
2 Literature

In this section we want to review the statistical framework for decoding.

2.1 State Space Model in the neuroscience framework

Decoding neural activity consists of estimating the hand position from a sequence of mea-
surements over time, in our case a sequence of firing rates. The firing rate of a population
of neurons is the average number of spikes (averaged over trials) appearing during a short
interval. These spikes are rapid changes in the voltage difference between the inside and
outside of the cell, and are believed to be the primary mechanism by which neurons transmit
information.

Let zit represent the firing rate at time t ∈ (0, T ], for neuron i, with i = 1, .., N , and
let kt be the kinematic component, with kt = (xt, yt, zt, vx,t, vy,t, vz,t, ...). The kinematic
component, kt, is a multidimensional vector which contains the hand position and, usually,
its higher order derivatives such as velocity, acceleration, etc.

For decoding neural activity neuroscientists use the state space model. The state space
model can be expressed as a set of two equations: the first equation, called the observation
equation, captures the map between brain signal and motion, the second equation, called the
state equation, describes the evolution of the movement over time. The state space model
can be expressed as

zit = fi(kt) + εi, (1a)

kt = g(kt−1) + ηt. (1b)

Equation (1a) is the observation equation and equation (1b) is the state equation. f and
g need to be specified and they will be further discussed below. Under linear and Gaussian
assumptions, a solution of the state space model is given by the Kalman Filter [3].

2.2 Decoding using Kalman Filter

Observation equation: modeling the mapping between brain signal and motion

As proved by Georgopoulos et al. (1982) [2], the firing rate of neurons in M1 are approximated
by tuning functions. Therefore, the firing rate of a neuron zt at time t is related to the
movement direction αt as

zt = h0 + hp cos(αt − αp), (2)

where αt is the direction of movement, αp the so called neuron’s “preferred direction”, that
is the direction of maximal response, and h0 and hp are constants. However, for a “center-
out” type of movement, Moran and Schwartz (Moran and Schwartz (1999) [4]) found it more
appropriate to extend model (2) by including the full kinematic hand motion. In that case
equation (2) can be expressed in terms of the decomposition of velocity at time t, in x, y, z
direction, that is:
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zt = h0 + hxvx,t + hyvy,t + hzvz,t. (3)

Based on the considerations above, if we let zt =
[
z1t , . . . , z

N
t

]
be the vector of spike

counts for all neurons at time t, the generative model can be rewritten as a linear function
in velocity plus some noise

zt = f(vt) + εt = Hvt + εt (4)

where H ∈ RN×3 is a matrix that linearly relates the velocity to the firing rate sand εt is
assumed to be normally distributed with mean zero and covariance matrix Σ ∈ RN×N , that
is, εt ∼ N(0,Σ).

Generally speaking, if we let Zt = [z1, z2, .., zt] be the history of measurment up to time
t, the observation equation (4) can be expressed in terms of distribution of the firing rates as

p(zt|vt,Zt) = p(zt|vt) = N(Hvt,Σ). (5)

State equation: an autoregressive model of order 1

Usually neuroscientists assume that the state propagates in time according to a linear Gaus-
sian model, that is

vt = g(vt−1) + ηt = Avt−1 + ηt (6)

where A ∈ R3×3 is the coefficient matrix, and ηt ∼ N(0,W ), with W ∈ R3×3 the covariance
matrix for the noise term ηt. In terms of distribution we get that equation (6) is equivalent
to

p(vt|vt−1) = N(Avt−1,W ). (7)

The distribution in equation (5) plays the role of the likelihood of the model, relating the
object of estimation vt to the observations zt. Equation (7) plays the role of a temporal prior
for vt, describing the evolution of the velocity over time. The posterior probability for vt

given the observed firing rates can be found through an application of the Bayes Theorem,

p(vt|Zt) = cp(zt|vt)

∫
p(vt|vt−1)p(vt−1|Zt−1)dvt−1, (8)

where p(vt−1|Zt−1) is the posterior distribution at the previous time point.
An estimate for the velocity at time t, given the observed firing rates, is given by a

summary of the posterior distribution, for example

v̂t = E(vt|Zt) = E(vt|zt). (9)

Under linear and Gaussian assumptions the posterior distribution is also Gaussian and
this leads to a closed-form recursive solution for equation (9) know as Kalman Filter (Kalman
(1960) [3]; Gelb (1974) [1]; Welch and Bishop (2001) [5]; Wu et al. (2006) [6]).
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