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Many algorithms in machine learning and computational geometry require, as input,
the intrinsic dimension of the manifold that supports the probability distribution of
the data. This parameter is rarely known and therefore has to be estimated from
the data. We characterize the statistical difficulty of this problem. Specifically, we
derive upper and lower bounds on the minimax rate for estimating the dimension.
First we consider the problem of testing the hypothesis that the support of the data-
generating probability distribution is a well-behaved manifold of intrinsic dimension
dy versus the alternative that it is of different dimension dy. With an i.i.d. sample
of size n, we provide an upper bound on the sum of typel and II errors of order
0] (n*(dQ/drl*e)”) based on the travelling salesman path through the data points,
where € is an arbitrarily small positive number. We also demonstrate a lower bound
of (n_(2d2_2d1+6)”), for any € > 0, by applying Le Cam’s lemma with a specific
set of dy-dimensional probability distributions. We then extend these results to get
minimaz rates for estimating the dimension of a well-behaved manifolds. We obtain
an upper bound of order O (n*(ﬁ*)ﬂ and a lower bound of order ) (n_(2+6)"),

where m is the embedding dimension.

1. INTRODUCTION

Suppose that Xi,..., X, is an i.i.d. sample from a distribution P whose support is an unknown
manifold M of dimension d in R™, where 1 < d < m. Manifold learning refers broadly to a suite
of techniques from statistics and machine learning aimed at estimating M or some of its features
based on the sample.

Manifold learning methods are widely used in high dimensional data analysis mainly to alleviate
the curse of dimensionality. Indeed, manifold learning algorithms typically map the data to a
new, lower dimensional coordinate system [Bellman, 1961, Lee and Verleysen, 2007a, Hastie et al.,
2009]. By using such a mapping, manifold learning can greatly reduce the dimensionality of the
data with little loss in accuracy..

Most manifold learning algorithms require, as input, the intrinsic dimension of the manifold.
However, such quantity is almost never known in advance and therefore has to be estimated.

Various intrinsic dimension estimators have been proposed and analyzed; see, e.g., Lee and
Verleysen [2007b], Koltchinskii [2000], Kégl [2003], Levina and Bickel [2004|, Hein and Audibert
[2005], Raginsky and Lazebnik [2005], Little et al. [2009, 2011|, Sricharan et al. [2010], Rozza et al.
[2012], Camastra and Staiano [2015]. However, characterizing the intrinsic statistical hardness of
the dimension estimation problem remains an open problem. The traditional way of measuring

the difficulty of a statistical problem is to bound its minimaz risk, which is in the present setting
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is defined as the worst possible statistical performance of a best dimension estimator. Formally,
given a class of probability distribution P, the minimax risk R,, = R, (P) is defined as
(1.1) R, = inf sup Ep[I(d # d(P))].
d PeP
Here d(P) is the dimension of the support of P, Ep denotes the expectation with respect to

~

the distribution P, I(-) is the indicator function and the infimum is over all estimators d =
d(X1, ... , Xn) (measurable functions of the data) of the dimension. Notice in particular that the
statistical performance or risk Ep[/ (c? # d(P))] of a dimension estimator d is the probability that
d differs from the true dimension d(P) of the support of the data generating distribution. The
minimax risk, a function of both the sample size n and the class P, quantifies the intrinsic hardness
of the dimension estimation problem in the sense that any dimension estimator cannot have a risk
smaller than R,, uniformly over all P € P. The purpose of this paper is to obtain upper and lower
bounds on the minimax risk.

We start by assuming that the manifold supporting the data generating distribution P has two
possible dimensions, d; and ds. This assumption is then relaxed to any dimension d(P) between
1 and the embedding dimension m in Section 5. We will impose several regularity conditions on
the supporting manifold in order to make the problem analytically tractable and also to avoid
intractable or trivial cases, such as space filling manifolds. Our main result may be summarized
as follows. Let Xy,...,X,, ~ P be i.i.d., where P belongs to a class P of probability distributions

supported on well-behaved manifolds in R™, as defined in Section 2.

Theorem 1. The minimaz risk R, satisfies, a, < R,, < b, where
a, = (CEI’Q))”HZ” min{xin "2, 1}"

5,1 n m2—m)ny, —
b = (Clirki )" (L K"

where the constants Ky, Ky, C’}?}z) and and CSIJ}{? K.k, depends on P and are defined in Section

b.

We now make a few remarks about the result.

e First, as the dimension is a discrete quantity, the rates are exponential in sample size, a
finding consistent with the results obtained by Koltchinskii [2000].

e The key constants that appear in the bounds depend on the local curvature x, and the global
curvature k, of the manifold, which are defined in Section 2. These curvature parameters
affect the performance of any dimension estimator: a manifold with high curvature may
appear more space filling than a manifold of the same dimension but with low curvature,
thus making the task of resolving the dimension harder. Indeed, our analysis shows formally
that the minimax risk is increasing in the values of the curvatures. Given their crucial role,

we have made the dependence of the minimax risk on the curvatures as explicit as possible.
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e Finally, there is a gap between the lower and upper bound, as the two rates do not match.
Nonetheless, as far as we are aware, these are the most precise bounds on R, that are

available.

This paper is organized as follows. In Section 2, regularity conditions on distributions and their
supporting manifolds are discussed. In Section 3, we give an upper bound on the minimax rate,
by considering TSP path. In Section 4, we give a lower bound on the minimax rate by applying
Le Cam’s lemma with a specific set of d;-dimensional probability distribution. In Section 5, we
extended our upper bound and lower bound for case where possible intrinsic dimension varies from

1 to m.

2. DEFINITIONS AND REGULARITY CONDITIONS

In this section we define the model which consists of the set of distributions that live on manifolds
whose dimension d is between 1 < d < m. The manifolds are required to have an upper bound on

their curvature. The resulting class of distributions is denoted by

m
_ d
7) - U P"{lv"igvayKU'

d=1
The rest of this section makes the definition precise. Readers who are not interested in the precise

details may skip the rest of the section.

2.1. Notation and Basic Definitions. Throughout the paper, we will use the following notation.
For positive integers n,n9,d such that 1 < n; < ny < d, the coordinate projection map Il,,, ., :
R? — R+ s defined by Il m, (Z1,+ ,2d) = (Tny, Tnys1, s Tny). We let S, denote the
permutation group on {1,...,n}. For any product set J" C R", S,, acts on J" and its subsets by
applying a coordinate change, i.e. for 0 € S, and x € J", 0x 1= (Ty(1), -+, To(n)), and, for any
AcJ" S,A:={oxeJ": cg€S,, xec A}. Finally, for a metric space (X,dy) and z € X, we
let Bx(z,7) ={y € X : dx(y,x) < r} be the ball with center x and radius r. We will set w, to

be the volume of the unit ball in the d-dimensional Euclidean space R¢, which can be computed
%

F3);

We next briefly review some key, basic concepts in differential geometry. For more detailed

exactly as wg =

treatment, we refer the reader to standard textbooks on this topic [see, e.g., 7?]. A topological
manifold of dimension d is a topological space M and a family of homeomorphisms x, : U, C
R? — V,, C M from open subset of R? to open subset of M such that | Jx,(U,) = M. If M is a

d-dimensional manifold, such d is unique and is called the dimension of (;nanifold. If, for any pair
a, B, with x,(U,) Nx5(Ug) # 0, xgl 0x,: Uy NUz — U, NUg is C*, then M is C*-manifold.
Let T,M denote the tangent space to M at p. Given p € M, there exist a set 0 € £ C T,(M)
and a mapping exp, : £ C T, M — M such that t — exp,(tv), t € (—1,1), is the unique geodesic of
M which, at ¢ = 0, passes through p with velocity v, for all v € £. The map exp, : & C T,M — M

is called exponential map on p.
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2.2. Minimax Theory. The minimax rate is the risk of an estimator that performs best in the
worst case, as a function of the sample size [?, see, e.g.|. Let P be a collection of probability
distributions over the same sample space X and 6 : P — O be a functional over P taking value
in some space O, the parameter space. We can think of §(P) as the feature of interest of the
probability distribution P, such as its mean, or, like in our case, the dimension of its support.
For fixed sample size n, suppose X = (Xy,---,X,,) is an i.i.d. drawn from a fixed probability
distribution P € P. Thus X takes values in the n-fold product space X" = X x ... x X and is
distributed as P the n-fold product measure. An estimator §n : R” — © is any measurable
function that maps the observations X into parameter space ©. Let £ : © x © — R be a
loss function, a non-negative, non-decreasing bounded function that measures how different two

parameters are. Then for a fixed estimator é\n and a fixed distribution P, risk of é\n is defined as
Ep [5 (én(X), 9(P)>] .

Then for fixed estimator gn, its maximum risk is the supremum of its risk over all distribution
P € P, that is,
supE piny [z (a?n(X), 9(13))] .

