 0.5. Thus tempering induces more equal penalties on all the coefficients through
(3.3.13) regardless of their magnitude.

Finally, under (3.5.25) as t→ 0, the unique posterior mode β̂ turns out to be a very
promising general initialization value for EMVS. This mode is easily obtained as the M-step
ridge regression solution (3.3.14) with equal penalties v0+v1

2v0v1
, namely

β̂ t=0 =

[
X ′X +

v0 + v1

2v0v1
Ip

]−1
X ′y. (3.5.26)

3.5.1 Revised Analysis of the Simulated Example

In Section 3.4 we illustrated the EMVS procedure on a simple simulated example with a single

set of starting values β̂
(0)

= 1p. Here we apply EMVS and its tempered version DAEMVS
on the same data using a randomly generated starting vector β

(0) ∼ N1000(0, I) in order to
demonstrate the sensitivity of EMVS to initialization and the potential of deterministic an-
nealing. In the process, it is also seen how posterior multimodality is diminished as v0 is
increased, making it easier to find global modes. For all these illustrations, the slab parameter
was set to v1 = 1000.

The resulting regularization diagrams in Figure 3.4 for (DA)EMVS at temperatures 1/t =
5 and 10 show that EMVS is postponing the detection of sparse models until larger values of
v0. In contrast, deterministic annealing lessens multimodality for smaller values v0, exposing
the correct model more quickly. Note the increasing success of all three algorithms as v0 gets
larger.

To further illustrate the impact of initial values scattered farther away from the true coeffi-
cient vector, we considered two other randomly generated starting vectors β

(0) ∼N1000(0,3×
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Figure 3.5: (a) plot of estimated regression coefficients for varying choices of v0, red lines correspond to the varying
benchmark threshold; (b) logg0(γ) for models with selected variables outside the threshold.

I) and β
(0) ∼ N1000(0,5× I). For three different values of v0 (0.2,0.6 and 1), we applied

EMVS and DAEMVS at temperatures 1/t = 5 and 10, keeping track of the number of itera-
tions to convergence, the number of selected active predictors, and logg0 evaluated over the
solution path of models. These quantities are tabulated in Table 3.5.1.

We observe that depending on the choice of starting vector, the EMVS algorithm con-
verged to a different solution for each v0. In contrast, at higher temperatures and larger values
of v0, DAEMVS converged to the correct model even from distant starting values. Evidently,
tempering together with larger v0 act in conjunction to reduce posterior multimodality and
gravitate smaller coefficient estimates towards zero.

Finally, we note that β̂ t=0 in (3.5.26) fared superbly as a starting value on this data.
Indeed, EMVS without any tempering very quickly detected the correct model as is evidenced
by regularization plot Figure 3.5(a). We recommend this starting value as a general choice for
consideration in practice.

3.6

A Heavy-Tailed Slab Distribution

Under the spike-and-slab prior, we would ideally like the slab distribution to leave large co-
efficient estimates relatively unaffected. To this end, the prior needs to limit shrinkage of the
large effects, while providing enough support to keep them away from being shrunk by the
spike distribution. This can be achieved under our formulation by adding a prior π(v1) to
induce a heavy tailed slab distribution.
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3.6 A Heavy-Tailed Slab Distribution

To gain insight into the shrinkage properties of our spike-and-slab prior formulation, con-
sider that the induced MAP estimates are regularized estimates arising as solutions to the
penalized least squares problem

β̂ = argminβ

{
1

2σ2 ||y−Xβ ||2 +
p

∑
i=1

penv0,v1,γi(|βi|)
}
, (3.6.27)

where penv0,v1,γi(|βi|) contains the term in − logπ(βi|v0,v1,γi) which depends on βi. When
the columns of X are orthonormal, the problem (3.6.27) can be solved component-wise (Fan
and Li, 2001):

β̂i = argminβi

{
1
2
(β̃i−βi)

2 +σ
2 penv0,v1,γi(|βi|)

}
, (3.6.28)

where β̃ = X ′y. Taking the first derivative of (3.6.28) with respect to βi, it can be seen that

the term pen′v0,v1,γi
(|βi|) =

∂ penv0 ,v1 ,γi (|βi|)
∂ |βi| biases estimates towards zero. Fan and Li (2001)

characterize bias-reducing penalty functions as those for which pen′v0,v1,γi
(|βi|) approaches

zero at a fast rate as |βi| → ∞.
Because the Gaussian tails of the spike prior go to zero so quickly, the tail behavior of

the spike-and-slab prior is for large enough |βi| dominated by the tails of the slab component,
and so it suffices to focus on the slab distribution. A Gaussian slab prior is less appealing as
the derivative of the penalty is an increasing function of |βi|. A Laplace prior on the other
hand implies constant bias irrespective of the magnitude of |βi|. Griffin and Brown (2005)
propose alternative shrinkage distributions arising from normal scale mixtures by considering
various mixing distributions for the variance parameter. Similar distributions were considered
by other authors including Strawderman (1971), Carvalho and Polson (2010).

To induce a heavy tailed slab prior for EMVS, we consider adding the prior proposed in
the g-prior context by Maruyama and George (2011),

π(v1) =
vb

1(1+ v1)
−a−b−2

B(a+1,b+1)
I(0,∞)(v1), (3.6.29)

a Pearson Type VI or beta-prime distribution under which 1/(1+ v1) has a Beta distribution
Be(a+ 1,b+ 1). See also Cui and George (2008) and Liang et al. (2008) who proposed the
special case of (3.6.29) with b = 0.

The marginal spike-and-slab prior on βi obtained after integrating out the parameter v1
with respect to the prior distribution (3.6.29) can be for a >−1.5 and b >−0.5 (Gradshteyn
and Ryzhik, 2000, p. 362) written as

π(βi|v0,σ ,γ) = (1− γi)N(0,σ2v0)+ γiπ̃a,b,σ (βi). (3.6.30)
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Here π̃a,b,σ (βi) denotes a density function

π̃a,b,σ (βi) =
Γ
(
a+ 3

2
)

B(a+1,b+1)

exp
(

β 2
i

4σ 2

)
√

2πσ2

(
β 2

i
2σ2

) b
2− 1

4

×

W−a− b
2− 5

4 ,− b
2− 1

4

(
β 2

i
2σ2

)
, (3.6.31)

where Wη ,ψ is the Whittaker function (Abramowitz and Stegun, 1972, p. 505). When b =
0, (3.6.31) is equivalent to the normal-exponential-gamma (NEG) prior (Griffin and Brown,
2012) obtained by imposing the hierarchical distribution p(v1|λ )= λ exp(−λv1) with p(λ )=

1
Γ(a+1)λ a exp(−λ ). The density of the NEG distribution

π̃a,0,σ (βi) =
(a+1)2a+ 3

2√
2πσ2

Γ

(
a+

3
2

)
exp

(
β 2

i
4σ2

)
D−2(a+ 3

2 )
(|βi|/σ) , (3.6.32)

follows from the identity Dη (z) = 2
1
4 +

η

2 W1
4 +

η

2 ,− 1
4

(
z2

2

)
z−

1
2 (Gradshteyn and Ryzhik, 2000,

p. 1018), where Dη denotes the parabolic cylinder function (Abramowitz and Stegun, 1972,
p. 685).

It is illuminating to study the limiting behavior of the implicit bias term p̃en′v0,v1,γi
(|βi|)

as |βi| → ∞. It is desirable that the bias term diminishes rapidly as coefficients get farther
away from zero. The asymptotic properties of the bias term are summarized in the following
theorem.

Theorem 3.6.1. Let π̃a,b,σ (βi) be the distribution given in (3.6.31) with a > − 3
2 and b > 1

2 .

Denote p̃en′a,b,σ (|βi|) = ∂ log π̃a,b,σ (βi)
∂ |βi| . Then

p̃en′a,b,σ (|βi|) =
√

2
(
a+ 3

2
)

σ

W−a− b
2− 7

4 ,− b
2− 1

4

(
β 2

i
2σ 2

)
W−a− b

2− 5
4 ,− b

2 +
1
4

(
β 2

i
2σ 2

) (3.6.33)

and p̃en′a,b,σ (|βi|) = O
(

1
|βi|
)

as |βi| → ∞.

Proof. The proof of the expression (3.6.33) is facilitated by noting that

p̃en′a,b,σ (|βi|) =
∂ π̃a,b,σ (βi)/∂ |βi|

π̃a,b,σ (βi)
.

The denominator can be for b >− 1
2 and a >− 3

2 rewritten using the expression for marginal
prior distribution in (3.6.31). The numerator can be expressed as

|βi|
B(a+1,b+1)

√
2πσ2σ2

∫
∞

0
v

b− 3
2

1 exp

(
− β 2

i
2σ2v1

)
(1+ v1)

−a−b−2dv1.
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This identity follows from the Leibnitz integral rule, which is justified since the integrand is
a positive integrable function on (0,∞) for b > 1

2 and a >− 5
2 . According to (Gradshteyn and

Ryzhik, 2000, p. 362), we can then for b > 1
2 and a >− 5

2 write ∂ π̃a,b,σ (βi)
∂ |βi| as

|βi|
B(a+1,b+1)

√
2πσ2σ2

(
β 2

i
2σ2

) b
2− 3

4

Γ

(
a+

5
2

)
exp

(
β 2

i
4σ2

)
×

W−a− b
2− 7

4 ,− b
2 +

1
4
. (3.6.34)

The identity (3.6.34) together with the expression for the marginal distribution π̃a,b,σ (βi) then
completes the proof of the equation (3.6.33).

The limiting behavior of the term p̃en′a,b,σ (|βi|) can be better understood using the Poicare
expansion of Whittaker function for large |z| (Gradshteyn and Ryzhik, 2000, p. 1016), namely

Wη ,ψ (z)∼ exp
(
− z

2

)
zη

(
1+

∞

∑
k=1

[ψ2− (η− 1
2 )

2] . . . [ψ2− (η− k+ 1
2 )

2]

k!zk

)
, (3.6.35)

where∼ sign indicates that the Whittaker function is equal to the series in the limit as |z|→∞.
As a consequence, we have

lim
|z|→∞

Wη ,ψ (z)
exp
(
− z

2
)

zη
= 1.

This altogether enables us to rewrite the lim|βi|→∞ p̃en′a,b,σ (|βi|) as

lim
|βi|→∞

√
2(a+ 3

2 )

σ

exp
(
− β 2

i
4σ 2

)(
β 2

i
2σ 2

)−a− b
2− 7

4

exp
(
− β 2

i
4σ 2

)(
β 2

i
2σ 2

)−a− b
2− 5

4

= lim
|βi|→∞

2a+3
|βi|

,

which was to be demonstrated.

Remark 3.6.1. The asymptotic expansion of the Whittaker function is useful in determining
the asymptotic tail behavior of the prior distribution π̃a,b,σ (βi). From (3.6.31) and (4.6.12)

it follows that π̃a,b,σ (βi) = O

[(
β 2

i
2σ 2

)−a− 5
4
]

. The tail behavior is therefore unaffected by

b, finding noted previously by Maruyama and George (2011) in the g-prior context. As a
controls the heaviness of the tails, with lighter tails for large values a, it is intuitive that the
bias term in Theorem 4.6.2 diminishes faster for smaller a.

Remark 3.6.2. Similar expression for the bias term implied by the NEG prior was shown

previously by Griffin and Brown (2012). In that case p̃en′a,0,σ (|βi|) = (2a+3)
σ

D−2(a+2)

(
|βi |
σ

)
D−2(a+ 3

2 )

(
|βi |
σ

) ,
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which follows from the relationship between Whittaker and parabolic cylinder function and
the fact that Wη ,ψ =Wη ,−ψ . Since the asymptotic behavior in Theorem 4.6.2 is independent
of b, it applies to the NEG prior as a special case.

Margining out parameter v1 complicates the maximization with respect to β as the log-
arithm of the prior distribution (3.6.31) does not yield a tractable closed form. Instead, we
proceed by estimating the parameter v1 together with the remaining parameters. The E-step
remains unchanged, just with the value v1 implicit in the computation of (3.3.11) replaced by
the current estimate at the k-th iteration v(k)1 . The M-step involves one additional computation

for finding the value v(k+1). Given the estimates β
(k+1),σ (k+1), we can find v(k+1)

1 as

argmaxv1

{
−||P

?1/2β ||2
2σ (k+1)

1
v1

+(b−1/2
p

∑
i=1

p?i ) log(v1)− (a+b+2) log(1+ v1)
}
,

where P? = diag{p?1, . . . , p?p}. This can be numerically maximized by fast routine methods.

3.7

Structured Prior Information Forms for π(γ |θ)
The beta-binomial prior based on the Bernoulli form (3.2.5) for π(γ |θ) is suitable for mod-
eling exchangeable variable inclusion probabilities. However, sometimes a priori structural
information indicates that certain combinations of variables are more likely to be included to-
gether. For example, in the context of genomics, scientific studies have indicated that certain
groups of functionally related genes form network topology structures called pathways. In
such cases, prior forms more structured than than the Bernoulli can be used to transmit such
information. In this section, we consider two such forms which have been recently proposed
for stochastic search Bayesian variable selection methodology. As will be seen, these forms
are incorporated naturally into the EMVS approach.

3.7.1 The Independent Logistic Regression Prior

The first structured prior form we consider for π(γ |θ) is the independent logistic regression
prior,

π(γ |θ) =
p

∏
i=1

(
exp(Z′iθ)

1+ exp(Z′iθ)

)γi
(

1
1+ exp(Z′iθ)

)1−γi

, (3.7.36)

a product of independent logistic regression function. A special case of this prior was pro-
posed by Stingo et al. (2010) to incorporate external biological information in a genetic con-
text. In (3.7.36), Zi is a q× 1 vector of covariates which may influence the model inclusion
probability of xi, and θ is a q×1 vector of regression coefficients. Letting Z = [Z1, . . . ,Zq] be
the p×q matrix whose ith row is equal to Z′i, θ j is the weight assigned to Z j, the jth column
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of Z. As will be illustrated in Section 3.7.3 below, the columns of Z can conveniently be
used to represent potential variable inclusion groupings by using dummy variables to repre-
sent potential inclusion. With the addition of a prior π(θ), posterior estimates of θ can yield
additional information about the relative influence of the Zth

j grouping.
The choice of a prior for θ is motivated by observing that when the Zi identify nonover-

lapping groupings, (3.7.36) can be reparameterized to be an equally weighted mixture of
Bernoulli forms. Indeed, when all the predictors are designated to belong to a single group,
i.e. Zi ≡ 1, the prior (3.7.36) simplifies to the exchangeable Bernoulli form (3.2.5) with the
success probability θ∗ = exp(θ)/[1+exp(θ)]. Thus the natural choice of the beta distribution
for θ∗ in the Bernoulli case, translates to

π(θ) =
1

B(a,b)

[
exp(θ)

1+ exp(θ)

]a [ 1
1+ exp(θ)

]b
, (3.7.37)

which we will refer to as the ”logistic-beta prior” on θ . For the general case where θ is q×1,
we generalize this to the multivariate conjugate form

π(θ) =
1

B(a,b)

[
exp(1′θ)

1+ exp(1′θ)

]a [ 1
1+ exp(1′θ)

]b
. (3.7.38)

The EMVS algorithm under the form (3.7.36) with the prior (3.7.38), is then obtained by
replacing Q2 in (3.3.7) with

QLR
2

(
θ |β (k),θ (k),σ (k)

)
=

p

∑
i=1

{
Z′iθ Eγ|·γi− log[1+ exp(Z′iθ)]

}
+{a1′θ − (a+b) log[1+ exp(1′θ)]}

Using the fact that

Eγ|·γi = P(γi = 1 |θ (k)) =
exp(Z′iθ

(k))

1+ exp(Z′iθ
(k))

, (3.7.39)

maximization of QLR
2 by routine methods can be used to update θ

(k+1).

3.7.2 The Markov Random Field Prior

The second structured prior form we consider for π(γ |θ) is the Markov random field (MRF)
prior proposed by Li and Zhang (2010) to model apriori genetic network information. Rep-
resenting such information by an undirected graph where predictors xi and x j are allowed to
interact if and only if i and j are connected by an edge within the edge set E = {(i, j) : 1 ≤
i 6= j ≤ p}, they proposed the MRF prior

π(γ |θ) = exp
[
θ
′
1γ + γ

′
θ 2γ−ψ(θ 1,θ 2)

]
, (3.7.40)
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where θ 1 = (θ1, . . . ,θp)
′ is a vector of sparsity parameters, θ 2 =

(
θi j
)p

i, j=1 is a symmetric
matrix of real numbers with θi j = 0⇔ (i, j) 6= E , and θ = (θ 1,θ 2). The matrix θ 2 regulates
the smoothness of the distribution (3.7.40) by controlling the inclusion probability of a vari-
able based on the selection status of its neighbors. If all the genes are disconnected, so that
θ 2 = 0, then the prior (3.7.40) reduces to an independent product of Bernoulli distributions
with parameters pi = exp(θi)/[1+ exp(θi)]. The normalizing constant ψ(θ 1,θ 2), known as
the partition function, is typically intractable due to the many combinatorial possibilities when
summing over all 2p model configurations.

Letting γ\i = {γ j : j 6= i} denote the subvector containing all but the ith inclusion indicator,
the distribution (3.7.40) implies a simple form for the conditional distributions

π(γi | γ\i) =
exp(θi +∑ j 6=i θi jγ j)

1+ exp(θi +∑ j 6=i θi jγ j)
, (3.7.41)

which enables Gibbs sampling algorithms (Li and Zhang, 2010) for stochastic search. As
a fast practical alternative to such stochastic search, we show how this MRF prior can be
incorporated into EMVS to handle challenging high-dimensional problems.

To implement the EMVS algorithm under the MRF prior (3.7.40), the key calculation for
the E-step is the evaluation of Eγ | ·γi = P(γi = 1 |β (k),θ (k),σ (k)) = p∗i in (3.3.11). Because
this evaluation is complicated by the dependence among the components in γ under the MRF
prior, we approximate it as follows. To begin with, note that the P(γi = 1 | β (k),θ (k),σ (k))
values here arise as marginal means under the joint conditional distribution

π(γ |β (k),θ (k),σ (k)) ∝ exp
[(1

2
log(v0/v1)1′− v0− v1

2σ (k)2v1v0
β
(k)′diag{β (k)

i }
p
i=1

+θ
(k′)
1

)
γ + γ

′
θ
(k)
2 γ

]
. (3.7.42)

The first two terms in the exponent follow directly from the prior distribution π(β |σ ,γ) =
Np(0,Dσ ,γ ), rewriting the determinant of the matrix

D−1/2
σ ,γ =

diag
{

γi/
√

v1 +(1− γi)/
√

v0
}p

i=1
σ

as

|Dσ ,γ |−1/2 = exp

[
−p logσ − 1

2

p

∑
i=1

(γi logv1 +(1− γi) logv0)

]

= exp
(
−p logσ +

1
2

log(v0/v1)1′γ−
p
2

logv0

)
.

The conditional distribution in (3.7.42) can be regarded as an MRF distribution with adjusted
parameters θ

?
1 = (θ?

1 , . . . ,θ
?
p)
′ and θ

?
2 = θ 2, where θ?

i = 1
2 log(v0/v1)− v0−v1

2σ (k)2v1v0
βi

(k)2 +θi.
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Because the partition function ψ(θ 1,θ 2) is a normalizing factor in the exponential family,
it follows that E(γ |β (k),θ (k),σ (k))=

∂ψ(θ 1,θ 2)
∂θ 1

|θ 1=θ
?
1
. Although this vector is not analytically

tractable, a useful approximation can be obtained using mean field methods (Wainwright and
Jordan, 2008).

Recall that mean field approximation refers to a class of variational methods that ap-
proximate a distribution on a graph, here π(γ | β (k),θ (k),σ (k)), with a simpler distribution
for which it is feasible to do exact inference. Here we make use of the naive mean field
method, which restricts to a class of tractable approximating distributions assuming com-
pletely disconnected graphs. In other words, we assume approximating distributions of the
form q(γ | µ) = ∏i µ

γi
i (1− µi)

1−γi , where µ = (µ1, . . . ,µp)
′ ∈ [0,1]p denotes the vector of

mean parameters.
It can be shown (Wainwright and Jordan, 2008) that the parameter vector µ̂ , for which

q(γ | µ̂) best approximates π(γ |β (k),θ (k),σ (k)) within the class of tractable functions, where
the quality of the approximation is measured by the KL divergence, satisfies the set of equa-
tions

µ̂i =
exp(θ?

i +∑ j 6=i θi j µ̂ j)

1+ exp(θ?
i +∑ j 6=i θi j µ̂ j)

, 1≤ i≤ p. (3.7.43)

Each of the equations (3.7.43) can be regarded as an averaged version of the expression in
(3.7.41). The solution can be found by iteratively updating (3.7.43), which can be seen as a
type of coordinate ascent algorithm. Each value µ̂i then provides the mean field approximation
to p∗i in (3.3.11).

The hyperparameters of the MRF distribution have until now been assumed to be fixed.
In order to enhance the adaptability of the procedure we may consider the sparsity parameters
θ 1 to be unknown (arising from a prior distribution π(θ 1)). In what follows, we restrict atten-
tion to vectors of type θ 1 = θ(1, . . . ,1)′. A natural candidate prior distribution π(θ), which
corresponds to the beta-binomial prior in case θ 2 = 0, is the logistic-beta distribution (3.7.37).
The M-step of the algorithm then requires the additional step of updating the parameter θ by
finding the maximum of the function

QMRF
2 (θ |β (k),θ (k),σ (k)) = θ

(
p

∑
i=1

p?i +a

)
+ψ(θ ,θ 2)− (a+b) log[1+ exp(θ)].

Maximizing QMRF
2 w.r.t. θ is complicated by the unavailability of the partition function in

a closed form. The mean field theory can be again used to obtain an approximate solution.
According to Wainwright and Jordan (2008), the mean field approximation to the partition
function for the MRF model can be expressed as

ψ(θ ,θ 2)≈ θ

p

∑
i=1

µi +µ
′
θ 2µ−ψ

?(µ), (3.7.44)
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Figure 3.6: Plots of phrase transition function f (θ ,θ 2) as well as approximated and true partition functions
ψ(θ ,θ 2), QMRF

2 (θ ,θ 2) in relation to parameter θ

where µi = Eθ ,θ 2 γi and ψ? denotes the conjugate dual function to ψ , which has an explicit
form for the approximating product distributions, i.e.

ψ
?(µ) =

p

∑
i=1

[µi log µi +(1−µi) log(1−µi)].

The mean values µi = Eθ ,θ 2 γi for each specific value θ can be obtained from (3.7.43).
It is widely known that the MRF prior is susceptible to phase transitions, where small

increments in θ may lead to massive increments in the size of the selected model. Stingo and
Vannucci (2011) suggest putting prior mass on θ values in a neighborhood of the transition
point to improve mixing of the MCMC sampler. In our EM context, the transition point
θtrans can be regarded as the value at which f (θ ,θ 2) = ∑

p
i=1Eθ ,θ 2 γi exhibits rapid growth or

even a jump. There may be multiple transition points in situations when the matrix θ 2 has
complicated structural patterns.

In order to visually assess the quality of the approximation to the partition function, Fig-
ure 3.6(a) plots the approximated and true function ψ(θ ,θ 2) for varying θ with θ 2 a 5× 5
symmetric zero diagonal matrix with 5 randomly placed nonzero entries in the upper triangle.
We consider two approximations, where either true means or mean field approximated means
are plugged in the equation (3.7.44). The values of p?i are set to one and a = b = 1.

We observe that the approximation (3.7.44) with imputed approximated mean values loses
the convexity property (Figure 3.6(a)). Moreover, the approximation is impaired in the closed
neighborhood of the transition point θtrans =−1.17, which was detected from the plot of the
function f (θ ,θ 2) in Figure 3.6(c). The plots of the true and approximated QMRF

2 (·) function
in Figure 3.6(b) suggest that the update θ (k+1) is likely to be estimated at the transition point,
if we use the mean field approximation of the partition function.

As for the deterministic annealing versions of EMVS under structured priors, the tem-
pered E-step for the logistic regression prior remains the same as for the beta-binomial case.
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(a) EMVS Regularization Plot
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Figure 3.7: (a) plot of estimated regression coefficients for varying choices of v0, TN/FP/FN/TP stand for true
negatives/false positives/false negatives/true positives; (b) logg0(γ) for models selected with P(γi = 1 | β̂ , θ̂ , σ̂)> 0.5.

Under the MRF prior, the E-step is performed with parameters θ
?
1 and θ

?
2 multiplied by an

inverse temperature parameter.

3.7.3 Simulated Example for Structured Priors

To illustrate the potential of the structured variable inclusion priors from Sections 3.7.1 and
3.7.2, we compare them with the benchmark beta-binomial prior on simulated data with sub-
stantial grouped structure. For this purpose, we simulated Y ∼ Nn(Xβ ,σ2In) with n = 100
and σ2 = 5. The n× p predictor matrix X consisted of p = 99 normally distributed predictors
generated as three equicorrelated groups {x1, . . . ,x33}, {x34, . . . ,x66} and {x67, . . . ,x99} with
pairwise correlations of 0.8 within each group and zero correlations between the groups. For
the p×1 regression vector we set the components βi = 2×I[1;33](i) so that only the first group
of predictors is actually explaining the variability of the response Y .

For this setting, we considered the following three forms for the pair π(γ | θ) and π(θ)
to reflect varies degrees of prior knowledge: (a) The Bernoulli form (3.2.5) coupled with the
uniform prior on θ which yields the beta-binomial prior with a = b = 1 on γ . This unstruc-
tured exchangeable choice ignores the potential grouping information; (b) The independent
logistic regressions form (3.7.36) with the three grouping vector choices Z1,Z2,Z3 where the
ith component of Z j is given by zi j = I[33( j−1)+1;33 j](i) for 1 ≤ i ≤ p. To this we add the
logistic-beta prior (3.7.38) with a = b = 1 on θ = (θ1,θ2,θ3)

′. This prior conveys the in-
formation that there are three possible groupings, of which only the first is correct for the
simulated data here; (c) The MRF prior (3.7.40) with sparsity parameter θ 1 = θ1, where θ
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(a) EMVS Regularization Plot
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Figure 3.8: (a) plot of estimated regression coefficients for varying choices of v0, TN/FP/FN/TP stand for true
negatives/false positives/false negatives/true positives; (b) logg0(γ) for models selected with P(γi = 1 | β̂ , θ̂ , σ̂)> 0.5.

is assigned prior (3.7.37) with a = b = 1, and with fixed θ 2 = (133×33 − I33)⊗ I3, where
133×33 is a 33× 33 matrix of ones and ⊗ denotes the Kronecker matrix product. This prior
also conveys the information that there are three possible groupings, where all within-group
predictors are neighbors on an undirected graph. Note that (b) and (c) would be equivalent to
(a) when Z1 = 1p,Z2 = 0,Z3 = 0 and θ 2 = 0.

To carry out the EMVS search and regularization algorithm with each of these three prior
choices, we considered the grid of v0 values V = {0.01+ k× 0.05 : k = 0, . . . ,10}. Rather
than setting v1 to a large fixed value, we applied the prior π(v1) in (3.6.29) with av1 = 0.5

and bv1 = 250 (under which the prior mode v̂1 =
bv1

2+av1
equals 100). The starting values

β
(0) were selected according to (3.5.26) with v0 = 1 and v1 = 1000, σ (0) = 1, θ

(0) = 13
for the logistic prior and θ (0) = θtrans for the MRF prior. To evaluate the solution path of
models {γ̂v0

: v0 ∈V} generated under each prior, we used the same g0 function from (3.4.23)
corresponding to the posterior under v0 = 0 and v1 = 1000 obtained with the uniform beta-
binomial model prior in order to allow for a fair comparison of every model.

For EMVS under the beta-binomial prior (a) with no structural information, we obtain
the regularization plot in Figure 3.7. The best visited model (corresponding to v0 = 0.21)
identified 21 true predictors together with 12 false negatives and 2 false positives.

For EMVS under the independent logistic regression prior (b) which conveyed structural
information in an additive matter, we obtain the regularization plot in Figure 3.8. Performing
better than the beta binomial prior, the best visited model here (corresponding to v0 = 0.36)
contains 22 correctly identified predictors together with 11 false negatives and zero false pos-
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Figure 3.9: (a) plot of estimated regression coefficients for varying choices of v0, TN/FP/FN/TP stand for true
negatives/false positives/false negatives/true positives; (b) logg0(γ) for models selected with P(γi = 1 | β̂ , θ̂ , σ̂)> 0.5.

itives. The posterior estimates θ̂ = (0.93,−3.35,−3.44)′, further indicate that the posterior
adaptively increased the inclusion probabilities for predictors within the first group, the single
correct grouping for our data.

Finally, for EMVS under the MRF prior (c) with θ = θtrans, which assumes that all pre-
dictive covariates are interconnected on an undirected graph, we obtain the regularization plot
in Figure 3.9. The best found model correctly identifies all the 33 predictors with zero false
discoveries and zero false non-discoveries.

In order to understand the phase shift behavior, we plot the f (θ ,θ 2) function for varying
values of θ (Figure 3.10(c)). We observe a jump at the transition point at θtrans = −16.03.
Next, we plot the approximated QMRF

2 function considering p?i = 0, (i = 1, . . . , p) (Figure
3.10(b)) and p?i = 1, (i = 1, . . . , p) (Figure 3.10(a)) for a = b = 1. We observe that the min-
imum is attained in both cases at the value of the transition point. This behavior is seen
irrespective of the choices of a and b. The sparsity parameter θ is therefore likely to be es-
timated directly at the transition point, which rather resembles applying the procedure for θ

fixed to this value.
It is worth noting that in densely connected networks that are sparse for predictive vari-

ables, we have observed a tendency for the MRF prior to increase the number of false posi-
tives. In such scenarios, the logistic prior can better negotiate the within group sparsity and
improve variable selection over the independent beta-binomial prior.
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Figure 3.10: Approximated Q2 function together with the phase transition function for the simulated data example

3.8

Stochastic Dual Coordinate Ascent for EMVS

The efficiency of the EMVS implementation relies on expeditious updating of the ridge re-
gression solutions, which constitutes the most expensive operation in the EM algorithm. The
matrix inversion needed to obtain the closed form solution may be very prohibitive when both
n and p are large. Approximative solutions to ridge and other regularized loss minimization
problems can be obtained using conjugate gradient descent methods or dual coordinate ascent
algorithms at only a fraction of the runtime. Here we describe the stochastic version of the
dual coordinate ascent algorithm (SDCA) of Shalev-Shwartz and Zhang (2013), which has
been shown to possess strong theoretical guarantees. In conjunction with the fast E-step, the
SDCA greatly enhances the rapidity of the EMVS procedure.

