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1 Introduction

The standard model for the evolution of cosmic structure is know as the ΛCDM (Lambda cold dark matter)
model. ΛCDM has made successful predictions about the temperature of the cosmic microwave background
(CMB) radiation and features of galaxy formation [1]. A prediction of the ΛCDM model is that a galaxy’s
dark matter profile of should approximately follow the form of a Navarro-Frenk-White (NFW) profile [2, 3].
The model predicts that in the absence of baryonic effects the dark matter profile with diverge as r−1
forming a cusp [4]. However, the evidence is mixed on the accuracy of the model’s predictions for dark
matter profiles on small scales, where the distribution of dark matter is strongly non-linear [5]. Another
possible arrangement for the dark matter profile would be for it to follow a core structure. Under this
arrangement a dark matter profile increases in density as one moves closer to the center of the galaxy up to
some core radius. The density profile then remains roughly constant anywhere within this radius.

For a galaxy it is possible to estimate the total mass using two different methods. One method attempts
to sum the mass of all observed stars by counting the number of stars in the galaxy and multiplying by the
mass of a typical star. While this calculation discounts the mass of non-luminous objects such as planets the
mass of such objects make up only a small portion of the total mass contained in a galaxy and is thus not a
major source of error. A second method involves using the observed speeds and positions of the stars to and
solving the gravitational equations for mass to infer the mass of the galaxy. In theory these two calculations
should match, but in practice the laws of gravity predict a mass that is several times what is predicted by
summing the mass of observed stars. Astronomers refer to the discrepancy as the mass of the dark matter
in the galaxy. Physicists have never been able to observe dark matter directly and it is not known with any
certainty what type of particles make up this additional mass. Determining where within a galaxy the dark
matter principally resides will aide astronomers in there efforts to learn more about dark matter.

In this context the Sculptor dSph (dwarf spheroidal) and other dwarf galaxies are particularly interesting
because they contain a higher ratio of dark matter to normal matter than larger galaxies. Sculptor is of
sufficient mass that baryonic effects should not alter the shape of its dark matter profile and the ΛCDM
model would predict that the dark matter density profile would follow a dark matter cusp [4]. Yet previous
analysis have been unable to rule out parameter values of the NFW profile that are consistent with both
a dark matter cusp and a dark matter core [4]. We hope to help contribute to the ongoing debate about
appropriate parameter values for the NFW profile function using Approximate Bayesian Computing (ABC)
to estimate credible intervals for the relevant parameters. The complexity of relationship between the dark
matter profile and the observational data, positions and velocities of stars, makes the use of a likelihood-free
technique to estimate credible intervals particularly attractive. A further complication is provided by the two
distinct populations of stars, a metal rich population concentrated near the core of the galaxy and a metal
poor population found primarily farther from the center, that make up the Sculptor dSph. Attempting to
model these two populations simultaneously while also incorporating the random processes by which stars
are observed would further complicate the estimation of a likelihood function. If we are able to rule out
parameter values consistent with either a dark matter cusp or a dark matter core this would help bring
clarity to the debate and help to either further validate ΛCDM or indicate areas where the theory can be
further refined.

2 Data

The data we analyze was collected from the e ESO 2.2 m Wide Field Imager (WFI) and the VLT/FLAMES
spectrograph[6, 7]. Observations of 636 individual stars in Sculptor dwarf spheroidal are included. The
characteristics observed for each star are shown in Table 1. Figure 1 shows the positions of the observed
stars as they would appear in the sky, projected onto a sphere. The velocity of stars with a high probability
of being in Sculptor appears with a normal distribution as predicted by theory. A crucial step in analyzing
the data is determining which stars in the observed region belong to Sculptor and which are members of
the milky way galaxy that can be seen in the same region of the sky. For this we rely on previous analysis
by Walker et. al [8]. We confirm, as shown in Figure 2, that the stars identified as metal-rich in Sculptor
appear to be clustered in the center of the galaxy while the metal-poor stars are found primarily outside of
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Figure 1: Position of observed stars and distribution of velocities.

the galaxy core, this is consistent with previous findings [4]. Once stars that are unlikely to be located in
Sculptor, those with p < .05 are and stars are indeterminate metallicity are both excluded the remaining
population contains metal-rich 93 and 294 metal-poor stars.

