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The Population Vector Could Implement
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Abstract

The brain uses populations of spiking neurons to encode, communicate, and com-
bine sources of information, we are interested in how this process might be opti-
mal as specified by Bayesian inference. Previous work from Kording and Wolpert
[1] showed that performance of a sensorimotor task was consistent with opti-
mal combination of sensory information and training knowledge; Ma et al. [2]
also proposed a neural modeling framework according to which Bayesian infer-
ences could be computed.These works focused on the form in which inputs were
combined to produce the posterior mean and variance. We show that population
vectors based on point process inputs combine evidence in a form that closely
resembles Bayesian inference, with each input spike carrying information about
the tuning of the input neuron. We investigated the performance of population
vector-based inference with various tuning functions. We show that while its per-
formance is exactly Bayesian for von Mises tuning functions, it remains approxi-
mately Bayesian for many other cases.

1 Introduction

There is considerable interest in understanding how the brain might use populations of spiking neu-
rons to encode and communicate probability, and to combine sources of information in an optimal,
or nearly optimal way, as specified by Bayesian inference. A useful review of the literature is pro-
vided by Beck et al. [3]. In neural encoding terms, a population represents information about a
stimulus or behavioral feature using the simultaneous activity of a population of spiking neurons
that are sensitive to that feature [4]. Far from being deterministic, the neural response for the same
action or stimulus varies from trial to trial. This suggests that the brain might encode features as
probability distributions (Eq. 3). For example, for a center-out reach action, the population code
might represent a probability distribution with a central directional tendency µθ, and a measure of
precision κ.

2 Population code

In this section we define a probabilistic model of population code (Eq. 3). First, let us suppose that
spikes from each neuron i, within a population of N neurons follow independent point processes
r = {ri}i=1,...,N (Eq. 1, also see the inset panel of Figure 1). The mean response fi(θ) depends on
θ − θPDi, where θ is the intended direction of reach, and θPDi is the preferred direction for neuron
i.

P (ri|θ) =
exp{−fi(θ)}fi(θ)ri

ri!
(1)

Next, we define fi as a von Mises function (Eq. 2), which defines an exponential family on the
unit circle, analogous to the normal distribution on the real line. Where Ai and Bi are constants
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Figure 1: Encoding reach direction. The response distribution for one neuron with preferred di-
rection of 180◦ is shown on the left panel (width at half amplitude= 133◦). The black solid line
indicates the mean, and the blue dashed lines are ± one standard deviation. The gray inset shows
the poisson distribution for the neuron’s response given the preferred direction stimulus. The right
panel shows the mean response for a population of 12 neurons with equal precision and preferred
directions spaced at 30◦

representing the ith neuron’s amplitude and precision, respectively. High precision indicates narrow
tuning for a particular preferred stimulus θPDi.

fi(θ) = Aiexp{Bi cos(θ − θPDi)} (2)

The parameters θ, θPDi, and µθ are directional values; for a two-dimensional workspace, they can
be conveniently expressed in circular angles [0◦, 360◦] with 0◦ being equivalent to 360◦.
Figure 1 (left) shows the response vs. reach direction for a neuron with preferred direction of 180◦.
The noise observed in experimental recordings is typically approximated by a poisson distribution
[2], such that the variance of the response is dependent on the direction stimuli with a variance to
mean ratio of 1. Tuning curves for a population of N=12 neurons with equal precision (Bi = B) are
shown on the right panel of Figure 1, the preferred directions are spaced by 30◦. If we assume that
every neuron responds independently, the population response distribution becomes the product of
the individual neuron response distributions as shown in equation 3. We maintain the assumption
of independence for mathematical simplicity, although experimental evidence shows that neural
populations do exhibit correlations in firing rate.

P (r|θ) =

N∏
i=1

P (ri|θ) (3)

Now we discuss two ways of computing estimates of the intended direction stimulus from the pop-
ulation response: Bayesian inference and Population Vector.

3 Bayesian Inference

Bayesian decoders use Bayes’ theorem to produce a posterior probability of the intended direction
stimulus given the response:

P (θ|r) =
P (r|θ)P (θ)

P (r)
(4)

Where P (r|θ) and P (θ) are the likelihood function and prior distribution of the stimulus respectively
and P (r) is a normalizing constant. We obtained an expression for the posterior distribution in
cartesian coordinates by assuming a uniform prior, which we will revisit in a later section, and
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combining equations 1-3.

P (θ|r) ∝
N∏
i=1

P (ri|θ) (5)

P (θ|r) ∝
( N∏
i=1

1

ri!