We begin by describing the generic optimization problem associated with regularized
linear predictor minimizers of a general loss function. Denote the original data by y, a (n×1)
response vector, and X∗ = [x∗1, . . . ,x

∗
p], a (n× p) regression matrix, where ||x∗j || ≡ 1. The

constrained loss function to be minimized is then

P∗(β ∗) =

[
n

∑
i=1

φi(x∗
′

i β
∗)+ ||D1/2

β
∗||2
]
, (3.8.45)

where D is a diagonal matrix of individual penalty parameters for each regression coefficient.
Throughout the section we refer to the objective function in (3.8.45) as the generalized ridge
regularized loss, where each coordinate in the regression vector is penalized differentially. In
case of ridge regularized linear regression, which interests us in the context of EMVS, the loss
function takes the form φ(a) = (a− yi)

2. The optimizer of the generalized ridge regression
problem can be obtained from a solution to a classical ridge regression after reweighing the
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columns of the regression matrix. Let β = D1/2β
∗ and X = X∗D−1/2. Then the minimizer

β̂
∗ of P∗(β ∗) corresponds to the minimizer β̂ of the ridge regularized loss function with unit

penalty

P(β ) =

[
n

∑
i=1

φi(x′iβ )+ ||β ||2
]
. (3.8.46)

We now describe the dual formulation of the optimization problem associated with (3.8.46).
We begin with rewriting the objective function in terms of ηi = φi(x′iβ ) and introducing the
Lagrange multipliers αi for every one of the corresponding constraints ηi−φi(x′iβ ) = 0. Aug-
menting the objective function (3.8.46) by the weighted sum of the constraint functions we
obtain following Lagrangian

L(β ,η ,α) =

[
n

∑
i=1

η
2
i + ||β ||2 +

n

∑
i=1

αi[φ(x′iβ )−ηi]

]
(3.8.47)

and the associated dual Lagrange function

D(α) = inf
β ,η

L(β ,η ,α).

Differentiating the Lagrangian (3.8.47) in β and η , we obtain conditions

β (α) =
1
2

n

∑
i=1

αixi and ηi(α) =
αi

2
,

which after substitution in (3.8.47) give the dual Lagrangian

D(α) =

 n

∑
i=1
−φ
∗
i (−αi)+

∥∥∥∥∥1
2

n

∑
i=1

αixi

∥∥∥∥∥
2
 (3.8.48)

where φ∗i (u) =maxz(zu−φi(z)) is the convex conjugate of φi(·). Let α̂ denote a maximizer of
D(α). Then it is known that β (α̂) = β̂ and P(β̂ ) = D(α̂). It also holds that P(β )≥D(α) for
all β and α , which implies that the duality gap P[β (α)]−D(α) constitutes an upper bound
of the sub-optimality P[β (α)]−P(α).

In the following, we restrict the attention to the squared loss in the linear regression set-
ting, where the dual function takes the form

D(α) =

 n

∑
i=1

yiαi−
1
4

n

∑
i=1

α
2
i +

∥∥∥∥∥1
2

n

∑
i=1

αixi

∥∥∥∥∥
2
 . (3.8.49)

A nearly optimal value α̂ , and hence nearly optimal β̂ , can be found by a applying a coordinate
descent algorithm (CDA) on the dual Lagrangian function. We describe the stochastic version
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SDCA Procedure

(1) Initialize β
(0) = β (0)

(2) Iterate for t = 1,2, . . . ,T

(a) Select randomly i from {1, . . . ,n}

(b) Set ∆αi =
2(yi−x′iβ

(t−1))−α
t−1
i

1+||xi||2

(c) α(t)← α(t−1)+∆αiei

(d) β
(t)← β

(t−1)+ 1
2 ∆αixi

(3) Output ᾱ = 1
T−T 0 ∑

T
t=T 0 α(t)

(4) Output β̄ = 1
T−T 0 ∑

T
t=T 0 β

(t)

Table 3.2: Steps of the SDCA algorithm.

(SDCA), where at each iteration the coordinate to be updated is chosen at random. The steps
of the algorithm are summarized in the Table 3.8.

For the γ-smooth loss functions (differentiable and with derivative γ-Lipschitz), Shalev-
Shwartz and Zhang (2013) show that SDCA requires at least T = 2(n+nγ/2) log(1/ε) itera-
tions in order the to have an expected duality gap E[P(β̄ )−D(ᾱ)]≤ ε for β̄ and ᾱ averaged
over last T 0 = T/2 iterations. Since the squared loss is 2-smooth, it suffices to perform at
least T = 4n log(1/ε) iterations.

3.8.1 Timing Comparisons

We consider simulated datasets on p = 1000 explanatory variables, where only the first three
are predictive with a corresponding regression vector β = (2,3,4,0, . . . ,0)′. We generated
three datasets with n = 100,500,2000 and compared the computational time required to ob-
tain a generalized ridge regression solution using (a) classical closed form expression inverting
p× p matrix, (b) Woodbury-Sherman matrix formula inverting n×n matrix, (c) SDCA imple-
mentation in R, (d) SDCA implementation in C. The regression matrices are generated with

rows drawn independently from Np(0,Σ), where Σ =
(

0.6|i− j|
)p

i, j=1
. The predictor matrices

were further rescaled so that ||xi||2 ≤ 1, which is one of the requirements for the theoreti-
cal guarantees to hold. The response vector was for each of the three sample sizes created
according to the generating model Nn(Xβ , In) and further normalized so that ||y||2 = 1.

The vector of penalty coefficients was generated through random sampling from Gamma
distribution with shape 1 and scale 0.5. Table 1 reports on the computation runtime in seconds
obtained on a 3GHz server as well as distances between the exact and approximate solutions.
A stopping rule T = 4n log(1/ε) was implemented to obtain at most ε = 0.1 expected duality
gap.

70 Veronika Ročková
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Figure 3.11: (a) Exact EMVS regularization plot, (b) model exploration based on the exact regularization plot, (c)
approximated EMVS regularization plot

p = 1000 CR WS SDCA (R) SDCA (C) ||β̄ −β ridge||2
n = 100 2.44 0.38 0.17 0.02 0.004
n = 500 4.41 3.69 1.27 0.16 0.005
n = 2000 9.93 10.24 5.28 0.66 0.002

Table 3.3: Computational time in seconds of the generalized ridge regression solutions, CR: classical ridge, WS:
Woodbury-Shermann

We take the second dataset (n = 500) and apply the EMVS procedure assuming v1 = 10
and v0 ∈ {0.1+ k× 0.25;0 ≤ k ≤ 20}. We obtain the EMVS regularization plot display-
ing the evolution of the posterior modal estimates as the spike variance increases (Figure
3.11(a)). The log-posterior model probabilities of subsets obtained after screening out co-
efficients that are small in magnitude (outside the threshold boundary depicted in red) are
plotted in Figure 5.8. The approximate regularization plot obtained using the SDCA proce-
dure (T = 4n log(10)) in the M-step is depicted in Figure 3.11(c).

Under the convergence criterion max |β (k)−β
(k−1)|< 0.05, the exact evaluation of the

whole regularization plot requires 80 iterations taking 295 seconds using the Woodbury-
Sherman updates in the R-implementation. The approximation requires 94 ridge regression
updates along the regularization path taking altogether 119 seconds in R-implementation and
merely 15 seconds in the C-implementation.

3.9

Finding DNA Regulatory Motifs Using EMVS

In this section, we apply the EMVS procedure to detect DNA nucleotide sequences that act as
binding sites for transcription factors and thereby coordinate expression of genes in whose reg-
ulatory region they appear. Transcription factors are proteins which are known to either inhibit
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(a) EMVS Regularization Plot (b) Submodel Evaluations

Figure 3.12: (a) plot of estimated regression coefficients for varying choices of v0, estimates for variables with
conditional posterior inclusion probability P(γi = 1 | β̂ , θ̂ , σ̂) above (below) 0.5 depicted in blue (red); (b) logarithm of
g(γ) for models with selected variables with P(γi = 1 | β̂ , θ̂ , σ̂)> 0.5.

or enhance transcription of genes by binding to their promoter region sequences. Spellman
et al. (1998) conducted a series of yeast experiments to identify transcription factor binding
sites whose occurrence in the genome drives the periodic expression pattern associated with
the cell cycle. This data set has been analyzed in literature by multiple authors including Li
and Zhang (2010), Bussemaker et al. (2001) or Tadesse et al. (2004).

The data consists of gene expression measurements collected longitudinally at 18 time
points spanning over two cell cycles. Following the approach of Li and Zhang (2010), we
use first principal component scores to compress the gene expression over time for each of
the 1568 genes. The response vector Y then consists of n = 1568 continuous measurements
of the summarized expression levels. About half of the genes were previously recognized as
associated with the cell cycle, whereas the other half does not exhibit any differential expres-
sion across time and is included as a reference. Upstream regulatory regions of each gene
have been screened for the presence of short regulatory motifs. A motif is considered to be a
word of length 7 consisting of letters {A,G,T,C}, where each word and its reversed comple-
mentary sequence represent the same biological motif. The predictor matrix X then consists
of numbers of occurrences of each of the p = 47/2 = 8192 motifs in the promoter region of
each gene.

The predictors are assumed to cluster based on the similarity in their sequence as can be
determined by the Hamming distance (Li and Zhang, 2010). Motifs with a similar content
are likely to attract the same transcription factors and thereby influence the gene expression
in a similar manner. This phenomenon has been incorporated in the linear model for motif
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Figure 3.13: Approximated Q2(·) function together with the phase transition function and prior distribution π(θ)
for the Spellman data

detection through the MRF prior by Li and Zhang (2010). We similarly regard two related
motifs (differing by at most one letter regardless the location of the mismatch) to be two
vertices connected by an edge in an undirected graph. The 8192×8192 smoothing matrix θ 2
then consists of 144896 nonzero entries.

We apply the EMVS procedure assuming both exchangeable and structured variable se-
lection indicators under the beta-binomial and MRF priors. In both analyses, we treat the slab
variance parameter v1 as unknown and we consider the prior distribution (3.6.29) with av1 and
bv1 selected so that the mode v̂1 = bv1/(2+av1) of the prior distribution is 100. We examined
the sensitivity of the results to the choice of av1 and bv1 and found them to be quite robust.
The two parameters are seen to influence the number of iterations rather than selected model
configurations. We considered av1 = 0.5 and bv1 = 250, for which the number of iterations
was moderate. (We also considered some deterministic annealing variants with these settings,
not reported here, which essentially yielded similar findings). For submodel evaluations, we
used g0(γ) with v1 = 1000 and a uniform beta distribution on the success probability. In both
analyses, we set the vector of starting values for the regression coefficients equal to the ridge
regression solution corresponding to the limiting case of deterministic annealing, as given in
(3.5.26), with v0 = 1 and v1 = 1000.

For the exchangeable variable selection indicators, we consider a grid of values v0 ∈
{0.001+ k×1 : k = 0, . . . ,20}. The regularization diagram together with model evaluation is
depicted in Figure 3.12. As v0 increases, g0(γ) continues to escalate and sparser models are re-
vealed, leaving us with only 7 motifs at v0 = 20.001 (ACGCGTT, CGCGTTT, GACGCGT,
GGACGAT, TTCGCGT, TTTATCG, TTTCGCG). Other interesting candidates are found,
corresponding to more moderate v0 values. For v0 = 9.001, 18 motifs were screened out (Ta-
ble 3.4), among which 3 are connected on the graph and several have been previously identi-
fied (Li and Zhang, 2010) or experimentally validated (according to Sacharomyces Cerevisae
Promoter Database (SCPD) of Zhu and Zhang (1999) available at
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(a) EMVS Regularization Plot (b) Submodel Evaluations

Figure 3.14: (a) plot of estimated regression coefficients for varying choices of v0, estimates for variables with
conditional posterior inclusion probability P(γi = 1 | β̂ , θ̂ , σ̂) above (below) 0.5 depicted in blue (red); (b) logarithm of
g(γ) for models with selected variables with P(γi = 1 | β̂ , θ̂ , σ̂)> 0.5.

http://cb1.utdallas.edu/SCPD/).
We proceed to apply the EMVS procedure under the MRF prior. Following Li and Zhang

(2010), we set the nonzero elements in θ 2 equal to 0.83. We assume θ 1 = θ(1, . . . ,1)′ and
specify an appropriate distribution π(θ) according to (3.7.37), which locates the majority of
its mass in the phase transition region. The plot of the transition function in Figure 3.13(a)
indicates multiple transition points, a consequence of the structure θ 2 which allows for over-
lapping components. Selecting the hyperparameter values aθ = 5 and bθ = 10000 guarantees
accumulation of the prior distribution within boundaries [−9,−6] (Figure 3.13(c)). The cor-
responding Q2(·) function for p?i ≡ 1 is plotted in Figure 3.13(b). In order to better observe
the gradual sparsification of the explored models, we consider a more refined grid of smaller
values v0 ∈ {10−5 + k×10−5 : k = 0, . . . ,30}.

The corresponding regularization plot together with the evolution of g0(γ) is displayed in
Figure 3.14. Among the explored models, the highest value of g0(γ) was obtained for a model
with 4 motifs (ACGCGTT, CGCGTTT, GACGCGT, TTTCGCG). Table 3.4 summarizes two
other motif sets of dimensions 18 and 7, which have been identified along the regularization
path. In comparison with the models of the same size found by the beta-binomial model,
we observe that the MRF EMVS biases the search towards models with more interconnected
predictors.

The execution time to obtain the modal estimates for a single mixture prior varied de-
pending on the magnitude of v0. Generally, more iterations were needed for smaller v0 val-
ues, where multimodality appeared to hamper convergence towards a single local mode. The
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median number of iterations (for the considered set of v0 values) needed to achieve conver-
gence under the criterion max1≤i≤p{|β (k+1)

i − β
(k)
i |} < 10−4 was 12 for the beta-binomial

version and 5 for the MRF version of the EMVS procedure. Fewer iterations were needed for
EMVS with a fixed v1 (the median number of iterations was 7 for the beta-binomial model
with v1 = 1000). One iteration of the beta-binomial (resp. MRF) model took 107 (resp. 210)
seconds using an R implementation on a 3GHz linux server. The execution time for the largest
v0 values considered was 21.4 minutes for the beta-binomial model and 17.5 minutes for the
MRF model. In sharp contrast the stochastic search MCMC approach of Li and Zhang (2010)
took more than 12 hours to obtain marginal inclusion estimates for a single mixture prior with
v0 = 0 [personal communication].

18 Selected Motifs 7 Selected Motifs
BB MRF BB MRF Known

GACGCGT 1 GACGCGT 1 GACGCGT 1 GACGCGT 1 ×
TACGCGT 1 TACGCGT 1 TACGCGT 1 ×
T TCGCGT 1 T TCGCGT 1 T TCGCGT 1 T TCGCGT 1 ×

T TACGCG2

T T TCGCG2 T T TCGCG2 T T TCGCG2 T T TCGCG2 ×
T GACGCG2

T TAGCAG
ACGCGT T ACGCGT T ACGCGT T ACGCGT T
CCGCT T G CCGCT T G
CCGTCCT CCGTCCT
CGCGT T T CGCGT T T CGCGT T T CGCGT T T
CGTCCCT CGTCCCT
CT GAT GG CT GAT GG
GAAT TAT GAAT TAT
GACAGGT
GCCAT T T GCCAT T T

GCGT T T T
GGACGAT GGACGAT GGACGAT ×
GTCCTCT
TACACAG TACACAG ×
T T TATCG T T TATCG T T TATCG T T TATCG

Table 3.4: Selected motifs by betabinomial (BB) and MRF versions of EMVS for selected v0 values that along the
regularization path lead to selection of 18 and 7 predictors; known or previously identified motifs (Li and Zhang (2010),
Zhu and Zhang (1999)) are marked with a cross; motifs that form a subnetwork of connected components are marked
with a superscript (1 Group of known MCB cell cycle regulatory motifs, 2 Group of known SCB cell cycle regulatory
motifs)
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3.10

Discussion

The main thrust of this work has been to propose EMVS, a practical deterministic approach
for posterior model mode discovery under spike-and-slab formulations for Bayesian variable
selection in high dimensional regression settings. Through dynamic posterior exploration with
a fast EM algorithm, EMVS can be used to find sparse high probability models in complicated
settings with structured prior information and a large number of potential predictors, settings
where alternative methods such as MCMC stochastic search would, at best, be much slower.

The core ingredients of EMVS are the continuous conjugate spike-and-slab formulation,
the regularization scheme and an EM algorithm tailored for non-convex Bayesian maximum a
posteriori optimization. As opposed to point mass variable selection priors, a continuous spike
distribution serves to absorb smaller unimportant coefficients and to reveal sparser candidate
subsets. The gradual sparsification of the explored models for increasing spike variance is
captured by the regularization diagram, where each of the discovered subsets is subsequently
evaluated by its posterior model probability. For posterior computation, our EM algorithm
converges quickly, effectively identifying sets of high-posterior models and regression coef-
ficient estimates. On both real and simulated examples, we have demonstrated that EMVS
is capable of identifying promising models, while still providing computational tractability,
a crucial feature for high-dimensional model spaces. We have also illustrated the generality
of EMVS, how it can accommodate a variety of hierarchical model prior constructions, from
exchangeable priors that are uniform over model size to flexible structured priors driven by
existing external knowledge.

Extensions of EMVS to frameworks beyond linear regression provide rich new directions
for methodological developments. For example, a straightforward probit extension for classi-
fication of binary responses can be derived using data augmentation with an additional E-step
to obtain expected values of the latent continuous data. Other generalized linear models such
as logistic regression and Poisson regression become feasible with the dual coordinate ascent
algorithm (Shalev-Shwartz and Zhang, 2013) for approximating the M-step. Further interest-
ing directions will be to consider EMVS for Gaussian graphical model determination or for
factor analytic augmentation of multivariate regression models.

Another important avenue for future research will be the development of uncertainty re-
ports to accompany EMVS model selection. Although full posterior inference has been sacri-
ficed for computational feasibility, posterior variability assessments will still be available.

To begin with, conditionally on the posterior, EMVS selection uncertainty could be ad-
dressed by considering multiple starting values for the EM algorithm. This might be done
locally by reinitializing EMVS over a set of perturbed modal estimates, or more globally over
a set of spread out values obtained from a preselected grid or by random sampling. The speed
of our EM algorithm would allow for as many starting values as tens to hundreds. In mul-
timodal posterior landscapes without a dominating posterior mode, EMVS model selection
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3.10 Discussion

will be more sensitive to such reinitializations, leading to a variety of different modal mod-
els. The relative posterior probabilities obtained by g0(γ) in (3.4.23) for such selected models
would provide an informative model uncertainty report, and could be used as a basis for model
averaging or for the approximation of a median probability model.

For any given EMVS selected mode γ̂ one could carry out local MCMC posterior simula-
tions in a neighborhood of γ̂ in order to gauge the relative accumulation of posterior probabil-
ity. The closed form posterior expression g0(γ) would be useful for this simulation. Note that
such posterior accumulations would provide a further basis for the comparison of multiple
modes obtained through the reinitialization described above.

Finally, the ability of EMVS to quickly find posterior modes in high dimensional settings
makes it a potentially powerful complement for other methods. For example, general MCMC
simulation in multimodal settings may be substantially enhanced with EMVS selected poste-
rior modes as starting values.

Our software implementation of EMVS was written in R with a prototype version in C as
a shared library loadable from R. Both are available from the authors upon request.
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CHAPTER 4

INCORPORATING GROUPING IN BAYESIAN VARIABLE SELECTION

WITH APPLICATIONS IN GENOMICS

Rockova, V., Lesaffre, E. 2013. Incorporating Grouping Information in Bayesian Vari-
able Selection with Applications in Genomics. To appear in Bayesian Analysis

79



80



4.1 Introduction

Abstract
In many applications it is of interest to determine a limited number of important explanatory

factors (representing groups of potentially overlapping predictors) rather than original predictor

variables. The often imposed requirement that the clustered predictors should enter the model

simultaneously may be limiting as not all the variables within a group need to be associated with

the outcome. Within-group sparsity is often desirable as well. Here we propose a Bayesian variable

selection method, which uses the grouping information as a means of introducing more equal

competition to enter the model within the groups rather than as a source of strict regularization

constraints. This is achieved within the Bayesian LASSO context by allowing each regression

coefficient to be penalized differentially and by considering an additional regression layer to relate

individual penalty parameters to a group identification matrix. The proposed hierarchical model

therefore enables inference simultaneously on two levels: (1) the regression layer for the continuous

outcome in relation to the predictors and (2) the regression layer for the penalty parameters in relation

to the grouping information. Both situations with overlapping and non-overlapping groups are

applicable. The method does not assume within-group homogeneity across the regression coefficients,

which is implicit in many structured penalized likelihood approaches. The smoothness here is

enforced at the penalty level rather than within the regression coefficients. To enhance the potential

of the proposed method we develop two rapid computational procedures based on the EM algorithm,

which offer substantial time savings in applications where the high-dimensionality renders the MCMC

approaches less practical. We demonstrate the usefulness of our method in predicting time to death in

glioblastoma patients using pathways of genes.

4.1

Introduction

Rapid advances in the development of biomedical technologies have facilitated the availability
of complex genomic data, which have continued posing significant challenges for statistical
practitioners particularly because of their high dimensionality. Simultaneous selection of ge-
nomic features associated with a clinical outcome as well as development of an interpretable
prediction rule are commonplace in routine analysis of genomic data. Current statistical tool-
kits rely heavily on methodological developments in variable selection, among which the
regularization approaches (Tibshirani, 1994; Zou and Hastie, 2005; Fan and Li, 2001) have
enjoyed particular attention. Despite the practical value of these approaches, one of their limi-
tations is the inability to effectively utilize existing structural information about the predictors.

Modern genomic applications often deal with complicated covariate structures such as
gene network topologies or partitions into groups, which may overlap. In cancer genomics,
for example, DNA mutations are detected along the DNA sequence, where the location in the
chromosome provides a linear ordering of the observations. It is reasonable to assume that
adjacent measurements measure the same genetic effect and therefore should be grouped (Li
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and Zhang, 2010). Gene expression data yield another example of a highly structured covari-
ate space. Biologically related genes are known to form groups called pathways. Functional
interactions between genes within/between pathways give rise to a gene interaction network,
another type of structural information which has proven beneficial to incorporate in variable
selection (Li and Li, 2008).

Nowadays, many databases are available which store biological information from ex-
perimental research. These databases are continuously being updated with newly emerging
information, providing a compendium of existing knowledge on how genes and gene products
interact with each other. These interactions can be represented either as a network, where ver-
tices represent genes/gene products and edges indicate a regulatory relationship, or as a list of
pathway memberships. Existing databases of gene networks include among others the KEGG
gene regulatory network (Kanehisa et al., 2002).

It is recognized that incorporation of the supplementary covariate information in the
analysis of genomic data can be beneficial for more accurate prediction and improved in-
terpretability of the results (Stingo et al., 2011; Pan et al., 2010). Several methods have been
proposed that account for the gene network topology structures. Li and Li (2008) and Pan
et al. (2010) proposed network-based penalties in linear regression, which induce both spar-
sity as well as smoothness of estimated effects within the pathways. These penalties have a
Bayesian interpretation in that the prior on regression coefficients corresponds to the Gaus-
sian conditional autoregressive model (Gelfand and Vounatsou, 2003). Structural information
among the predictors has been considered in the context of Bayesian variable selection by
multiple authors including Li and Zhang (2010), Stingo and Vannucci (2011) and Stingo et al.
(2011), who consider a Markov random field (MRF) prior on variable selection indicators
with a neighboring structure defined by the network.

The limitation of MRF prior specification is that the effects of individual pathways cannot
be separated from each other. The MRF network consists of multiple overlaying pathways,
where the overlap makes it difficult to quantify the respective pathway contributions. It is often
of interest to evaluate importance of pathways and simultaneously perform within-pathway
gene selection. Recently, Stingo et al. (2011) proposed a partial least squares approach for
pathway and gene selection using variable selection priors and MCMC for computation. In
this chapter we consider an alternative approach, which utilizes pathway membership infor-
mation as a source of group-driven shrinkage. This is achieved within the Bayesian LASSO
context (Park and Casella, 2008), where individual penalty parameters are considered for each
regression coefficient. An additional regression layer is then specified to relate these penal-
ties to the grouping information. The motivation being that penalties for coefficients within a
group should share a common hyper-regression parameter, which puts the within-group coeffi-
cients on more equal footing in terms of penalization. These hyper-regression coefficients can
be interpreted as “pathway effects", which explain how the overall amount of penalization is
distributed across the groups. The model extends the normal-exponential-gamma (NEG) prior
of Griffin and Brown (2012) by embedding the grouping information in the prior distribution
on the penalties to induce structured shrinkage. As opposed to the overlapping group LASSO
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approaches (Jacob et al., 2009), where either a whole group of predictors enters the model
or is left out, here we rather introduce a more equal competition for genes within the same
pathways to enter the model. As such, we let the likelihood of a variable to be selected to be
dependent on the pathway effects rather than its neighbors in the undirected graph. The esti-
mated pathway effects then quantify respective pathway importance, adding to the biological
interpretability. Group sparsity can be enforced through priors on the pathway weights, where
the posterior serves a prerequisite for performing variable selection in a hierarchical manner
by first selecting pathways and then selecting genes within the pathways.

An important point of contrast between our method and the penalized regression ap-
proaches for structured variable selection such as group LASSO (Yuan and Lin, 2006) or
Markov random field models on regression coefficients (Pan et al., 2010; Li and Li, 2008) is
that the latter two enforce smoothness in the regression coefficients rather than in the penalty
parameters. This discrepancy may have important practical implications in situations, where
there is no reason to assume homogeneity in regression coefficients within groups or between
neighbors in the graph.

We also investigate asymptotic implications of rescaling the NEG shrinkage prior by a
factor dependent on the sample size and consider an alternative formulation of the model,
which guarantees a non-vanishing penalization effect. We show that the maximum a posteriori
(MAP) estimator in the rescaled model possesses the oracle property (Fan and Li, 2001) and
demonstrate its satisfactory finite sample size performance on simulated examples.

The implementations of Bayesian methods for shrinkage estimation have relied heavily
on the developments of MCMC strategies, which may suffer from high computational time re-
quirements when the cardinality of the predictor space is large. In this chapter we consider an
alternative computational strategy, the maximum a posteriori estimation based on the EM al-
gorithm. We build on work done previously by Griffin and Brown (2012) and we extend their
algorithm by including structural grouping information. Similar as Armagan et al. (2012) we
present two versions of the algorithm, the first one based on iteratively solving ridge regres-
sion, while the other one is based on LASSO (Tibshirani, 1994). The two algorithms are seen
to converge rapidly even in situations where the number of predictors p greatly exceeds the
number of observations n.

4.2

The Method

Consider the canonical multiple linear regression setting, where the (n× 1) vector of cen-
tered responses Y is linked to the (n× p) matrix X of standardized regressors (mean zero and
variance one) through the relation Y ∼ Nn(Xβ ,σ2In), where β denotes the (p×1) vector of
regression coefficients and σ2 is an unknown scalar. We focus on the “large p small n" situ-
ation arising often in genomic and proteomic studies, where the number of predictors greatly
exceeds the number of observations. The regression vector β is believed to be sparse in that
only a small subset of predictors contributes to explaining the variability of the response.
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Figure 4.1: Loading matrix and undirected graph representations of gene interactions

Apart from the sparsity requirement, we wish to impose additional regularization constraints
as dictated by available prior knowledge about the structure among predictors.

The key ingredient in the model formulation is the introduction of a design/loading matrix
Z (p×q) consisting of q columns of dummy variables coding for group membership. Given
that the predictors form a network structure attributable to the existence of few shared under-
lying factors, the involvement of genes within each of the q factors/pathways can be encoded
through a pattern of zeroes in the loading matrix Z. Here we assume that the number of the
latent factors as well as patterns of zeros in the loading matrix can be retrieved from external
scientific knowledge.

An illustrative example for 10 genes and 4 pathways is depicted in Figure 4.1(a), where
colored fields indicate functional gene-pathway relationships. Assuming that two genes are
related if and only if they share at least one underlying pathway, we obtain an undirected
graphical structure characterized as a set of edges E = {(i, j) : 1≤ i< j≤ p}, where (i, j)∈ E
whenever Xi is a neighbor of X j. Such a structure can be represented by a symmetric p× p
matrix M = (mi j)

p,p
i, j=1, where mi j 6= 0 whenever (i, j) ∈ E . The zero patterns in matrix M

are depicted for our simple example in Figure 4.1(b). It is easy to see that the off-diagonal
elements in M copy the pattern of zeroes in the matrix ZZ′. This undirected graph however
assumes that all the genes within the pathway are connected. In reality, the genes within path-
ways are far more sparsely connected and it is the union of these small network components
that gives rise to a gene association network.

Assume that the k-th pathway is assigned a weight coefficient bk, which summarizes its
activity. In order to induce simultaneous shrinkage of coefficients sharing the same underlying
pathways we let the likelihood of a gene to be selected to depend on a combination of the ac-
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tive pathway effects. In our simple example, for instance, Gene 2 is involved in the activity of
Pathway 2 and Pathway 3 and therefore the degree of shrinkage of β2 towards zero is affected
by the combination of the pathway weights b2 and b3. In case there are singletons, which do
not belong to any pathway, such as Gene 5 in our example, we consider an additional shared
parameter b0, which controls the overall sparsity for all genes. In the following paragraph we
put down a mathematical formulation for this mechanism.