A final step that must be taken before the data can be used in our ABC algorithm is to transform the data to
euclidean coordinates comparable to those generated by our galaxy simulation method presented in Section
3.4. The reported measurements, in degrees, place the stars on a celestial sphere which mas be mapped to
x and y euclidean coordinates. For right ascension and declination pair (α, δ) the conversion to euclidean
coordinate pair (x, y) is given by 1 and 2 where (α0, δ0) is mapped to (0, 0).

x =
cos(δ) sin(α− α0)

sin(δ0) sin(δ) + cos(δ0) cos(δ) cos(α− α0)
(1)

Variable Units
right ascension angle hours
declination degrees
velocity km/s
error in velocity km/s
metallicity Fe/H
error in metallicity Fe/H
magnesium index Angstroms
error in magnesium index Angstroms
probability of Sculptor membership from EM algorithm
metallicity class 0=excluded, 1=metal-rich, 2=metal-poor

Table 1: Star Characteristics
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Figure 2: More metallic stars in Sculptor are clustered near the center of the dwarf galaxy.

y =
cos(δ0) sin(δ)− sin(δ0) cos(δ) cos(α− α0)

sin(δ0) sin(δ) + cos(δ0) cos(δ) cos(α− α0)
(2)

3 Methodology

3.1 Approximate Bayesian Computing

In a standard Bayesian framework the observed data is used to condition the prior distribution π(θ), which
contains a researcher’s beliefs about the parameter of interest before examining the data. The result is a
posterior distribution π(θ|xn):

π(θ|xn) =
L(xn|θ)π(θ)∫
L(xn|θ)π(θ)dθ

(3)

Implementing this approach requires both that the likelihood function L(xn|θ) be known and that the
integral,

∫
L(xn|θ)π(θ)dθ be tractable. For complex models a likelihood function may not be available.

Even when the likelood function is known the integral in the denominator of 3 may not be tractable.
Employing ABC allows us to sidestep these common barriers be approximating the posterior without the
use of a likelihood function. ABC, although more computationally intensive, has been applied in areas such
as cosmology[9], genetics[10], and psychology[11] where data can display complicated dependencies and a
likelihood is thus particularly difficult to compute.

While ABC does not require a likelihood function it does require that the researcher specify a prior distri-
bution, π(θ), a forward model f(x|θ) and a distance function ρ(xn, yn). The prior distribution, as in other
Bayesian settings, simply needs to specify a distribution for the parameter. The forward model must be a
way to simulate data based on the parameter of interest. The distance function must provided a way to com-
pare the observed dataset xn with yn, a dataset generated by the forward model. The distance function is
generally computed from a summary statistic of the data but care must be taken in choosing an appropriate
statistic. If an appropriate statistic is not chosen then the resulting ABC posterior will be a approximation
of the true posterior.
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Once the prior, forward model, and distance function have been specified the ABC algorithm can be run
to sample N paremeter values from an approximate posterior. The closeness of the approximation to the
true posterior varies with a specified tolerance ε with the ABC posterior converging to the true posterior as
ε→ 0. The steps of the algorithm are as follows:

1. Sample a proposed parameter θ∗ from prior, π(θ)

2. Simulate a dataset (x∗1, . . . , x
∗
n) from forward process, f(x|θ∗). The simulated dataset must be the

same size as the observed dataset.

3. Accept θ∗ if ρ(xn, xn∗) ≤ ε where ε is the chosen tolerance level.

4. Repeat 1-3 until N values have been accepted

As with other computation methods there is a trade-off between the speed of the algorithm and the closeness
of the approximation as determined by the acceptance threshold ε. In practice a sufficiently small level of
ε can be determined by repeatedly running the algorithm for lower and lower threshold levels until further
decreases in ε do not appear to change the result. In this case the approximate posterior can be said to have
"converged".

3.2 Population Monte Carlo Sampling

We implement a modified version of the ABC algorithm known as ABC population Monte Carlo sampling
(ABC PMC) as described in [11]. The ABC PMC algorithm takes an iterative approach, improving the
posterior approximation over the course of multiple time steps. In the standard ABC algorithm observations
are repeatedly drawn from the prior until a sufficient number of proposals have been accepted. ABC PMC
algorithm instead uses importance sampling to draw from sets of previously accepted proposals parameters.
The previously accepted parameters provide an approximation to the unknown true posterior distribution.
As a result sampling method can produce a greater proportion of proposal parameters that are likely to
generate data that is close, as measured by the distance function, to the observed data.