PeP
The minimax risk associated to P, 6, £ and n is the maximal risk of any estimator that performs

best under the worst possible choice of P. Formally, the minimax risk is
(2.1) R, = inf sup Epe) [E (@L(X), G(P))] .

0, PeP
The minimax risk R, is often viewed as a function of sample size n, in which case any positive
sequence 1, such that lim, ., R, /1, remains bounded away from 0 and oo is called a minimax
rate. Notice that minimax rates are unique up to constants and lower order terms.

The determination of a minimax rate for a given problem requires two separate calculations:
that of an upper bound on R,, and that of a lower bound. In order to derive an upper bound, one
analyzes the asymptotic risk a specific estimator é\n Lower bounds are instead usually computed
by measuring the difficulty of a multiple hypothesis testing problems that entails identifying finitely
many distributions in P that are maximally difficult to discriminate and yet their parameter values
are well-separated under the loss ¢ [see, e.g. 7, Section 2.2].

For the dimension estimation problem, we obtain an upper bound on the minimax risk by an-
alyzing the performance of an estimator based on the length of the traveling salesman problem,
as described in Section 3. On the other hand, the determination of the lower bound presents
non-trivial technical difficulties, due to the fact that that probability distributions supported on
manifolds of different dimensions are singular to each other, and therefore trivially discriminable.
In order to overcome such an issue, we resort to constructing mixtures of mutually singular distri-
butions. We detail such construction in Section 4.

More detail on how we get the final lower bound?



<Ry

(A) global curvature (B) local curvature

FIGURE 2.1. A manifold M with (a) global curvature less than k,, or (b) local
curvature less than k;.

As anticipated, the lower and upper bounds we derive on the minimax risk are not asymptotic
equivalent. While we do not know which one, if any, is sharp, nonetheless the derivation of such

bounds is of use in understanding the difficulty of the dimension estimation problem.

2.3. Regularity conditions on Distributions and Supporting Manifolds. To derive bounds
on minimax risk, we will impose some regularity conditions. First, the supporting manifold M is
assumed to be bounded, that is, M C I := [ K, K;|™ C R™, where K; € [1,00). Second, the
curvature is assumed to be bounded to avoid an arbitrarily complicated manifold. In fact there

are several types of curvature so we will need the following definitions.

Definition 1. Fix 0 < k; < kg < oo and let R; := ;%l’ R, = é € (0,00]. A compact d-dimensional
topological manifold M C I (with boundary) is of global curvature less than kg, if for all x € R™
with dgm(z, M) < R, has unique projection my(x) to M, i.e. there uniquely exists my(z) € M
such that d(z,my(z)) = iélz\gd(x,y). M has local curvature less than k; if for all z € M, there
exists neighborhood U, CyM of z such that U, is of global curvature less than x;. See Figure 2.1.

Definition 2. We define M,

local and global curvature bounded by x; and x4, respectively.

, to be the set of all d-dimensional topological manifolds in I with

K

Remark 1. The above definition is equivalent to the following: M is of global curvature < &, if
Ve e M, Yy € M st. y—a L T,M and ||y — z||s = Ry, Brm(y,Ry) N M = 0, where T, M is

tangent space of M at x.
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We assume that the data are generated from a distribution supported on a manifold M of
dimension d, and with density with respect to the Hausdorff measure voly; on M bounded away

from oo.

Definition 3. Let B(I) be the Borel subsets of I and P be a set of probability measures on
(I,B(I)). Fix K, > (2K;)™. Let Pdlﬁg’Kp be the set of probability distributions P supported

K

on a d-dimensional manifold M € M¢

%0 absolutely continuous with respect to the restriction
svg

volys of the d-dimensional Hausdorff measure on M and such that sup,¢,, djTIlDM(w) < K,. For all

pPepl K, define dim(P) := d.

Ki,Rg,

To deal with manifolds with boundary, we further need to assume local geodesic completeness

and essential dimension.

Definition 4. For a manifold M € M¢

Ki,Kg?

the interior intM := M\OM. intM is said to be
locally (geodesically) complete if for all p € intM and for all ¢1, ¢ € Bu(p, 2\/§Rg), there exists
a geodesic v joining ¢; and ¢ whose image lies on ntM. Fix K, < 27, then M is said to
be of essential dimension d (with respect to bound K,) if for all p € M and for all r < v/3R,,
volpr(Bu(p, 7)) > Kyrwa. Let M = {M C M, = M is locally complete and of essential
dimension d}. Corrrespondingly define Pgmg, Ky Ky = {P € P : there exists M € Mzmw K, such
that P < volyr and -2~ < K, }.

d’UOl]\/[ -

Remark 2. For manifolds without boundary, the local completeness condition and the essential
dimension condition always hold. The Hopf Rinow Theorem (Theorem 16 in [Petersen, 2006])
implies that any compact closed manifold without boundary is geodesic complete, which implies
it is locally complete. Also, Lemma 5.3 in [Niyogi et al., 2008| implies that when M € Mﬁl’,{g and
r < 2R,, then Vp € M,

(V1[N

(2.2) vols (But(p, 1)) > 1 (1 - (%)2) .

Hence by setting r = v/3R,, voly/ (B (p, 7)) > 27% %y, so the essential dimension condition is
satisfied.

The preceding regularity conditions imply additional conditions on both the distribution and
the supporting manifold. These additional conditions, given now in Lemma 2, 3, and 4 will be

used later. The proofs for Lemma 2 and Lemma 4 are in the appendix.

Lemma 2. Let M € M{, . o satisfies M C A, and letr < R,. Let A, := {x € R™: dgm(z, A) <
r} be r-neighborhood of A in R™. Then, volume of M is bounded by

(2.3) volyr(M) < CEVr " 00lgm (A,),

where Cfr’i) depends only on d and m. In particular, considering the case A = I and r =
min {7y, 24K,

(2.4) vola (M) < G275, (1+ k™)



where C%?c)hm depends only on Ki, d and m.

Lemma 3. Let M € Mﬁl,,{g’KU andr < 4R,. Then M can be covered by N radius r balls By (p1, 1),
.-+, Bu(pw, 1), with

2%vol (M)
2.5 N=|——F——].
(2.5) { K,rdw, J
Proof. See 4.3.1. Lemma 3 in [Ma and Fu, 2012]. O

Lemma 4. Let M € Mﬁl’ﬁg,KU and let expy, : & C R™ — M be an exponential map, where T, M

is identified with R™. Then for all v,w € &, N Bra(0, Ry,),

e B ginh ke Ry,
I{le

Under these regularity conditions, and given d; < ds, the minimax rate R, is defined as

[v = wl|ge.

(2.6) | expy, (v) — exp,, (w)|[em <

(2.7) R, = inf sup Epe [e (ﬁn(X),dim(P))}
dim,, PeP
where
(2.8) P =Py it Pht iy i
Here (ir\nn is any dimension estimator based on data X = (Xi,---,X,), and the loss function

0(+,-)is 0 — 1 loss, so for all z,y € R, {(z,y) = I(z = y).

3. UPPER BOUND

In this section, we give an upper bound on the minimax rate. Our strategy to accomplish
this task is to focus on a particular estimator (fr\nnand demonstrate an upper bound on its risk
uniformly over the class P. This will in turn provides an upper bound on the minimax risk since
since

Ry = inf sup Ep [z (cﬁr\nZ(X), dim(P))] < sup Epn [z (d‘?n;Z(X), dim(P))] .
dim,, PEP PeP
Choosing an appropriate estimator is critical to get a good bound.

For now, the intrinsic dimension of data is assumed to be either d; or ds.

Our estimator is based on the dj-squared length of TSP (Traveling Salesman Path) generated by
the data, and estimating dimension to be d; if and only if the length is below a certain threshold:

n—1

dim,(X) =di <= 30 €8, 5.t > || Xoirn) — Xollh < Ok gy (L+ 7MY,
=1

where Cg’ﬁ(ﬂ is a constant to be defined later. Then in Proposition 7, it is shown that

di,m
—_—

this estimator dim,, is always correct when the intrinsic dimension is d;, and makes error with

d
probability at most O (n_<df_l)n> if intrinsic dimension is ds.
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n—1
FIGURE 3.1. When the manifold is a curve, length of TSP path || X,¢41) —
i=1

Xo(iy|lrm is bounded by the length of the curve voly (M).

— d
Lemma 5 shows that the estimator dim,, makes error with probability at most O [ n (di 1)
if the intrinsic dimension is dy. It states that di-squared length of a piecewise linear path from X;
d
to X, Z | X411 — X;||&,., is bounded with probability O <n<df1>n> , and hence not likely to be

bounded by any threshold L.