4.3

Model Formulation

We consider the problem of Bayesian shrinkage estimation in structured high-dimensional co-
variate spaces. Our proposal extends the Normal-Exponential-Gamma (NEG) prior of Griffin
and Brown (2012) by embedding the structural covariate information (encoded in Z) within
the sparsity inducing regularization. The model formulation is as follows:

Y |X ,β ,σ2 ∼ Nn(Xβ ,σ2In),

β j|σ2,τ j
ind∼ N(0,σ2

τ
2
j ),

τ
2
1 , . . . ,τ

2
p|λ 2

1 , . . . ,λ
2
p ∼

p

∏
j=1

λ
2
j exp(−λ

2
j τ

2
j )I(τ j > 0),

λ
2
j |b

ind∼ Γ
[
a,h(Z′jb)

]
,

bl
ind∼ π(θ), l = 0, . . . ,q,

σ
2 ∼ IGamma(c,d),

where Z j denotes the j-th row of the p×(q+1) matrix [1p,Z] and Γ(a,b) (resp. IGamma(a,b))
denotes the gamma (resp. inverse gamma) distribution with shape a and scale b. The regres-
sion coefficients arise from the conditional Laplace distribution (expressed as a scale mixture
of normals), given the variance σ2 and a vector of penalty parameters λ = (λ1, . . . ,λp)

′. An
important ingredient in this formulation is the conjugacy, whereby including the variance σ2

in the prior for regression coefficients yields nice analytical simplifications in the derivation
of the EM algorithm. Furthermore, it guarantees the unimodality of the joint conditional
posterior distribution π(β ,σ2|y,λ ) (as shown by Park and Casella (2008)), which may bet-
ter mitigate the local mode problems associated with the EM algorithm. As opposed to the
Bayesian LASSO model (Park and Casella, 2008), where only one common penalty is used to
regularize all the coefficients, we allow unique parameters for each individual coefficient by
analogy with the adaptive LASSO (Zou, 2006). Griffin and Brown (2012) further suggest im-
posing a gamma hyper-prior distribution on the coefficient-specific penalties with fixed shape
and scale. Here we go a step further and assume that the scale parameter is random and varies
from coefficient to coefficient.
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More specifically, we assume an additional regression layer in the hierarchy to relate the
penalty parameters to the matrix Z. Each λ j is independently assigned a gamma distribution
with expected value Eλ j = ah(Z′jb), where coefficients b = (b0, . . . ,bq)

′ are unknown and
subject to estimation. The intercept b0 can be regarded as a global shrinkage hyper-parameter
determining the baseline level of shrinkage. The individual regression coefficients are then
locally influenced by the remaining coefficients in the linear predictor Z′jb.

Assume for a moment that Z encodes for q non-overlapping groups, i.e. {1, . . . , p} =⋃q
k=1 Qk, where Qk ∩Ql = /0 for k 6= l. Then, ∀ j ∈ Qk we have Eλ j = ah(b0 + bk). The

parameter bk hence quantifies the additional amount of shrinkage attributable to the k-th group
and puts the within-group coefficients on more equal footing in terms of penalization. For
overlapping groups, the shape parameter is an additive summary of the weights for all active
pathways, i.e. Eλ j = ah(b0 +∑

q
k=1 I[ j ∈Qk]bk).

Various link functions h(·) can be considered in the hierarchical formulation. However,
in order to interpret the higher values bk as more evidence for pathway importance, we need
to consider a link function decreasing in b, such as an inverse or an inverse exponential link
function. The choice of the link function has implications for the selection of appropriate prior
distributions π(θ). We are not necessarily restricted to the conjugate class of priors, which
would be a natural candidate for posterior sampling in the GLM setting (Chen and Ibrahim,
2003). The (inverse) exponential link functions slow down the convergence of the EM algo-
rithm, therefore we consider only inverse and identity links with pathway weights restricted
to be positive. Since for a fixed shape parameter a, the gamma distribution is conjugate for
the rate parameter 1/s in Γ(a,s), we opt for independent gamma priors Γ(α,1/γ) on the ele-
ments of b in the inverse link and for inverse gamma priors IGamma(α,1/γ) in the identity
link. The hyper-parameters α and γ can be tuned according to the expected degree of group
“sparsity". In the inverse link, we might want to assure sufficient spread over a wider range of
values in situations when many groups are assumed predictive. Other choices α and γ would
be more appropriate if the solution is expected to be group “sparse", in which case the prior
Γ(α,1/γ) should accumulate more density on pathway weights close to zero.

Finally, the weights bk summarize the relevance of the respective pathways, when re-
lated to clinical outcomes. In gene networks, predictive disease co-regulation patterns can be
found by locating high-evidence pathways, as determined by the magnitude of these pathway
weights. A similar prior construction was considered by Stingo et al. (2010), who proposed
a hierarchical Bayesian graphical model for microRNA targets, where the prior probability of
variable inclusion is related to a linear combination of external association scores through a
logistic regression formulation.

4.4

EM Algorithm for the Extended NEG Prior

The practicality of implementation is one of the most important aspects when analyzing high-
dimensional data. In this regard, MCMC algorithms for Bayesian shrinkage estimation have
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become increasingly computationally cumbersome as the number of covariates has escalated.
Several authors have considered alternative strategies based on the EM algorithm (Figueiredo,
2003; Kiiveri, 2003; Griffin and Brown, 2012). To adopt these to our situation, we have
the additional difficulty of estimating the pathway weights b, which requires extensions of
existing approaches.

In the EM algorithm, modified for Bayesian modal estimation (McLachlan and Krish-
nan, 1996, p. 26), the logarithm of the incomplete data likelihood is augmented by the log-
arithm of the prior density. The incompleteness here refers to unobserved latent variables
rather than missing observations. The MAP estimates are then values that maximize the so
called log-incomplete data posterior density, here log p(β ,b,σ2 | y). These values are ob-
tained by iteratively maximizing the conditional expectation of the log complete posterior
log p(β ,b,σ2,w |y) with respect to the conditional distribution of the latent variables w given
the current parameter estimates and the observed data.

Since the parameters β ,b and σ are of interest, the candidates for the latent unobserved
data are either τ2 and λ

2. Instead of assuming that both τ2 and λ
2 are missing, we integrate

out either one of the two sets of parameters from the model. This leads to nice simplifications,
as will become clearer later on. Similarly as in Armagan et al. (2012), we consider two
variants. First, we integrate over the penalty parameters λ

2 and treat the latent variances τ2 as
missing. This formulation exploits the normal-scale mixture representation of the NEG prior.
In the second version, we integrate over τ2 and treat the penalty parameters λ as missing,
which corresponds to the Laplace prior formulation.

4.4.1 EM Algorithm Using the Normal Mixture Representation

The E-step of the algorithm entails the computation of the conditional expectation of the log
complete posterior distribution given the observed data and current values β

(k),b(k),σ (k) at
the k-th iteration. This objective function, which is to be maximized in the subsequent M-step,
takes the following form:

Q
(

β ,b,σ |β (k),b(k),σ (k)
)
=Eτ2

[
log p(β ,b,σ ,τ2 | y) |β (k),b(k),σ (k),y

]
=C+Q1

(
β ,σ |β (k),b(k),σ (k)

)
+Q2

(
b |β (k),b(k),σ (k)

)
,

where

Q1

(
β ,σ |β (k),b(k),σ (k)

)
=− (Y −Xβ )′(Y −Xβ )

2σ2 − 1
2σ2

p

∑
j=1

β
2
j Eτ2 | ·

(
1
τ2

j

)

− n+ p+2c+2
2

log(σ2)− d
σ2 ,
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Q2

(
b |β (k),b(k),σ (k)

)
=

p

∑
j=1

{
log[ah(Z′jb)]− (a+1)Eτ2 | · log[1+ τ

2
j h(Z′jb)]

}
+

q

∑
l=0

logπ(bl)

and E
τ2 | ·(·) denotes the conditional expectation Eτ2

(
· |β (k),b(k),σ (k),y

)
.

As a result of our hierarchical prior formulation, where coefficients β depend on the
coefficients b only through the penalty parameters λ , the objective function Q(·) is separable
with respect to b and (β ,σ)′. This implies that the M-step can be performed by separately
maximizing each of the functions Q1(·) and Q2(·). It is worth noting that Q1(·) corresponds
to the log-posterior distribution resulting from a Bayesian ridge regression, whose maximum
can be expressed analytically. The maximization of Q2(·) with respect b is complicated by
the unavailability of the conditional expectation Eτ2 | · log[1+ τ2

j h(Z′jb)] in closed form. This
problem could be circumvented by approximating the integral either analytically or using
MCMC methods. However, this would impose an additional computational burden and we
do not elaborate on such alternatives further. In the following paragraph we show how to
maximize this function without approximations, assuming the identity link function h(Z′b) =
Z′b. Recall that for the identity link we use independent inverse gamma priors on the elements
of b, i.e. logπ(b) =−(α +1) logb− γ/b+const.

In the spirit of a generalized EM algorithm (Dempster et al., 1977), instead of finding the
value that globally maximizes the function Q2

(
b |β (k),b(k),σ (k)

)
we choose b(k+1) such that

Q2

(
b(k+1) |β (k),b(k),σ (k)

)
≥ Q2

(
b(k) |β (k),b(k),σ (k)

)
. (4.4.1)

Such a condition on b(k+1) is sufficient to guarantee the monotonicity property, i.e. the incom-
plete data log posterior distribution is not decreased after the k-th iteration. The update b(k+1)

that satisfies property (4.4.1) can be found by maximizing a surrogate minorizing function,
the definition of which is given below.

Definition 4.4.1. Let b(k) ∈ D ⊂ Rq+1 represent a fixed value of the parameter vector b and
let f (b;b(k)) denote a real-valued function. Then f (b;b(k)) is said to be minorizing a real
valued function g(b) at b(k) in domain D if and only if

f (b;b(k))≤ g(b), ∀b ∈ D,

f (b(k);b(k)) = g(b(k)).

From the definition of the minorizing function, it easily follows (McLachlan and Krish-
nan, 1996, p. 278) that g(b(k+1)) ≥ g(b(k)), where b(k+1) maximizes the surrogate func-
tion f (b;b(k)). The question remains how to construct a suitable minorizing function for

Q2

(
b |β (k),b(k),σ (k)

)
. The answer is given in the following theorem.
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Theorem 4.4.1. Let b(k) ∈ Rq+1
+ represent a fixed value of the parameter vector b. Denote

M2

(
b |β (k),b(k),σ (k)

)
=

p

∑
j=1

[
log(aZ′jb)− (a+1)Eτ2 | ·

(
τ2

j

1+ τ2
j Z′jb

(k)

)
Z′j(b−b(k))

]

−
p

∑
j=1

(a+1)Eτ2 | · log[1+ τ
2
j Z′jb

(k)]+
q

∑
l=0

[−(α +1) logbl − γ/bl ].

Then the function M2

(
b |β (k),b(k),σ (k)

)
minorizes Q2

(
b |β (k),b(k),σ (k)

)
at b(k) in Rq+1

+ .

Proof. For j ∈ {1, . . . , p} denote g j(b) = −(a+ 1) log(1+ τ2
j Z′jb). Each of the functions

g j(b) is convex in Rq+1
+ (i.e. the function g∗j(t) = g j(b+ tc) is convex ∀b,c ∈ Rq+1

+ and
∀t ∈ R such that b+ tc is in the domain of g j(·)). The convexity implies that the first order
Taylor approximation at the point b(k) is a global underestimator of the function g j(·). The
fact that Eτ2|·X ≥ Eτ2|·Y , whenever X ≥ Y a.s. completes the proof.

Several observations can be made based on the result of Theorem 4.4.1. First, the mi-
norizing function M2

(
b |β (k),b(k),σ (k)

)
no longer entails the evaluation of an integral which

depends on the unknown parameter values b. All the integrals in the minorizing functions
depend only on the current parameter values b(k). Furthermore, the cumbersome expectation
Eτ2 | · log(1+ τ2

j Z′jb
(k)) does not need to be computed, as the summand involving this term

does not depend on b. Second, the values maximizing the minorizing function can be re-
garded as MAP estimates in a Bayesian regression with exponentially distributed responses

(a+1)/aEτ2 | ·

(
τ2

j

1+τ2
j Z′jb

(k)

)
, which are related to the regression matrix aZ via an inverse link

function, and where the regression coefficients b are assumed to be independently gamma dis-

tributed. Third and most importantly, the expectations Eτ2 | ·

(
τ2

j

1+τ2
j Z′jb

(k)

)
can be expressed

analytically using hypergeometric cofluent functions (Gradshteyn and Ryzhik, 2000, p. 278).
The graphical representation of the “minorization-maximization" (MM) algorithm is given

in Figure 4.2. The solid curve corresponds to the function g(b) = − log(b)− 2log(1+ b)−
1/b, which depicts the behavior of the function Q2(·) for p = q = a = α = γ = 1 assuming
that τ1 = 1 almost surely and Z1 = 1. We have the initial estimate b(0) = 4, at which we
construct the minorizing function f (b;b(0)) according to Theorem 4.4.1 (depicted by the red
curve). This function has its maximum at the value b(1) = 0.76. Repeating the minorization-
maximization at the new point b(1) (Figure 4.2(b)), we obtain a surrogate function f (b;b(1)),
whose maximum b(2) = 0.59 lies in the close vicinity of the true global maximum b̂ = 0.57
of the function g(b).
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Figure 4.2: Graphical representation of the minorization-maximization algorithm

Unfortunately, this convenient computation can be only applied for the identity link func-
tion. Considering either inverse, exponential, or inverse exponential link functions, we lose
the convexity property of the function log[1+ τ2

j h(Z′b)], which is necessary to assure the
monotonicity of the update based on the Taylor expanded surrogate function.

� Summary of the EM Algorithm Using the Normal Mixture Representation

The parameters are initialized with starting values β
(0),b(0),σ (0). The below described steps

are then repeated until a convergence criterion is satisfied (e.g. |β (k+1)−β
(k)|l1 + |b(k+1)−

b(k)|l1 < ε).

� E-step

In the E-step, we first evaluate the conditional expectations Eτ2 | ·

(
1
τ2

j

)
. Following Griffin

and Brown (2012), we obtain (proof in Appendix A)

Eτ2|·

(
1
τ2

j

)
=

2(a+0.5)σ (k)
√

Z′jb
(k)

|β j|(k)

D−2(a+1)

(
|β (k)

j |
√

Z′jb
(k)

σ (k)

)

D−2(a+0.5)

(
|β (k)

j |
√

Z′jb
(k)

σ (k)

) , (4.4.2)

where Dη (x) denotes the parabolic cylinder function (Gradshteyn and Ryzhik, 2000, p. 256).

We then denote Ω
(k) = diag

[
Eτ2|·

(
1/τ2

j

)]p

j=1
the diagonal matrix with the entries (4.4.2) on
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the diagonal. Next, we compute Eτ2|·

(
τ2

j

1+τ2
j Z′jb

(k)

)
for j = 1, . . . , p and we stack the values in

a p×1 vector Λ
(k). We obtain (proof in Appendix B)

Eτ2|·

[
τ2

j

1+ τ2
j Z′jb

(k)

]
=

aΓ(a+0.5)

σ (k)
√

2πZ′jb
(k)

1

p(β (k)
j |b(k),σ (k))

× (4.4.3)

Ψ

a+0.5,−1
2

;
β
(k)2
j Z′jb

(k)

2σ (k)2

 , (4.4.4)

where Ψ(a,b;x) denotes the hypergeometric cofluent function (Gradshteyn and Ryzhik, 2000,
p. 543).

� M-step

The value β
(k+1), which globally maximizes Q1

(
β ,σ |β (k),b(k),σ (k)

)
can be regarded as a

solution to the ridge regression problem

β
(k+1) = argminβ∈Rp{|Y −Xβ |l2 + |Ω(k)1/2

β |l2}, (4.4.5)

where Ω
(k)1/2 denotes the square root of the matrix Ω

(k). The computation of the closed form
solution (X ′X +Ω

(k))−1X ′Y can be, for p > n, facilitated by utilizing the Sherman-Morrison-
Woodbury formula (Golub and van Loan, 1996), which requires the inversion of only an n×n
matrix. The variance is updated as

σ
2(k+1) = (|Y −Xβ

(k+1)|l2 + |Ω(k)1/2
β
(k+1)|l2 +2d)/(n+ p+2c+2).

Finally, the pathway weights are updated according to Theorem (4.4.1) as values maximizing
the function M2(b |β (k),b(k),σ (k)). Keeping only the summands in M2(·), which depend on
b, we obtain b(k+1) as

b(k+1) = argmaxb∈Rq+1
+

{ p

∑
j=1

[
log(aZ′jb)− (a+1)Λ(k)

j Z′jb
]

(4.4.6)

+
q

∑
l=0

[−(α +1) logbl − γ/bl ]
}
, (4.4.7)

which is a box-constrained optimization problem solvable using optimization routines imple-
mented in standard packages (optimize function in R).

This EM algorithm corresponds to the algorithm of Zou and Li (2008) for the compu-
tation of penalized likelihood estimates with nonconvex penalties, using the local quadratic
approximation to the penalty function.
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4.4.2 EM Algorithm Using the Laplace Representation

The ease of the computation of the normal-mixture-based algorithm applies only for the iden-
tity link function. The difficulty in using the identity link is the interpretability of the pathway
weights b, where small values indicate more evidence for the importance of the pathway.
Another limitation is the inability to estimate the coefficients directly as zero, due to the
ridge regression updates. Fan and Li (2001) suggested that if β

(k)
j is very close to zero, say

|β (k)
j |< ε , then the MAP estimate is set β̂ j = 0 and the j-th component is removed from the

next iteration. The drawback of this approach is that once deleted, the covariate is ultimately
excluded from the model. Moreover, the selection threshold ε , which determines the sparsity
of the solution, can be regarded as an additional parameter, which requires tuning. Similarly
to Armagan et al. (2012), we consider an alternative version of the EM algorithm, which ben-
efits from the LASSO rather than ridge regression solutions and therefore produces a naturally
sparse solution without unnecessary thresholding. Furthermore, it allows for richer choices of
the link functions.

In the previous version of the EM algorithm, we integrated over the penalty parameters
λ

2 and treated the latent variances τ2 as missing data. Now we do exactly the opposite, we
integrate over τ2 and treat the penalties λ

2 as missing.
The objective function, i.e. the conditional expectation of the complete log posterior

distribution given the observed data and current values β
(k),b(k) and σ (k) at the k-th iteration

now corresponds to:

Q̃
(

β ,b,σ |β (k),b(k),σ (k)
)
=E

λ
2

[
log p(β ,b,σ ,λ 2 | y) |β (k),b(k),σ (k),y

]
=C+ Q̃1

(
β ,σ |β (k),b(k),σ (k)

)
+ Q̃2

(
b |β (k),b(k),σ (k)

)
,

where

Q̃1

(
β ,σ |β (k),b(k),σ (k)

)
=− (Y −Xβ )′(Y −Xβ )

2σ2 −
√

2
σ

p

∑
j=1
|β j|Eλ

2|·λ j

− n+ p+2c+2
2

log(σ2)− d
σ2

and

Q̃2

(
b |β (k),b(k),σ (k)

)
=

p

∑
j=1

[
−a logh(Z′jb)−

E
λ

2|·λ
2
j

h(Z′jb)

]

+
q

∑
l=0

[(α−1) logbl − γbl ]
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and E
λ 2|·(·) denotes the conditional expectation E

λ
2

(
· |β (k),b(k),σ (k),y

)
.

The expected log complete posterior distribution is again separable with respect to b and
(β ,σ)′. In contrast to the previous version of the EM algorithm, the coefficients β

(k+1) at
the k-th iteration solve the “adaptive" LASSO problem, where differential penalties are con-
sidered for each regression coefficient. This algorithm relates to the algorithm of Zou and
Li (2008) for the computation of nonconcave penalized likelihood problems using the local
linear approximation to the penalty function.

� Summary of the EM Algorithm Using the Laplace Representation

The parameters are initialized with starting values β
(0),b(0),σ (0). The below described steps

are then repeated until a convergence criterion is satisfied (e.g. |β (k+1)−β
(k)|l1 + |b(k+1)−

b(k)|l1 < ε).

� E-step

The E-step entails the calculation of E
λ

2|·λ j and E
λ

2|·λ
2
j , which can be evaluated using known

functions (proof in Appendix C). For s = 1,2, we have

E
λ

2|·λ
s
j =

[h(Z′jb
(k))](s+1)/2

σ (k)Γ(a)2a+s/2
exp

β
(k)2
j h(Z′jb

(k))

4σ (k)2

× (4.4.8)

D−(2a+1+s)

 |β j|
√

h(Z′jb
(k))

σ (k)

 . (4.4.9)

� M-step

In the M-step, we begin with the update β
(k+1), which appears to be a solution to the problem

β
(k+1) = argminβ∈Rp{|Y −Xβ |l2 +2

√
2σ

(k)|D(k)
β |l1},

where D(k) = diag
[
E

λ
2|·λ1, . . . ,Eλ

2|·λp

]
. The solution can be obtained easily after reweight-

ing the regression matrix and applying standard LASSO computation (Zou, 2006). The M-
step continues by updating σ (k+1) according to

σ
(k+1) =

√
2|D(k+1)β |l1 +

√
2(|D(k+1)β |l1)2 +4(|Y −Xβ |l2 +2d)(n+ p+2c+2)

n+ p+2c+2
.

Finally, the updates b(k+1) = argmaxb∈Rq+1Q̃2

(
b |β (k),b(k),σ (k)

)
can be computed using

box-constrained optimization routines. Assuming a = 1, this function corresponds to the log
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posterior for Bayesian regression with exponentially distributed variables Eλ |·λ j, which are
related to the regression matrix Z through the h(·) link function, assuming independent gamma
distributed priors on the regression coefficients b.

4.5

Hierarchical Variable Selection

A natural strategy for variable selection based on the posterior output (β̂ , b̂, σ̂) is by screening
out variables with a zero estimated (or negligible) regression coefficient β̂ . As an alternative
practical guidance for selecting variables, we suggest proceeding hierarchically from the top
of the hierarchical model to the bottom. In the first step, we select relevant pathways. This
is achieved by disregarding groups with pathway weights b̂ that are estimated at the zero
boundary of the parameter space (or are negligibly small). Given that the weights correlate
with the proportion of relevant genes within each pathway (simulated study in Appendix D) it
will often be sensible to ignore all the genes within the non-predictive pathways. The second
step then proceeds by selecting only from variables that are located in the predictive groups.
This selection can be anchored by either thresholding or identification of zeroes in the vector
of posterior estimates β̂ , depending on which version of the EM algorithm has been used.
This recommended strategy in our simulated examples leads to a dramatic reduction of false
discoveries.

4.6

Some Properties of the NEG Prior

The hierarchical prior construction introduced in Section 2.1 differs from the original formu-
lation of the NEG prior (Griffin and Brown, 2012) in the assumption that the scale parameter
(further denoted as s) in the gamma prior density Γ(a,s) is unknown and subject to estimation.
In this section, we discuss some of the properties of the NEG prior in relation to the choice
of the shape and scale hyper-parameters. Recall that the NEG distribution has the following
density function (Griffin and Brown (2012)):

pa,s,σ (β ) =
a2a√s√

πσ2
Γ(a+0.5)exp

(
β 2

j s

4σ2

)
D−2(a+0.5)

( |β j|
√

s
σ

)
. (4.6.10)

The shape parameter a controls the heaviness of the tails, where the prior density becomes
more peaked and lighter tailed with increased a, which may cause unwanted bias in estimation
of large effects. Decreasing the scale parameter, the density (4.6.10) becomes flatter, loosing
the ability to shrink noise signals due to a less pronounced peak at zero. With both for a
and 1/s approaching zero, we obtain the Normal-Jeffreys limiting case (Griffin and Brown,
2012). With both a and 1/s approaching infinity at the same rate, the density converges to the
Laplace prior. This property is formally summarized in the following theorem.
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Theorem 4.6.1. Let pa,s,σ (β ) denote the density function in (4.6.10). Then for 0 < s/a =

λ ′ < ∞ we have lima→∞ pa,s,σ (β ) =
√

λ ′
2σ

exp(−
√

λ ′|β |/σ).

Proof. Let us consider the characteristic function of the Γ(a,s) distribution ψ(t)= (1−its)−a.
Since s = λ ′

a , we have ∀t ∈ R

lim
a→∞

[
1− itλ ′

a

]−a

= lim
a→∞

exp
[

a log
(

1+
itλ ′

a− itλ ′

)]
= exp(itλ ′),

which follows from the l’Hospital rule. The limit is a characteristic function of a Dirac dis-
tribution concentrated at λ ′. Denote pa,s(λ

2) the gamma density function with shape a and
scale s. Then lima→∞ pa,λ ′/a(λ

2) = δλ ′(λ
2). This altogether gives

lim
a→∞

∫
λ 2

∫
τ2

p(β |σ ,τ2)p(τ2 |λ 2)pa,λ ′/a(λ
2)dτ

2dλ
2 =∫

τ2
p(β |σ ,τ2)p(τ2 |λ ′)dτ

2 =

√
λ ′

2σ
exp(−

√
λ ′|β j|/σ),

which is a density of the Laplace distribution. Switching the limit and integral signs is justified
by the bounded convergence theorem and noting that pa,λ ′/a(λ

2)< λ ′ for all a > 1.

Remark 4.6.1. Similar bridging property between the Laplace and Normal-Jeffreys priors has
been observed for the Generalized Double Pareto distribution (Armagan et al., 2012).

To gain more insights about the properties of the NEG prior, we consider for a moment
a simple normal mean situation, i.e. Y |β ,σ2 ∼ N(β ,σ2) and β j|τ2

j ,σ ∼ N(0,σ2τ2
j ), j =

1, . . . ,n. According to Fan and Li (2001), a sufficient condition for the unbiasedness of
the MAP estimator is that πa,s,σ (|β j|) = 0 for large |β j|, where πa,s,σ (|β j|) = ∂ log pa,s,σ (|β j |)

∂ |β j |
and pa,s,σ (·) denotes the marginal prior distribution (4.6.10). As given in Griffin and Brown
(2012),

πa,s,σ (|β j|) =
(2a+1)

√
s

σ

D−2(a+1)

( |β j |
√

s
σ

)
D−2(a+0.5)

( |β j |
√

s
σ

) . (4.6.11)

It is desirable that πa,s,σ (|βk|) approaches rapidly zero as |βk| → ∞ to avoid unnecessary
modeling bias. The asymptotic properties of the bias term are summarized in the following
theorem.

Theorem 4.6.2. Let πa,s,σ (|β |) denote the term in (4.6.11), then πa,s,σ (|β |) = O
(

1
|β |
)

as

|β | → ∞.
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Proof. The limiting behavior of the term π ′a,s,σ (|β |) can be better understood using the Poicare
expansion of Parabolic cylinder function for large |β | (Gradshteyn and Ryzhik, 2000, p.
1016), namely

Dη (x)∼ exp(−x2/4)xη

(
1− η(η−1)

2x2 +
η(η−1)(η−2)(η−3)

2.4x4 − . . .

)
(4.6.12)

where ∼ sign indicates that the Parabolic cylidner function is equal to the series in the limit
as |x| → ∞. As a consequence, we have

lim
|x|→∞

Dη (x)

exp
(
− x2

4

)
xη

= 1.

This altogether enables us to rewrite the lim|β |→∞ π ′a,s,σ (|β |) as

lim
|β |→∞

(2a+1)
√

s
σ

exp
(
− β 2

i s
4σ 2

)( |β j |
√

s
σ

)−2(a+1)

exp
(
− β 2

i s
4σ 2

)( |β j |
√

s
σ

)−2(a+0.5)
= lim
|β |→∞

2a+1
|β | ,

which was to be demonstrated.

Remark 4.6.2. The bias hence decreases less rapidly for higher values of the shape parameter
a, which is expected since a determines the heaviness of the tails.

In order to better understand how the choice of a and s affects the shrinkage properties of
the NEG prior, we investigated the behavior of the “shrinkage factor" κ j =

1
1+τ2

j
. In the con-

jugate normal means model, this random coefficient determines how much shrinkage towards
zero is put on the regression coefficient β j once we have observed the data (Carvalho and
Polson, 2010). The interpretation follows from the identity E(β j|y j,τ

2
j ) = (1−κ j)y j, which

marginally becomes E(β j |y j,σ
2) = [1−E(κ j |y j,σ

2)]y j. The shape of the prior distribution
p(κ j) indicates how much shrinkage is to be expected a priori. Inspecting the prior density of
the NEG shrinkage factor

pa,s(κ j) =
as
κ2

j

[
1+ s

(
1−κ j

κ j

)]−a−1

for various choices of shape and scale parameters (Figure 4.3(a)) gives us an idea how the
two parameters affect the ability of the NEG prior to distinguish between signal and noise.
Increasing the shape parameter a for fixed s, the distribution p(κ j) concentrates more densely
around one, implying that the NEG prior is more aggressive in shrinking small noise-like
signals towards zero. A similar effect can be achieved by increasing the scale parameter s for
fixed a. Decreasing the shape parameter a, more probability mass is accumulated near zero,
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Figure 4.3: Prior distribution of shrinkage factor and regression coefficients

which in turn induces heavier tails of the NEG prior. It is possible to select a configuration
of the two parameters, which implies a“horseshoe-like" shape, where both tail robustness
and ability to shrink noise are retained simultaneously (Carvalho and Polson, 2010). The
corresponding prior densities for the regression coefficients assuming σ2 = 1 are depicted on
Figure 4.3(b).

The delicate interplay between the hyper-parameters a and s in determining the shrinkage
characteristics of the NEG prior is further complicated by the presence of the unknown global
variance parameter σ2. This parameter affects the posterior distribution of the shrinkage factor

p(κ j | y j,σ
2) =

√
κ j

σ
exp

(
−

y2
j κ j

2σ2

)
pa,s(κ j),

where small values σ2 distribute more posterior mass on near zero κ j’s. The consequence
being that small σ2 may cause under-shrinkage of noise.

In the context of multiple linear regression, the small fixed values σ2 may increase the
number of false positives. In our EM algorithm, small values σ (k) at k-th iteration imply
smaller penalties on the regression coefficients (as seen from equation (4.4.2)) and thereby in-
creased likelihood of false discoveries. This may be problematic in high-dimensional settings
(p > n), where the variance estimates at each iteration are typically very small. Possible reme-
dies to this problem are: (a) considering higher values of the shape parameter a, (b) specifying
an informative prior on the variance, such as flat prior within an interval bounded away from
zero, (c) adding a fixed multiplying factor g to the prior variance Var (β j|σ2,τ j) = gτ2

j σ2.
The parameter g resembles the hyper-parameter in the g-prior (Liang et al., 2008), but its role
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is fundamentally different. Zellner (1986) and other authors have recommended treating g as a
function of sample size to prevent the g-prior from asymptotically dominating the likelihood.
Whereas in the g-prior context, it is desirable that g grows with n, we will see that the NEG
prior benefits from letting g decrease with n in order to achieve a non-vanishing penalization
effect.