Implementing the ABC PMC algorithm requires that we specify a transition kernel which is used in the
algorithm avoid simply resampling proposal parameter values identical to those of previously accpeted pa-
rameters. When running the ABC PMC algorithm an initial approximate posterior is calculated

1. Sample a M proposed parameter values θ∗1 , . . . , θ∗M from prior, π(θ)

2. For each proposed parameter value simulate a dataset (x∗1, . . . , x
∗
n) from forward process, f(x|θ∗i ).

3. Compute di = ρ(xn, xn∗i ) for each of the M generated datasets.

4. Accept the proposed parameters corresponding d(1), . . . , d(N) the smallest N distances and let ε1 =
d(N).

5. Define weights {w}1 where w1, . . . , wn = 1/N

An approximate posterior for time step t is computed from the approximate posterior at time t−1 as follows

1. Select a threshold εt < εt−1

2. Sample a proposal θ′ from {θ∗}t−1 using multinomial sampling with weights {w}t−1

3. Use the transition kernel q(|̇θ′) to generate θ∗.

4. Simulate a dataset (x∗1, . . . , x
∗
n) from forward process, f(x|θ∗).

5. Accept θ∗ if ρ(xn, xn∗) ≤ εt.

6. Repeat 2-5 until N values have been accepted
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7. Calculate {w}t, the set of weights associated with {θ∗}t using 4

In our algorithm we use a truncated Gaussian kernel for our noise function. We truncate the distribution
so that it will not generate values in regions of parameter space where the density of the prior distribution
is zero. After the desired number of parameter values have been accept in a given time step they are then
assigned weights according to equation 4 where q(θi,t|θj,t−1, σt−1) is the density of the kernel evaluated at
the accepted parameter value θi,t. For this approach to work the sampling from the previously accepted
particles must be done with appropriate weights with appropriate weights.

wi,t =
π(θi,t)∑N

j=1 wj,t−1q(θi,t|θj,t−1, σt−1)
(4)

This contrasts with the straight forward approach of the standard ABC algorithm. In successive time steps
the weights are updated allowing from a more intensive sampling of regions of parameter space that often
generate datasets with smaller distances. As a result tthis algorithm can yield faster convergence rates.

3.3 Navaro-Frenk-White Model

Strigari, Frenk, and White model the mass density profile of dark matter as a function of the specific energy,
E, and the specific angular momentum of a star J [4]. Where both E and J are specified by the position
and velocity vectors of a star

E = v2/2 + Φ(r) (5)

J = vr sin θ (6)

and the function Φ(r) is defined as

Φ(r) = Φs

(
1− ln(1 + r/rs)

r/rs

)
(7)

The constants Φs and rs are specified by model parameters.

f(E, J) = g(J)h(E) (8)

g(J) =

{
[1 + (J/Jβ)−b]−1, for b ≤ 0
1 + (J/Jβ)b, for b > 0

(9)

h(E) =

{
NEa(Eq + Eqc )d/q(Φlim − E)e, for E < Φlim
0, for E ≥ Φlim

(10)

where we select N , the normalizing constant such that such that∫ rlim

0

2π

∫ π

0

sin θdθ

∫ vesc

0

f(E, J)v2r2dvdr = 1 (11)

Where rlim is specified by the model parameters, Φlim = Φ(rlim), and vesc varies with the radius according
to the function

vesc(r) =
√

2(Φlim − Φ(r)) (12)
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3.4 Galaxy Simulation

The implementation of and ABC algorithm requires the construction of a forward model, for our problem
this means that we must be able to simulate a galaxy consistent with the NFW density profile described by
a set of parameters that we can compare with our observed data. Thus, we must be able to sample from the
marginal distributions of the positions and velocities of the stars, which are unknown. Based on the model in
the previous section we use a rejection sampling algorithm to generate observations from these distributions
conditional on given parameter set even though we do not have a closed form for them. The basic rejection
sampling algorithm requires the following steps:1

1. Generate a proposal but sampling a radius, tangential velocity, and radial velocity uniformly between
0 and the maximum physical value allowed by the parameter set.

2. Sample a threshold uniformly from 0 to 1.

3. Compute the ratio between the density at the sampled radius and velocities and the maximum density
point in the parameter set scaled up by a factor M .

4. Accept the proposal if the ratio is greater than the sampled threshold

5. Reject the proposal and repeat the procedure if the ratio is less than the sampled threshold

We use a factor of 1.1 forM . The resulting points contain a radius, as well as tangential and radial velocities.
There are then converted to euclidean coordinates by assuming spherical symmetry in position and circular
symmetry for the tangential component of velocity.

We also experimented with a modified rejection sampling algorithm in which we approximated our density
function with a step function. This greatly reduced the time necessary to generate a sample galaxy as
checking the proposal density relative to a step function is a much more efficient calculation. However, we
ultimately abandoned this approach due to the failure of the resulting ABC posteriors to converge to the
true posterior distribution in simulated examples as discussed further in Section 3.6.