Lemma 5. Let Xy, , X, ~ P € P2 . then

Ki,Rg,

n—1 <C§§”1;( » )nlLfﬁ(n—l) (1 n Kém—dz,)(n_l))
(3.1) P™ N )Xoy — Xl < L] < Lt i
(n — 1)(@‘1)(”_1)(71 —1)!

i=1

Y

where Ci?;,l;(p,dl depends only on Ky, Ky, di,ds, m

7d27m
Proof. in Appendix B. O

Lemma 6 show that the estimator (Tir\nn is always correct when intrinsic dimension is dy;. Lemma 6
states that d;-squared length of TSP path generated from data is bounded by 0% K, K dym (1 + /-c;”_dl),

i.e. there exists o € S, such that Z 1 Xo(i1) — Xotiy e < 0(3 Ky dym (14 k=), When d; = 1,

this lemma is straightforward: length of TSP path is bounded by length of curve voly (M) as in
Figure 3.1, and from Lemma 2 we have voly (M) < C’K2 Qdm (1 + Ky 1), hence Cgi,Kv,di,m can be
set as C}?IQI)Q dyom = C’}?ﬁ;m

When d; > 1, Lemma 2, 3, and 4, combined with Holder continuity of d;-dimensional space-
filling curve [Steele, 1997, Buchin, 2007], is used to show Lemma 6.

Lemma 6. Let M € M™% i, ond Xy, -+, Xy, € M. Then there exists C’g’ ) which depends

Kl,Kg JKy,d1,m

only on m, dy, K,, and K, and there exists o € S,, such that

3,2) m—
(32) ZHXU(H—I) Hd1 < Cé([ Ky,di,m (1 + ng dl)

Proof. in Appendix B. O



Proposition 7 is a combination of Lemma 5 and Lemma 6.

Proposition 7. Let 1 < d; < dy <m. Then

(3.3) inf sup Epwm [l (ﬁn,dim(P)ﬂ
dim,, PEP1UP2
n d—2m+m—2d n (%2 _ 1),
(34) S <CI(§[’?I)(p,KU,d1,d2,m> (14_/4,55’1 2) )n (d? 1) .

(3,3)
for some CKI’prKvydth’m that depends only on K, K,, K,,dy, dy, m where
_ pd1 _ pd2
Pl - P’ilﬁg»KpJQﬂ P2 - PH/Z?’£Q7KP7KU'

Proof. in Appendix B. O

4. LOWER BOUND

In this section, a lower bound for the minimax rate is derived. The lower bound measures how
hard it is to tell whether the data come from a d; or ds;-dimensional manifold. More precisely, a
subset T' C I™ and set of distributions 77{1 ' 73; % are found so that, whenever X = (Xy,--- | X,,) € T
we cannot distinguish the models. T, P{l ! and 73512 are linked to the lower bound by using Le Cam’s
lemma|Yu, 1997] which provides lower bounds based on the minimum of two densities ¢; Aga, where

q1, g2 are constructed from Pf ! and 73512, respectively.

Lemma 8. (Le Cam’s Lemma) Let P be a set of probability measures on (€, F), and Py, Py C P
be such that for all P € P;, O(P) = 0; fori = 1,2. For any Q; € co(P;), let ¢; be density of Q;
with respect to measure v. Then

(4.1) infsuppld(@.0(P) > 2 [10@) A et

where A = d(0y,6,).
Proof. See Chapter 29.2, Lemma 1 in [Yu, 1997]. O

Lemmas 9 and Lemma 10 below are ingredients for constructing subset 7' C I™ and the sets of
distributions Py, P> of di- and ds- dimension.

Lemma 9. Let M € ./\/lﬁwg be d-dimensional manifold of global curvature < ry, local curvature

< Kk, which is imbedded in R™ 2. Then

(4.2) M x [=Kp, K[]* e MIT2Y,

which is imbedded in R™.

Proof. in Appendix C. O

Lemma 10. Let X : [—Kj, Ks| — I be parametrized curve which is C' and piecewise C?. Suppose
that, for all t € [— K3, K],

(4.3) X" @I < 1X" @) ][35:.
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Then image(X) is of local curvature < K.

Proof. in Appendix C. 0

Corollary 11. Let X be C' curve which is piecewise line or arc of circle of radius> R;. Then

image(X) is of local curvature < K.
Proof. Follows from Lemma 10. U

Lemma 12 below is for constructing the subset 7' C I™ and the sets of distributions Py, Ps.
Claim 13 is for showing that whenever X = (X3,---,X,,) € T, it is both likely that X is sampled
from some distribution P that is either in P; or P,. From Le Cam’s lemma, a lower bound is given
by [qi(x /\qg( ). Hence if ¢ (z) > Cqa(x) for every x € T with C' < 1, then ¢, (z)Aga(z) > Cga(x),
hence C' [ g2(x) can serve as lower bound of minimax rate. This inequality ¢;(z) > C¢ga(x) is shown
in Claim 13. This intuitively means that if X € T’ it is hard to determine whether X is sampled
from distribution P in either P; or P.

In Lemma 12, as in Figure C.2, we construct 7;’s that are cylinder sets aligned along boundary

of [-Ky, K;]%, and then T is constructed as T' = S, []T;, where the permutation group S, acts
i=1

on [[7; as a coordinate change. And it is also shown in Lemma 12 that for any = € [[T;, there
i=1
exists a manifold M € M%

K1 Fg,00 that passes through xy,--- , z,.

Then in Proposition 14, P; is constructed as set of distributions that are supported on such a

manifold, and P, is a singleton set consisting of the uniform distribution on [—K;, K I]dQ.

Lemma 12. Suppose Ry < K. There exists Ty,--- , T, C [—KI,KI]dQ such that
(1) each T;’s are distinct
(2) For each T;, there exists isometry ®; such that

(4.4) T, = @; ([—K1, K/]" ' x [0,a] X Bgay—a, (0, w)) ,
where ¢ = {KHRI-‘ ca=—=f o and w=min{ R, dQ(QKFR‘)Q o
(er3) [ * (o) ([ |)
(3) 34 : (Bgay—a, (0, w))" Mdl g, OME-T0-0ME such that for eachY; € Bray-a, (0,w), 1 <@ <

n, %(}/17 : 7Yn)m7—%:¢i([_KﬁKl]dl ! [ 9 ] {Y}) Hence fOT' any Xl eTlv 7Xn ET’rw
({H dr+1):d5 i "X hi<i<a) passes through Xy, -+, X,,.
Proof. in Appendix C. O
Claim 13. Let T'= S, [[T;. Then for all = € intT', there exists r, > 0 such that for all r < r,,
i=1
2(1—d1)n
(4.5) HB””Rd (zi7) | = (da=d)n K(d2 dy)n HB””Rd (zs,7) | -
i
Proof. in Appendix C. 0

Proposition 14 is a combination of Le Cam’s lemma, Lemma 12, and Claim 13.
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Proposition 14. Suppose R' < K;, then

(4.6) inf sup E pw [1(dim,,, dim(P))]
dlmPEP:;,NQ,Kp,KU UP:?,NQ,KP,KU
n (d2—d1)n
(4.7) > (i) w0 min {0 2

for some constant Kc(z?fil,m that depends only on dy, do, and K;.

Proof. in Appendix C. O

5. UPPER BOUND AND LOWER BOUND FOR GENERAL CASE

Now we generalize our results to allow the intrinsic dimension to be any integer between 1 and

m
m. Thus the model is P = deJngmg’ K,,K,- Lhe estimator we consider to derive an upper bound is
the simply the smallest integer d between 1 and m such that (3.2) holds. As for the lower bound,

we simply use the lower bound derived in Section 4 with d; = 1 and dy = 2.

Proposition 15.

(5.1) inf supEpwm) [l (af\nn,dim(P)ﬂ < (CKI’Kp,Ku,Km)n (1 +ﬁ§m2—m)n) .
dim,, PEP

for some C’Sﬁf)(p,KU’Km that depends only on K, K, K,,m.
Proof. in Appendix D. O

Proposition 16. Suppose R; < Kj, then

(5.2) infsupE p(n) [l((fl?ln, dim(P))] > (C}?I’Z))n k; " min {xjn "2 1}"
dimPeP

for some C’}?f) that depends only on Kj.

Proof. in Appendix D. O

6. CONCLUSION
On a logarithmic scale, the leading terms of the lower and upper bounds have the form
—nclog k

for some constant ¢, where x is the global curvature for the upper bound and the lower curvature
for the lower bound. This shows that the difficulty of the problem of estimating the dimension
goes to 0 rapidly with sample size, in a way that depends on the curvature of the manifold. It is

an open question whether oen can obtain tighter bounds on R,,.
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FIGURE A.1. {Q1,---,Q;} is a disjoint cover of M, and each Q); is a projection of
M on M.