Multiplying the prior variance on the regression coefficient by the factor g is equivalent
to imposing the NEG prior with shape a and scale s/g. In the following theorem we show
that considering g = 1/n2 guarantees for suitably chosen scale parameters s variable selection
consistency and asymptotical normality of the MAP estimator under mild regularity condi-
tions in the multiple regression considering fixed p. For simplicity we will assume that σ is
fixed to one and we let the scale parameter s vary according to the sample size.

Theorem 4.6.3. Assume the regularity conditions (A)-(C) in Fan and Li (2001) and denote
β̂ n the MAP estimator arising from the hierarchical model under NEG(a,n2sn) prior. Denote
An = { j : β̂ j 6= 0} and A = { j : β j 6= 0}, where β is the true coefficient vector. Then for
sn→ 0 and

√
nsn→ ∞ as n→ ∞ the MAP estimator β̂ n satisfies:

(a) Consistency in variable selection: limn→∞P(An = A ) = 1,

(b) Asymptotic normality:
√

n(β̂An
−βA )→ N(0, I−1

A ), where βA denotes the nonzero
elements in β and IA is the Fisher information knowing β j = 0 for j /∈A .

Proof. The MAP estimate β̂ n under the NEG(a,n2sn) prior can be regarded as the coefficient
vector minimizing the penalized least squares

1
2
||y−Xβ ||2 +n

p

∑
j=1

pena,sn(|β j|),

where the penalty term consists of the summands in negative NEG(a,n2sn) density, which
depend on |β |, divided by n. According to (4.6.10), the penalty term for σ2 = 1 takes the
following form:

pena,sn(|β |) =−
|β |2nsn

4
− 1

n
logD−2(a+0.5) (|β |n

√
sn) . (4.6.13)

Denote pen′a,sn
(|β |) and pen′′a,sn

(|β |) the first and second derivatives of (4.6.13) with respect
to |β |. In order to demonstrate the asymptotical normality and consistency, it suffices to show
that the penalty function satisfies the following three conditions (Fan and Li, 2001):

(a) limn→∞ pen′a,sn
(|β |) = 0 for all β 6= 0,

(b) limn→∞ pen′′a,sn
(|β |) = 0 for all β 6= 0,

(c) liminfn→∞ liminfβ→0+ pen′a,sn
(|β |)/sn > 0.
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The property (a) follows from the asymptotic expansion of the Parabolic cylinder function,
which gives that ∀β 6= 0 and for n

√
sn → ∞ as n→ ∞ (which follows from the assumption√

nsn→ ∞)

lim
n→∞

pen′a,sn
(|β |) = lim

n→∞
(2a+1)

√
sn

D−2(a+1)
(
|β |n√sn

)
D−2(a+0.5)

(
|β |n√sn

) = lim
n→∞

2a+1
n|β | = 0.

In order to show the validity of condition (b) it is helpful to reexpress the derivatives of
Parabolic cylinder function using the recursion formulas (Abramowitz and Stegun, 1972,
p.688). After some algebra we obtain the following expression for the second derivative of
the penalty function:

pen′′a,sn
(|β |) =n2sn

√
sn(2a+1)|β |

D−2(a+1)
(
|β |n√sn

)
D−2(a+0.5)

(
|β |n√sn

)
−nsn(2a+1)+nsn(2a+1)2

(
D−2(a+1)

(
|β |n√sn

)
D−2(a+0.5)

(
|β |n√sn

))2

.

Applying again the Poincare asymptotic expansion we conclude that as n→ ∞: (a) the third
summand in pen′′a,sn

(|β |) is asymptotically o(n) , (b) the first summand is asymptotically
equivalent to nsn(2a+1). This altogether implies that the limit pen′′a,sn

(|β |) is zero as n grows
to infinity.

In order to verify the last condition it is helpful to note that D−η−1/2(0) =
√

π
2−η/2−1/4

Γ(3/4+η/2)
(Abramowitz and Stegun, 1972, p.687). Then for sn→ 0 as n→ ∞ we have

liminf
n→∞

liminf
β→0+

pen′a,sn
(|β |)/sn = liminf

n→∞

(2a+1)Γ(a+1)
√

2
Γ(a+1.5)

√
sn

> 0.

Remark 4.6.3. The “oracle" properties of the NEG penalty (without scaling) were in the pe-
nalized likelihood setting with a diverging number of parameters shown in Griffin and Brown
(2012). Here we considered a modified penalized likelihood function, which corresponds to
an actual posterior distribution in the hierarchical Bayesian context.

Remark 4.6.4. Instead of tuning the prior as a function of sample size, Ishwaran and Rao
(2005) suggest an alternative way to avoid vanishing effect of the prior in spike and slab
models by rescaling the responses by a factor

√
n and adding a variance inflation factor.

Remark 4.6.5. Fan and Li (2001) suggest a sandwich standard error formula for the non-zero
penalized likelihood estimates, which can be applied also for the MAP coefficients arising
from the rescaled NEG prior in Theorem 4.6.3.
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4.7

Simulated Examples

The purpose of this section is to illustrate the application of the proposed method on two
simulated examples and to demonstrate its potential as a variable selection tool. In the first
example, the predictors are assumed to cluster within known non-overlapping groups, whereas
the second example deals with the overlapping case. Throughout the section we assume that
the number of predictors p is much larger than the number of observations n, whereas the
number of informative predictors is smaller than n. The estimation is in both examples con-
ducted using the Laplace version of the EM algorithm with an inverse link function. The
threshold for convergence ε is set to 10−5.

4.7.1 Non-overlapping Groups

In the first example, we assume p = 1000 and n = 100. The matrix of predictors X has been
generated with rows drawn independently from Np(0,Σ), where Σ = (σi j)

p
i, j=1 and σi j =

ρ |i− j| with ρ = 0.5. We assume throughout that the regression vector consists of two blocks
of informative coefficients with all remaining values set to zero. Namely, we consider the
following set of regression coefficients β = (1,2,3,4,5,0′15,1,2,3,4,5,0

′
975)

′, where 0m is
a m× 1 vector of zeroes, and we construct the responses according to the generating linear
model Nn(Xβ ,3× In).

Two non-overlapping grouping patterns were considered, where either the whole groups
of predictors should enter the model (Grouping 1) or only a subset of variables within each
predictive group is relevant (Grouping 2). Our first grouping scenario perfectly separates
informative from uninformative predictors by clustering them into four groups identified by
the following sets of indices: Q

(1)
1 = {1, . . . ,5}, Q

(1)
2 = {6, . . . ,20}, Q

(1)
3 = {21, . . . ,25} and

Q
(1)
4 = {26, . . . ,1000}. The second clustering mechanism is characterized by the following

four sets of indices Q
(2)
1 = {1, . . . ,10}, Q(2)

2 = {11, . . . ,30}, Q(2)
3 = {31, . . . ,60} and Q

(2)
4 =

{61, . . . ,1000}, which differ not only in size but also in the proportion of relevant predictors
within each group (1/2,1/4,0 and 0). Lastly, we conduct the analysis assuming no grouping
is available, i.e. all p predictors belong to only one group. This model corresponds to an
extended NEG prior with an estimable scale parameter. We compare our method to LASSO
(R package lars) and group LASSO (R package grpreg).

We consider the following values for the hyper-parameters c = d = α = γ = 1 and three
choices of the shape parameter a = 0.5, 1, 3. The EM algorithm is initiated with the following
starting values β

(0) = 1p, b(0) = 15 and σ (0) = 1.
In all considered settings, the 10 relevant predictors were correctly identified. Table 4.1

and 4.2 summarize the number of false discoveries (FD), which are in the second grouping
scenario divided into within non-predictive group false discoveries (FD1) and within predic-
tive group false discoveries (FD2).
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Grouping 1 NEG
Size 5 15 5 975 1000

Sparsity 1 0 1 0 1/100
FD FDH b̂0 b̂1 b̂2 b̂3 b̂4 FD b̂0

No scaling g = 1
a=0.5 51 0 0.001 2.399 0 2.388 0 52 0.001
a=1 42 0 0.001 4.828 0 4.780 0 45 0.001
a=3 34 0 0.002 13.138 0 12.805 0 33 0.002

Rescaled prior g = 1/n2

a=0.5 49 0 0.001 2.412 0.002 2.412 0 49 0.001
a=1 45 0 0.054 4.850 0.004 4.850 0 45 0.06
a=3 35 0 2.122 12.613 0 12.613 0 35 2.609

Table 4.1: Analysis summary of the simulated data, FD/FD1/FD2/FDH refer to number of false positives overal/in
non-predictive groups/in predictive groups/overally after hierarchical selection. The size and sparsity relate to the number
of predictors within each group and proportion of predictive explanators.

Focusing on the estimates of the pathway weights, several observations can be made based
on the reported estimates in Table 4.1 and 4.2. First, the estimates corresponding to the non-
relevant groups are typically at the zero boundary of the parameter space (0≈ 10−10), which
illustrates the method’s ability to correctly identify the predictive groups. Second, we observe
that the magnitude of the estimated weights b̂1 and b̂2 in the second grouping scenario reflects
the proportion of important within group variables, which is a desirable property. Third,
the estimated nonzero group weights increase with the increased shape parameter a. This is
expected since higher weights together with the inverse link function compensate for the large
amount of penalization induced by the larger shape parameter.

It is interesting to note in Table 4.1 and 4.2 how the shape parameter a affects the within-
group and overall sparsity. Assuming that all predictors within an important group are relevant
(Grouping 1), increasing a gradually decreases the number of false discoveries (FD). In the
presence of within-group sparsity (Grouping 2) there are noticeable differences before and
after rescaling the prior. In the first case, increasing the shape parameter forces all grouped
predictors to enter the model simultaneously (FD2 increases), while the number of false dis-
coveries in non-predictive groups goes down (FD1 decreases). This suggests that larger a
would be advisable in situations where we have a strong belief that the predictive groups are
not sparse. For small a, we obtain sparsity within groups but might include unnecessarily
many irrelevant coefficients. This is not the case after rescaling the prior distribution by the
factor g = 1/n2, where the within group sparsity is well preserved.

It is instructive to see how the performance can be improved by performing the hierarchi-
cal variable selection (as explained in Section 5). In the first step, we screen out pathways with
a zero/small estimated weight. In the second step we select variables with nonzero estimated
regression coefficients within the selected groups. This strategy in our simulated example
leads to a dramatic reduction of false discoveries as compared to the plain NEG prior (FDH
values in Table 4.1 and 4.2). By not performing the hierarchical selection, the NEG prior
may gain in reduction of false discoveries but lose the interpretability of the group predictive
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pattern of the covariates.

Leave-one-out cross-validation for LASSO variable selection leads to a model with 77
false positives. The group lasso after cross-validation selected a null model (Grouping 2) and
a model with 11 false positives (Grouping 1). The group lasso in the latter case may have
benefitted from the sign consistency of the nonzero within group coefficients.

In the current case of non-overlapping groups with a “complete partition" (each variable is
in one and only one group), we might not need the intercept shrinkage parameter. However, in
our experience deleting this coefficient does not substantially influence the variable selection
performance. The main difference being that the non-informative group weights are typically
not at the boundary of the parameter space, although they are very small. Truncating these
small estimates would then serve the purpose of selecting groups in the hierarchical selection
scenario.

Turning to the perfect grouping scenario (Grouping 1), the majority of false discoveries
has occurred in the last group consisting of 975 variables. Due to the zero estimated pathway
weight, all regression coefficients in this group are penalized by the intercept weight. An
estimate of this parameters is in our simulated example very similar to the overall shrinkage
parameter in the NEG prior without the grouping, yielding a comparable number of false
discoveries in this very large group. More marked differences in terms of false discoveries
and non-discoveries between the plain and group versions of the NEG prior can be observed
in less sparse situations, such as the ones presented in Appendix E.

As a consequence of an asymptotically vanishing effect of the prior on the posterior in the
unscaled model, the pathway coefficients in the inverse link decrease with growing sample
size, where the whole linear predictor asymptotically approaches a value bounded away from
zero. In order to preserve the shrinkage effect in the limit, we have considered a rescaled NEG
prior, where the scale parameter is multiplied by a factor n2. According to Theorem 4.6.3, the
scale parameter (inverted linear predictor) in the modified model should ideally approach zero
and its root-n multiple grow to infinity as n→∞. Evidence for this behavior was observed in a
simulated experiment described in Appendix D. It is interesting to note the relationship of the
pathway weights to the group size, where the estimated coefficients represent the proportion of
predictive coefficients within each pathway. Larger pathways have typically smaller estimated
coefficients as compared to smaller pathways with the same (number of) predictive variables.
This behavior was also evident in the results of the simulation study in Appendix D. It is
worth mentioning that the regression on the scale parameter is less influential in the rescaled
version of the model (g = 1/n2). The overall performance in terms of false discoveries and
non-discoveries there is very similar for the grouped NEG and the plain NEG priors. We
contemplate that rescaling the prior, the regression on the scale parameter has a little influence
on the model search and rather helps to effectively discriminate between the predictive and
the non-predictive groups. The pathway weights are seen to correctly represent the grouping
structure and serve a useful prerequisite for group selection that isolates discoveries in non-
predictive groups.
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Grouping 2
Size 10 20 30 940

Sparsity 1/2 1/4 0 0
FD1 FD2 FDH b̂0 b̂1 b̂2 b̂3 b̂4

No scaling g = 1
a=0.5 40 8 10 0.001 1.235 0.016 0 0
a=1 40 17 19 0.001 3.133 1.349 0 0
a=3 31 17 19 0.002 11.590 9.332 0.002 0

Rescaled prior g = 1/n2

a=0.5 45 4 4 0.001 1.012 0.050 0 0
a=1 43 2 4 0.053 2.333 1.408 0.007 0
a=3 34 1 3 2.111 10.389 8.976 0.035 0

Table 4.2: Analysis summary of the simulated data, FD/FD1/FD2/FDH refer to number of false positives overal/in
non-predictive groups/in predictive groups/overally after hierarchical selection. The size and sparsity relate to the number
of predictors within each group and proportion of predictive explanators.

4.7.2 Overlapping Groups

In our second simulated example we assume that the predictors correspond to known genes
and cluster within known pathways. The list of gene/pathway interactions was generated
from the KEGG database using R Bioconductor library hgu133plus2. A subset of size
p = 1000 was randomly selected from a set of genes analyzed in the next section. Focusing
only on known pathways consisting of at least 10 genes, we select at random q = 10 pathways
for the construction of the grouping structure.

Two of these pathways were randomly selected to be predictive. Similarly as in the pre-
vious example we will consider two possible scenarios: (1) all genes within the predictive
pathways are assumed to contribute in explaining of the variability of the response (Group-
ing 1), (2) predictive pathways are sparse (Grouping 2). We shall assume that in each of the
two predictive pathways (sized 27 and 25), there are only 10 relevant predictors. The sec-
ond grouping pattern corresponds to the pathway loading matrix generated from the KEGG
database. Limiting the size of the predictive pathways to 10, we obtain a modified grouping
pattern that we associate with the first grouping scenario.

Given the binary pathway loading matrix Z (associated with Grouping 2), we first generate
the covariance matrix Σ̃ = (σ̃i j)

p
i, j=1, where Σ̃ = Zdiag{ρ1, . . . ,ρq}Z′+ Ip, which is positive

definite and symmetric. Note that genes that do not share any underlying pathway have zero
pairwise correlations. The values ρi > 0 (not bounded to lie within an interval [0,1]) regulate
the magnitude of the within-pathway correlations. The correlation matrix Σ = (σi j)

p
i, j=1 is

obtained by setting σi j = σ̃i j/
√

σ̃iiσ̃ j j. The predictor matrix X is then generated according
to Nn(0,Σ). The observations on the response variable are created according to the relation
Nn(Xβ ,σ2In). We keep σ2 = 1, n = 100 and we assume (a) relatively high signal to noise
ratio, (b) medium correlation within non-predictive pathways, (c) high correlation within pre-
dictive pathways. Namely, the nonzero entries in the regression vector β equal 2. In order to
obtain average correlation of 0.8 and 0.3 within the predictive and non-predictive pathways,
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we assume ρ j = 0.1× I
(

j /∈⋃3
k=1 Qk

)
+2× I

(
j ∈⋃3

k=1 Qk

)
.

The values of hyper-parameters were considered the same as in the previous example.
The starting values for the algorithm are again β

(0) = 1p,b(0) = 1q and σ (0) = 1.
The summary of the analysis for the non-sparse clusters (Grouping 1) is in Table 4.3. Due

to the overlap between the groups, some of the “non-predictive" pathways contain important
coefficients as well. The magnitude of the estimated pathway weights again reflects the de-
gree of predictiveness of each group, typically leaving the unimportant pathways with a zero
weight. The numbers of false discoveries (without applying the hierarchical selection) are
comparable to the plain NEG prior. Under the hierarchical selection after removing pathways
with a zero estimated weight, the respective numbers of false discoveries without rescaling
are 8,6 and 19 for a = 0.5,1,3 (FDH values in Table 4.3). Again, no false-nondiscoveries
were observed.

In the second grouping scenario (Table 4.3) we again observe higher within group false
positives for larger values a, a consequence of strongly enforced smoothness in within-group
penalties. The hierarchical selection reduces the false positives in this simulated example to
33,33 and 48 for a = 0.5,1,3.

It is interesting to compare the results before and after rescaling the model with the factor
g = 1/n2. The results in Table 4.3 again show the superiority of the rescaled model, both in
the accuracy of determining important pathways, as well as in controlling within group false
discoveries. The hierarchical selection performs superbly in identifying the underlying spar-
sity. In contrast, applying leave-one-out cross-validated LASSO variable selection, we obtain
75 false positives. We also implemented the overlapping group LASSO of Jacob et al. (2009)
by duplicating the columns in the regression matrix, which appear in more than one group,
and applying the standard group LASSO computation (R-package grpreg). Selecting the
optimal penalty parameter using the BIC criterion, we obtain a model with 28 false positives
for Grouping 1 and 32 false positives for Grouping 2, which is more than for the rescaled
grouped NEG model with an appropriately chosen shape parameter a.

4.8

Application

We demonstrate the practical usefulness of the proposed method on a microarray gene expres-
sion data set with glioblastoma patients (Horvath et al. (2006)). Glioblastoma is a primary
malignant brain tumor, which classifies as one of the most lethal tumors in adults. Diagnosed
patients have a median survival of 15 months despite various treatments. The data consists
of two sets of measurements coming from two independent studies. Similarly as in Pan et al.
(2010) and Li and Li (2008), we shall use only the first set, which appears to carry more in-
formation related to time to death from glioblastoma. We select a subset of 50 patients (out
of 55) with the observed clinical outcome. The logarithm of time to death (in days) is treated
as the response. Gene expression profiles were obtained using the Affymetrix platform and
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Table 4.4: LASSO selected genes together with 10 top represented pathways.

further normalized using the RMA methods (Irizarry et al., 2003). Li and Li (2008) focused
on a subset of 1533 genes, which were involved in gene pathways. Using the R Bioconduc-
tor library hgu133plus2 we retrieved the functional gene/pathway interactions from the
KEGG database. For each gene, a list of active pathways was generated and translated into a
pattern of zeros in the p×q matrix Z, where rows correspond to p = 1533 genes and columns
to q = 103 pathways (only pathways consisting of at least 20 genes were considered for the
analysis).

On order to determine genes predictive of time to death we first run the LASSO method
(R library lars), selecting the optimal penalty parameter as the value, which minimizes
the leave-one-out cross-validated prediction mean-squared error. As a result, we obtain 21
genes reported in Table 4.4 together with information on their pathway involvement (top 10
represented pathways with at least 3 genes).

We then repeat the analysis using the Laplace version of the EM algorithm with an in-
verse link function to incorporate the gene-pathway membership information. Based on the
experience from the simulated examples we choose a = 5 and apply the rescaled version
of the model with the scaling factor g = 1/n2. In order to mitigate the problem of finding
a locally suboptimal solution, we run the algorithm for multiple choices of starting values
and select the solution, which corresponds to the highest log posterior mode (which can be
evaluated up to an additive constant). Considering the following values of hyper-parameters
c = d = α = γ = 1 and setting the convergence threshold ε to 10−5, we consider a unit start-
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Table 4.5: Analysis using the NEG prior with grouping, selected genes together with top 10 identified pathways.

ing vector β
(0) = 1p and 10 initial values randomly sampled from from Np(0, I). The starting

values for the pathway weights and variance parameter are b(0) = 1 and σ (0) = 1.
The highest located log-posterior mode (10595.72 plus a common additive constant) is

associated with a model consisting of 21 predictors, of which 13 overlap with the LASSO
analysis (marked with blue in Table 4.5). We identified 21 predictive pathways with a nonzero
estimated weight, where each of the selected genes is involved in at least one of these path-
ways. Table 4.5 reports a subset of 10 pathways with the highest numbers of identified genes
together with the estimated weights b̂, which represent the proportion of within group pre-
dictive genes. The complete list of gene-pathway interactions for all the 21 pathways is in
Appendix 3.

Both LASSO and our method identified genes previously associated with malignant brain
tumors such as FOXO1A, which is a transcription factor linked to glioblastoma (Choe et al.,
2003), or PRKCG and CAMK2D, which are members of the glioma pathway. Other genes
were found to be related to various brain molecular processes such as CX3CL1, controlling
neuronal survival and neuron transmission (Sciumč et al., 2010), and CTNNB1 found to be
differentially expressed in brain tumors (Nikuseva-Martic et al., 2010).

Focusing on the genes that were missed by LASSO: DFFB is an apoptosis regulator,
identified as a contributing factor in development of specific type of glioma (McDonald et al.,
2005), FRAP1 is a member of glioma pathway, SLIT1 is an axon guidance gene, whose
epigenetic changes were associated with glioma (Dickinson et al., 2004).
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Several of the 10 pathways reported in Table 4.9 were recognized to be linked with brain
molecular processes underlying malignant tumors. Tight junctions, which mediate
blood-brain barriers and whose impairment may cause brain edema, have been reported de-
fective in glioblastoma (Schneider et al., 2004). The ECM (extracellular matrix) pathway has
a confirmed role in cellular processes associated with neuronal survival, axon guidance and
synapse formation. Impaired activity of the ECM receptors may create molecular basis for
malignant gliomas (Paulus and Tonn, 1995). Expression of cell adhesion molecules
(binding proteins) has been shown consistently altered in glioblastoma as compared the nor-
mal brain tissue (Gingras et al., 1995). The full list of the 21 identified pathways is deferred
to the Appendix E.

Whereas the post hoc pathway analysis for the LASSO selected genes revealed MAPK
signaling pathway, which is an important glioblastoma related pathway (Nakada et al.,
2011), it did not appear in the 21 pathways selected by our method. Since the estimated
pathway weights corresponds to the proportion of predictive genes, perhaps smaller pathways
involving a similar set of genes may have had a selective advantage.

The plain rescaled NEG prior (without grouping structure) lead to a lower log poste-
rior mode (9428.231 plus the common additive constant) associated with 22 genes, of which
12 overlap with the model including the grouping. We implemented the overlapping group
LASSO by augmenting the regression matrix with duplicates of columns, which occur in
more than one group. This leads to a new regression matrix with 6780 columns. Applying
the group LASSO computation (R-package grpreg) we identified 17 pathways consisting of
608 different genes after selecting the optimal penalty parameter based on BIC criterion. The
list of these pathways is in Appendix E. Since group LASSO does not assume within group
sparsity, many of the identified genes are likely to be false positives.

Regarding the computational time, the most expensive operations are the updates of coef-
ficients β and b. The update β is in the Laplace EM algorithm based on solving the LASSO
problem, which using the lars package took 0.41 seconds in the glioblastoma dataset on a
2.533Ghz server. For the multiple selected starting values, the EM algorithm converged in
between 20− 40 iterations with an average of 26. This time would compare to performing
20−40 fold cross-validation in the LASSO analysis. The time needed to update b will barely
matter for a small number of pathways (< 10). In the glioblastoma data with 104 pathways,
one update took on average 5 seconds per iteration using routine R optimization techniques. To
be contrasted with MCMC implementation of the Bayesian LASSO (R-package monomvn),
drawing 100 samples from the posterior took around 20 seconds.

4.9

Discussion

In this chapter we proposed a method for Bayesian shrinkage estimation in linear regres-
sion, which incorporates grouping information within the sparsity inducing regularization.
We demonstrated on two simulated examples, that the method is capable of retrieving groups
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of informative predictors through the identification of nonzero group weights. However, we
expect that the performance will be influenced by the level of agreement between the external
structural information and actual “group predictive behavior". In case no such information
is available, the pathway loading matrix could be obtained from e.g. a sparse factor analytic
model (West, 1987), where nonzero entries in the loading matrix indicate functional interac-
tion with latent factor/ pathway activity.

We have opted for the EM algorithm as our computational strategy, which offers substan-
tial time savings. Moreover, the Laplace version of the algorithm provides a naturally sparse
solution, which identifies sets of active predictors that correspond to a particular model. As
such, this EM algorithm can be regarded as a deterministic model search machine, which dur-
ing the iterative process drives the search towards more interesting models. However, due the
multimodality of the posterior finding the global mode is not guaranteed. The choice of an
initial value is likely to influence the results and the speed of the convergence. Running the
procedure for multiple choices of starting values and selecting the mode associated with the
highest posterior value (which can be computed up to a constant) may increase our chances
of finding the global mode. An alternative solution based on deterministic annealing was sug-
gested by Ueda and Nakano (1998) in the context of normal mixtures. The authors suggest
performing the E-step with respect to a perturbed version of the posterior distribution, which is
proportional to the log-complete data posterior raised to the power of an inverse temperature.
Such E-step can be still obtained in a closed form.

By using the EM algorithm we are trading the benefits of the Bayesian inference based on
the full posterior (in particular confidence assessment) for computational efficiency. Similarly
as in sparse penalized likelihood techniques, our method outputs merely a sparse point esti-
mate of the coefficient vector. One possibility to perform (frequentist) uncertainty assessment
for our method is through asymptotics borrowed from the established theory on penalized like-
lihood estimators. Fan and Li (2001) and Peng and Fan (2004) developed asymptotic theory
showing model selection consistency and asymptotic normality of specific sparse penalized
likelihood estimators, both for fixed p as well as for a diverging number of parameters. These
results can be transferred to the Bayesian MAP estimation framework directly in instances
where the marginal prior on the regression coefficients takes the form exp(−npenλ (|β |)).
The penalty function penλ (|β |) then needs to fulfill certain conditions in order for the oracle
property of the MAP estimator to be guaranteed. Although the plain NEG(a,s) prior does not
meet these requirements, multiplying the scale parameter s by a factor depending on the sam-
ple size warrants the desired properties. We showed that the penalty function implied by the
rescaled prior NEG(a,n2s) satisfies the conditions in Fan and Li (2001) for root-n consistency
and asymptotic normality of the Bayesian MAP estimator, which creates a basis of sandwich-
like standard errors. One disadvantage of this approach is that it disregards the uncertainty
around the zero estimates by setting their standard errors to zero. Moreover, the finite sample
distributions for some penalized likelihood estimators have been shown to be severely devi-
ated from the approximating normal distribution (Leeb and Potscher, 2005). An alternative
way to compute the standard errors, not only for the regression coefficients but also for the
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pathway weights b, is through bootstrapping. However, this can lead to inconsistent standard
errors if the true regression coefficient values are zero, as shown in the LASSO context by
Kyung et al. (2010).

Our proposed model selection procedure outputs a sparse point estimate of the regression
vector, which forms the basis for a potential prediction rule. In practical implementations,
the sparse model-selectors/predictors such as LASSO are typically tuned to achieve optimal
prediction accuracy. Whereas tuning parameters in some hierarchical models can be directly
related to AIC and BIC penalties (George and Foster, 1997), the tradeoff between prediction
and model selection accuracy is more difficult to control in our model. The scale penalty
parameter is adaptively determined from the data, where appropriate limiting behavior guar-
antees identification of the true model with probability converging to one. We believe that the
main practical value of our method rests in improved interpretation of the collective behav-
ior of the predictors in the effort of finding a sparse representation of the data rather than in
accurate prediction.
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4.10

Appendix
4.10.1 A: Proof of Equation (4.4.2)

Denote by a and s the shape and scale of the NEG distribution. As shown in Griffin and

Brown (2012), in order to evaluate the conditional expectation Eτ2|·

(
1
τ2

j

)
it suffices to note

the connection to the derivative of the logarithm of the NEG prior density. We have
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The marginal prior distribution pa,s,σ (|β j|) can be obtained in a closed form (using Grad-
shteyn and Ryznik (2000), page 334 equation 7) as follows:
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The derivative of the marginal distribution can be again obtained analytically (Gradshteyn and
Ryznik (2000), page 334 equation 6) according to
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Combining these expressions for the NEG prior and its derivative, we obtain
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4.10.2 B: Proof of Equation (4.4.3)

Denote by a and s the shape and scale of the NEG distribution. The computation of the
conditional expectation follows from Gradshteyn and Ryznik (2000) page 334 equation 5.
More precisely, it holds that
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4.10.3 C: Proof of Equation (4.4.8)

Denote by a and s the shape and scale of the NEG distribution and pa,s,σ (β ) the marginal
NEG distribution. According to Gradshteyn and Ryznik (2000) page 360 equation 1 we have
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4.10.4 Appendix D: Effects of sample size and pathway size on
estimated pathway weights

To illustrate the effects of increasing sample size as well as pathway size for the fixed number
of predictors we designed a small simulated experiment. We consider p = 100 predictors
which cluster within groups that differ not only in the number of elements but also in the
proportion of predictive variables. The assumed true coefficient vector is

β = (1,2,3,4,5,0, . . . . . . ,0︸ ︷︷ ︸
15

,1,2,3,4,5,0, . . . . . . ,0︸ ︷︷ ︸
15

,1,2,3,4,5,0, . . . . . . ,0)′.