3.5 Reduced Model Posterior

We chose to implement and ABC algorithm specifically because we were unable to calculate an exact pos-
terior distribution due to the complexity of our model. However, as is commonly done we were able to
calculated an exact posterior for a reduced version of our model. In the reduced version we vary only a
single parameter, Ec the critical energy, and modify our density function to include only h(E) as defined in
10. For our simulated galaxy used in the posterior calculation we use a parameter set reported by Strigari,
Frenk, and White for the metal-rich star population in as shown in Table 2.

We use a simulated galaxy with a population of 93 stars, the same number as identified in the metal rich
population of Sculptor, and adopt a prior function for Ec with a density of Uniform(.01, 1). We bound the
prior away from 0 to avoid potentially huge computation times due to inefficient sampling for very small

1The code for this was written by Mao Sheng (Terrence) Liu of the Carnegie Mellon Department of Physics

Star Population a d e Ec Φlim rlim b q Jβ Vmax rmax
Metal Rich 2.0 -5.3 2.5 0.16 0.45 1.5 -9.0 6.9 8.6× 10−2 21 1.5
Metal Poor 2.4 -7.9 1.1 0.17 0.60 3.0 0.0 8.2 8.6× 10−2 21 1.5

Table 2: Parameters values for which Strigari, Frenk, and White were unable to reject the hypothesis that
the parameters were consistent with the Sculptor data [4]
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Figure 3: Posterior distribution for Ec based on simulated galaxy with 93 stars, a Ec = 0.16, and Uni-
form(.01,1) prior

parameter values. Setting the other parameters to the values listed for the metal-rich population in Table 2
we then calculate the posterior density

π(Ec|xn) =

∏93
i=1

[
h(Ei)r

2
i v

2
i

]∫ 1

.01

∏93
i=1 [h(Ei)r2i v

2
i ] dEc

(13)

The results of our calculation are shown in Figure 3. We note that with a population comparable in size to
what we actually observe the posterior distribution is centered on the maximum likelihood estimate and is
close to the true parameter value.
Since there is no guarantee that the true parameter value is in fact the one that was reported in Table 2 we
also examine the posterior densities for galaxies simulated using different parameter values of Ec as shown
in Figure 4. Interestingly we note that the posterior density flattens substantially for larger values of Ec.
In particular if the density function is noticeably different from zero for values above 0.40 we see that the
tail flattens almost completely indicating that the parameter has very little effect on galaxy shape above
this value. This is consistent with findings that indicated Ec having very little effect on galaxy shape when
Ec > Φlim, which is about 0.45 in this case.

3.6 Selection of Summary Statistics and Distance Functions

Appropriate summary statistics are necessary to distinguish between data sets similar to the observed data
and data sets that are substantively different. Frequently, the means of the observed data, position or velocity
coordinate values for our data, would be tested as summary statistics before considering more complicated
statistics. However, in the case of our model the mean of position and velocity will be zero in expectation
regardless of the parameter values. Thus, originally considered distance functions based on the mean radius
of simulated stars as well as the second moment of both the velocities and radii. However, ABC posteriors
calculated using distance functions based on these summaries did not appear to contain enough information
for the ABC posteriors to approximate the true posterior as well as desired.

We next tried several nonparametric statistics in an attempt to capture the information contained such as
distances based on Kolmogorov-Smirnov statistic between smoothed empirical CDFs for star radii and veloc-
ities. We also considered using an L2 norm. While both of these statistics appeared to strong differentiate
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Figure 4: Posterior distribution for Ec based on simulated galaxy with 93 stars, Ec values of 0.10, 0.30, 0.50,
and 0.80 using a Uniform(.01,1) prior

between parameter values we still were unable to achieve convergence for the ABC posteriors.

A flaw with the distance metrics discussed so far is that they assume independence between a star’s radius
and velocity. This is not a valid assumption and thus it is preferable to consider a distance which does not
assume independence. So we developed two additional distance functions, one based on a 2D kernel density
estimate across the velocity and radii or the stars. The second is based on the quantity rv2, an appearing
quantity because it has the same units as mass and radius seemed an appropriate weighting to apply to
velocity. To produce our final statistic we compute an L2 norm between the estimates density estimates for
two different galaxies and between the empirical CDFs where we use the rv2 statistic. As shown in Figure 5
these both also appear to be able to distinguish between two galaxies with different Ec parameters. We note
that the dark upper square in both plots indicates that there is little power to determine between galaxies
with larger Ec parameter values. However, this is consistent with the findings of broader posterior distri-
butions for parameter values and in range. Indeed the nearly flat posterior distributions shown in Figure
4 indicate that no set of summary statistics would be able to detect the difference between these distributions.