APPENDIX A. PROOFS FOR SECTION 2

Lemma. 2. Let M € /\/lﬁh,%Kv satisfies M C A, and let r < R,. Let A, := {x € R™ :
dgm (z, A) <1} be r-neighborhood of A in R™. Then, volume of M is bounded by

(A.1) volyr (M) < CEVrmvolgm (A,),

where 05(1,27;;) depends only on d and m. In particular, considering the case A = I and r =
min { Ry, "7 K},

(A2) vola (M) < CZ% L, (141777

where C%?c)hm depends only on Ki, d and m.

Proof. Let M, := {x € R™: dy,(x, M) < r} be r-neighborhood of M in R™, then trivially
(A.3) volgm (M,) < volgm(A,).

Suppose {Q1,---,Q;} is a disjoint cover of M, i.e. {Q1, - ,Q;} are measurable subset of M that
!
QiNQ; =0, UQ; = M, and each Q; is equipped with chart maps X : U; — @Q;. Such a triangu-
i=1

lation is always possible. For each Q;, define M := {r e R™: 7y (x) € Qiy djjjgm, (2w, M) <1}
so that each ); is a projection of MY on M, as in Figure A.1. Then,

!
(A.4) volgm (M,) =Y “volgn (M?).
i=1
Fixie{1,---,l}. M can be parametrized as Y® : U; x By (0,7) — M with
II ”Rm d,l

m—d
(A.5) YO(u,t) = XO(u) + RO (u)t = XD(u) + Y ;RO (u),
j=1
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where RO (u) : R~ — (Tx oy @yM )t is a linear isometry for each u € U, and can be identified as

an m x (m — d) matrix, and R®9(u) is j* column of R®(u). Then, because of the isometry,

(A.6) RO(w)TRY (u) = I,_q.

ou Ouy ) Qug

aig_ii) as well. define X\, X R{ R% similarily. Then, since image(R® (u)) C (T uyM) ™,

Let V" = &% — <8Y<i) ay(i>> € R™*4 be partial derivatives with respect to v and Y}(i) -

(A7) RD(u)T X (u) = 0.
Also from RO (u)" R (u) = I,,,_q,

(A.8) Vi, RO (u)" R (u) = 0.
Then from the fact that
m—d
(A.9) YO (u,t) = XP(u) + > ;R0 (w)
j=1
and
(A.10) v (u, t) = RO(u),
we have
(A.11) Y (w, )Y (u, t) = RO (w)" X (u) + RO ()" R (u)t = 0.
Also,
(A.12) Y, )Y () = RO ()" RO (u) = L.

Now let’s consider Yu(i)(u,t)TYu(i) (u,t). Since Rg’j)(u)TR(i) (u) = 0, column space generated by
RE (u) is < RS (u) >c Tty (uy (M) = span(X{(u)). Therefore, there exists A9 (u) : d x d
matrix such that

(A.13) RYD (u) = X (u) A (u).
Then,
m—d
(A.14) Y. (u,t) = XW (I + th/\(i’j) (u)) :
j=1

M being of global curvature < x, implies Y, (u,t) is of full rank for all t € Brm-a(0, R,). Hence
m—d
this implies 7 + > t;A9)(u) is invertible for all t € Bgm-4(0, R,), and this implies all singular

7=1
values of A9 (u) is bounded by r,. Hence Vv € R?,

(A.15) |UTA(i’j)(u)v| < Ky|lv|l5-



From this, Vv € R?,

m—d m—d

(A.16) r (I + thA(i’j)(u)> v| > |v|l5 — Z\tj\ |UTA(i’j)(u)v|
=1 =1

(A.17) > (1= [tllarg) Vi3,

m—d
Hence for any singular values o of I + > ¢;A®)(u), |o| > 1 — ||t|l15,. And since [|t]|; < R,,
j=1

I+Zt A (g

Then determinant of Riemannian metric tensor is lower bounded by

(A.18) (1 [itllig).

; 7 T I3 9
(A.19) [det(gi)? = | (Y (1) YO, 0)) (VO (1) v, (w,1) \
(A.20) | YT ) YO )Y
| Y)Y O () Y )Y (st
(A.21) — | V()Y (1) |
(A.22) > (1= [Itll1xg)
Hence
(A.23) volgm (M) = / | det(gsy)|dudt
U ><BH I , (0 7‘)
(A.24) 2// (1= [[tll1ry) it
U; B”.||Rm7d,1(0,’r‘)
(A.25) — vol(U) / / (1= stey)3dty -~ dty g 1ds
0 Jti++tm_ag-—1<s
1 o d
<A26) = mUOZ(UZ)/O s™ d 1(1—3/439)2d5
(A.27) > %—2)rm‘dvol(Ui)7

where C’ ., depends only on d and m. Therefore,

l
1
(A.28) volgm (M,.) > o Tm_dZvol(U)
d,m i=1
1
(A.29) = e) ™ol (M)
d,m

and hence we have following result:

(A.30) volp (M) < C’(f,)n'rd’mvolﬂg (M) < C’(Q) myolgm (A,).
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O
Jisu: remove next lemm unless it is needed
Lemma. (Now this seems useless) Let M € Mﬁlﬁgm and v,y € M. Let M, be geodesic path
connecting x,y € M. Then M, € ./\/1,1{1’4,{9700.

Proof. Since M is geodesic on M and the local curvature is < k;, we have that M is also of local
curvature < x;. Hence we only need to show that global curvature is < 4k,.

Assume to the contrary, so that there exists x € R™ such that d(z, M;) =r < % with at least
two projection on M, i.e. there exists p # q € M; such that ||z — p|lgm = ||z — ¢||gm = r. Define
Xy :[-1,1] = M as

(A31) () = mu(=Ap+ (1+Nz) Me[-1,0] |
T(Ar + (1 —N)q) A€ [0,1]

Such projection is well defined and X, is continuous since M is of global curvature < k,. Let

dy = |lp — X1(A\)|lgm. Then for A € [-1,0],

(A.32) I(=Ap+ (1+XNz) =7y (=Ap+ (1 + M) ||gm < [[(=2Xp+ (1 +N)z) —p

R'm
(A.33) =1+ Mz = pllem < [1+ Alr,
we have
(A.34)

I = Xi(Mlem < lp = (=2p + (1 + X)) [lem + [[(=Ap + (1 + A)z) = mar(=Ap + (1 + A)z) [
(A.35) < 2|11+ M|z — pllrm < 2r.

For X € [0, 1], we have similarily ||[(Ax + (1 — A)q) — mar(Az + (1 — N)q)

R™m S ’)\|T7 SO

(A.36)  |lp = X2 (A)[lem

(A37) < |lp = zllzm + [lz = Az + (1 = Ng)[lem + [|(Az + (1 = X)g) = ma(Az + (1 = A)g) ||z
(A38) < llp = zfwn + (1= Mllp = zl[wm + Allp = 2[lzm

(A.39) =2z - pllem = 2r

Hence we have for all A € [-1,1],

1
(A.40) dy <o <2 % = 2R,

Let ¢\ : [0,sa] — M be (arc length parametrized) geodesic connecting p and X;(\), so that
cx(0) = p, ea(s) = Xq(N), and dp(p, X1(N)) = sx. Then from M being of global curvature< kg,
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" (t)]| < ky. Then from

(A.41) ea(sy) —ea(0 /
0
(A.42) = / A\(0)dt —i—/ / w)dudt,
0
we have
(A.43) dx = [ea(sx) — ex(0)[[rm
EN
(A.44) > [ o - / / ()| dudt
0
S\ t
(A.45) > S\ — / / Kgdudt = sy — émgsi
0 0

hence we have
(A.46) $3 — 2Rys) + 2Rydy > 0.
This is satisfied if and only if sy < R, — Ryv/1 — 2k,dy or sy > Ry, + Ry\/1 — 2k,d, (Note that

1 —2K4dy > 1—k,- R, =0). Then since syvaries continuously by A and sy = 0, so for all A € [0, 1],

2d
(A47) S\ S < R R \/ 2/'igd)\
A/ 1-— 2/€gd)\
Then in particular,

2d,

= S <
YT /T 2R,

(A.49) < 2d.

(A.48) du(p, q)

On the other hand, since ¢;(t) is geodesic path joining p and ¢, ¢;([0,s1]) € M;. Then since
p = argmind(z,p), ||c1(t) — z||? = (c1(t) — 2)T(c1(t) — 2) is minimized at ¢ = 0. Hence
p' €My

(A.50) 40 (0 =) = (e t) 1) (e (6) — )] = 0.

Let 6 be angle between p, x, and ¢, i.e. § = Zprq. Then Lwpg = 5 — g and angle between pg and
T,M, is —, as in figure 7. Now, decompose ¢ — p by components parallel to p — x and orthogonal

top—uz,ie.