The grouping structure divides the 100 predictors into 6 non-overlapping groups consisting of
5,10,15,20,25 and 25 predictors with predictive proportions 1,0,1/3,1/4,0 and 0. For each
of the three considered sample sizes n= 50,500,1000, we generate the regression matrix with
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Grouping
Size 5 10 15 20 25 25

Sparsity 1 0 1/3 1/4 0 0
b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

No scaling g = 1
n = 50 3.968 0.018 1.813 1.266 0.026 0.004

(0.136) (0.032) (1.059) (0.718) (0.052) (0.005)

n = 500 1.406 0.001 0.072 0.039 0.001 0.001
(0.039) (<0.001) (0.008) (0.007) (<0.001) (<0.001)

n = 1000 1.346 0.001 0.068 0.036 0.001 0.001
(0.017) (<0.001) (0.005) (0.005) (<0.001) (<0.001)

Rescaled model g = 1/n2

n = 50 4.231 0.007 0.397 0.303 0.016 0.018
(0.746) (0.009) (0.275) (0.303) (0.023) (0.024)

n = 500 4.958 0.032 1.154 0.707 0.079 0.078
(0.004) (0.020) (0.159) (0.192) (0.055) (0.053)

n = 1000 4.952 0.079 1.472 1.072 0.194 0.197
(0.003) (0.034) (0.163) (0.203) (0.084) (0.090)

Table 4.6: Results from a simulation study to evaluate effects of sample size and group size. Table reports average
estimated pathway weights with standard deviations in brackets.

rows drawn independently from Np(0, Ip). Ten response vectors were generated according to
Y ∼ N(Xβ ,3× In) for each sample size. The average estimated group weights after in Table
4.6 below.

We observe a decreasing trend in the estimated weights with the growing sample size
in the unscaled model. After rescaling, the weights are seen to increase, where the scale
parameter (inverted linear predictor) goes down, which is according to Theorem 5 a desirable
property. In both models, the size of pathway weights reflects the proportion of important
coefficients.

Perfect Grouping Imperfect Grouping NEG
Sparsity FD FN FDH FD FN FDH FD FN

β 1 44.2 10.6 0 52.8 20.9 9 53.5 34.6
β 2 49.9 4.4 0 60.6 17.8 11.4 57.1 21.2
β 3 52.6 0.2 0 60.9 2.9 19.8 53.1 3.7

Table 4.7: Simulation study with different degrees of sparsity. FD/FN/FDH stand for false discoveries/false non-
discoveries/false discoveries after the hierarchical variable selection

4.10.5 Appendix E: Simulated examples with different degrees of
sparsity

In order to investigate the practical gains in more realistic scenarios, we considered a set of
simulation experiments with three different degrees of sparsity and a lower signal to noise
ratio. We assume a = 1, p = 1000,σ2 = 5 and three sparsity settings for the unscaled version
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of the model:
β 1 = (1, . . . . . . ,1︸ ︷︷ ︸

30
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470
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)′,
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20

,0, . . . . . . ,0︸ ︷︷ ︸
480

,1, . . . . . . ,1︸ ︷︷ ︸
20

,0, . . . . . . ,0︸ ︷︷ ︸
480

)′,

β 3 = (1, . . . . . . ,1︸ ︷︷ ︸
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,1, . . . . . . ,1︸ ︷︷ ︸
10

,0, . . . . . . ,0︸ ︷︷ ︸
490

)′.

For each scenario we consider (a) the NEG prior without the grouping, (b) the correct
grouping (the perfect separation of predictive blocks), and (c) the imperfect grouping accord-
ing to Q1 = {1, . . . ,40}, Q2 = {41, . . . ,500}, Q3 = {501, . . . ,540}, Q4 = {541, . . . ,1000}.
We consider a covariance matrix Σ =

{
0.5|i− j|

}p

i, j=1
to generate predictors from Np(0,Σ).

Results are summarized in Table 4.7, where the average numbers of false discoveries, false
non-discoveries and false discoveries after applying the hierarchical selection are reported
from 10 simulated repetitions. The number of false non-discoveries remains the same after
the hierarchical selection. We clearly see the benefit of including the grouping in the reduction
of false non-discoveries. The lowest number is seen for the correct grouping, followed by the
imperfect grouping and then by the plain NEG prior. The model with the correct grouping
has consistently the lowest number of false discoveries, which even drop down to zero after
the hierarchical selection. Regarding the false discoveries, the NEG prior benefits from the
incorrect grouping only after the hierarchical selection. The exemption was the least sparse
model associated with β 1 in Table 4.7. As explained in the manuscript, the model without the
scaling tends to increase the number of within group false discoveries in the sparse groups. It
is worth noting that the NEG prior without the grouping performs well in very sparse situations
(viz. the sparsity pattern associated with β 3 in Table 4.7 and also simulated examples in our
manuscript).

4.10.6 F: Complete description of gene/pathway information

Glycerophospholipid metabolism Insulin signaling pathway
Phosphatidylinositol signaling system Aldosterone-regulated sodium reabsorption

Protein processing in endoplasmic reticulum Salivary secretion
mTOR signaling pathway Gastric acid secretion
ECM-receptor interaction Prion diseases

Adherens junction Prostate cancer
Complement and coagulation cascades Systemic lupus erythematosus
RIG-I-like receptor signaling pathway Hypertrophic cardiomyopathy (HCM)

Intestinal immune network for IgA production

Table 4.8: Pathways identified by the overlapping group LASSO
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β̂

0.36

0.341

0.297

0.226
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0.019

0.016

0.011
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0.008

0.003
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Melanogenesis
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Complement and coagulation cascades

Cytosolic DNA-sensing pathway

Phosphatidylinositol signaling system
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Table 4.9: Results obtained from NEG grouping model. Table reports the involvement of 21 identified genes within
21 identified pathways
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CHAPTER 5

FAST DYNAMIC POSTERIOR EXPLORATION FOR FACTOR

AUGMENTED MULTIVARIATE REGRESSION

Rockova, V., Lesaffre, E. 2013. Fast Dynamic Posterior Exploration for Factor Aug-
mented Multivariate Regression. Manuscript in preparation
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5.1 Introduction

Abstract
Advancements in high-throughput experimental techniques have facilitated the availability

of diverse genomic data, which provide complementary information regarding the function and

organization of gene regulatory mechanisms. The massive accumulation of data has increased

demands for more elaborate modeling approaches that combine the multiple data platforms. We

consider a sparse factor regression model, which augments the multivariate regression approach

by adding a latent factor structure, thereby allowing for dependent patterns of marginal covariance

between the responses. In order to enable the identification of parsimonious structure, we impose spike

and slab priors on the individual entries in the factor loading and regression matrices. The continuous

relaxation of the point mass spike and slab enables the implementation of a rapid EM inferential

procedure for dynamic posterior model exploration. This is accomplished by considering a nested

sequence of spike and slab priors and various factor space cardinalities. Identified candidate models

are evaluated by a conditional posterior model probability criterion, permitting trans-dimensional

comparisons. Patterned sparsity manifestations such as an orthogonal allocation of zeros in factor

loadings are facilitated by structured priors on the binary inclusion matrix. The model is applied to

a problem of integrating two genomic datasets, where expression of microRNA’s is related to the

expression of genes with an underlying connectivity pathway network.

5.1

Introduction

The systematic analysis of the cancer genome and transcriptome has over the past decades
identified profound modifications of expression homeostasis involving both coding and non-
coding genes. Modulation of gene expression can be mediated by many intricate biological
processes, study of which has become instrumental in characterizing disease pathogeneses.
The recent explosion of data of diverse genomic phenomena has provided complementary
information about the function and organization of gene regulatory mechanisms. This mas-
sive accumulation of information has resulted in forces towards building more comprehensive
models, that integrate multiple data platforms. The increasing capacity to quantify the expres-
sion dynamics of the transcriptome will soon begin to open new opportunities to model the
regulatory mechanisms using dynamic statistical models. Nowadays, the majority of routinely
analyzed data are limited by design or technology, forcing the design of simplistic statistical
models that rely strongly on unrealistic biological assumptions. This work presents one alter-
native approach to generating insights about microRNA mediated modulation of gene expres-
sion from two sets of static expression data. Turning to the pragmatic challenges that these
data pose, it is the high-dimensionality which most complicates the computational tractabil-
ity and precludes the use of standard methods, for which an enormous effort would have to
be exercised to discern the relevant from the noise. We implement an expeditious inferential
procedure that profoundly facilitates computation in high volume data.
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5. Fast Dynamic Posterior Exploration for Factor Augmented Multivariate Regression

Our work is anchored by the development of a factor regression framework for elucidating
associations between two (high-dimensional) sets of variables, where directionality exists that
designates one set as predictors and the other set as responses. The multivariate regression
model is augmented by adding latent factors to decipher the pattern of marginal covariance
after adjustment for the predictors. In addition, we address uncertainty about the cardinal-
ity of the factor space. The factor model is better suited for the interpretation rather than to
the accurate prediction of the marginal covariance matrix. We envision that a practitioner
would like to recover an interpretable pattern of sparsity, when it exists. The key instrument
to detecting sparsity is the continuous relaxation of the point mass spike and slab prior, which
admits implementation of rapid inferential schemes (Rockova and George, 2013). Inducing
a mixture prior on every single regression coefficient and factor loading, a binary inclusion
matrix is used to encode the factor model configuration. Patterned variable selection is then
facilitated by structured priors on the model matrix. In order to yield a complementary allo-
cation of zeroes and to mitigate factor splitting in over-parametrized models, we implement a
row-wise multinomial-Dirichlet prior on the factor loading matrix.

Our principal contribution is the development of a rapid inferential algorithm for factor
model exploration based on the EM algorithm, which leverages existing tools developed for
probabilistic principal components (Tipping and Bishop, 1999) and variable selection in linear
regression (Rockova and George, 2013). The proposed exploratory procedure is a multivariate
factor extension of the EMVS procedure of Rockova and George (2013) and admits computa-
tion using closed form expressions. For greater flexibility in detecting high posterior models,
we proceed sequentially with a series of nested of spike and slab priors and considering var-
ious factor space cardinalities. The posterior identification of candidate models, based on a
local median probability model rule (Barbieri and Berger, 2004), is followed by model evalu-
ation using a conditional posterior model probability criterion assuming a point mass at zero.
We contemplate that the EM algorithm is likely to generate more interesting candidate mod-
els when the assumed factor cardinality is close to the effective dimension. Inference about
factor dimensionality can be guided by the sparsity pattern in over-parametrized models and
grounded by the evaluation criterion, which admits trans-dimensional comparisons.

The usefulness of the model will be demonstrated on the problem of describing mi-
croRNA regulatory networks in acute myeloid leukemia. MicroRNAs are short non-coding
RNA’s that down-regulate expression of their gene targets through complementary base pair-
ing. Apart from automated algorithms, which predict putative targets by just their genomic
content, there has been an emergence of statistical prediction models that also take experi-
mental data into account (Stingo et al., 2010; Huang and Morris, 2007; Zacher et al., 2012).
Many of these approaches rest on the simplifying assumption of conditional independence
between genes, given the microRNAs. Recent biological evidence suggests that related genes
with similar genomic recognition elements (not necessarily coding for a protein) can attract
similar microRNAs. This competition for the limited pool of microRNAs then induces a dis-
torted balance in concentration of the competing genes. Such between gene communication
is difficult to capture from the snapshot expression measurements and statistical evidence for
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this mechanism is still missing. Despite this complexity of microRNA regulation, we use the
microRNA and gene expression datasets to illustrate our developed methodology.

5.2

Factor Regression Model Structure

The data setup under consideration consists of a n×G matrix Y = [y1, . . . ,yn]
′ containing n in-

dependent observations on G related responses and a n× p predictor matrix X = [x1, . . . ,xn]
′.

Before proceeding, it will be beneficial to center the columns in X and Y around zero and
standardize X to have unit column-wise variances. We assume throughout that yi’s arise as in-
dependent realizations from a latent factor regression model, where the responses are mapped
linearly on a space spanned by both observed explanatory variables and unobserved (latent)
factors. Given ω i, a (d×1) vector of latent variables for the case i, we assume

f (yi |ω i,A,B,Σ) = NG(Axi +Bω i,Σ), 1≤ i≤ n, (5.2.1)

where the G× p matrix A consists of unknown regression coefficients, Σ = diag{σ2
j }G

j=1 is
a diagonal matrix of unknown positive scalars and the G× d matrix B contains factor load-
ings weighting the contributions of individual factors. Following the standard assumption,
the latent vectors are considered to arise through random sampling from a Gaussian distribu-
tion Nd(0,σω Id). The variance parameter σω is typically set to unity as a supplement to the
identifiability constraints, a convention that we adopt here. The equation (5.2.1) induces a cor-
responding Gaussian distribution on the observations f (yi |A,B,Σ) = NG(Axi,BB′+Σ), 1 ≤
i≤ n. This permits dependent patterns of covariance among yi, to be attributed to the common
latent factors.

The factor model (5.2.1) is not identifiable without further constraints. One requirement
is for B to be full rank in order to avoid identification problems arising through translational
invariance of the factor model (Geweke and Singleton, 1980). Additional restrictions need to
be imposed to guarantee that the number of free parameters does not exceed the number of
parameters in the unrestricted covariance matrix Var(Y ). Lastly, the parametrization needs to
be invariant under invertible linear transformation of the factor vectors. The common conven-
tion has become to assume that B is zero upper-triangular with positive or even unit elements
on the diagonal (Lopes and West, 2004). Despite the convenient interpretation, inference un-
der this assumption depends on the ordering of the responses, an undesirable phenomenon.
In order to mitigate the influence of the ordering in determining the leading variable for each
factor, Frühwirth-Schnatter and Lopes (2009) considered alternative identifiability conditions,
allowing for more relaxed patterns of zeroes. Nevertheless, these constraints complicate in-
ference using deterministic computational tools, which typically require knowing beforehand
over which parameters the optimization takes place. Unlike the use of factor analytic models
to merely produce an accurate estimates of the covariance matrix, the interpretation of factor
loadings is of the uttermost interest here. We aim to find a sparse interpretable approximation
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to the factor loading matrix corresponding to the (global) posterior mode within a class of
constrained lower-triangular matrices.

The factor regression model (5.2.1) may be contrasted with the orthogonal factor formula-
tion of Yoshida and West (2010), where the loadings are required to be orthonormal. Whereas
their formulation has many convenient properties such as shared pattern of zeroes in marginal
concentration and covariance matrices, our formulation benefits from its resemblance to the
multivariate linear regression, which will be exploited in designing the deterministic tool for
model exploration. Instead of assuming orthonormal in factor loadings, in Section 4 we will
induce an orthogonal allocation of zeroes by means of a structured prior on the loading matrix.

5.3

Sparsity Modeling with Spike and Slab Priors

The Bayesian approach to defining sparse latent and regression structures uses priors on the
individual elements in B = {b jl}G,d

j,l=1 and A = {a jl}G,p
j,l=1 that induce either zeroes (Car-

valho et al., 2008; Frühwirth-Schnatter and Lopes, 2009) or values close to zero with high-
probability. We take the latter approach, exploiting the continuous relaxation of the point-mass
mixture prior (George and McCulloch, 1993). The continuous spike and slab formulation is
essential for derivation of efficient deterministic inferential tools (Stegle et al., 2000; Rock-
ova and George, 2013). Brown et al. (1998) introduced matrix-variate spike and slab priors
for multivariate variable selection using the notation of Dawid (1981), assuming that all the
rows have the same correlation structure. Instead, we permit each row to be treated differ-
entially, which creates more flexibility in characterizing the sparsity pattern in the regression
and loading matrices. Denote [A,B] = [β 1, . . . ,β G]

′, where

β j = (a′j,b
′
j)
′ = (a j1, . . . . . . . . . ,a jp︸ ︷︷ ︸

regression coefficients

,b j1, . . . ,b jd︸ ︷︷ ︸
factor loadings

)′, 1≤ j ≤ G.

Then each β j is assigned a conjugate Gaussian mixture prior

π(β j)∼Np+d(0,σ
2
j D j) (5.3.2)

where D j = diag{(1− γ jl)v0 + γ jlv1}p+d
l=1 and variance parameters v0 and v1 are set to small

and large to distinguish the β jl values which warrant a functional relationship between j-th
response and l-th predictor (factor). Typically, we would like to make a distinction between
the loadings and regression coefficients and allow for different values of v0 and v1. However,
standardizing the predictors and assuming that latent factors arise from the standard normal
distribution, it will often be sensible to use the same spike and slab prior. Here

γ j = (γ ′ja,γ
′
jb)
′ = (γ j1, . . . . . . . . . ,γ jp︸ ︷︷ ︸

predictor indicators

,γ jp+1, . . . ,γ jp+d︸ ︷︷ ︸
factor indicators

)′, 1≤ j ≤ G,
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denotes the vector of inclusion indicators, which characterizes the binary selection status of
each predictor and factor in relation to the j-th response. Stacking the inclusion vectors for
each response in one matrix Γ = [γ1, . . . ,γG]

′, we obtain model configurations characterized
by an active set of binary indicators. For σ2

j , the diagonal elements in Σ, we assume in-
dependent inverse Gamma priors IG(η/2,ηλ/2). The prior specification is completed by
characterizing priors on the G× (p+d) model matrix Γ = [Γa,Γb], consisting of two blocks
for regression coefficients and factor loadings. One of the main thrusts of our modeling ap-
proach rests in inducing structure in the prior distributions in matrices Γa and Γb to encourage
the manifestation of patterned sparsity.

5.4

Priors on the Binary Inclusion Matrix

The evidence for selecting variables and factors is aggregated in the posterior inclusion matrix
Γ = [Γa,Γb], given the observed data. If we were to make the strong assumption that all
the elements γi j are independent, we would treat each indicator individually by assigning
independent Bernoulli priors with a global inclusion probability θ . Such exchangeability has
simplifying implications for inference since we can simply ignore the location of the indicator
within the matrix. Sometimes, the exchangeability is too strong of an assumption and in the
presence of prior knowledge about the patterned or collective behavior among the explanators,
one might want to induce structure in the matrix Γ by making the indicators a priori dependent.
Such relaxations include the partially exchangeable situation, where auxiliary partitions exist
and define exchangeable sets of indicators. Partitions that arise naturally in our context occur
across the columns in the matrix Γ.

To define column-wise exchangeable prior distributions (Frühwirth-Schnatter and Lopes,
2009) on Γ = (γ1, . . . ,γG)

′, we use a hierarchical prior which allows different occurrence
probabilities θ = (θ1, . . . ,θp+d)

′ of non-zero elements in the different columns of [A,B], e.g.

π(Γ |θ) =
p+d

∏
l=1

θ
∑

G
j=1 γ jl

l (1−θl)
G−∑

G
j=1 γ jl (5.4.3)

and θl’s are assigned independent Beta distributions B(a,b). Going further, there are many
possible variations and extensions of exchangeable and partially exchangeable models. We
would ideally like to have two separate mechanisms for the patterned sparsity (a) in the su-
pervised learning about the regression coefficients and (b) in the unsupervised learning about
the factor loadings.

5.4.1 Structured Multivariate Regression

The rectangular matrix of regression inclusion indicators Γa can be regarded as an adjacency
matrix in a bipartite graph with two finite sets of nodes and directed arrows connecting them.
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In the instance of structured predictors, which operate in groups or networks, preferable are
priors that interconnect the subsets of related indicators within the rows of Γa. The assumption
of row-wise exchangeability may not be warranted in cases where we have some additional
information about the properties of the responses, such as the fact that they were produced in
a particular temporal sequence, or reflect a known pattern of covariance. Natural extensions
consider proliferation of inclusion probabilities not only within rows, but also within columns.
Following the notation of Rockova and George (2013), we denote the partially exchangeable
logistic regression product prior on the model matrix as

π(Γa |θ) =
g

∏
j=1

p

∏
k=1

(
exp(Z′G×( j−1)+kθ)

1+ exp(Z′G×( j−1)+kθ)

)γ jk
(

1
1+ exp(Z′G×( j−1)+kθ)

)1−γ jk

, (5.4.4)

where Z = [Z1, . . . ,Zq] is a (G p)×q group identification matrix, and zG×( j−1)+k,l = 1 if and
only if γ jk corresponds to the l-th group. The parameters θ = (θ1, . . . ,θq)

′ then quantify the
respective contributions of each of the q groups. The prior distribution on θ that corresponds
to the beta-binomial prior in case of non-overlapping groups is the independent inverse lo-
gistic beta distribution (Rockova and George, 2013). A special case of this formulation was
proposed by Stingo et al. (2010) for incorporating biological knowledge in multivariate re-
gression. Given that the entries within the matrix Γa lie on a network connecting related
entries by undirected edges, we can define the matrix-variate MRF prior, which is uniquely
determined (Besag, 1974) by the conditional distributions of each indicator γ jk, given its set
of neighbors γ jk·,

π(γ jk |θ ,γ jk·) =

(
exp(θ1 +θ2 ∑k γ jk·)

1+ exp(θ1 +θ2 ∑k γ jk·)

)γ jk
(

1
1+ exp(θ1 +θ2 ∑k γ jk·)

)1−γ jk

.

Here the parameter θ1 regulates the sparsity and θ2 the smoothness of the probability pro-
liferations. Whereas the partially exchangeable prior admits closed form calculations in our
inferential procedure, the MRF requires approximations (as discussed in Rockova and George
(2013)).

5.4.2 Orthogonal Sparsity in Factor Loadings

Focusing on the explanation of the factor model rather than on an accurate prediction of the
marginal covariance matrix, we would ideally like to generate interpretable patterns of sparsity
in the factor loading matrix. The patterned allocation of zeroes can be encouraged by struc-
tured priors on the matrix of factor indicators Γb. Factor analytic models, even under strict
identifiability conditions, often exhibit a phenomenon of factor splitting, where the activity of
a single latent variable is smoothly redistributed across multiple factors. This is undesirable
since we would prefer to obtain the minimal sparse representation leading to the same pattern
of zeroes in the marginal covariance matrix. In many practical situations, it would even be
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(a) α = (0.1,0.1,0.1)′ (b) α = (1,1,1)′ (c) α = (10,10,10)′ (d) α = (0.1,1,10)′

Figure 5.1: Scatterplot of simulated data from a 3-dimensional Dirichlet distribution with various concentration
vectors

desirable to yield a complementary allocation of zeros in the columns of the loading matrix.
Such representations would be useful when one is interested in finding the likely grouping of
responses based on their affinity for a single latent factor.

The smooth structured prior parametrizations (two examples outlined in the previous sec-
tion) are less convenient for modeling mutually exclusive or competitive indicators. The de-
pendence can be introduced indirectly by allowing each indicator γ jk to have an individual in-
clusion probability θ jk and by subjecting the matrix Θ=(θ jk)

G,d
j,k to a set of constraints. A use-

ful parametrization can be obtained by allowing every response to interact with one and only
one factor by assuming a multinomial distribution M ult(γ j1, . . . ,γ jd ;1;θ j1, . . . ,θ jd) for every
row γ j = (γ j1, . . . ,γ jd)

′ in the matrix Γb. To put this down formally, denote γ j· = ∑
d
l=1 γ jl and

define

π(γ j;θ j) =

{
∏

d
l=1 θ

γ jl
jl if ∑

d
l=1 γ jl = 1,

0 otherwise.
(5.4.5)

The allocation proportions in this multinomial distribution are constrained to sum up to one
and typically equipped with the Dirichlet prior distribution D(α1, . . . ,αd). Adopting this
convention, we specify row-wise independent Dirichlet priors in the matrix Θ with a common
vector of positive concentration parameters α = (α1, . . . ,αd)

′, i.e.

π(θ j)∼D(α) =


Γ(∑

d
k=1 αk)

∏
d
k=1 Γ(αk)

∏
d
k=1 θ

αk−1
jk if θ jk > 0 and ∑

d
k=1 θ jk = 1,

0 otherwise.

The multinomial-Dirichlet prior induces competitiveness among the factors which helps
to better mitigate the issue of factor splitting that occurs in saturated factor models (Geweke
and Singleton, 1980). It is worth noting that such dynamics would not be possible to capture
by considering only one set of allocation proportions θ shared among the rows in Γb. It is
also instructive to see how the choice of the concentration parameters affects the probability
mass distribution of the Dirichlet prior. The marginal means are proportional to the entries
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in α where higher values, generating the same mean vector, increase the concentration of the
probability mass. The mode of the Dirichlet distribution is not well defined unless αi > 1. In
symmetric distributions (α1 = · · ·= αd) the values (a) below one (Figure 5.1(a)) smooth away
the distribution from the center towards the borders of the simplex, (b) equal to one (Figure
5.1(b)) generate a uniform distribution, (c) above one (Figure 5.1(c)) gravitate the distribution
towards the center of the simplex. In the asymmetrical distributions (unequal concentration
parameters), the mass is pulled towards a side of the simplex in the direction of the smallest
value αi (Figure 5.1(d)). This suggests that a more dramatic reduction in factor splitting would
be encouraged by assuming α1 > · · ·>αd , inducing also a decreasing trend in the prior means
of γ j.

5.5

EM Algorithm for Sparse Bayesian Factor Regression

Bayesian learning in factor analytic models has relied heavily on the developments in stochas-
tic search methods for posterior exploration (Carvalho et al., 2008; Frühwirth-Schnatter and
Lopes, 2009). The computational complexity there is hugely challenged as the number of
factors and the dimensionality of the response vector increases. As an alternative to stochas-
tic search, we propose a deterministic approach to finding high posterior probability models
associated with modes of the posterior distribution π(A,B,Σ,θ |Y ) using an EM algorithm.
The observed data is augmented by the latent factors Ω = [ω1, . . . ,ωn]

′ as well as the latent
binary model matrix Γ. The principal ingredient to obtaining a closed form EM algorithm is
positioning the variable selection indicators at the level of regression parameters, yielding a
convenient hierarchical separability of the prior. Our factor model formulation is reminiscent
of the probabilistic principal components approach (Tipping and Bishop, 1999), for which a
closed form EM algorithm exists. Recently, Rockova and George (2013) proposed an expe-
ditious EM-based procedure for Bayesian variable selection using continuous spike and slab
priors. Augmenting the factor model with continuous mixture priors, we can combine the
ingredients of the two algorithms to obtain a closed form EM inferential procedure for factor
model exploration. The mathematical formalism of the EM procedure is described below and
the model identification based on the maximum a posteriori output is postponed until the next
section.

The EM algorithm locates posterior modes by iteratively maximizing the objective func-
tion:

Q(A,B,θ ,Σ) = EΓ,Ω|·

logπ

 A,B,Σ,θ︸ ︷︷ ︸
unknown parameters

,

missing data︷︸︸︷
Γ,Ω | Y︸︷︷︸

observed data


 ,

where EΓ,Ω|·(·) denotes the conditional expectation of the latent data, given the observed
data and current parameter estimates at the k-th iteration. It is worth noting that due to the
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separability of the prior, where the binary factor model matrix depends on the latent factors
only through factor loadings, Ω and Γ are conditionally independent.

Denote D ja and D jb the diagonal blocks of the matrix D j in (5.3.2) that correspond to the
regression coefficients and factor loadings, respectively. We can write

Q(A,B, Σ,θ) =
1
2
Eγ,Ω|·

[
−

n

∑
i=1

(yi−Axi−Bω i)
′
Σ
−1(yi−Axi−Bω i)

−
G

∑
j=1
||D−1/2

ja a j||−
G

∑
j=1
||D−1/2

jb b j||− (n+ p+d +η)
G

∑
j=1

logσ
2
j

−ηλ

G

∑
j=1

1
σ2

j
+ logπ(Γ |θ)+ logπ(θ)

]
. (5.5.6)

For convenience of notation, let 〈X〉 be the conditional expectation EΓ,Ω|·(X). The latent
variables entering (5.5.6) linearly can be replaced by their conditional expectations. The
expectation of the emerging quadratic terms of the latent data is evaluated as 〈ω iω

′
i〉 =

〈ω i〉〈ω i〉′+M(k), where M(k) = VarΓ,Ω|·(ω i) denotes the conditional covariance matrix of
the factor vector. Then we can write

Q(A,B, Σ,θ) =−1
2

[ n

∑
i=1

(yi−Axi−B〈ω i〉)′Σ−1(yi−Axi−B〈ω i〉)

+
G

∑
j=1
||〈D−1/2

ja 〉a j||+
G

∑
j=1
||〈D−1/2

jb 〉b j||+ntr(B′Σ−1BM(k))

+(n+ p+d +η)
G

∑
j=1

logσ
2
j +ηλ

G

∑
j=1

1
σ2

j
+ 〈logπ(Γ |θ)〉+ logπ(θ)

]
, (5.5.7)

where tr(·) designates the trace of a matrix. The first two rows in (5.5.7) correspond to a
penalized likelihood in multivariate regression with a predictor matrix of observed explanators
and imputed latent factors and with ridge penalty matrices. To see this, it suffices to replace
the row summations by column summations in (5.5.7) to obtain

Q(A,B, Σ,θ) =−1
2

[ G

∑
j=1

||y j−Xa j−〈Ω〉b j||
σ2

j
+

G

∑
j=1

||〈D ja〉−1/2a j||
σ2

j

+
G

∑
j=1

||(〈D jb〉−1/2 +
√

nM(k)1/2)b j||
σ2

j

+(n+ p+d +η)
G

∑
j=1

logσ
2
j +ηλ

G

∑
j=1

1
σ2

j
+ 〈logπ(Γ |θ)〉+ logπ(θ)

]
, (5.5.8)

where y j denotes the j-th column in the matrix Y and 〈Ω〉= [〈ω1〉, . . . ,〈ωn〉]′.
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5.5.1 Closed Form E-step

The E-step entails computation of the expectations involved in (5.5.8), namely (a) the condi-
tional mean and covariance of the latent factors, (b) the conditional expectation of the diago-
nal penalty matrices 〈D j〉= {(1−〈γ jl〉)v0 + 〈γ jl〉v1}p+d

l=1 and (c) terms involved in 〈logΓ |θ〉.
The expected logarithm of the partially exchangeable matrix priors (5.4.3) and (5.4.4) re-
quires only the computation of marginal inclusion probabilities 〈γ jl〉, which can be obtained
in closed form. Assuming (5.4.3), these calculations simplify to

〈ω i〉= M(k)B(k)′
Σ
(k)−1

(
yi−A(k)xi

)
, (5.5.9)

M(k) =
(

B(k)′
Σ
(k)−1B(k)+ Id

)−1
, (5.5.10)

〈γ jl〉=
φ(β

(k)
jl ;0,σ (k)2

j v1)θ
(k)
l

φ(β
(k)
jl ;0,σ (k)2

j v1)θ
(k)
l +φ(β

(k)
jl ;0,σ (k)2

j v0)(1−θ
(k)
l )

, (5.5.11)

where φ(x;0,σ2) denotes the zero mean Gaussian density with variance σ2 evaluated at x.
Under the logistic partially exchangeable prior (5.4.4), the update in (5.5.11) for 1 ≤ l ≤ p
replaces θ

(k)
l by the inverse logistic transformation of the current estimate of the linear pre-

dictor at the k-th iteration. Under the multinomial-dirichlet prior, the conditional expectation
of the factor indicators for p+1≤ l ≤ p+d uses updates (5.5.11) with θ

(k)
l replaced by θ

(k)
jl .