Despite using the two final distances adopting different thresholds for each distance which we shrink in-
dependently. To be accepted a proposed parameter value must be below both thresholds. To evaluate if
these statistics would allow our ABC algorithm to correctly estimate posterior densities we ran several test
simulations the results of which indicated that the statistics did not provide enough information and thus
were unable to generate densities with appropriate maximum densities as shown in the left panel of Figure
6. Here we show successive iterations of the ABC PMC algorithm which suggest that the algorithm has
converged.
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Star Population Strigari Value ABC Maximum Value 95% Lower Bound 95% Upper Bound
Metal Rich 0.16 0.28 0.22 0.96
Metal Poor 0.17 0.3 0.26 0.34

Table 3: Estimates and 95% Credible Interval for ABC posterior for Sculptor Ec parameters

4 Results

4.1 Simulated Data

Using the selected distance metric we run our ABC algorithm using the simplified density model described in
the previous section the same simulated dataset with known parameter values as our "observed" data. This
allowed us to compare the posterior distribution generated by our ABC algorithm with the true posterior
computed from the simulated data and the simplified model. The results are shown in the right panel of
Figure 6. We can see that the posterior generated by successive iterations of the ABC PMC algorithm
approximate the true posterior with increasing accuracy. While the maximum density achieved by the ABC
algorithm is somewhat lower than that of the true posterior this is not surprising given that the posterior
is only approximate. Running additional steps in the algorithm would result in an improved approximation
however, the additional computation time would be considerable and thus was not implemented. We also
note that our ABC posteriors are centered on the true posterior with the difference being that they are
somewhat wider. Thus, we can expect that any credible intervals generated using our ABC posteriors would
contain more values and an equivalent credible interval using the unknown true posterior.

4.2 Sculptor Estimates

We then ran our ABC PMC algorithm, using the full galaxy simulation model, on the metal-rich and metal-
poor stars observed in Sculptor separately. These populations contain only 93 and 294 stars respectively so
as we expect the posterior distributions are considerably less concentrated than those for larger simulated
galaxies. We once again estimate only the critical energy relying on previous estimates to set the other
parameter values. Our ABC posterior densities are shown in Figure 7 and maximum density estimates along
with a 95% credible interval are shown in Table 3. In both cases we find that the previously estimated value
for Ec lies outside of our 95% credible interval. In the case of the metal-poor population the posterior density
puts almost no weight of the value of 0.17 for Ec estimated by Strigari, Frenk, and White. We also note
that the metal-rich posterior distribution has a low and relatively flat region for Ec > Φlim = 0.45. This is
consistent with the findings of our distance functions as shown in Figure 5 that galaxies with Ec values in
that range appear very similar.

5 Discussion

For the single parameter we estimated our results are inconsistent with those reported previously [4]. We
construct our 95% credible intervals by taking range of the middle 95% of parameter weights generated by
the last step of our ABC simulations. It is important to note our estimate is conditional upon the other pa-
rameter values. It is possible that if credible intervals were calculated for all parameters simultaneously that
our joint intervals would not be inconsistent with the previously reported values. The simplest explanation
may be that different methods of likely we lead to different conclusions however, it is also possible that our
ABC algorithm is able to extract more information out of the data. The previous parameter values reported
were only found not to be rejected in a test for consistency with the data. The test performed, a chi-squared
test on binned data likely discarded much of the information contained in the data.[4]

Future work will include attempts to estimate the posterior distributions of other parameters both individu-
ally and collectively. In particular it would be useful to create a more sophisticated galaxy simulation model.
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Figure 7: Posterior distribution for Ec for metal-rich and metal-poor star populations in Sculptor.

An improved model would simulate not just observed and classified stars but would be capable of modeling
the entire galaxy, including unobserved stars and stars between Sculptor and Earth that must be removed
from the population as well as the probabilities of classification as metal-rich and metal-poor. Modeling
both populations simultaneously as well as capturing other random would allow for greater power when
estimating parameter values that affect both metal-rich and metal-poor populations as well as providing a
more accurate model of the data generating process. We could also investigate other methods of likelihood
free inference such as the Spectral Series Method developed by Izbicki, Lee, and Schafer[12]. .
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