(A.51) q—p=1 w(¢g—p)+ [ —p)(qg—p),

T

where II,,_, = m(p —x)(p— )" is projection matrix. Then from Zzpg = § — g,

.0
(A.52) I(Z = TLp-2)(q = p)[rm = sin llg — plleo.
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Since ¢}(0) is orthogonal to p — z, ¢} (0)” (II,_.(¢ — p)) = 0, hence

(A.53) 11(0)" (¢ — p)| = [1(0)" (I = Tp—a) (g — p)|
(A.54) < [l (O lrm [(I = TT—2) (g — p)|Irm
0
<A55> = Slng”q — p Rm™.
o (I-Hp—z)c1(0)
NOW, let V= —m, then
0
(A.56) v (0) < —sin 2
then from
(A.57) (c1(s1) — c1(0)) v = 0,
we have
S1 S1 t
A58 0= ()T odt + A (w)Tvdudt
1 1
0 o Jo
9 S1 t
(A.59) < —sisin g+ /0 /0 ¢! () o dudt
.6 1
(A.60) < —sy8in - 4+ —Rys]
2 2
Therefore we have
.0 R,
(A.61) s1 > 2R, sin 5= le > 4d,;.
Hence

(A62) 4d; < 51 < 2d1,
which is a contradiction. O

Lemma 17. (Toponogov comparison theorem, 1959) Let (M, g) be a complete Riemannian mani-
fold with sectional curvature> k, and let Sy be a surface of constant Gaussian curvature k. Given
any geodesic triangle with vertices p,q,r € M forming an angle « at q, consider a (comparison)
triangle with vertices p,q,7 € Sk such that d(p,q) = d(p,q), d(7,q) = d(r,q), and Lpgr = Zpqr.
Then d(p,r) < d(q,r).

Proof. See Theorem 79 in [Petersen, 2006], p.339. Note that for a manifold with boundary, the
complete Riemannian manifold condition can be relaxed to requiring the existence of a geodesic

path joining p and ¢ whose image lies on intM. 0

Lemma 18. (Hyperbolic law of cosines) Let H, be a hyperbolic plane whose Gaussian curvature
is —k2. Then given a hyperbolic triangle ABC with angles o, 3, v, and side lengths BC = a,
CA=b, and AB = ¢, the following holds:

(A.63) cosh(ka) = cosh(kb) cosh(kc) — sinh(kb) sinh(kc) cos a.
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qz qz
Ryr Ryro -
> dwn(q1,92) du,, (41, )
2a 2
Dk 7
o Ryry n Ryry
M H,
(A) triangle in M (B) comparison trian-
gle in H,,

FIGURE A.2. (a) triangle in M formed by pg, ¢1, ¢2, and (b) its comparison triangle
in H,,.

Proof. See 2.13 The Law of Cosines in M in [Bridson and Héfliger, 1999|, p.24. O

Lemma. 4. Let M € Mzmng and let expy, : & C R™ — M be an exponential map, where

T, M is identified with R™. Then for all v,w € &, N Bgra(0, Ry,),

et B sinh 1y Ry,

A.64
(A.64) o

v — wl|ga.

I exp,, (v) — expy, (w)[|zm <

Proof. Let 1 = exp,, (v) and g = exp,, (w). Let dy(pr,q1) = Rir1, dy(pr,g2) = Rire, and

Zq1prqe = 2a with 0 < o < 7. Then

(A.65) v — w||ga, = Rl\/r% + 72 — 2ry7ry cos 2a

(A.66) =R \/sin2 a(ry +12)? 4 cos? ary — rq)2.

Let H,, be a surface of constant sectional curvature —/<;l2, and let py,q1, ¢ € H,, be such that
du,, (Prs 1) = du(pr, 1), dm,, (Pr, @2) = dur(Pr, @2), and ZuprGa = Zqiprge, so that Aprgide
becomes a comparison triangle of prgiqo, as in Figure A.2. Then since (sectional curvature of

M) > —k?, from the Toponogov comparison theorem in Lemma 17,
(A.67) du (g1, @2) < dn,., (01, 3@)-

From the hyperbolic law of cosines in Lemma 18,

(A.68) cosh "{ldM,ﬂ (G1, @2) = coshry coshry — sinh 7 sinh ry cos 2

(A.69) = (sin® @) cosh(ry + 7r5) + (cos® a) cosh(r; — 73).
Therefore,

(A.70) du,,(q@1,@2)  cosh™ (sin® acosh(ry +72) 4 cos® a cosh(ry — 1))

v —w|ga V (sin? @) (ry 4 75)2 + (cos? a)(ry; — 7r9)?

Let F(a,b,\) = f~Y(\f(a)+(1=X)f(b)) and G(a,b,\) = g *(Ag(a)+(1—N)g(b)), with 0 < a < b,
A €10,1], f(t) = cosht and g(t) = t*>. Toponogov’s theorem implies F'(a,b,\) > G(a,b,\), and f



and g being strictly increasing function implies a < G(a, b, \) < F(a,b, \) < b. Also,

0 F(a,b,\)
(A.71) % log Gla by
Af'(a) WA

(A?Z) = f’(F(a, b, )\))F(a, b, /\) - g’(G(% b, )\))G(a, b, )\)

F(a,b,\) G(a,b,\)
(A.73) = m exp (—/ (log f’)’(t)dt) — m exp (—/ (10gg/)/(t)dt> .

Then (log f')'(t) = cotht > (log ¢')/(t) = § and F(a,b, X) > G(a,b, A) implies
9 Fla,b\)

A.74 0<V b, —1 0.
( ) T OgG(a,b,)\)<
Hence
F(a,b,\) _ F(0,b,))

A5 =
( ) G(a,b,\) — G(0,b,))
and by plugging in a = |r; — 73|, b = r; + ro, A = cos® o implies
(A.76)

dn,, (q1, )

[0 — wl|ga
(A7)

cosh™" (sin® avcosh(ry + o) + cos® @)
V(r1 +19)?sin® a

(A.78)
cosh™! (1 + 2sinh? (%) sin? a)

(r1+17g)sina

(A.79)

log (1 + 2sinh? (%) sin? o + 2sinh (%) sin a\/l + sinh? (%) sin? a)

(r1 +m2) sina

(A.80)

2 sinh (%) sin «v [Sinh (%) sin o + \/1 + sinh? (%) sin? 04}
<

(7“1 + 7”2) sin « (USing log(l + g;) < x)

(A.81)
e’ sinh r T+ 79

ith r = .
, with r 5

etsinht

Then since ¢ — ;

is increasing function of ¢ and r = 832 < K Ry, so

dHﬁl (G1,q2)  e™Brginh k Ry,
v —w|ga — KRy, '

(A.82)
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Therefore,
_ em e ginh k) Ry,
(A83)  [lexp,, (v) — exp,, (W)[lem < du(q1, @2) < dn,,, (@1, G2) < k1 Ry, v — w]|ga-
O
APPENDIX B. PROOFS FOR SECTION 3

Lemma. 5' Let Xl? U 7XTL ~ P e PgiﬁgﬁKP:Kv? then

n—1 (05{371[2 » )n—l L%(nfl) <1 _i_ﬁgm—dQ)(n—l))
(B-1) P ZHXH-I - X[ < L] < —— a ;

' (Z-1)m-1)

= (n—1)\% (n—1)!

where C’%%ﬂdl depends only on K, K,,d;,dy, m.

,d2,m

Proof. Let V; := || X;11 — Xi||%,,i=1,--- ,n — 1. Then
(B2)  P™ (Y <ylXi,-- Xo)

(B.3) =pP® (Xn € Bgn <Xn,1,y%) | X1, ,an1>

(B.4) fx, (zn) dvoly(xy,)

- /Mm(BRm )

(B5) < Kvoly (M nB (Xn_l, yﬁ>>

da,m

do—m m
dy 1 o [ R R 1

Yy yh

(B.6) < KPC(2) min {ydll,Rg}dz_m volgm (B (Xn_l,yﬁ + min {yé, Rg})) (Lemma 1)

do—m
9 m [ f2 . L da R 1
(B.8) < K,CP) w2 (ydll(ydl < Ry) +y& (QKI\g/ﬁ) I(ys > Rg)>

(B.9) < CRN 4 (L4 KIm)

n—1
where Cg’lllg dym = Kng)mwmQ’” (QKI\/m)m_dQ. Then since )Y is function of Xy, - X, 1,
b 3 b K i:2
SO

da

n—1
(B.10) P (Y < y|ZYi) < Citich o (L 55 2) 0.
=2



Hence
(B.11)

n—1
P <Z|Xz‘+1 - X;|" < L)

i=1

(B.12)

n—1
— p™) (Zy; < L)

=1

(B.13)

L n—2
- / P (Yn_l <yua| Y Yi=L- yn_1>
0

=1

(B.14)

< OB
=1

(B.15)
_ OB (1 ) [ yﬁ“lp(

(B.16)

n—2

L
. d
= O () [P (Zn <L ) 7

i

dF,._» (L —vy,_
ZzY( Y 1)