5.5.2 Closed Form M-step

The M-step requires computation of ridge regression solutions with penalties induced by the
posterior averaged spike and slab precisions and the covariance matrix of the latent factors.

For the simplicity of exposition, denote D?
j =

(
0 0
0 M(k)

)
+ 〈D j〉. Assuming (5.4.3) with the

beta-binomial prior on the inclusion probabilities, the M-step for j > d consists of updates:

β
(k+1)
j =

(
[X ,〈Ω〉]′[X ,〈Ω〉]+D?

j
)−1

[X ,〈Ω〉]′y j, (5.5.12)

σ
(k+1)
j =

√√√√ ||y j− [X ,〈Ω〉]β (k+1)
j ||+ ||D?1/2

j β
(k+1)
j ||+νλ

n+ p+d +ν
, (5.5.13)

θ
(k+1)
l =

∑
G
j=1〈γ jl〉+a−1

a+b+G−2
. (5.5.14)

For j ≤ d, each vector β
(k+1)
j is confined by the lower triangular structure in the factor load-

ings. The updates again require a ridge regression solution, only with a subset predictor matrix
and a modified response after regressing out the factor with the unit diagonal element in B.
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The updates σ
(k+1)
j then change correspondingly. In the instance that p+ d > n, the ridge

regression solutions (5.5.12) can be obtained more efficiently by the Woodburry-Sherman
matrix inversion trick. If both n and p+ d are formidably large, fast approximate solutions
can be obtained with the assistance of dual coordinate ascent methods (George et al. (2013),
Tong et al. (2012)). For the logistic partially exchangeable prior (5.4.4) with the inverse
logistic beta prior on θ , the step (5.5.14) is replaced by the maximization of

g

∑
j=1

p

∑
k=1

{
〈γ jk〉θ ′ZG×( j−1)+k − log

[
1+ exp(θ ′ZG×( j−1)+k)

]}
+a1′θ − (a+b) log[1+ exp(1+1′θ)],

which admits closed form solutions unless the groups overlap, in which case routine optimiza-
tion methods can be used. The Dirichlet-multinomial prior on the factor loadings leads for
p+1≤ l ≤ p+d to closed form updates of elements in Θ

(k), namely

θ
(k)
jl =

〈γ jl〉+αl −1

∑
d
l=1(γ jl +αl)−d

. (5.5.15)

5.6

Factor Model Exploration and Evaluation

In our perspective, model building of factor analytic models entails two related modeling
decisions: (a) determining the effective factor dimensionality, (b) allocating zeroes in the ma-
trix of factor loadings. The first decision is typically resolved by fitting the factor model for
different d and performing comparisons by some model selection criterion. Alternatively, in-
ference about factor cardinality can be facilitated by trans-dimensional inferential algorithms
(Lopes and West, 2004; Bhattacharya and Dunson, 2011). Similarly as Frühwirth-Schnatter
and Lopes (2009), inference on the effective dimension will be anchored by the pattern of
sparsity in the factor loading matrix, induced by structured priors under identifiability con-
straints. In way too generous factor models, the overly sparse loading columns serve as an
indicator for factor reduction.

5.6.1 Recovering Sparsity

If we were to consider the factor regression model (5.2.1) with a presumed factor dimension-
ality d, we could exploit the EM algorithm to detect suitable candidate models. Different
choices of tuning parameters would likely lead to different candidates. Turning to the issue
of calibration, it is sensible to keep the slab variance v1 fixed to a large value or to treat it as
unknown and impose a prior. The choice of the spike variances v0 is far more consequential.
Varying the spike variance v0 changes dramatically the character of the posterior landscape
(Rockova and George, 2013). Small values v0 encourage concentration of the posterior around
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sharp isolated peaks of local maxima. Large values v0 induce a wide posterior spike around
zero, reducing multimodality by swallowing local modes associated with small regression co-
efficients. In order to capture the dynamics of such posterior mass reallocation, we consider
a grid of values v0 ∈ V and run the EM algorithm for each v0 to generate a set of candi-
date models {Γd

v0
= [Γd

v0 a,Γ
d
v0 b] : v0 ∈V}. Gradually increasing v0 leads inevitably to model

sparsification and provides an accumulation of evidence for the truly important associations.
Each model configuration Γ

d
v0

can be retrieved from the maximum-a-posteriori (MAP)
matrices Âd

v0
and B̂d

v0
by thresholding the individual entries that are small in magnitude. By

virtue of selective shrinkage, induced by the spike and slab prior, unimportant coefficients are
pulled towards zero, deactivating the binary inclusion indicators. In contrast where the slab
has dominated the posterior, the MAP coefficients will be large and instead activate the binary
indicators. Although not actually sparse, the MAP estimates serve a useful prerequisite for
identifying the associated high-probability posterior model. As a by-product of the EM algo-
rithm, we obtain the matrix 〈Γ〉dv0

= [〈Γd
v0 a〉,〈Γd

v0 b〉] of the conditional inclusion probabilities

P(γ jk = 1 | Âd
v0
, B̂d

v0
, Σ̂d

v0
,Y ) given the MAP estimates and the observed data. A natural way

to locate the high probability model is by screening out the entries 〈Γ〉dv0
that are below a se-

lection threshold 0.5. This corresponds to a local variant of the median posterior model rule
(Barbieri and Berger, 2004). As explained in Rockova and George (2013), this rule is equiv-
alent to thresholding the MAP estimates Âd

v0
and B̂d

v0
based on the intersection point between

the two densities in the posterior weighted spike and slab mixture.
The median probability model rule does not guarantee the orthogonal factor model matrix

Γ
d
v0 b even under the multinomial-Dirichlet prior, because the rows in 〈Γd

v0 b〉 do not sum to

one. Using the Dirichlet prior, the rows in Θ
(k) do sum to one and allow only one entry above

0.5. This motivates an alternative practical guidance to identify orthogonal factor model by
thresholding the matrix Θ

(k).
We contemplate that the practitioner would prefer to run the EM procedure for a set of

factor dimensionalities. The EM algorithm will presumably generate more interesting models,
when the assumed factor cardinality is close to the effective dimensionality. Having obtained
a series of candidates, the lingering issue remains how to effectively distinguish between
models identified along the regularization path v0 ∈V and how to perform inference on the
number of necessary factors.

5.6.2 Trans-dimensional Model Comparisons

In our Bayesian approach to factor augmented multivariate regression, it is the EM exploratory
algorithm that enables us to rapidly elicit suitable candidate models. Under the order-inducing
identifiability constraints, every lower-dimensional factor model can be embedded within a
richer factor model by augmenting the factor loading matrix with additional zero columns to
fill in the dimensionality gap. Thereby models with different factor dimensionalities can be
set on an equal footing for model evaluation, for instance by the posterior model probability
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P(Γ |Y ). Whereas the continuous spike distribution (v0 > 0) is key to implementing the model
discovery, the “objective" model evaluation (irrespective of the choice v0 > 0) will be based
on the assumption that v0 = 0. It is the point mass spike that in conjugate linear regression
models leads to a closed form expression for the posterior model probability, up to a norming
constant (George and McCulloch, 1997).

In the multivariate regression with uncorrelated responses, the posterior model probability
simplifies to an independent product of individual model probabilities for each regression. In
the latent factor model, the posterior model evaluation is far more challenging where tractable
closed forms are no longer available. A useful approximation can be obtained through Monte
Carlo integration, based on the integral representation

P(Γ |Y ) ∝ P(Γ)
∫

P(Y |Ω,Γ)π(Ω |Γ)dΩ (5.6.16)

∝ P(Γ)
∫

P(Y |Ω,Γ)π(Ω)dΩ. (5.6.17)

The identity (5.6.17) follows from (5.6.16) by the argument of hierarchical separability, where
the factor selection indicators depend on the latent data only through the factor loadings. Once
we knew the latent factors, we could employ the standard computation to evaluate conditional
posterior probabilities. This motivates our investigation of approximations to (5.6.17) by
means of an empirical average, given a finite set of draws from the prior distribution π(Ω).
We define the approximated criterion for model comparison as

G(Γ) =
P(Γ)

M

M

∑
m=1

P(Y |Ωm,Γ)π(Ωm). (5.6.18)

This strategy, however, increases the computational complexity, which may be formidable if
the cardinality of the factor space is large. Alternative schemes can be obtained based on the
integral representation

P(Γ |Y ) =
∫

P(Γ |Ω,Y )P(Ω |Y )dΩ. (5.6.19)

Replacing the intractable distribution P(Ω |Y ) by the conditional distribution given the MAP
estimates P(Ω | Â, B̂, Σ̂,Y ), which is tractable and easy to sample from, we could employ the
Monte Carlo integration similarly to what was done previously. Ultimately, we propose an
alternative surrogate criterion, which follows from (5.6.19) by replacing P(Ω |Y ) with a dirac
measure concentrated at 〈Ω〉, given the MAP estimates and the observed data. This leads to a
rapidly computable criterion

G̃(Γ) = P(Γ)P(Y | 〈Ω〉,Γ) ∝ P(Γ | 〈Ω〉,Y ). (5.6.20)

As will be demonstrated on simulated data, this conditional criterion can be used to perform
(trans-dimensional) model comparisons effectively and also efficiently.
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5.7

The EM Strategy for Factor Model Selection

In this section we exemplify the EM strategy for factor model selection and explore empiri-
cally its performance on a simple simulated data set. The performance is evaluated by three
metrics: the ability (a) to detect sets of predictors relevant for multiple responses, (b) to deter-
mine effective factor dimensionality, (c) to recover underlying latent structure.

Here we analyze a synthetic data set consisting of n = 100 observations generated from
the factor regression model (5.2.1), assuming G = 200 responses, p = 20 predictors and d = 5
generating factors. The rows of the regression matrix X were drawn independently from
N20(0, I20) and the latent factors were obtained through random sampling from N5(0, I5).
We assume homoscedastic residual variances σ2

1 = · · · = σ2
G = 4. The nonzero entries in

the regression matrix A = I5⊗140×4 are placed in blocks along the main diagonal, where ⊗
denotes the Kronecker matrix product and 140×4 is a (40× 4) matrix of ones. We begin by
assuming that each gene is driven by only one underlying factor and generate a block-wise
matrix B = I5⊗ 140, where 140 is a (40× 1) vector of ones. For the identifiability, we then
set the diagonal elements {bkk}d

k=1 to one. Throughout the course of this section, the EM
procedure will be initialized with unit elements in B(0) and σ (0). The starting values A(0)

for the matrix of regression coefficients are for given v0 and v1 generated as row-wise ridge
regression solutions corresponding to the limiting case of deterministic annealing (Rockova
and George, 2013)

A(0) = Y ′X
(

X ′X +
v0 + v1

2v0v1

)−1
.

The data is pre-processed by centering columns in X and Y around zero and scaling X to be
within a unit variance range.

5.7.1 Model Exploration

First, we implement the EM algorithm to generate candidate models considering various v0 >
0. We begin with the vanilla column-wise exchangeable prior on the model matrix. Later,
we demonstrate the benefits of the Dirichlet-multinomial formulation. The model exploration
is performed under three scenarios, where the assumed factor dimensionality is (a) correct
(d = 5), (b) under-determined (d = 3), or (c) over-determined (d = 7). The model elicitation
is followed by model evaluation by the surrogate posterior model probability criterion (5.5.8)
based on v0 = 0.

5.7.1.1 � Column-wise Partially Exchangeable Prior

We begin by considering the partially exchangeable model prior (5.4.3), where the indicators
in Γ are Bernoulli trials with inclusion probabilities θ = (θ1, . . . ,θp+d)

′ that are individual
for each column. Each θl is assigned a Beta prior B(1,1). We proceed by setting v1 = 100
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Figure 5.2: Estimated patterns of zeroes in the model matrix Γ for d = 5

and considering spike variances v0 ∈ V = {0.01,0.03,0.05}. For every v0 ∈ V and d ∈ D =
{3,5,7} we run the EM exploratory procedure to elicit a candidate model Γ

d
v0

by the local
median probability model rule.

We first assume that the true dimensionality of the latent factors is known in an advance
(i.e. d = 5). We run the EM algorithm individually for each v0 ∈ {0.01,0.03,0.05} and obtain
model configurations portrayed in Figure 5.2. The blank entries in the matrix correspond to
zeroes, whereas nonzero values are filled with color. In the panel for regression coefficients,
blue denotes the true positives whereas green and red denote false negatives and false posi-
tives, respectively. Increasing the spike variance, the EM algorithm generates sparser models
with fewer false positive findings. This reduction in model complexity comes at the expense
of impaired ability to detect signal, particularly in the latent structure. The estimated coef-
ficients θ̂ = (θ̂1, . . . , θ̂p+d)

′, superimposed on top of each column, report close to the true
proportion of responses affected by each individual variable/factor.

It is instructive to investigate, how the searching algorithm performs when the factor
dimensionality is under-determined. We set d = 3 and repeat the calculations with the same
settings as before. The results depicted in Figure 5.3 confirm that by considering a larger
spike, the EM is unable to capture the latent structure. Smaller values, on the other hand, lead
to factor merging.

Finally, we perform the EM exploration when there are too many assumed factors by
setting d = 7. The triplet of models, displayed in Figure 5.4, demonstrates that in an over-
determined model with a small spike variance, the activity of what was supposed to be a single
latent variable is distributed among multiple columns, a phenomenon called factor splitting.
Larger spikes again fail to detect the latent signal. The close to zero estimates θ̂ associated
with the last two latent factors in Γ

7
0.03 and Γ

7
0.05 suggest factor reduction. In fact, the model

Γ
7
0.05 has only one nonzero entry in the last two loading columns, which implies that the

effective dimensionality is essentially 5.
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Figure 5.3: Estimated patterns of zeroes in the model matrix Γ for d = 3
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Figure 5.4: Estimated patterns of zeroes in the model matrix Γ for d = 7

5.7.1.2 � Dirichlet-Multinomial Prior

The two undesirable phenomena emerging in the previous analysis are (a) factor splitting in
an over-determined model and (b) the inability to capture the latent signal for larger values of
the parameter v0. These observations support the argument that the loadings and regression
coefficients should be treated individually. In the revised analysis, we will consider the row-
wise multinomial-Dirichlet prior (5.4.5) on the loading inclusion matrix. The allocation of
zeroes in the factor model matrix is based on the 0.5 thresholded maximum-a-posteriori matrix
Θ̂.

Regarding the prior on the regression model matrix, we exploit the fact that the predictors
operate in clusters to predict groups of related responses. In our example, there are 5 groups of
predictive coefficients placed in blocks along the main diagonal. The remaining coefficients
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RC FL

TP FP FN

log G=−62071.65

(a) v0 = 0.01

RC FL

TP FP FN

log G=−61396.37

(b) v0 = 0.03

RC FL

TP FP FN

log G=−61380.08

(c) v0 = 0.05

Figure 5.5: Estimated patterns of zeroes in the model matrix Γ for d̃ = 5 and structured model prior

are deemed to belong to a single non-predictive group. Assuming that all the within-group
indicators share the same inclusion probability, we consider the partially exchangeable prior
(5.4.4) driven by this grouping. We expect that inducing the dependence within the matrix of
binary indicators, the EM will generate candidates that better correspond to the true generating
model.

Once again we perform the exploration under the three scenarios d ∈ {3,5,7}. It is worth
noting that for d = 5, the structured prior with suitably chosen v0 leads to the identification of
all nonzero regression elements without any false positives (Figure 5.5). The identified latent
structure there is nearly identical to the generating model. In the under-determined model
(Figure 5.6), the factor merging is even more encouraged, leading to models with a richer
latent structure as compared to the previous analysis (Figure 5.3). In the over-determined
case (Figure 5.7), the factor splitting is mitigated by performing the factor selection based on
the matrix Θ̂. The last two factors hardly contribute to the explanation of responses, which
suggests that it might be preferable to ignore them.

The goal of these exploratory analyses has been to demonstrate that the EM algorithm
finds better candidate models when the factor dimensionality is close to the truth, and that
the sparsity pattern in factor loadings provides evidence complimentary to the G̃-function in
determining the convenient dimensionality of the factor model. Rigorous model evaluation is
presented in the next section.

5.7.2 Model Evaluation

The recommended practical guidance for comparing identified candidate models is based on
the surrogate posterior model probability criterion (5.6.20). The values G̃(·) for all detected
models from the previous section are tabulated in Table 5.7.2 together with information on
the computational time and iteration history. The EM searching machanism is seen to locate
better candidate models when d = 5. These models exhibit a good compromise between
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RC FL

TP FP FN

log G=−62535.84

(a) v0 = 0.01
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TP FP FN

log G=−62321.28

(b) v0 = 0.03

RC FL

TP FP FN

log G=−62327.8

(c) v0 = 0.05

Figure 5.6: Estimated patterns of zeroes in the model matrix Γ for d = 3 and structured model prior

RC FL

TP FP FN

log G=−62944.41

(a) v0 = 0.01
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log G=−61754.18

(b) v0 = 0.03

RC FL

TP FP FN

log G=−61725.8

(c) v0 = 0.05

Figure 5.7: Estimated patterns of zeroes in the model matrix Γ for d = 7 and structured model prior

false negatives and positives, which is also supported by higher values of G̃. The search can
be improved when guided by the multinomial-Dirichlet prior and correct grouping, where
the best model is the one with zero false positives and negatives in the regression structure
and nearly accurate latent structure. This model also has the most favorable value of the G̃-
function among all considered models, which supports the evidence that this criterion can be
used to effectively and efficiently perform comparisons between factor models.
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d = 5 d = 3 d = 7
(a) (b) (a) (b) (a) (b)

v0 = 0.01
G̃-function -61824.86 -62071.65 -62529.62 -62535.84 -62322.23 -62944.41
#iterations 27 27 21 21 31 31
CPU(sec) 3.15 8.29 2.7 7.42 4.31 9.86

v0 = 0.03
G̃-function -61392.85 -61396.37 -62340.16 -62321.28 -61698.85 -61754.18
#iterations 27 27 21 21 31 31
CPU(sec) 3.14 8.18 2.7 6.99 4.31 10.31

v0 = 0.05
G̃-function -62421.41 -61380.08 -63682.4 -62327.8 -62453.14 -61725.8
#iterations 27 27 21 21 31 31
CPU(sec) 3.1 9.62 2.69 7.36 4.28 10.4

Table 5.1: (a) EM search with column-wise partial exchangeability, (b) EM search with multinomial-dirichlet prior
and partially exchangeable prior with correct grouping; the Table reports values of the G̃-function as well as the number
of iterations until convergence and the computational time in seconds on a 3.0 GHz processor desktop computer using a
R implementation; the largest value of the G̃-function marked in bold font

5.8

AML MicroRNA Regulatory Network

Acute myeloid leukemia (AML) describes a heterogeneous group of hematopoietic disorders,
characterized by the proliferation of immature progenitors that have lost their ability to differ-
entiate into functional myeloid cells. Past decades of an intensive biomedical research have
accumulated a large body of evidence for the multifactorial pathogenesis of AML. The mul-
tiple contributing factors engage molecular mechanisms as diverse as epigenetic alterations,
cytogenetic abnormalities and other genetic aberrations leading to impaired expression of
oncogenic genes. Recent studies have also begun associating microRNAs with specific AML
regulatory mechanisms (Jongen-Lavrencic et al., 2008; Sun et al., 2013a). MicroRNAs are
negative regulators of gene expression, decreasing the stability of target RNAs or limiting
their translation (Fabian et al., 2010). Assuming that microRNAs disrupt the gene expression
homeostasis associated with the normal hematopoiesis, we set out to detect an “active" set of
microRNA’s whose elevated levels imply a modulation of gene expression. Our expression
dataset provides snapshot measurements of the gene and microRNA levels in a heterogeneous
group of 212 patients diagnosed with AML.

The 212 AML samples, collected at the department of hematology at Erasmus Medical
Center in Rotterdam, were analyzed for (1) the expression of M = 256 microRNA’s using
real-time quantitative PCR, as described previously (Jongen-Lavrencic et al., 2008), (2) gene
expression using high-density Affymetrix arrays, as described previously (Valk et al., 2004).
The gene expression dataset (online access http://www.ncbi.nlm.nih.gov/geo/
with the accession GSE6891) was normalized using the RMA methods (Irizarry et al., 2003).
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Figure 5.8: Evolution plot of the log(G̃)-function for the different factor cardinalities.

Only G = 4245 genes with a known biological function, that is genes involved in at least
one pathway recognized by the KEGG database, were analyzed. The columns in Y were
further standardized to have a mean zero and a variance one. The raw microRNA expression
values were obtained using the relative quantification method (2−∆Ct values with respect to an
endogenous control), further log-transformed and again standardized. We select a subset of
p = 177 microRNA’s which have at least 50 observations above a lower detection limit.

In the EM exploration algorithm, we implement the homogeneous Dirichlet-multinomial
prior with a concentration parameter α = 1.01. The prior on the regression model matrix
assumes the column-wise exchangeability. This is because we want to quantify the relevance
of each individual microRNA in jointly predicting the multiple responses. This assessment
is facilitated by the MAP estimates θ̂ , which correlate with the proportion of genes affected
by each microRNA. Instead of the column-wise exchangeable prior, we could consider more
elaborate structures that relate inclusion probabilities of microRNA’s with a similar set of
binding elements (e.g. using the Hamming distance as in Li and Zhang (2010)). Alternatively,
Stingo et al. (2010) incorporated information from multiple microRNA target prediction algo-
rithms, which induce a selection advantage for the predicted associations. Their prior formu-
lation is potentially better equipped to guide the search for putative microRNA targets. In our
analysis, however, we are not searching for the direct microRNA targets. Such task is hugely
challenged by the heterogeneity of the AML regulatory mechanisms and the unavailability of
temporal data in order to capture the dynamics of the microRNA-mediated regulation. We
merely explore important AML-related microRNAs and infer their likely biological function.

The EM exploration is initialized with the same choice of starting values as in our sim-
ulated examples. We proceed by considering a sequence of spike variance parameters v0 ∈
{0.1+ k×0.1;k = 0, . . . ,13} and we set v1 = 100 for the model exploration as well as eval-
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uation . We begin by considering the plain multivariate regression model with uncorrelated
responses (d = 0) and proceed by fitting the factor regression model with d ∈ {10,20,30}.
Model comparisons are performed by the (conditional) posterior probability criterion G̃(·).
The nonzero elements are selected by the local median probability model rule in the regres-
sion matrix and by thresholding the matrix Θ̂ in the loading matrix.

The results are summarized in Table 5.2, which reports the log-values of the G̃-function
together with the iteration history, the computational time and the number of nonzero elements
in each model matrix Γ. The evolution plot of the log(G̃) for an increasing spike variance is for
all the considered factor dimensionalities depicted in Figure 5.8. One observation to be made
is that up until v0 = 0.7 the EM algorithm assuming d = 0 generates models with the highest
log(G̃) values. Towards the end of the regularization path, the log(G̃) values are dominated
by the factor models associated with d = 20.

Turning to the assessment of the relevance of individual microRNAs in modulating gene
expression, the supporting evidence is aggregated in the MAP posterior estimates θ̂ . The
evolution plots of these estimates in relation to the spike variance are depicted on Figure 5.9,
where the upper curves correspond to the more relevant microRNAs. Among the top rated
candidates, we consistently identify members of the miR-181, miR-10 or miR-125 fam-
ilies. The miR-181 family has been shown to be associated with a favorable outcome in
cytogenetically normal AML patients (Li et al., 2012b), where the up-regulation has been hy-
pothesized to correlate with an acquisition of the CEBPA mutation (Marcucci et al., 2011),
which associates with a milder course of AML. There has also been an experimental evidence
suggesting that miR-181b promotes apoptosis and inhibits proliferation of leukemic cells.
Among the other identified relevant microRNAs we found the miR-10 family, which is im-
plicated in malignant transformations across a wide range of tissues. Recently, miR-10a
has been associated with a nucleophosmin mutation NPM1 (Bryant et al., 2012), which is a
positive prognostic factor in AML Another top ranked candidate recurrent in our analysis is
miR-125b, which has been shown to be implicated in specific chromosomal translocations
leading to AML (Sun et al., 2013b; Bousquet et al., 2008). Among the most influential mi-
croRNAs we identified as well miR-196b, whose overexpression has been associated with
aggressive leukemia in mice and poor prognosis in acute myeloid leukaemia (AML) patients
(Li et al., 2012a). Although the evolution curve of miR-98 stands out as very influential, the
role of this microRNA in the context of AML has largely remained unknown.

Turning to the interpretation of the association network, we select one of the candidates
which is associated with a high value of the log(G̃)-function in Table 5.2 and which is rich
enough to perform a sensible knowledge extraction. We select a model Γ

10
0.9 (depicted in

Figure 5.10), where we identified 227 microRNA-gene associations involving 23 microRNA
(6 previously established ones) and 204 genes. The list of genes associated with 4 top rep-
resented microRNAs is listed in Table 5.3. Focusing on the miR-181 family, we identified
several genes associated with miR-181b that are involved in cancer pathways, cell apoptosis,
hematopoietic cell lineage, or both acute and myeloid leukemias (such as CDK6, ZBTB16,
IL3RA, PAK2). Several genes associated with miR-181a in our model have been found
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Figure 5.9: Evolution plots of θ̂ for the different factor dimensionalities

to relate to the function of lymphoid blood cells and the cell cycle (such as EDC4, NCF4,
PPP3CA, MAD2L1, MAD1L1). Apart from the gene-microRNA interactions, we extracted
10 gene clusters that share an underlying latent factor and thereby potentially relate to a similar
biological function. Genes that cluster according to the three most frequent factors (Factor
2, Factor 4 and Factor 8) are listed in Table 5.4 in the Appendix. Many of the genes
involved with Factor 2 were found to be associated with RNA degradation and Huntington
disease. The two dominant pathways in Factor 4 were phagosome and osteoclast differ-
entiation. Factor 8 clustered many genes involved in the MAPK signaling pathway. The
MAPK’s are a family of proteins that play an essential role in connecting cell-surface receptors
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mir-181b
ABI2 ADCY4 ALDH1A2 ALDH2 B3GALTL BACE2 C1QC CACNG412 CD27

CDK61,4 CKB CMPK2 COQ3 DGAT1 DKK2 DMD DNAJC1 F11R
F13A1 FECH FGF94,12 GLRB HIST1H2BC HIST3H2A HLA-DQB15 HYAL2 IL17RB

IL1RAP3 IL3RA3,6 IRGM ITPR3 MAP3K1312 NKX3-14 NOX3 NUP93 OPRL1
PAK24,7,12 PIGG PLXNB2 PSTPIP1 SGSH SLA SLC27A1 SNRPC SORD

TFDP1 THBS3 TNFSF11 TUBAL3 TXNRD2 VDAC1 YARS ZBTB162,4 HSPA5
BID3,4,9 DCP1B7 HYAL3 RBL2 ROCK2 SIAH1 TAF4 TAF5 CFD
UBL5 MDN1 NOD2 TLR8 ABAT ACOX3 EPS15 GALNT7 PIK3C2A
AP2B1 HARS NUDT9 PRDX6 SRP19 SNCA C1QA C1QB IL10RA
CTSO

mir-181a
ADA13 ALAS2 CBR1 CCDC12 EDC47 ENTPD4 FBXW7 FDFT1 IQSEC1
MDH1 MLYCD MPO MRE11A NCF410 PIGH PPP3CA3,8,9,12 SQLE TPO6

DCI POP4 PSMA2 MAD2L111 NANP FCGR2A PKM2 HSD17B7 PAPOLG
COQ5 MUTYH WDR617 KCNMB4 MAD1L111 UTP6 SLC6A19 UBA3

mir-10a
EFNA1 HIST1H2BB PRKG2 STT3A NCF210 VCAN SNRNP40 EPX ITGA7
ITGA9 P2RX7 PAPSS1 STK364 STS TRAC XCL1 IL17RA

mir-10b
GNAI1 SLC38A2 SOCS5 TJP2 TRAF55 SUV420H1 EPX ITGA7 ITGA9
P2RX7 PAPSS1 STK364 STS TRAC XCL1 IL17RA CTSO

Table 5.3: (1) chronic myeloid leukemia, (2) acute myeloid leukemia, (3) apoptosis, (4) pathways in cancer, (5)
allograft rejection, (6) hematopoietic cell lineage, (7) RNA degradation, (8) T cell receptor signaling pathway, (9) nat-
ural killer cell mediated cytotoxicity, (10) leukocyte transendothelial migration, (11) cell cycle, (12) MAPK signaling
pathway, (13) primary immunodeficiency

to changes in transcriptional programs. Over the last decade, extensive work has established
that these proteins play critical roles in the regulation of a wide variety of cellular processes in-
cluding cell growth, migration, proliferation, differentiation, and survival. Correct regulation
of MAPK signaling is hypothesized to be essential in the regulation of multiple processes in-
volved in hematopoiesis, where aberrant MAPK activation can lead to pathogenesis of various
myeloid malignancies (Geest and Coffer, 2009).

The heterogeneity of the biological processes underlying AML in the diverse group of
analyzed patients precludes the interpretation of the microRNA-gene interactions in terms of
direct targets. Such conclusions would be better obtained with data generated by carefully
controlled knock-out time course experiments. However, the disadvantage there is typically a
limited amount of measured samples which would preclude advanced statistical modeling. In
our approach, we believe that by borrowing the strength among the multiple patients, we were
able to identify microRNA’s that are influential in common processes underlying the course
of AML. We have been able to learn about the likely target gene groups that might provide
some useful biological insights about the biological function of these microRNAs.