)(
exp{−

N∑
i=1

fi(θ)}
)(

exp{
N∑
i=1

ri log(Ai)}
)(

exp{
N∑
i=1

riBi cos(θ−θPDi)}
)

(6)∑N
i=1 fi(θ) is constant over θ when the population has a uniformly dense distribution of pre-

ferred directions as shown on Figure 1B. Hence equation 6 is simply an non-normalized von
Mises distribution governed by the last term on the right, exp{

∑N
i=1 riBi cos(θ − θPDi). Let

S̄b = N−1
∑N
i=1 riBi sin(θPDi), and C̄b = N−1

∑N
i=1 riBi cos(θPDi). We can define the con-

centration parameter as κ2 = S̄2
b + C̄2

b , the central tendency as µ̂b = arctan(S̄b/C̄b), and the
normalizing constant as Ã = [2πI0(κ)]−1 with I0 being the modified Bessel function of order zero.
Thus the posterior expression becomes:

P (θ|r) = Ãexp{κ cos(θ − µ̂b)}} (7)

A 95% credible interval for the central tendency can be calculated directly from the von Mises
probability distribution in equation 7 such that:

P (µ̂b − θ∗b ≤ µb ≤ µ̂b + θ∗b ) = 0.95 (8)

Thus the angular size of the credible interval for the decoded stimulus is given as Lb = 2θ∗b

4 Population Vector

An alternative to Bayesian inference is a population vector estimate, which is a simple way to com-
pute an estimate of the stimulus from the population response [5]. The direction stimulus estimate
is an average of preferred directions weighted only by the activity of each corresponding neuron. Let
S̄pv = N−1

∑N
i=1 ri sin(θPDi), and C̄pv = N−1

∑N
i=1 ri cos(θPDi). Note the absence of Bi com-

pared to Bayesian Inference. The resultant magnitude and direction are given by R̄2 = S̄2
pv + C̄2

pv ,
and µ̂pv = arctan(S̄pv/C̄pv) respectively.
We can also think of the population vector as an estimate resulting from every spike ri carrying
directional information from its emitting neuron’s preferred direction θPDi. With this in mind,
we consider spikes emitted by the population as samples from a circular random variable with a
well defined mean direction µpv . Let α2 = N−1

∑N
j=1 ri cos 2(θPDi − µ̂pv). We use the Cir-

cular Central Limit Theorem [6] to obtain an approximate 95% confidence interval for µpv as
µ̂pv ± sin−1(1.96σ̂pv) with σ̂pv = {(1 − α2)/(2MR̄2)}1/2 as the circular standard error. The an-
gular size of the confidence interval for the decoded stimulus is given as Lpv = 2 sin−1(1.96σ̂pv).

5 Comparing population estimates

In this section we compare the uncertainty associated with estimating the direction of reach using
both Bayesian Inference and Population Vector. Consider the population response to one instance
in which the intended reach direction is 180◦. Figure 2 (left) shows the population response plot-
ted against the preferred direction of each neuron. The estimates of the direction of reach are the
maximum likelihood µ̂b (posterior mean) for Bayesian Inference, and the activity-weighted average
direction µ̂pv for population vector. Note that these two estimates are equal for the special case of
uniform precision encoding in the population. That is if Bi = B (see Figure 1) then it follows that:

µ̂b = arctan(S̄b/C̄b)

= arctan(
N−1B

∑N
i=1 ri sin(θPDi)

N−1B
∑N
i=1 ri cos(θPDi)

)

= arctan(S̄pv/C̄pv)

µ̂b = µ̂pv (9)
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Figure 2: Computing estimates of the stimulus from the population response to an intended reach
direction of 180◦ using Bayesian inference and Population Vector. Left: Population response plotted
against the preferred direction of each neuron and shown in cartesian coordinates (inset). Right: Pos-
terior probability distribution of the stimulus given the response using Bayesian inference (top), and
probability distribution of the stimulus using Population Vector and circular Central Limit Theorem
(bottom).
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Figure 3: Distribution of the uncertainty ratio of credible to confidence interval for 10,000 repetitions
for the population of neurons shown in Figure 1 and a stimulus of 180◦

Yet the uncertainty associated with each estimate is similar but not necessarily equal. Figure 2
(Right) shows the respective probability densities associated with each estimate. The credible inter-
val of size Lb was obtained by applying Bayesian Inference under the assumption of a uniform prior
distribution. On the contrary, the confidence interval of size Lpv was obtained using the Central
Limit Theorem. When repeatedly computing the ratio of credible interval size to confidence interval
size we observe that the distribution is centered at 1 with a standard deviation of 0.112 (Figure 3).
This suggests that although not exactly equal, the uncertainty of Lpv tends to be approximately equal
to that of Lb.

References
[1] Krding, Konrad P., and Daniel M. Wolpert. ”Bayesian integration in sensorimotor learning.” Nature
427.6971 (2004): 244-247.

[2] Ma, Wei Ji, et al. ”Bayesian inference with probabilistic population codes.” Nature neuroscience 9.11
(2006): 1432-1438.

[3] Beck, Jeffrey M., et al. ”Probabilistic population codes for Bayesian decision making.” Neuron 60.6 (2008):
1142-1152.

[4] Ma, W. J., and A. Pouget. ”Population Codes: theoretic aspects.” Encyclopedia of neuroscience 7 (2009):
749-755.

[5] Georgopoulos, Apostolos P., Ronald E. Kettner, and Andrew B. Schwartz. ”Primate motor cortex and free
arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a
neuronal population.” The Journal of Neuroscience 8.8 (1988): 2928-2937.

[6] Fisher, Nicholas I., and Toby Lewis. ”Estimating the common mean direction of several circular or spherical
distributions with differing dispersions.” Biometrika 70.2 (1983): 333-341.

4


	Introduction
	Population code
	Bayesian Inference
	Population Vector
	Comparing population estimates