=1

L d2
m—d
Kr1,Kp dgm(l—i_/{g 2)/0 yn ldF"22y(L_yn—1>

i

23
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By repeating this argument, we get

(B.17)
n—1
pm <Z‘Xi+1 — X" < L)
=1
(B.18)
< (@Cl(?l;)d . (1+ﬁm—d2)>n1 /1 ﬁy;?d_ldldy
dy TR ! DORZE A
(B.19)

(dg—dj)(n—-1)
d

n— n—1
2dy 3,1,1) ! 92 (1) _ _ 1 !
< | =00 LY (1 4 glm—d2)(n=1) § dy,_q---d
= (dl Kr1,Kp,da,m 1 ( + Ky ) T_Lfyigl n— 14 Y Yn—1 Y1

=1
(B.20)
<C§?},ll)<p,d1,dz,m>n_lL%(n_l) <1+ Ry 1 ety
i (2 — 1) E)D / ﬁz Wncardinds
(B.21)

(B.22)
. g n—1) m—da)(n—1
< <C[((1J)(p:dl7d2,m> Ldl( (1 + K ( 2)( ))

B (n— 1)@ 1y

_ 20y /(311 UJ

(3,1)
where OKI,Kp,d1,d2,m = 4, YK Kpdame

Lemma 19. (Space-filling curve) There exists a surjective map g : R — R which is Hélder

continuous of order 1/d, i.e.
(B.23) 0< Vs, t <1, ||[va(s) — ta(t)||ge < 2vVd+ 3|s —t|V/2

Such a map is called a space-filling curve.
Proof. See chapter 2.1.6 in [Buchin, 2007]. O

Lemma. 6. Let M € /\/lil kg Ky and X1, , X, € M. Then there exists O%?I)(v,dl,m which depends
only on m, dy, K,, and Ky, and there exists o € S, such that

3,2 _
(B.24) Z“Xa(i—H) — Xo(o) g < Oﬁ(},;(u,dhm (1+ry—).
i—1
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Proof. When d; = 1, length of TSP path is bounded by length of curve voly (M) as in Figure
3.1, and from Lemma 2 we have voly (M) < C’}?ﬁ;m (1 + /{;nq), hence C’}?f[)(mdhm can be set as
Ciiy i,

Consider d; > 1. By scaling the space-filling curve in Lemma 19, there exists a surjective map
Vg, 2 [0,1] = [—=r, 7|4 and b, : [0,1] = [~ K[, K;]™ that satisfies

J— (272) 3
aym = Ok a.m» as described before.

(B.25) 0 < Vs, t <1, |[t0g,(5) — Va, (t) || gar < 4r/dy + 3]s — |/
(B.26) 0<Vs,t <1, |thm(s) — hm(t)||em < 4K vm + 3]s — t|V/™

Let r := 2\/§Rg. From Lemma 3, M can be covered by N balls of radius r, denoted by By (p1,7),
-+, Byp(pn, 1), with N = LMJ . Since ¥, : [0,1] = [ K, K;]™ is surjective, we can find

Kprdi wd,

a right inverse V,, : [- K, K[]™ — [0, 1] that satisfies ¢,,(V,,(p)) = p, i.e.

m

(B.27) [0,1] < [— Ky, K7™
\Ijm

Reindex py, so that

Now fix k. Then for all p € By (pg, ), since dps(pg,p) < r, we can find ¢x(p) € Bga, (0,7) such
that exp,, (¢r(p)) = p. So this shows

(B.29) B (pr,7) C exp,, (Bga (0,7)).
Now consider the map exp,, oty, : [0,1] = M. Then
(B.30) Bu(pr,r) C exp,, (Bga, (0,7)) C exp,, ([, | = exp,, o¥q, ([0,1]).

So exp,, o¥q, : [0,1] — M is surjective on By(p,r), so we can find right inverse Wy : By (pg,7) —
[0, 1] that satisfies (exp,, oa,)(Vr(p)) = p, ie.

q/)dl €XPp,
(B.31) 0,1] [—r,r] ~ M D By(pg, 7).
\—/_

Uy
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Then, reindex Xl, s 7Xn as {Xk,j}lgkgl, 1<j<ng> where Xk,h ce uXk,nk S BM(pk, r) and \Ilk(Xk,l) <
- < Up(Xgn;). Then forall 1 <k <1,

(B.32)

(B.33)

(B.34)

(B.35)

And

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

n—1 n;—1
ZHXk,jJrl — Xl < ZH(exppk 0thg, ) (Wi(Xij1)) — (expy, 0ta, ) (Pr(Xig)) Il
— p=
et sinh pyr\ P u
<) 2ol (X)) = v (X)) I
=1

. dy ng—1
4+/dy + 3e" sinh k;r
< (W ) X ge) - )
R

Jj=1

IN

(4\/d1 + 3eM" sinh /{lr) . a
re.

R

N-1

S Xk — X |8

k_

<3 (1Xiens = prallgn + [pis = pallgin + 191 = X 1)
< N 1 dy + Z||77Z]m pk+1 ) d)m( (pk))HRth

— d
< 2N — 1)rh 4 4y/m £ 3KIZ|\I/m(pk+1) — U(pi)| ™
k=1

m—dy

a1

N-1 W /N-1 m
< 2(N — 1)7~d1 +4vm + 3K, (Z'Wm(pk—i-l) _ \I/m(pk)|m><d1> (Zl'ﬂzdl)
k=1 k=1
< 2(N = 1)r" 4+ 4v/m + 3K, (N — 1),

where the second from the last inequality comes from Hoélder’s inequality. Hence, by ordering as

X1,

(B.42)

(B.43)

(B.44)

aXl,nnXZ,la"' >X2,n27"' 7Xl,1>"' 7Xl,n27

n—1
ZHXa(im — Xl

N n;—1
<Y I Xk — Xl + Z||Xk+11 X |
k=1 j—1 =1

di
44/ 3e"" sinh
< N( dl“‘ e S11 /il'l“) le +2(N— 1)Td1 +4 /m+3KI(N_ 1)1—%'

Ry
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Then, since r;r < 2v/3 and the fact that ¢ — @ is increasing function on ¢t > 0, we have

(B.45)

n—1
Z||Xa(i+1) — Xo(o) ||

(B 46)

4y/dy + 3€2V3 sinh 2
( e ﬁsm f) 2|+ N + 4v/m + 3K, N~

(B.47)
i (4y/d; + 3e23sinh 2¢/3)  + 24+ A/ 3K (1-5) 4y 0
- < - —~ > UO[M(M) n m dI — K,;ll(l 7n) (UOZM(M))I—H
vWd; <Kv (2\/§) 1Wd1> m
(B.48)

< CE?IZKU di,m (1 + K’Zhdl)

by some C’;’IQI){ 4y.m Which depends only on m, d, K,, and K, where the last line comes from

inequality in Lemma 2. 0

Proposition. 7. Let 1 < dy < dy < m. Then

(B.49) inf sup Epwm) [l (ﬁn,dim(P)ﬂ
dlm"PGPnl rg Kps KUUP:?,@,KP,KU
n d—2m+m72d n _(da n
(B.50) < (CR% krtrnm) <1+m§d1 ) )n (#@-1)n,

for some C’%?E(F’Kmdhd%m that depends only on Ki, Ky, K,,di,ds, m

Proof. Suppose X = (X3, -+, X,,) € I" is observed, then define (iI\n(X) as
n—1

diif 30 € Sy st X [ Koy — ool < Ok g (L4 K1)
i=1

(B51)  dim,(X) :=
dy  otherwise

Then for all P € Pﬁ;ﬁm,m and Xq,---,X,, ~ P, by Lemma 6,

E 3,2 m—
(B.52) S X o) = Xo@lln < Ok gy (14 £07H)

holds for some o € S,,, hence (ir\nn(X) =d, = dim(P), i.e. P [dlmn(Xl, -, X)) =ds| =0.
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On the other hand, for all P € P

Hlv“{gaprK'u )

(B.53) P™ [ﬁn(Xl, e Xn) = dl]

n—1 ]
3,2 m—
B.54) =P | | Xy — Xow] < Ck, gym (14 5071)
o€Sy i=1 J
n—1 T
3,2 e
(B.55) < D P> 1 Xowrn) = Xow)] < Ok tym (14 57")
oESh i=1 |
n—1
3,2 m—
(B.56) =nlP | | Xipy — Xi| < C2% g (L4 0 dl)]
i=1
(2,2) " AB2) ey 4 Y (m—d2)(n—1)
n CKI”dl,dQ,m CK[,KU,dl,m (1 + H;g ) 1 + Kg
(B.57) = ™ (by Lemma 5).
Therefore,
(B.58) inf sup Epe [z (ﬁmdim(}?))]
dimn pepdl | o upjiﬁg’ KpoKo
dy n—1 dy
2,2 3.2 o Rm+m—2d ) (n—1)
n <O§(p,2h,d2,m (C% ) ) (1 4l ) )
(B.59)
(3.3) n (‘;—Qm+m—2d2)n ,(LQ,I)n
(B.60) < <CK;,KP,KU,d1,d2,m> 14 kg™ n \di
for some CI(?I’?;(%KU’dl’dz,m that depends only on K, K, K, d;, ds, m. O

APPENDIX C. PROOFS FOR SECTION 4

Lemma. 9. Let M € Mﬁmg be d-dimensional manifold of global curvature < kg, local curvature

< Ky, which 1s tmbedded in R™=Ad Thep
(C.1) M x [—Kp, K;]? € Matad

Ki,Rg )

which is imbedded in R™.