5.9

Discussion

High-dimensional Bayesian factor modeling has often been challenged by the practicality of
MCMC implementations as well as by the inference on the unknown number of latent fac-
tors. In the presented work, we propose a rapid deterministic factor model exploratory tool
that leverages the existing EM inferential procedure of Rockova and George (2013) for vari-
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Figure 5.10: Micro-RNA-gene factor interaction network. Model assumes 10 factors and was located assuming
v0 = 0.9.

able selection in linear regression. By considering a nested sequence of continuous spike and
slab priors and various factor space cardinalities, we dynamically explore the posterior model
space and generate a series of candidate models. These are subsequently evaluated by a condi-
tional posterior model probability criterion, which performs comparisons also across various
factor dimensionalities. Patterned variable and factor selection is encouraged by structured
priors on the model matrix, which also enable an orthogonal allocation of zeroes in factor
loadings. We demonstrated the usefulness of our approach on a simulated data set, where we
effectively recovered the sets of predictive explanators as well as the generating latent factor
architecture. In a real data example, we implemented our EM factor procedure in the context
of estimating a microRNA-gene interaction network in acute myeloid leukemia. We identified
a set of active microRNAs, which were previously identified as influential in the pathogene-
sis (or related to subtypes) of AML. The practicality of the implementation renders our EM
tool as an efficient approach to perform effective model selection in factor analytic models in
combination with multivariate regression.
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5.10

Appendix

Factor 2
AAAS ACAD8 ACADM ACAP1 ADSL AGK AGL AGPAT1 AHCY

ALDH5A1 ALG6 APEX1 APRT AQP3 ATP5A116 ATP5B16 ATP5D16 ATP5E16

ATP5G316 ATP5J16 BCAP31 BCAS2 BPGM BUB311 CD3E6 CDC1611 CDC2611

CMPK1 CNOT107 COX15 COX7C16 CPSF3 CPT2 CREB3L416 CSNK1G3 CSNK2B
CUL4B DAD1 DARS DCTD DLAT DVL24 EGFR4,12 EIF3E EIF3H
ENO27 EXOSC57 EXOSC67 EXOSC97 FARSA FAU FBL GBE1 GCDH
GMPR2 GNPAT GNPNAT1 GOSR2 GTF2H4 HDAC14,11,16 HEMK1 HIBCH HSP90AA14

HSPA4 HSPA812 HTRA2 IDH3B IMPDH2 IRF3 ITPA KARS LCK
LCMT1 LIAS LSM27 LSM47 MAP2K22,4,12 MTMR1 NAE1 NCBP2 NDUFA716

NDUFB616 NDUFV116 NFYB NHP2L1 NME1 NOB1 NOP56 NUDT21 NUP133
NUP37 NUP43 ORC3L11 PAF1 PARN7 PDHA1 PDHB PFN1 PIGP
PLRG1 PNPO POLR1D POLR2C16 POLR2D16 POLR2H16 POLR2I16 POLR2L16 POLR3D

POLR3GL POMGNT1 PPID16 PREB PRIM2 PRKCI PRKCQ PRMT5 PRPF19
PSENEN PSMB6 QARS RAD50 RBM22 RBM8A RBMX RIOK2 RPA1

RPA2 RPL10A RPL22L1 RPL30 RPL34 RPL36 RPL36AL RPP40 RPS10
RPS5 RPS9 RUVBL1 RXRB4 SARS SDHC16 SF3A2 SLC25A516 SLC25A616

SNRPF SOD116 SRPRB SSB SSR3 STAT4 SUMO2 SVIP TAF9
TARS2 TRAM1 TTC377 UQCRC1 UQCRFS161 UTP18 VTA1 XAB2 XRCC1
ZMAT2 ZNRD1 SNRNP40 COQ5 MUTYH WDR617 AP2B1 HARS NUDT9
PRDX6 SRP19

Factor 4
AADAT AGPAT2 ALDH9A1 AP1M1 AP1S2 AQP9 ARF6 ARHGDIA ARHGDIB

ARPC1B3 ARPC33 ARPC43 ATP6V0D115 ATP6V1F15 C12orf5 C5AR1 CASP1 CCR1
CD146,12,15 CD1D6 CD366,15 CD46 CD68 CD865 CDA CFL1 CLEC7A15

CORO1A15 CR16 CTSH CTSS15 CYBA10,14,15 CYBB10,14,15 CYP51A1 DPYD EHD4
ENTPD1 ERCC1 FBP1 FBXO6 FCER1G FCGR2C14,15 FGR FLOT1 FLOT2

FPR1 FPR2 GLT25D1 GM2A GNB2 GNS GSR HCLS13 HCST
HERPUD1 HMOX1 IFI30 IFNGR214 IL10RB IMPDH1 IQGAP1 LILRA114 LILRA214

LILRA614 LILRB114 LILRB414 LRP1 LRRK2 LYN LYPLA1 MAP2K11,2,4,12,14 MAPK31,2,4,12,14,2

MARCO15 MYD88 MYL12B10 NADK NPC2 OAS1 OSCAR14 PAPSS2 PDXK
PGAM1 PGK1 PPT1 PREX1 PRKACA4,10,12 PSAP PSMC2 PTAFR RAP1A4,10,12

RASGRP412 RHOA4,10 RXRA4 SEC61G15 SEMA4A SERPINA1 SGMS2 SIRPA14 SLC11A1
SLC7A7 SPI12,4,14 SRA1 STX10 STX11 STX1152 SUMO1 TBXAS1 TK2
TLR415 TLR5 TNFRSF1B TREX1 TYMP4 TYROBP14 UBE2D1 VASP10 YWHAB

YWHAZ LILRB214 IFNGR114 SIRPB141 NCF210,14,15 VCAN IL17RA FCGR2A14,15 PKM2
NOD23 TLR8 IL10RA

Factor 8
ABLIM2 ALG10B ANAPC717 APC4 AQR ATF212 ATP6V1C1 CARD6 CASP34,12

CCNG2 CD79B CDC2317 CHERP CISH CLDN5 CNOT6 COL18A1 CPSF2
CREB1 CRNKL1 CSNK1D CSTF1 CSTF3 CUL317 CUL517 DCLRE1C DDX58
DHX36 DTX3L DUSP512 DYNC1LI2 EDEM3 EHHADH ENPP7 ERCC4 EXOC1
EXOC7 FPGT FRAT2 GART GLCE GLS GNAQ GOSR1 GTF2E1

GXYLT1 HEATR1 HERC417 HMGCR IKBKB4,12 IMPA1 KLHL917 LARS2 LILRA4
MAP3K112,17 MAP4K312 MAPK84,12 MAT2A MBTPS1 ME3 MFSD8 MTR MYLK3

NAT1 NBN NCK1 NLK NMNAT1 NUMB OR2L13 PAFAH1B1 PANK3
PHAX PIAS14,17 PIGB PIGM PIK3CA4 PIK3CB4 POLR1B PPM1B12 PPP1R12A

PPP2R2A PRKAA1 PSMD12 RASA112 RCHY117 REXO1 RIPK1 RPS6KA512 SAP130
SC4MOL SCNN1A SEC24B SEC24D SEPSECS SETD2 SGMS1 SIKE1 SLC33A1
SMAD44 SMAD5 SMG1 SMURF217 SNAP23 SOCS4 SOS14,12 SSTR5 STAM
STAM2 SYNJ1 TAF2 TBK1 TOMM40 TPR4 TRIM21 TRNT1 UBE2W17

UBQLN2 UBR517 UPF2 USP8 VPS37A VPS4B WDR36 WDR75 WWP117

XIAP4,17 XRCC2 XRCC3 XRN1 SUV420H1 HSD17B7 PAPOLG UBA317 ABAT
ACOX3 EPS15 GALNT7 PIK3C2A

Table 5.4: Genes associated with Factor 2: (1) chronic myeloid leukemia, (2) acute myeloid leukemia, (3) apoptosis,
(4) pathways in cancer, (5) allograft rejection, (6) hematopoietic cell lineage, (7) RNA degradation, (8) T cell receptor
signaling pathway, (9) natural killer cell mediated cytotoxicity, (10) leukocyte transendothelial migration, (11) cell cy-
cle, (12) MAPK signaling pathway, (13) primary immunodeficiency, (14) osteoclast differentiation,(15) phagosome,
(16)huntington disease, (17) ubiquitin mediated proteolysis
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RISK-STRATIFICATION OF INTERMEDIATE-RISK ACUTE MYELOID
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Lowenberg, B., Valk, P. 2011. Risk-stratification of intermediate-risk acute myeloid leuke-
mia: integrative analysis of a multitude of gene mutation and gene expression markers.
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6.1 Introduction

Abstract
Numerous molecular markers have been recently discovered as potential prognostic factors in

acute myeloid leukemia (AML). It has become of critical importance to thoroughly evaluate their

interrelationships and relative prognostic importance. We set out to investigate a comprehensive

set of biomarkers with an emphasis on the statistical assessment of their collective utility in the

stratification of intermediate risk AML using model selection in the frameworks of survival tree and

regression methodologies. Gene expression profiling was conducted in a well-characterized cohort of

439 patients under age 60 with newly diagnosed AML to determine expression levels of EV I1, WT 1,

BCL2, ABCB1, BAALC, FLT 3, CD34, INDO, ERG and MN1. A variety of AML-specific mutations

were evaluated, i.e. FLT 3, NPM1, N RAS, K RAS, IDH1, IDH2 and CEBPADM/SM (double/single).

Univariable survival analysis shows that (I) patients with FLT 3ITD mutations have inferior overall

survival (OS) and event free survival (EFS), whereas CEBPADM and NPM1 mutations indicate

favourable OS and EFS in intermediate risk AML, (II) high transcript levels of BAALC, CD34, MN1,

EV I1 and ERG predict inferior OS and EFS. In multivariable survival analysis, CD34, ERG and

CEBPADM remain significant. Using survival tree methodology, we show that a reduced combination

of CEBPADM, CD34 and IDH2 is capable of separating the intermediate group into two AML

subgroups with highly distinctive survival characteristics (OS at 60 months: 51.9% versus 14.9%).

The integrated statistical approach demonstrates that from the multitude of biomarkers a greatly

condensed subset can be selected for improved stratification of intermediate risk AML.

6.1

Introduction

It is widely accepted that certain cytogenetic abnormalities consistently associate with partic-
ular subsets of AML that carry distinct responses to therapy (Marcucci et al., 2011). Appro-
ximately 40% of all AML patients are currently classified into distinct groups with variable
prognosis based on the presence or absence of specific recurrent cytogenetic abnormalities.
AML without favorable and particular unfavorable cytogenetic aberrations is classified as in-
termediate prognosis. The intermediate risk cytogenetic subclass of AML includes cytogene-
tically normal and AML with other cytogenetic abnormalities and accounts for approximately
60% of all AML patients, and according recent gene-mutation and gene-expression studies
represents a mixture of leukemias with favorable and unfavorable prognosis.

In recent years a variety of novel molecular markers have refined the risk-stratification
of intermediate risk AML. For instance, mutations in FLT 3 (Levis and Small, 2003), NPM1
(Döhner et al., 2005), CEBPA (Wouters et al., 2009) all carry variable prognostic value. Re-
cently, IDH1 and IDH2 mutations were identified but for the time being the prognostic value
of these mutations appears to be controversial (Abbas et al., 2010).

Besides acquired mutations, a number of individual genes have been proposed as impor-
tant prognostic expression markers, i.e., specific gene expression levels were shown to be
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associated with treatment outcome in AML. For instance, expression of EV I1 (Lugthart et al.,
2008), BAALC (Baldus et al., 2003), ERG (Marcucci et al., 2007) and MN1 were proposed
as indicators for treatment outcome in AML (Langer et al., 2009). Some expression markers
such as WT 1 (Bergmann et al., 1997), BCL2 (Karakas et al., 1998), INDO (Chamuleau et al.,
2008), CD34 (Kanda et al., 2000), ABCB1 (van den Heuvel-Elbrink et al., 1997) and FLT 3
(Ozeki et al., 2004) have been put forward as clinical markers, but their applicability has been
less well-established or has been controversial.

Previous studies have often assessed the prognostic value of various biomarkers on an
individual basis or in a limited collective context. For the purpose of risk stratification and
understanding of the relative prognostic importance it has become crucial to integrate them
in a joint analysis. In the present study we investigate the role of gene expression mark-
ers EV I1, WT 1, BAALC, ERG, BCL2, ABCB1, INDO, CD34, BCL2 and MN1 (evaluated
using standardized micro-array analysis) as well as somatic gene mutations in FLT 3, N RAS,
CEBPASM, CEBPADM, NPM1, IDH1 and IDH2 in survival prognosis in cytogenetically de-
fined intermediate risk AML. In addition to univariable and multivariable analysis we adopted
a statistical approach that is capable of deriving a simplified prognostic index that can be used
for the risk stratification of the intermediate risk group.

6.2

Methods
6.2.1 Patients, Cell Samples and Molecular Analyses

We investigated a cohort of 439 patients (age below 60 years) with a diagnosis of primary
AML or RAEB(-t) (n=17) (Figure 6.2 in Appendix). All patients were treated according to
the HOVON (Dutch-Belgian Hematology-Oncology Cooperative group) protocols between
1987 and 2006 (http://www.hovon.nl) (Löwenberg et al., 1997).

All AML cases in this study were also included in (Wouters et al., 2009; Lugthart et al.,
2008) and subsets of cases have also been investigated in Valk et al. (2004) (online supple-
mentary materials1, Table 1). The earlier studies had different study objectives, i.e., dealing
with individual markers or selected subsets of leukemia (for instance cytogenetically normal
AML).

AML was cytogenetically classified into the following prognostic categories: (I) favor-
able: t(8;21) and inv(16); (II) very unfavorable: monosomal karyotypes (MK) as defined in
Breems et al. (2008); (III) intermediate risk I: cytogenetically normal (CN) and (IV) interme-
diate risk II: the remaining AML cases (CA).

After informed consent, bone marrow aspirates or peripheral blood samples were taken
at diagnosis. Blasts and mononuclear cells were purified by Ficoll-Hypaque (Nygaard, Oslo,
Norway) centrifugation and cryopreserved. The AML samples contained 80− 100 percent

1http://bloodjournal.hematologylibrary.org/content/118/4/1069/suppl/DC1
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blast cells after thawing, regardless of the blast count at diagnosis. Mutational analyses were
all performed as described previously (Abbas et al., 2010).

6.2.2 Gene Profiling and Quality Control for Assessment of Gene
Expression Variations

439 AML samples were analyzed using Affymetrix U133Plus2.0 GeneChips (Affymetrix,
Santa Clara, CA) that contains 54675 probe sets, representing 20650 unique genes. The
methods have been reported in detail elsewhere (Valk et al., 2004). The differences between
the scaling/normalization factors of the GeneChips in complete cohort was less than 3-fold
(0.62 (± 0.20)). All additional measures of quality-percent genes present (39.8 (± 3,5)),
GAPDH 3’ to 5’ ratio (1.08 (± 0.15)) and actin 3’ to 5’ ratio (1.30 (± 0.26))-indicated high
overall sample and assay quality in the complete AML cohort.

Informative probe sets detecting expression of various genes were selected. Only those
probe sets with accurate annotation and genomic localization using the ENSEMBL genome
browser (http://www.ensembl.org/) were included, i.e., ABCB1: 209993_at, 209994_s_at;
WT 1: 206067_s_at, 216953_s_at; BCL2: 203684_s_at, 203685_at; BAALC: 218899_s_at,
222780_s_at; ERG: 213541_s_at, 241926_s_at; EV I1: 221884_at, 226420_at; FLT 3:206674
_at; CD34: 209543_s_at; MN1: 205330_at, INDO: 210029_at.

6.2.3 Data Preparation

Each of the mutation markers is coded as a binary variable, i.e. mutation present (+) or
absent. The gene expression of each selected gene was determined from either a single probe
or a combination of multiple probes linked to that gene. Probe sets for each expression marker
were selected from the Affymetrix U133Plus2.0 GeneChip, based on an accurate annotation
and localization using the ENSEMBL genome browser. If one probe per a gene was available
(MN1, CD34, FLT 3 and INDO1), the probe expression intensity was log2 transformed and
scaled so that the minimal value equals 0 and the maximal value equals 1. In case multiple
probe sets were annotated for a single gene (BAALC, BCL2, ABCB1, EV I1, WT 1 and ERG),
we reduced the number of variables by performing a factor analysis per gene using the log2
transformed expression data of all 439 AML patient samples. This resulted in a factor score,
comprising of the expression values from all the representative probe sets, for each individual
expression marker. The factor scores were also rescaled so that the minimal value of the score
for each gene is 0 and the maximal value is 1.

6.2.4 Statistical Analysis

Statistical analyses were performed with R (version 2.9.2). Both overall survival (with failure
defined as death due to any cause) and event-free survival (with failure defined as no complete
remission (set at day 1), relapse, or death in first complete remission) were considered as
endpoints for survival analyses.
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To determine the prognostic value of the markers Cox proportional hazard (PH) regression
model was used in univariable and multivariable analyses. To further inspect the prognostic
importance and/or redundancy of the markers we applied a variable selection in Cox pro-
portional hazards model, namely the AIC-based stepwise variable selection and the LASSO
(Tibshirani, 1994), where the optimal penalty parameter was chosen so that it maximizes the
cross-validated partial log-likelihood (20-fold cross-validation). To further evaluate the hier-
archy of the prognostic importance we utilized tree-structured survival modeling (unbiased
recursive partitioning approach of Hothorn et al. (2006)). Estimated probabilities of OS and
EFS were calculated using the Kaplan-Meier method. Partial likelihood ratio test was used to
evaluate differences between survival distributions.

The bimodal shape of the EV I1 expression distribution (online supplementary material,
Figure 3) suggests that there are two populations of patients with high and low EV I1 expres-
sion. A mixture model fit with normally distributed components supports the evidence for
this observation (online supplementary material, Figure 3). The intersection point of the two
superimposed densities naturally suggests a threshold (c=1.15) to decide whether the EV I1
was over-expressed or not. EV I1 expression based on RQ-PCR was treated as a categorical
variable in previous reports (Lugthart et al., 2008). Here we also use a categorical EV I1 in
survival analyses using the reference value 1.15. A penalized spline fit in Cox PH regres-
sion suggests a nonlinear behavior of EV I1 (p-value of a test for linearity 0.04, best degrees
of freedom 2.1 determined by AIC criterion). Despite a piecewise constant transformation
might not be the best approximation of the true relationship it manages to separate the distinc-
tive survival characteristic of the small group of patients (8.8%) with high EV I1, which would
be masked if we treated EV I1 as linear. The remaining markers are treated on a continuous
scale in accordance with their actual distribution pattern. Unless otherwise stated, with “high
expression" we refer to high values extreme with respect to the distribution of each marker.

Pair-wise associations between binary markers were assessed by means of Chi-square
test (or Fisher (Halton-Freeman) exact tests when the expected count number in at least one
of the cells dropped below 5). The direction of the observed associations was measured by
a φ coefficient. Spearman correlation coefficient was used to asses the pair-wise correlations
between gene expression markers. Differential gene expression across patient sub-categories
was tested by means of Wilcoxon sum rank test (two categories only) and Kruskal-Wallis test
(more than two categories). The level 0.05 has been utilized as a threshold to declare the
statistical significance.

6.3

Results
6.3.1 Distribution Across Cytogenetically Defined AML Subsets

Details on the molecular and clinical characteristics of the investigated cohort of 439 patients
are summarized in Figure 6.2 in Appendix.
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The distribution of the recurrent mutations among the cytogenetically-defined AML sub-
sets is summarized in Table 2 in online supplementary materials. We note increased frequen-
cies of FLT 3ITD and NPM1 mutations in CN AML as well as the common occurrence of
FLT 3ITD and FLT 3TKD in AML with t(15;17). The prevalence of FLT 3TKD and N RAS
mutations is higher in AML with inv(16). IDH1 and both CEBPASM and CEBPADM were
observed exclusively in intermediate risk cytogenetic categories (CN and CA). K RAS muta-
tions are relatively rare in AML and were not considered in further analyses.

The majority of expression markers genes show a differential expression in the cytogene-
tically defined AML subsets (online supplementary materials, Figure 1). Expression marker
genes INDO1 and FLT 3 do not have distinctive expression patterns in relationship to the cy-
togenetically defined subgroups (p-values of the overall Kruskal-Wallis test 0.301 and 0.204
respectively). Compared to the normal karyotype group, significantly higher expression of
WT 1 is associated with t(15;17) (p < 0.001), relatively low BCL2 expression is observed
in AML with t(8;21) (p < 0.001) and high expression of both BAALC and CD34 was de-
tected in t(8;21) and inv(16) groups (p < 0.001 for both comparisons). We further noticed
elevated MN1 expression in AML with inv(16) compared to the cytogenetically normal group
(p < 0.001).

6.3.2 Associations Between Mutation and Expression Markers

The summary of pair-wise associations between the binary mutation markers is given in Ta-
ble 3 (online supplementary materials). FLT 3ITD, FLT 3TKD and IDH1 mutations appear
significantly over-represented in NPM1 mutant group (φ coefficients 0.36, 0.15 and 0.28, re-
spectively). On the other hand, FLT 3ITD are more prevalent in AML without FLT 3TKD
(φ=-0.11), N RAS (φ=-0.2) or IDH2 mutations (φ=-0.11).

Spearman correlation analysis between the gene expression markers in Figure 6.1 in Ap-
pendix revealed the following associations: (i) the expression of the marker genes BAALC,
CD34, MN1, ERG and ABCB1 are relatively strongly associated, (ii) BAALC exhibits the
strongest positive correlation with CD34 expression (correlation coefficient Φ equals 0.78)
and MN1 (Φ=0.76), (iii) moderate associations are also observed between ERG and WT 1
(Φ=0.43), ERG and BCL2 (Φ=0.4) and BCL2 and WT 1 (Φ=0.36), (iv) INDO1 appears to be
inversely associated with EV I1 (Φ=-0.25), WT 1 (Φ=-0.28) and ERG (Φ=-0.14).

The summary of the association analysis between the mutation and gene expression mark-
ers is given in Table 4 (online supplementary materials). NPM1 mutant patient group is
significantly associated with higher WT 1 expression. In contrast, the expression of BCL2,
BAALC, ERG, ABCB1, CD34 and MN1 is elevated in NPM1 wild-type AML. Other asso-
ciations that we observe are e.g. decreased BAALC, CD34 and MN1 expression as well as
increased FLT 3 and WT 1 expression in FLT 3ITD AML. Increased ABCB1 expression as-
sociates with CEBPADM AML. Likewise, BAALC and CD34 expression are higher in IDH1
wild type AML and BCL2 expression is higher in IDH2 mutant AML.
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6.3.3 Survival Analyses in Intermediate-risk AML

Univariable survival analysis (Table 6.3 in Appendix) indicated inferior OS in intermediate
risk AML patients with FLT 3ITD mutations (hazard ratio (HR) 1.41; p=0.017), whereas
CEBPADM (OS: HR=0.38, p=0.004; EFS: HR=0.45, p=0.007) and NPM1 mutations (OS:
HR=0.73, p=0.03; EFS: HR=0.69; p=0.006) were found indicative of favorable OS and
EFS. The positive prognostic impact of NPM1 mutations becomes even more pronounced
in FLT 3ITD negative AML (OS: HR=0.63, p=0.022; EFS: HR=0.64, p=0.018). Univariable
analysis of the gene expression markers demonstrates that increased expressions of BAALC,
CD34, MN1, EV I1 and ERG are significant negative indicators for OS and EFS (all hazard
ratios >1.5 and p<0.01). Univariable survival analysis for CN AML is given in Table 5 (online
supplementary materials). The negative predictive effect of FLT 3ITD, BAALC, CD34, EV I1
and ERG is retained in CN AML.

The multivariable Cox regression analysis (Table 6.4 in Appendix) shows that CD34, ERG
and CEBPADM remain significant predictors for OS and EFS after the correction for the re-
maining markers (respective p-values for OS p=0.004, p=0.036, p<0.001 and EFS p=0.005,
p=0.032, p<0.001), whereas neither increased BAALC, increased MN1 or EV I1 expression
or the presence of FLT 3ITD are no longer indicative of adverse OS and EFS in intermediate
risk AML. The multivariable survival analysis for CN AML is summarized in Table 6 (on-
line supplementary materials). When we control for the remaining prognostic markers, only
CEBPADM and CD34 remain significant in CN AML.

To investigate which minimal subset/combination of markers is sufficient for assess-
ing prognosis, variable selection in Cox proportional hazards model was performed. The
LASSO variable selection with an optimal value 8.7 of the penalization parameter identified
the following markers: CD34, CEBPADM, IDH2, BCL2, ERG, NPM1, EV I1, FLT 3ITD and
INDO1. Estimated regression coefficients of the penalized Cox proportional hazards model
for different values of the penalization parameter for OS are depicted in Figure 2 (online sup-
plementary materials). The plot indicates that amongst the considered series of markers CD34
and CEBPADM play a predominant role in survival prognosis. The AIC based stepwise se-
lection identified a similar set of markers, i.e. CD34, CEBPADM, IDH2, BCL2 and ERG.
The variables recognized as important by the recursive binary partitioning in the survival tree
methodology were CD34, CEBPADM and IDH2 (Figure 6.6 in Appendix). Similar results
were obtained for EFS. The tree model is in accordance with the penalized Cox regression ap-
proach in that CD34 and CEBPADM were again identified as the most important predictors.

The survival tree model in Figure 6.6 naturally suggests stratification of the intermedi-
ate risk AML into subgroups with more homogeneous survival characteristics. According to
the model, the intermediate risk group could be divided into four categories: (I) “low CD34"
(defined as CD34<0.398), (II) “high CD34" (defined as CD34>0.398), IDH2 wild type and
CEBPADM absent, (III) “high CD34" (>0.398), IDH2 mutated and no CEBPADM and (IV)
“high CD34" (>0.398) and CEBPADM. Out of the 4 categories, the groups (I), (III) and (IV)
have statistically indistinguishable survival characteristics (p-value of a 2df partial likelihood
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ratio test 0.298 (OS) and 0.333 (EFS)). The three groups (I), (III) and (IV) together could
be aggregated as the favorable intermediate risk group (estimated OS and EFS at 60 months
51.9% and 41.5%, respectively). In contrast, the estimated OS and EFS at 60 months in the
group (II) is 14.9% and 8.3%, respectively, which indicates unfavorable prognosis. The lat-
ter group has been designated: poor intermediate risk group. The survival characteristics in
the proposed strata when compared with the survival profile of the established cytogenetical
prognostic stratification (as described in Methods) is given in Figure 6.6. The difference in
survival between favorable and intermediate favorable prognostic groups is not statistically
significant (p-value of 1df likelihood ratio test 0.153 (OS), 0.44 (EFS)). The survival charac-
teristics between poor and poor intermediate group are significantly different (p-value of 1df
likelihood ratio test 0.012 for both OS and EFS).

6.4

Discussion

AML is a group of neoplasms characterized by a variety of genetic and epigenetic aberra-
tions and variable responses to therapy (Marcucci et al., 2011). The pretreatment karyotype
of leukemic blasts is currently a key determinant for therapy decision-making in AML. Usu-
ally, the largest cytogenetic subclass of AML, i.e., those patients with a normal karyotype
and patients with prognostically non-informative cytogenetic aberrations, are categorized as
intermediate risk. In recent years a number of novel markers have been identified as puta-
tive classifiers for these AML patients. These markers include a wide-variety of acquired
mutations as well as expression changes in specific genes.

In previous studies prognostic risk assessments were put forward based on various expres-
sion markers BAALC, ERG, MN1 and EV I1. These studies have postulated risk algorithms
mainly for CN AML and included only few out of the wide-variety of mutations and expres-
sion markers. Studies addressing the relative importance of the various postulated mutations
and expression markers are limited54.

In this study we investigated the role of a wide series of genomic biomarkers that included
mutations in FLT 3, CEBPA, NPM1 and WT 1 genes as well as high-expression of EV I1,
WT 1, BCL2, ABCB1, BAALC, FLT 3, CD34, INDO, ERG and MN1 in the risk-stratification
of intermediate risk AML. The results reveal particular associations between some of these
markers that may strongly affect the collective use of these markers in risk assessment. For
instance, we demonstrate an inverse association between NPM1 mutations and Affymetrix
HGU133 Plus2.0-derived CD34 expression, as was shown by others (Verhaak et al., 2005).
Importantly, relatively strong associations exist between expression levels of CD34, BAALC,
MN1, ERG and ABCB1. Consequently, expression values of all these markers inversely cor-
relate with the presence of mutant NPM1. These interactions indicate that these markers will
have similar value in risk stratification of AML and should therefore be taken into account
when prognostic scores based on selected markers are constructed.
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By univariable analyses we confirmed the prognostic ability of previously established
markers in intermediate risk AML, i.e., CEBPADM and NPM1 mutations as indicators for
favorable OS and EFS and FLT 3ITD mutations as markers for poor response to therapy.
High expression of BAALC, CD34, MN1 and ERG all express unfavorable prognostic value
with regard to OS and EFS, which is in line with earlier publications (Marcucci et al., 2011).
Importantly, expression of CD34 mRNA strongly associates with poor OS and EFS.

In multivariable analyses, CEBPADM independently predicts favorable outcome, whereas
CD34 and ERG are independent predictors for inferior OS and EFS. ERG expression has
emerged as a strong negative predictor in multivariable analyses previously, however, in this
model CD34 expression is the strongest expression marker for poor outcome. By conducting
a model selection in both Cox proportional hazards regression models and survival trees,
it becomes evident that CEBPADM and CD34 expression stand out as the most prominent
predictors for treatment outcome. Although the value of CD34 protein expression has been
controversial (Kanda et al., 2000), CD34 mRNA appears to be notably valuable in AML risk
stratification.

Although stratification based on expression levels is challenging, the usage of standard-
ized protocols and Affymetrix GeneChips may facilitate the implementation of gene expres-
sion level analyses. In fact, since many laboratories currently use Affymetrix GeneChips the
results of these types of analyses may be relatively easily implemented.