Proof. Let x € R™ be with dgm (z, M x [-K7, K;]*%) < R,, and let Tarx -k, k)54 (2) De its closest
point in M x [~Kj, K;]. We will show that 7y, _g, k,ja¢(z) is unique. Then as in Figure C.1,

<C2) dRm (x77TMX[—K]7K[]Ad(x)) Z dRm—Ad (Hl:m_Ad(l'), lem_Ad (WMX[—K[,KI]Ad<x)))
where equality holds iff IT(,—adt1):m (WMX[,KI’KI]M(Q:)) = H(m—nd+1):m (). Also,

(C.3) dgm-ad (yan_ag(x), M) = dgm (z, M x [~ K7, K7]*%) < R,.
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QKI(,""

Hl:m—Ad( X ) =TMm (Hlim—Ad(x))

Ficure C.1. TMx[— K, K]Ad satisfies I11.—Ad (WMX[_KI7KI]ACI (.T)) =Ty (lem—Ad(l‘))-

Hence there uniquely exists 7y (I11.,-ag(z)) € M. And from 1., a4 (WMX[,KLKI]M (as)) e M,

<C4) dRmfAd (Hl;m,Ad(l’), Hl:mfAd (WMX[—K[,KI]Ad (!I?))) Z dRmfAd (Hl;m,Ad(QZ), M (lemfAd('T)»

where equality holds iff I1;.,,_aq (WMX[_KLKI}AGI(iL')) = mp (I1m—aa(z)), as in Figure C.1. Hence

Tax[— K,k )Ad 18 uniquely determined as 7y g, k,ja4(7) = (7rM (Mym—na(z)), H(m,AdH):m(x)).
O

Lemma. 10. Let X : [—Ks K;] — I be a paramatrized curve which is C* and piecewise C?.
Suppose that, for all t € [—K;s, Ks],
(C.5) X" @) < 1 X' (®)ll350-

Then image(X) is of local curvature < K.

Proof. ¥p € image(X), let € > 0 be sufficiently small and U, = B(p,¢) N image(X) be an e
neighborhood of p. Let U, = X(a,b), and x € R™ be such that d(x,U,) < R, —e. Then Vt € (a,b),
if X”(t) exists,

d

(C.6) Z(X(0) =) (X() =) = X'()"(X(1) — )
(C.7) %(X(t) — @) (X (1) = @)=ty = X" (t0)" (X (to) — 2) + [|X"(t0) 3
(C.8) > = X" (o) 1R + | X (to) 5 > 0

Since X is piecewise C?, || X (t) — z||5 is strictly convex function of ¢ € (a,b). Hence a unique
global minimizer ¢, exists, X (ty) = 7y, (¢), which is the unique projection of x to U,. Therefore,
image(X) is of local curvature < k; + ¢, for all € > 0. And this asserts that image(X) is of local

curvature < k;. O

Lemma. 12. Suppose R; < K. There exists Ty,--- ,T, C [~ K, Kl]d2 such that
(1) each T;’s are distinct
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(A) alignment of T;, R;, and A; (B) manifold passing through X;’s

FIGURE C.2. This figure illustrates the case where d; = 1 and dy = 2. (A) shows
how T;, R;, and A;’s are aligned in a zigzag. (B) shows for given X; € Ty,--- , X, €

T, (represented as blue points), how .Z ({H FARIA oy Y(X;) }i<i<n)(represented as a

red curve) passes through Xy, - | X,,.

(2) For each T;, there exists isometry ®; such that

(C.9) T, = ®; ([— K7, K7)" " x [0,a] X Bgay-a, (0,w)),
where ¢ = {K’JFRZW, a=—="=8 _gnd w = min<{ Ry, (K —Ry)? .
A= " ngert) ()
(8) 34 : (Brisy-a, (0, w))" — M®: &, one-to-one such that for eachY; € Bgay-a, (0,w), 1 < i <

Kl,Kg
n, ,///(Yl, LY )NTy = ([ K, K]~ x [0,a] x {Yi}). Hence for any X, € Ty, -+ , X, € Ty,
({1} (A1) 2, @7 Y(X;) }i<i<n) passes through Xi,--- , X,,.

Proof. By Lemma 9, we only need to show the case for d; = 1. Let b = 2d(K;—Fy)

(+3) ([ | +1)
b > 2v/2wR,; and 2R, + L P le a—+ ([&L*‘hj + 1) b = 2K; holds.

With such values of a, b, and w, align T;, R;, and A; in a zigzag; see Figure C.2.

Then from the definition of T;, it is apparent that (1) the T}’s are distinct and (2) for each T;,
there exists an isometry ®; such that T; = ®; ([—KI, K%L % [0,a] x Bgay-a, (0, w)) . There exists
isometry ¥, such that R; = ; ([ K, K7]%71 x [0,b] X Bgay-a, (0, w)) as well.

Now define .# : (Bgay—a, (0,w))" — M as follows. For each Y; € Bgay,—a, (0,w), 1 < i < n,

Kl kg

4 4
UA, c # (Y1, ---.,Y,) C <UAZ) U (UT) U (UR) The intersection of 4 (Yy,---,Y,) and
i=1 i=1
T; is a line segment ®;([— K7, K7]% ™! x [0,a] x {Y;}). Our goal is to make .#(Yy,---,Y;,) be C!

and piecewise C2.
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(b, q)

(a) A T ey

FIGURE C.3. (A) We need to find C? curve with curvature < R! that starts from
(0,p) € R?, ends at (b, q), and velocity at each end points are both parallel to (1,0).
(B) Cy and Cy are arcs of circles of radius R;, and Cj is the cotangent segment of
two circles.

4
Given that Z (Y7, -+, Y,)N ( ( U Ai) U (U E)) is determined, two points on Z (Y1, --- ,Y,)N
i=1 i=1
OR; is already determined. By translation and rotation if necessary, Vp, ¢ with —w < ¢ < p < w,
we need to find C? curve with curvature < R; that starts from (0, p) € R?, ends at (b, ¢) € R?, and

velocity at each end points are both parallel to (1,0) € R?, as in Figure C.3a.
Let

(C.10) ot <2Rl (2R —(p—q) + /P = (p—¢) (4R — (p — q)))
' ’ 2+ (2R — (p—q)) )

and
(C.11) C1 ={(0,p— Ry) + R (sint,cost) | 0<t<ty}.

Then (] is an arc of circle of which center is (0,p — R;), and starts at (0,p) when ¢t = 0 and ends
at (Rysintg, p — R;(1 — costy)) when t = (. Also, velocity of C; at (0,p) is (1,0). Similarily, let

(C.12) Cy ={(b,q+ R;)) — R, (sint,cost) |0 <t <ty}.

Then Cj is an arc of a circle of whose center is (b, ¢ + R;), and starts at (b, q) when ¢t = 0 and ends
at (b — Rysinty, g+ R; (1 — costy)) when t = to. Also, the velocity of Cy at (b, q) is (—1,0). Let
(C.13)

Cs3 ={(1 —s) (Rysinty, p— Ry(1 —costy)) +s(b— Rysinty, ¢+ R (1 —costy)) | 0<s<1},

so that Cj is a segment joining (R;sinty, p — R;(1 — costy)) and (b — R;sintg, g+ R; (1 — costy)).
Then,

(C.14) costy (g —p+ 2R (1 — costy)) + sinty (b — 2R, sinty) =0
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implies that (b — 2R;sintg, ¢ — p + 2R; (1 — costy)) is parallel to (costg, —sinty), and hence Cj is
cotangent to both C; and C5. Therefore from Corollary 11, C7; UCs U Cj is of local curvature < k.
Refer to Figure C.3b.