We developed a simplified stratification rule of intermediate risk AML, which identifies
two distinctive groups of patients with survival characteristics being similar to the generally
established favorable and poor risk cytogenetic subgroups, respectively. We acknowledge
that the proposed stratification needs further validation in future studies and will be probably
improved with new emerging knowledge. Nevertheless, the model presented here discloses
several particularly interesting associations with respect to the hierarchy of the prognostic im-
portance of a scale of molecular biomarkers and adds to the understanding of the heterogeneity
of intermediate risk AML.
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6.5

Appendix

Figure 6.1: Associations between the gene expression markers. Lower triangle is a scatter-plot matrix of the mark-
ers, where the red lines are the lowess smoothing curves. Upper triangle encapsulates pair-wise Spearman correlation
coefficients. On the diagonal there are histograms of each of the markers.
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Clinical variables Range Mean/Median Number of Patients

White blood cell count (109/l) 0.3-278 52.04/29.8

Bone marrow blast count (percentage) 0-98 62.08/66

Platelet count (109/l) 3-998 78.92/52

Patient characteristics Range Mean/Median Number of Patients

Age 15-60 42.11/43

Gender (female) 219

FAB classification % Number of Patients

M0 3.6 16

M1 19.1 84

M2 23.2 102

M3 5 22

M4 18.5 81

M4Eo 6.2 27

M5 23.7 104

M6 1.1 5

RAEB 0.9 4

Not determined 4.8 21

Cytogenetics % Number of Patients

t(8;21) 8 35

inv(16) 8.2 36

t(15;17) 5.7 25

Cytogenetically normal (CN) 43.47 192

Cytogenetically abnormal (CA) 28.7 126

Monosomal karyotype (MK)? 5.7 25

Mutations % Number of Patients

NPM1+ 29.6 130

FLT3ITD+ 26.9 118

FLT3TKD+ 10.7 47

N-RAS+ 987 43

K-RAS+ 0.9 4

CEBPASM+ 1.6 7

CEBPADM+ 5.2 23

IDH1+ 7.2 32

IDH2+ 8.2 36

NPM1+ FLT3ITD+ 15.3 67

NPM1+ FLT3ITD- 14.4 63

NPM1- FLT3ITD+ 11.6 51

NPM1- FLT3ITD- 58.8 258

Figure 6.2: Mutation present (resp. absent) groups denoted with (+) (resp. (-)). Abbreviations: RAEB: refractory
anemia with excess blasts, FAB: French-American-British, CN: normal cytogenetics or -X or -Y as the sole abnormality,
M4Eo: M4 category with inv(16); * MK category contains 16 AML patients classified as complex karyotype, 17 other
cases with complex karyotypes are in the CA (n=13), inv(16) (n=2), t(8;21) (n=1) and t(15;17) (n=1) categories.
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Overall Survival Event Free Survival

Variable Hazard Ratio Lower Upper p-value Hazard Ratio Lower Upper p-value

NPM1 + 0.73 0.55 0.97 0.03 0.69 0.53 0.9 0.006

FLT3ITD + 1.41 1.06 1.86 0.017 1.3 0.99 1.7 0.059

FLT3TKD + 0.82 0.51 1.32 0.418 0.74 0.47 1.16 0.192

N-RAS + 0.94 0.57 1.54 0.798 1.23 0.77 1.94 0.386

CEBPASM + 1.01 0.38 2.72 0.984 0.8 0.3 2.16 0.662

CEBPADM + 0.38 0.19 0.74 0.004 0.45 0.25 0.81 0.007

IDH1 + 0.83 0.52 1.31 0.414 0.97 0.64 1.47 0.877

IDH2 + 0.74 0.47 1.17 0.199 0.79 0.51 1.21 0.273

FLT3ITD× NPM1 + - 1.67 1.13 2.46 0.01 1.76 1.21 2.58 0.003

- + 0.63 0.42 0.94 0.022 0.64 0.45 0.93 0.018

+ + 1.03 0.72 1.47 0.875 0.9 0.64 1.27 0.549

EVI1∗ + 1.78 1.17 2.7 0.007 2.01 1.34 3.02 <0.001

BAALC 3.16 1.74 5.72 <0.001 2.9 1.63 5.16 <0.001

CD34 3.81 2.17 6.67 <0.001 3.57 2.11 6.05 <0.001

MN1 2.41 1.37 4.23 0.002 2.51 1.46 4.32 <0.001

ERG 3.69 1.65 8.26 0.001 3.48 1.63 7.43 0.001

ABCB1 0.99 0.51 1.93 0.983 0.92 0.49 1.73 0.798

BCL2 1.07 0.5 2.3 0.861 1.19 0.57 2.46 0.644

INDO1 0.65 0.32 1.36 0.254 0.69 0.35 1.38 0.3

Figure 6.3: Univariable survival analysis in the intermediate risk group.

Overall survival Event free survival

Variable Hazard Ratio Lower Upper p-value Hazard Ratio Lower Upper p-value

FLT3ITD× NPM1 + - 1.23 0.79 1.92 0.37 1.54 1 2.37 0.05

- + 0.73 0.43 1.25 0.25 0.7 0.42 1.17 0.17

+ + 1.09 0.66 1.79 0.74 0.94 0.58 1.52 0.81

FLT3TKD + 1.13 0.67 1.93 0.64 0.99 0.6 1.63 0.95

N-RAS + 0.99 0.59 1.68 0.99 1.28 0.79 2.08 0.32

CEBPASM + 0.99 0.35 2.81 0.99 0.84 0.3 2.36 0.75

CEBPADM + 0.21 0.1 0.44 <0.001 0.26 0.14 0.51 <0.001

IDH1 + 1.09 0.67 1.79 0.73 1.31 0.83 2.06 0.25

IDH2 + 0.66 0.4 1.1 0.11 0.79 0.49 1.27 0.32

EVI1 + 1.15 0.72 1.83 0.56 1.3 0.83 2.04 0.26

BAALC 1.43 0.43 4.72 0.56 1.07 0.35 3.28 0.91

CD34 5.09 1.73 15.01 <0.001 4.47 1.62 12.32 <0.001

MN1 0.59 0.21 1.67 0.32 0.7 0.25 1.95 0.49

ERG 4.13 1.01 16.86 0.05 3.93 1.05 14.62 0.04

ABCB1 0.84 0.32 2.22 0.72 0.67 0.26 1.68 0.39

BCL2 0.34 0.12 0.96 0.04 0.42 0.15 1.15 0.09

WT1 0.68 0.28 1.64 0.39 0.66 0.29 1.53 0.34

FLT3 0.75 0.28 2 0.56 0.66 0.25 1.74 0.41

INDO1 0.7 0.3 1.61 0.4 0.69 0.32 1.51 0.36

Figure 6.4: Multivariable survival analysis of the intermediate risk group Mutation present (resp. absent) groups
denoted with (+) (resp. (-)). The reference category for binary mutation markers is mutation absent (-). The reference
category for the combined aberration in FLT 3ITD and NPM1 is both mutations absent. ∗ EV I1 expression categorized
with the reference category “EV I1<1.15".
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Figure 6.5: Graphical representation of the survival tree model (OS) The tree depicts the partitioning of the 318 in-
termediate risk AML into four groups with more similar survival characteristics. Kaplan-Meier estimates of the survival
curves for each of the groups attached at the bottom of the tree. The group I (n=132) consists of patients with CD34
expression ? 0.398, group II (n=143) are patients with CD34 expression > 0.398, IDH2 and CEBPADM wild types,
group III is characterized by CD34 expression > 0.398, IDH2 mutation present and no CEBPADM, group IV includes
patients with CD34 expression > 0.398 and CEBPADM.
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Figure 6.6: Risk stratification of intermediate risk AML The left (right) panel presents Kaplan-Meier survival curve
estimates for the overall survival (event free survival) in five AML subsets. Black lines indicate survival curves for
favorable (solid line), intermediate (dashed line) and unfavorable (dotted line) cytogenetic risk subgroups of AML as
defined in Methods. The red curve corresponds to the poor intermediate group defined as CD34 expression > 0.398,
IDH2 mutation and no CEBPADM. The green line refers to the favorable intermediate group defined as either (a) CD34
expression < 0.398, (b) CD34 expression > 0.398 and CEBPADM, or (c) CD34 expression > 0.398, no CEBPADM and
IDH2 mutant.
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7.1 Concluding Remarks

7.1

Concluding Remarks

In this last chapter we conclude with a summary of principal research contributions presented
in the preceding chapters and with a discussion on possible future extensions. The variable
selection has been the leitmotif throughout the thesis, where taking the Bayesian perspective
we presented fast inferential algorithms for manageable computation in high-volume data.
The thesis accommodates numerous adaptations of the EM algorithm for variable selection
and introduces a rich deterministic framework for posterior model mode detection and MAP
estimation. The recurrent motives of Bayesian variable selection and EM algorithm are to
reappear one more time in the overview of methodological contributions presented in the
following section.

7.1.1 Summary of the Methodology

The growing cross-disciplinary abundance of high-dimensional data has necessitated devel-
opments of reliable data exploratory techniques to perform sensible knowledge extraction in
order to generate valid conclusions. Due to the complexity of the data it is often challenging
to fully explore the model uncertainty and to determine how many and which elements best
explain the observed phenomenon.

In Chapter 2 we examine how uncertainty surrounding such selections can be quantified
using coherent probabilistic mechanisms under the Bayesian paradigm. The richness and ver-
satility of the Bayesian formalism for model selection have led to an explosion of increasingly
elaborate approaches, a brief overview of which is given in Chapter 2. There we further exa-
mine the performance of the selected Bayesian and classical variable selection methods on
synthetic data and demonstrate practical gains of casting variable selection in terms of pos-
terior probabilities, while highlighting the methodological benefits of spike and slab models.
We also shed light on practical challenges associated with posterior computation, which can
be formidable particularly in situations when the set of possible models is large. This issue is
addressed in Chapter 3.

Posterior model exploration typically requires careful implementation of stochastic search
algorithms, that scale efficiently with the data and guarantee sufficient coverage over the set of
important models. In vast model spaces, interesting high-probability models can be scattered
among a few isolated peaks of accumulated posterior density. Stochastic model exploration is
unlikely to be effective without some form of parallelization or distributed computing, impos-
ing a heavy computational burden. In Chapter 3 we demonstrate that by taking the conjugate
continuous spike and slab prior, it is feasible to implement a deterministic model exploratory
tool, which locates high-posterior models and at the same time leads to dramatic timing im-
provements over the previously proposed stochastic search methods. The rapid model explo-
ration device is obtained with the assistance of the EM algorithm, where the observed data
is augmented with the “missing" variable selection indicators. As opposed to the previous
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approaches suggested for the point mass priors, the continuous relaxation is essential to ob-
taining a hierarchical separation of the prior to yield a closed form E-step and M-step. A
simple probabilistic rule enables locally identifying high posterior models by thresholding lo-
cal modes of the full regression vector according to the conditional median probability model
rule. The EM machinery thereby enables a rapid exploration of the model space through lo-
cating high-probability models associated with the shrunken full regression vector. Sharply
spiked prior distributions typically produce highly multimodal posterior landscapes, whereof
smoothing can be accomplished by increasing the spike variance. This observation has mo-
tivated our consideration of a whole sequence of spike and slab priors with an increasingly
wider spike, where small unimportant coefficients are absorbed within the spike and only a
few nonzero coefficients are exposed. This dynamic posterior model exploration enables us
to capture the evolution of selected subsets in a novel spike and slab regularization diagram.
The regularization plot displays a series of increasingly sparser local candidate subsets, which
can be evaluated based on their posterior probability, an analogue to the cross-validation cri-
terion for optimal penalty selection in frequentist regularization methods. We refer to the
dynamic procedure for model exploration and evaluation as EMVS, the EM approach to vari-
able selection as a deterministic counterpart to the stochastic search variable selection (SSVS)
of George and McCulloch (1993). The multimodal nature of the posterior further motivated
our examination of deterministic annealing, which generates smooth objective functions by
tempering the posterior and thereby increases chances of finding the global mode. We have
presented numerous analyses of synthetic data, where the EMVS procedure leads to enormous
computational savings while simultaneously providing a dynamic perspective on the variable
selection status of each variable. In Chapter 3 we also embark on prior modeling of the vari-
able selection indicators by employing the Markov random field prior to encourage patterned
sparsity in order to make inferences about possible predictive network covariate structures.

Returning to the point of patterned variable selection, many methods have been proposed
to encourage concurrent selection of variables that cluster within groups. In Chapter 4 we
propose a Bayesian variable selection variant, which embeds the grouping within the shrink-
age estimation. We relax the following assumptions that are typical for many existing proce-
dures for grouped variable selection: (1) smoothness of regression coefficients within a group,
(2) predictiveness of all variables within a group, (3) orthogonality of the group identification
matrix. We analyze properties of two proposed computational methods based on the EM algo-
rithm, where variable selection is accomplished through the identification of MAP estimates
that are zero or at its close proximity. We allow each group to be characterized by an unknown
shrinkage parameter, which drives the within-group regression coefficients towards zero. By
jointly modeling the regression of responses on the predictors and the regression of the penalty
parameters on the group identification matrix, we aim to simultaneously identify predictive
groups as well as relevant variables within the groups. Applications on real and simulated
data demonstrate that substantial practical gains can be obtained over existing approaches.

Finally, in Chapter 5 we investigate the situation where multiple related responses are
available and we would like to select subsets of predictive explanatory variables, while si-
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multaneously decoding the likely grouping structure responsible for the residual covariance
pattern. We extend the multivariate regression approach by augmenting the model with latent
factors to capture the residual collinearity among the multiple responses. Following the main
theme in the thesis, we induce sparsity by imposing variable selection priors on individual en-
tries in the matrix of regression coefficients and factor loadings. We demonstrate that the EM
algorithm developed for probabilistic principal components combines conveniently with the
EMVS procedure to enable rapid exploration of candidate factor regression models. Similar
existing proposals have so far relied on heavy computation using MCMC.

Chapter 6 presents an analysis of biomarkers in acute myeloid leukemia, that demon-
strates the immense practical utility of variable selection in biomedical applications.

7.2

Future Research Directions

The work presented in the preceding sections provides foundations for interesting future re-
search avenues and extensions. In the following, we highlight several important aspects which
were not discussed in the body of the thesis and which provide potentially interesting direc-
tions for future investigation.

7.2.1 Variational Bayesian Methods

Throughout the course of the thesis, we have seen numerous implementations of the EM al-
gorithm. The EM bypasses difficulties with the global posterior exploration by generating
merely a point estimate of the regression vector. Conditionally on this point estimate, our EM
algorithm for variable selection outputs a locally optimal model, the “local" median probabil-
ity model. Alternatively, the EM framework could be extended to allow for a full posterior
inference using variational approximations. Variational methods yield an estimate of the full
posterior distribution by finding a closely fitting approximation within a class of distribu-
tions for which it is easier to do inference. The quality of the approximation is judged by
the Kullback-Leibler divergence. The problem translates as an optimization task taking place
over a set of parameters that are iteratively updated. Variational schemes were developed for
sparse factor analytic models using continuous spike and slab priors by Stegle et al. (2000).
Similar schemes could be considered also in the classical variable selection framework, where
they could potentially yield a useful approximation to the global median probability model.

7.2.2 Predictors Forming a Directed Acyclic Graph

In Chapter 3 we discussed patterned variable selection where spatial or network dependen-
cies are induced among the variable selection indicators. In undirected networks, the struc-
tured model priors can be accommodated conveniently within an exponential family frame-
work, where one can leverage an extensive theory developed for approximate inference. The
directed graphs pose some additional difficulties which are discussed below.
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Genomic data often give rise to graph-structured covariates together with supplementary
information on the causal relationships among the predictors. The formalism of directed
acyclic graphs provides a suitable framework for representing prior distributions on the model
space, where the binary inclusion status can be transmitted from a parent to a child node in
the graph. Following the notation introduced in Chapter 3, we define a graph G = (V,E) to
be a collection of vertices V = {γ1, . . . ,γp} and a set of edges E = {(i, j) : 1 ≤ i 6= j ≤ p},
which represents a subset of interacting pairs. The edge set is characterized by an adjacency
matrix θ 2 = (θi j)

p
i, j=1, where θi j 6= 0 if and only if (i, j) ∈ E . Whereas in the undirected case

there is no distinction between edges (i, j) and ( j, i), directed graphs are characterized by an
asymmetrical adjacency matrix, where each entry θi j is nonzero if and only if γ j is a parent of
the child node γi. For every directed graph that is also acyclic we can find a partial ordering
of the vertices by the notion of ancestry, where each edge is directed from a higher-ordered
node towards a lower-ordered node. The joint distribution π(γ |θ) can be then factorized as
a product of local conditional distributions for each vertex, given its parents on the graph.
For binary networks, the logistic distribution is convenient to parametrize these conditional
probabilities. As opposed to the independent logistic regression product prior described in
Chapter 3, here the parent selection indicators themselves are predictors in the link function,
i.e.

P[γi = 1 |θ ,P(γi)] =
exp(θi +∑

p
j∼i θi jγ j)

1+ exp(θi +∑
p
j∼i θi jγ j)

, (7.2.1)

where j∼ i designates the parent-child relation between jth and ith node. Here the parameters
θi regulate the sparsity and entries in the adjacency matrix regulate smoothness of the ancestral
transitions. The joint distribution can be then written in the product form

π(γ |θ) =
p

∏
i=1

(
exp(θi +∑

p
j=1 θi jγ j)

1+ exp(θi +∑
p
j=1 θi jγ j)

)γi
(

1
1+ exp(θi +∑

p
j=1 θi jγ j))

)1−γi

or more compactly
π(γ |θ) = exp[θ ′1γ + γ

′
θ 2γ− ψ̃(θ 1,θ 2,γ)], (7.2.2)

where ψ̃(θ 1,θ 2,γ)) = ∑
p
i=1 log[1+ exp(θi +∑

p
j=1 θi jγ j)]. As opposed to the MRF prior dis-

cussed in Chapter 3, here the adjacency matrix θ 2 is asymmetrical. Also note that the
distribution (7.2.2) is no longer exponential family, since the “partition function" ψ̃(θ 1,θ 2,γ)
also depends on γ . Large multi-layer networks preclude exact inference as the marginal dis-
tributions become intractable due to many combinatorial possibilities when summing over the
model configurations. The product form of the distribution implies readily available condi-
tionals P[γi |θ ,γ j,1≤ j 6= i≤ p] = P[γi = 1 |θ ,N (γi)], which facilitate application of Gibbs
sampling schemes to generate samples from the posterior model distribution (George and Mc-
Culloch, 1993; Li and Zhang, 2010). A deterministic inference to obtain approximations to
the marginal quantities has been studied within the variational framework (Wainwright and
Jordan, 2008) and large deviation bounds (Kearns and Saul, 1998). These approaches allow
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obtaining approximate marginal expectations as solutions to a series of non-linear regressions.
These inferential tools provide a promising first steps towards extensions of the EMVS pro-
cedure for directed graphs. The derivation of the E-step is further complicated by the fact that
the prior distribution (7.2.2) does not combine nicely with the data to produce a conditional
posterior distribution of the same probability class. Extensions of EMVS to directed acyclic
graphs is a challenging future avenue.

7.2.3 Beyond Linear Regression

Throughout the thesis we focused mainly on variable selection in the linear regression case.
Relaxing the distributional assumption, the method can be extended naturally to the general-
ized linear model framework. Whereas the data augmentation approach to probit regression
permits a rather straightforward extension of the EMVS procedure for binary responses, gen-
eralizations to other GLMs are less obvious. Due to the separability of the EM algorithm,
which places the variable selection indicators at the level of regression coefficients, the E-step
does not necessitate further adjustments. The part which becomes problematic is the M-step,
where the maximization with respect to the regression and dispersion coefficients is typically
not obtainable in a closed form. A promising strategy to perform an approximate M-step is
with the assistance of the conjugate dual coordinate ascent method introduced in Chapter 3,
which allows for general loss functions. A closer investigation of this and other possibilities is
of huge practical relevance, since the majority of research developments for variable selection
merely permit normally distributed responses.

7.2.4 Sparse Precision Matrix Estimation

Straightforward extensions of the EMVS procedure can be implemented for estimating pat-
terns of association between a set of random variables. One possible strategy to elucidate
such relationships is by identifying nonzero elements in the inverse covariance matrix (preci-
sion/concentration matrix). The off-diagonal elements are the conditional covariances, given
the remaining set of variables, where zero entries under Gaussianity imply conditional in-
dependence. The pattern of nonzero entries in the precision matrix can be interpreted as an
undirected graph, where vertices (random variables) are connected if and only if the condi-
tional covariance is nonzero.

There is a significant literature on model selection and parameter estimation in Gaussian
concentration graphical models, starting with the seminal paper of Dempster et al. (1977). The
traditional methods (Whittaker, 1990) are based on two steps: (1) identifying the pattern of
sparsity, (2) estimating the parameters. One standard approach to estimating the pattern of as-
sociation is the greedy stepwise selection achieved by sequential hypotheses testing (Edwards,
2000). Such a strategy is not applicable in the context p >> n and is highly instable, as recog-
nized by many authors including Breiman (1996). The model selection and estimation can be
accomplished simultaneously with the assistance of penalized likelihood methods (Yuan and
Lin, 2006; Rothman et al., 2008; Friedman et al., 2007), where penalties are induced on the
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individual entries in the precision matrix and where the resulting estimate is guaranteed to be
positive definite. Friedman et al. (2007) proposed a method called GLASSO and implemented
an efficient coordinate descent procedure, exploiting dual representation and resemblance to
the LASSO regression.

The maximum likelihood approach for sparse precision matrix estimation that extends
the GLASSO method (Friedman et al., 2007) by considering non-concave penalties was pro-
posed by Fan et al. (2009). The computation rests on iteratively estimating weighted penal-
ized regressions in a way that is very much similar to the local approximation methods for
non-concave variable selection. This is analogous to the posterior computation using an EM
algorithm with sparsity priors. Considering a Laplace spike and slab mixture on the individual
precision matrix entries, we can derive an EM algorithm which solves the weighted GLASSO
at every iteration of the M-step. Exploiting the efficient GLASSO solutions in combination
with the closed form E-step provides a promising rapid strategy to perform Bayesian model
selection in Gaussian graphical models.

Apart from the maximum likelihood methods, there has been an emergence of alterna-
tive approaches which also benefit from the resemblance to variable selection, but do so in
a different way. Meinshausen and Bühlmann (2006) proposed the neighborhood selection
strategy, where every variable is regressed on the other variables in a separate linear regres-
sion model. Because each regression coefficient is proportional to the associated entry in the
precision matrix, the identification of zeroes can be accomplished by applying variable se-
lection to each regression. This strategy however neglects the symmetry of the problem and
can lead to sign inconsistency in the estimated partial correlation matrix. As a remedy, Peng
et al. (2009) suggested a joint sparse regression model, that estimates only diagonal and upper
triangle of the precision matrix. There is also a class of methods that benefit from the natural
ordering of the variables (longitudinal data, spatial data) (Wu and Pourahmadi, 2003; Huang
et al., 2007). These methods typically exploit the modified Cholesky decomposition of the
precision matrix, which leads to fitting a sequence of lagged regressions, such as in the spike
and slab approach of Smith and Kohn (2002).

Due to the versatility of formulations for precision matrix estimation, there is a huge
potential for the implementation of EMVS variants for model selection in Gaussian graphical
models.

166 Veronika Ročková
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Nederlandse Samenvatting

Hoog dimensionele data komen in de laatste decennia veelvuldig voor. Echter, om op een
valide wijze relevante informatie te extraheren uit zulke, vaak enorme, databestanden en zo te
komen tot goed onderbouwde conclusies, zijn specifieke exploratieve statistische technieken
nodig. Het is echter een uitdaging om het meest geschikte model te vinden en te bepalen
welke en hoeveel factoren de respons(en) het best bepalen.

In Hoofdstuk 2 onderzoeken we hoe de onzekerheid die gepaard gaat met het selecteren
van het meest geschikte model kan uitgedrukt worden als een coherente kansmaat onder het
Bayesiaanse paradigma. We tonen aan dat het veelzijdige karakter van het Bayesiaanse for-
malisme tot een explosie van modelselectietechnieken geleid heeft. Hiervan wordt een be-
knopte samenvatting gegeven in Hoofdstuk 2. In dat hoofdstuk bekijken we ook het gedrag
van een aantal Bayesiaanse variabelenselectietechnieken en vergelijken deze met klassieke
technieken. Deze oefening werd uitgevoerd op gesimuleerde data. We tonen hierbij de prak-
tische voordelen aan van het gebruik van a posteriori modelkansen als middel om variabelen te
selecteren. Verder tonen we ook aan dat de ‘spike en slab’ techniek methodologische voorde-
len biedt. Tot slot illustreren we in dit hoofdstuk de praktische problemen bij het bepalen van
de a posteriori kansen, met name hun rekenintensief karakter dat belemmerend kan worden in
het geval van een groot aantal covariaten. Dit probleem wordt aangepakt in Hoofdstuk 3.

Het opsporen van interessante modellen noodzaakt de implementatie van efficiënte zoek-
strategieën die rekening houden met de aard van de gegevens en met de grootte van het databe-
stand maar ook met grote zekerheid de belangrijkste modellen kunnen selecteren. Echter in
het geval van hoog-dimensionele modelruimten, liggen de meest interessante modellen ver-
spreid in de ruimte rondom een beperkt aantal geïsoleerde pieken van relatief hoge a posteriori
kans. Daardoor is het bijna onvermijdelijk om computationele trucs te hanteren, zoals bijvoor-
beeld “parallel computing” of “distributed computing”. Deze technieken hebben echter een
zware rekenintensieve impact. In Hoofdstuk 3 tonen we aan dat met geconjugeerde con-
tinue “spike and slab” priorverdelingen, men een deterministisch mechanisme kan hanteren
dat de a posteriori meest waarschijnlijke modellen kan opsporen met een enorme tijdswinst
in vergelijking met de bestaande stochastische methoden. Deze deterministische techniek is
gebaseerd op het populaire Expectance-Maximisation (EM) algoritme. Hierbij worden aan
de geobserveerde data “missende" indicatoren voor variable inclusie toegevoegd. Het ge-
bruik van continue “spike and slab” priorverdelingen is essentieel voor het bekomen van an-
alytische uitdrukkingen van de E- en M-step van het algoritme. Een eenvoudige kansregel
leidt dan tot het identificeren van lokaal zeer waarschijnlijke a posteriori modellen door het
vergelijken van de lokale modes met grenswaarden aangegeven door de conditionele me-
diaan kansmodel regel. Het EM mechanisme laat een snelle exploratie toe van de meest
waarschijnlijke modellen en produceert gekrompen geschatte regressieparameters. De keuze
van de prior verdelingen is bepalend voor de posterior verdeling van de modellen. Namelijk,
scherp gepiekte priorverdelingen induceren typisch meerdere modes in de posteriorverdeling,
daarentegen worden meer gladde posteriorverdelingen bekomen met priorverdelingen die een
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minder scherpe piek vertonen. Dit laatste wordt bekomen door de piekvariantie te vergroten.
Dit motiveerde ons om een reeks van ‘spike and slab’ priorverdelingen te beschouwen met een
vergrotende piekvariantie, waarbij onbelangrijke regressiecoëfficiënten geabsorbeerd worden
in de piekverdeling en zo slechts een klein aantal regressiecoëfficiënten overblijven. Dit dy-
namisch exploreren van modellen laat ons toe om de reeks van geselecteerde modellen weer
te geven in nieuw ‘spike and slab’ regularizatie diagram. Deze figuur toont dan een sequentie
van in toenemende mate lokaal schaarse modellen die kunnen geëvalueerd worden via hun
a posteriori kans. Dit levert een techniek op analoog aan het cross-validatie criterium voor
het selecteren van de optimale ‘penalty’ frequentistische regularizatie methoden. De techniek
van het dynamisch exploreren en evalueren van modellen hebben we EMVS genoemd. We
beschouwen deze EM methode als de determinische tegenhanger van de stochastische variable
selectie zoekmethode (SSVS) van George en McCulloch (1993). Het multimodale karakter
van de posteriorverdeling motiveerde ons om ook deterministiche tempering te bestuderen.
Deze techniek genereert gladde doelfuncties door het temperen van de posteriorverdeling
waardoor de kans om een globale mode te vinden verhoogd wordt. Om de enorme reken-
winst die EMVS met zich meebrengt en de elegantie van het dynamisch selecteren van vari-
abelen te illustreren, hebben we onze techniek toegepast op tal van gesimuleerde gegevens.
In Hoofdstuk 3 hebben we ook Markov Random Velden ingeschakeld voor het modelleren
van de priorverdelingen van de variabelenselectieindicatoren. Dit laat toe om een netwerk
structuur op te sporen in de covariaten.

Verschillende technieken werden voorgesteld om aan gestructureerde variabele selectie
te doen. In dit verband stellen een groot aantal methodes voor variabelen op gelijktijdige
en gegroepeerde manier te selecteren. In Hoofdstuk 4 stellen we een Bayesiaanse vari-
abele selectie variant voor, waarbij het gegroepeerd selecteren ingebed is in een krimpingss-
chattingstechniek. Echter onze veronderstellingen zijn minder restrictief dan wat de meeste
gegroepeerde variabelenselectie technieken onderstellen, namelijk: (1) gladheid van de re-
gressiecoëfficiënten binnen een groep, (2) voorspellingkracht van alle variabelen binnen een
groep, (3) orthogonaliteit van de groepidentificatiematrix. We analyseren de eigenschappen
van twee EM algoritmes, waarbij variabelenselectie verkregen wordt via de identificatie van
de meest a posteriori waarschijnlijk schatters die nul of bijna nul zijn. Elke groep van vari-
abelen is gekarakteriseerd door een te bepalen krimpingsfactor, die alle regressiecoëfficiënten
binnen de groep globaal naar nul drijft. Door het gezamenlijk regresseren van de responsen
op de predictoren en de regressie van de krimpingsfactoren op de groepidentificatiematrix,
proberen we zowel predictieve groepen als predictieve variabelen binnenin groepen te ont-
dekken. Toepassingen op reële en gesimuleerde data tonen het voordeel van onze techniek
aan tegenover bestaande technieken.

Tot slot onderzoeken we in Hoofdstuk 5 de situatie waarbij meerdere gerelateerde re-
sponsen beschikbaar zijn waarvoor we groepen van predictieve covariaten willen selecteren
en tegelijkertijd de groepstructuur van de residuele covariantiematrix willen ontdekken. Hier-
voor breiden we de klassieke multivariate regressie techniek uit door latente factoren in te
sluiten die de residuele collineariteit tussen de meerdere responsen kunnen beschrijven. In
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de geest van deze thesis, verkrijgen we schaarse modellen door het introduceren van variabe-
lenselectie priorverdelingen op de regressiecoëfficiënten en de factorladingen. We tonen aan
dat het EM algoritme dat ontwikkeld werd voor probabilistische hoofdcomponentenanalyse
elegant combineert met de EMVS procedure. Dit maakt het mogelijk om op een snelle wijze
de belangrijkste factorregressiemodellen te exploreren, dat in tegenstelling tot de bestaande
technieken die op MCMC berekeningen gebaseerd zijn.

Hoofdstuk 6 beschrijft een integrale analyse van bekende biomarkers in acute myeloïde
leukemie die het enorme praktische nut laat zien van variabelenselectie in biomedische toe-
passingen.
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