Hence by defining .# (Y1, --,Y,) N R; as appropriate translation and rotation of Cy U Cs,
M (Y1, -+, Yy) is of local curvature < k. O

Claim. 13. Let T'= S, [[T;. Then for all € intT, there exists r, > 0 such that for all r < r,,
i=1

n 2(17d1)n n
(C.15) Q1 (HBHHR@,OO(%W)> =z (dg—dl)nK(dz—dl)nQ2 HBIIIIRdz,w(xi’T) '
i=1 Ky I i=1
Proof. By symmetry, we can assume that z € [[T;, i.e. #; € Ty, -+ ,2, € T,,. Choose r, small
i=1

enough so that B(z,r,) C intU,. Then Vr < rx,_

(0.16) 1 (HB”MQW(%,T)) :/P pm) (HB””R@’OO(%,T)) dul(P)
(C.17) = /Cn O (y)™ (HB”RdZ,oo(Ii’T)> Aen (y)

(C.18) = /Cn HA,//(y) (Bll\\mdg,wm””)) Acn(y)
Then since 4 (y) N'T; = ®; ([— K, K7 x [0,a] x {y:}),
(C.lg) ,///(y) N B||||Rd2,oo (xi, T)

@ <B||~\\Rd2m (Mo, (@7 (), 7) X {?Ji}> if | ys = gy 1y, (B (20)] | gy <7

1] otherwise.

(C.20) =

Hence

rh _
(C.21) A a(y) (BH”RdQ,oo(xi’ 7“)) = m] <Hyz — Mgy +1):0, (P; l(xi))HRdg—d1,oo < T)
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and

(C.22) Qo <H3||Rd2m($m‘>>

(C23) /n H QK[ di— 16L’I’LI (Hyz - H(dl'i‘l):d?(q)i_l(xi))H]Rd2—dlpo < T) /\C" (y)
i:1

(C.24) (2K1>(d1 D (an) "E/CI Hyz — H(d1+1):d2(q)i_1(xi>)HRdzfdhoo < T) Ao (yi)

(C.25) _ phin < (2r)da—d )n

(QKI)(dlfl)’n(an)n wdg*dlwdQ_dl

2(d2—2d1+1)n7,.d2n

= KD da=din (gpnn

2(d2—2d1+1)n7,d2n

(C.26)

(C.27) > — — ,
Kl(dg dl)nK§2d2 all)rzwg2_li1

do—di+1
where the last inequality uses an < AR < %—_dl and w < K7.
1

n daon n
On the other hand, Q- (HB”nm (:ci,r)) = (%) = %, S0
i=1 =

I

n 2(d272d1+1)n
(C.28) Qi | B, (@) | 2 i HBHHRdz (w7
i=1 a7) K W

da—

2(17d1)n
(C.29) > i 22 HBHHR@,M(% r)
l I =1

holds. O

Proposition. 14. Suppose R' < K;. Then
(C.30) inf sup E po [1(dim,,, dim(P))]

dim do
Pepnl kg, Kp, KUUPnl,mg,Kp,Kv

g _ (d2—d1)n
(C.31) > (C’C(é”(li;[{]) K, (d2 dl)nmin{mf(d2 leln_Q,l} c :

for some constant C’C(liil;KI that depends only on dy, ds, and K.

Proof. Let J = [~ K;, K7]®. Let S, be the permutation group, and S,, ~ J" by coordinate change,
ie. 0 €8, v € J" 0x = (Te), s Tom)). For any set A C J", let S, A :={ox € J": o€
Sn, T € A}.

Let T; be T;’s from Lemma 12. Let T := SnHTZ, and V = UT I1y.4,(T). (Intuitively, T is

the set of points z = (xy,--- ,x,) where z; hes on one of the T )
Let C' = Bpay-4, (0,w), and let P; = {P € P,fllﬁg : there IM € #(C™) such that P is uniform
on M}, and let Py = {\;} C P&

KiKg
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Define ® : C™ — Py by ®(y1,- -+, Yn) = A sr(y1, yn), i-€. the uniform measure on A (y1,--- ,yn).
Impose a topology and probability measure structure on P; by the pushforward topology and the
uniform measure on C”, i.e. P’ C P is open iff ®~(P’) is open in C", P’ C Py is measurable iff

(P € BC™), and u(P') = Ao (@ (P)).

Define a probability measure @1, Q2 on (J",B(J")) by Q1(A fp A)dp(P) and Qo =
M. Fix P € Py, let v = ®~1(P). Then P (A) = )\///( )(A) is a measurable function of x and
® is a homeomorphism. Hence, p(™(A) is measurable function and Q,(A) is well defined. Define
v=GQ1+ As. Then @1, Q2 < v, so there exist densities ¢q;, g2 with respect to v.

Then from Claim 13, Vx € intT, dr, > 0 s.t. Vr < r,,

o(1—di)n
(C.32) (HBnan (@i, 7 )— @ (@ HBIIIIRdm Li, 7)) -

l 1

Hence ¢, satisfies q;(z) > (drdﬁid;{_(j;iii;: ¢@(2) if v € T (and q1(z) =0if 2 ¢ T). Then,

2—dy

(1—d1)n
(C.33) QW 70) +@olv # 1) 4 /Tmln{ 2 1} ¢2(x)dv(z) (by lemma)

do—di)n do—di)n’
2 Hl( 2—di) K} 2—d1)
2(17d1)n72
(C.34) - l(d2_dl)nKI(d2_dl)nAJn (T)
Then from a = —&=8 _ and w = min{ R, d*(K;—Ry)?
(+3) ]y | { 2Rz(d+%)2([ﬂw+1)

“ . (2K ;)4 wy, g, aw® = \"
(C.35) Ayn (SnHE> = nl\n(T))" = n! ( k)

i=1
n _ (d2—d1)n
(C.36) > (O, ) min {2 TR
for some constant 0[34 221)1( that depends only on d;, ds, and K;. Hence
— " do—din . _ (d2—d1)n
(C.37) ilnfpesglgp Ep[l(dim,, dim(P))] > (Cg:;é’KJ K, (d2=dm 1in {/ﬁl?(dQ AR 1} C :
1m 1 2
for some constant C’ﬁzz’ k, that depends only on di, ds, and K. Then
(C.38)  inf sup Ep[l(dim,, dim(P))] > inf sup Ep[l(dim,, dim(P))],
dlmPepnl e UP:?,NQ,K;U,KU d1mP€731U7)2
which completes the proof. ([l

APPENDIX D. PROOFS FOR SECTON 5

Proposition. 15.

(D.1)  inf supBpo [1(dmy, dim(P))] < (Cr, s, (14 5572 707) i

dim, PEP
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for some C’Sﬁf){p,KU’Km that depends only on K, K,, K,,m.

Proof. define (TH\D(X ) as
(D.2)

n—1
dim,,(X) := min {d €lm]: 30 €8y st ) |1 Xoqr) — Xoolgn < O am (14 “an)} :

i=1

Then for all P € Pgwgprva and Xq,---,X,, ~ P, by Lemma 6,

n—1
(D3) D I Xotien = Xollin < O, am (14 557)
i=1
holds for some ¢ € .5,,, hence
(D.4) dim,(X) < d = dim(P).
Therefore,
(D.5)

pm) [(ﬁr\nn(xb LX) A d}

(D.6)
n—1
n 3,2 m—
— P™ | max {d ell,m]: Jo €8, st ZHXJ(Z-H) — Xo(iy || < Cé{[,f)fv,d,m (1+ K d)} < d]
i=1
(D.7)
d—1 n—1
n 3,2) m—
<Y PM 130 €S, 5t > [ Xoqs1) — Xowllhm < CE% g (14K k)]
k=1 i=1
(D.8)
! (3,3) n (%m+m—2d)n _(g_1>
<> (CK},KpaKu,k,d,m> (1 + Ky ) noAF
k=1
(D.9)
< (CS;,II)(p,KU,m) (1 + I{;’mﬂ_m)n) n*mlfln’
for some Céélg{p k,.m that depends only on K, K, K, m. Therefore,
(D.10) }gf iléng<n> [l ((f;ln,dim(P)ﬂ < <C[(?I’71;(pyKv,m> (1 _|_Kl§m27m)n> =

Proposition. 16. Suppose R; < Ky, then

(D.11) infsuplE pe) [l(ﬁn, dim(P))] > (C’Sf))n k" min {k{n 2 1}"
dimPeP

for some Cé?f) that depends only on K.



Proof. For any d; and ds, from Proposition 14,

(D.12)  infsupE p [I(dim,, dim(P))] > inf sup E pn [1(dim,,, dim(P))]
dimPeP dimPe'Pdl UPd2
Kp,kg,Kp, Koy Kp,kg, Kp,Kuv
n (d2—d1)n
(D.13) > <Cc(l?:il)2,K1> o @2 i {,4;12(dzfch)+1n_27 1} 2—ds
Hence by plugging in d; = 1 and dy = 2, we have
(D.14) infsupE i [[(dim,,, dim(P))] > (C%m) k" min { k02, 1}"

. (5:2) _ ~(4,1)
with Cp™ = Cy 4 4,20 k¢, -
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