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1 Introduction

An increasing number of models have been developed for networks that use latent vari-

ables to describe the observed ties. These models focus on understanding the nodes in the

network, and using that information to predict tie formation. Currently no model selec-

tion methods have been developed to select among these models. Here we propose the use

of cross-validation risk estimates as a model selection criterion for data generated from a

Stochastic Block Model. We compare various cross-validation methods to other model selec-

tion methods. Specifically we use cross-validation to estimate the risk for competing models

and choose the model which minimizes that risk. We use multiple performance criterion, in-

cluding accuracy of true model recovery, to show that cross-validation methods are preferred

for most generative parameters.

One advantage of cross-validation is its ability to compare any method that provides

an estimate of tie probabilities. Cross-validation does this by considering the loss between

tie probability estimates and observed tie values. Cross-validation has been used to com-

pare model fit before in Hoff (2008) to compare among different latent variable models.

Recently Chen and Lei (2014) proposed an alternative form of cross-validation, network

cross-validation (NCV), that assigns each node to a fold. However this method results in

a more variable risk estimator. We consider three cross-validation methods for networks

including the two mentioned above and a new method we refer to as latinCV.
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Other methods that can perform model selection for multiple estimation methods is the

Bayesian Information Criterion (BIC) that considers a penalized log-likelihood (Schwarz

et al., 1978). Since the log-likelihood is also a function of tie probabilities and the observed

network, we simply need to know the number of parameters in the model to compute the

BIC criterion. While BIC is known to asymptotically choose the correct model when the

data is independent and identically distributed, we show here cross-validation provides a more

accurate criterion for recovering the true model for pre-asymptotic network data.

We also consider model selection methods that are specific to stochastic block models

and the related problem of community detection. First for choosing the number of blocks

in an SBM we consider using the size of the eigenvalues. It can be shown that a large gap

should exist between the Kth and (K + 1)th eigenvalue when the true number of blocks is

K (Ng et al., 2002). We thus use an eigenanalysis method to choose K corresponding to

this gap.

As an alternative to directly compare the fits of SBMs, we also consider two community

detection methods that attempt to detect an optimal set of community membership labels.

The first community detection method we consider is one that selects a partition of the nodes

that maximizes modularity (Clauset et al., 2004). Modularity is essentially a measure of the

ratio of ties within communities to ties within communities that corrects for the degree of each

node. We refer to this method as modularity maximization. The second community detection

method we consider is known as the infomap method due to Rosvall and Bergstrom (2008).

This method selects communities that allow for a minimum description length encoding of

random walks on the networks and was found to be the best community detection method

in Lancichinetti and Fortunato (2009).

In this paper we compare the performance of all of the methods described above on data

generated from stochastic block models with varying generative parameters. In section 2 we

describe in detail all of the model selection and community detection methods. In section 3

we review the design of our simulation study and the performance measures used to compare
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our methods. We present the results of the simulation study in section 4 and discuss the

importance of those results in section 5.

2 Methods

2.1 Cross-Validation Methods

The basic method of cross-validation requires us to divide the data, once or multiple times,

into validation and training sets. Model parameters are then estimated using the training

set, and the model’s performance is assessed on the validation set. In this paper we will

focus on V -fold cross-validation where each datum, in our case observation of edge-values

on node-pairs, is assigned to one of V folds, and each fold takes place once as the validation

set, with the other folds belonging to the training set. Thus any cross-validation method

depends on the following three choices

1. Method of assigning node-pairs to folds

2. Number of folds, V

3. Loss Function

We’ll address the options for assigning node-pairs to folds in this section. In section ??

we will address the affect of the number of folds on cross-validation methods in general, and

briefly discuss the choices of loss function.

Before we begin describing the various cross-validation methods we will consider, let us

set up some notation. Since our dataset consists of an n × n matrix of observed edges, Y ,

we will assign each node pair (i, j) with 1 ≤ i 6= j ≤ n to one of V folds. We represent this

with an n× n matrix A where Aij = v means that node pair (i, j) is assigned to fold v. To

implement any cross-validation method we will do the following
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1. Generate a fold assignment matrix A

2. For each model M1,...,MT do:

(a) For v = 1 to V do:

i. Estimate parameters β̂CV
v and latent variables ẐCV

v for model Mt using only
Y −v := {Yij : Aij 6= v}

ii. Estimate p̂CV,Mt

ij = P(Yij = 1|β̂CV
v , ẐCV

v ) for each i and j with Aij = v.

(b) Define R̂CV
Mt

(Y ) = L(Y, P̂CV,Mt) = 1
n(n−1)

∑
i 6=j L(Yij, p̂

CV,Mt

ij )

3. Return R̂CV
M1
, ..., R̂CV

MT

To perform model selection, we then choose the model that minimizes R̂Mt . For now let

us focus on processes for generating fold assignment matrices, A.

2.1.1 Random Edge CV

For this subsection and the following subsections assume that V is a fixed number of folds

for which we wish to generate a fold assignment matrix. The simplest way to generate a fold

assignment matrix for V folds is to assign each edge pair to a fold uniformly at random. To

guarantee balance in the size of folds we start with a matrix A which has an equal number

of occurrences of each fold 1 through V . We then randomize the locations of all elements of

A to generate Aedge. We will refer to cross-validation using Aedge as edgeCV. Figure 2 shows

an example of Aedge.

Due to the unrestricted nature of this randomization, there is no guarantee that there

will not be some folds that contain all node pairs associated with a particular node, i, and

thus make it difficult for any model to successfully estimate the edge values, Yij or Yji for any

j. Our next method attempts to restrict the randomization process to guarantee balance of

the fold assignment among nodes.

2.1.2 Latin CV

The goal of latinCV, inspired by latin squares, is to guarantee that each row and each column

of A has an equal number of occurrences of each fold. To generate such a matrix, we begin

4



Base Latin Fold Assignment Base netCV Fold Assignment

Figure 1: Base 3 fold assignments for latinCV and netCV. The colors purple, green, and
gold correspond to folds 1-3. Node-pairs colored black are never in test sets, but are always
in training sets for netCV.

with a matrix that trivially satisfies this criterion. Divide the matrix A into V 2 blocks where

each block is a n
V

by n
V

set of edge pairs. (See figure 1.) Thus we have our matrix represented

as a V by V block matrix. We then assign folds {1, 2, ..., V } in order to the first row in the

block matrix. For the second row we assign folds {2, ..., V, 1}, and so on until for the V th row

we assign the folds {V, 1, ..., V −1}. To get a random fold assignment, we then independently

reorder the rows of A and then the columns of A. Both of these reorderings preserve the

balance among the rows and columns, resulting in our final fold assignment matrix which

we will call Alatin. Figure 2 shows an example of the randomized matrix.

2.1.3 networkCV

Network Cross-validation refers to a method described in Chen and Lei (2014). To begin we

assign each node to one of V folds, L1, ..., Ln ∈ {1, ..., V }. Assume that the nodes are ordered

by their fold assignment (note this is easily accomplished by using the same permutation on

both the rows and columns of the adjacency matrix). We then assign each node pair to a
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Completely at Random Fold Assignment Randomized Latin Fold Assignment Randomized netCV Fold Assignment

Figure 2: The figure on the left shows a realization of a completely random fold assignment.
The center plot shows an example of latinCV fold assignment after randomizing each axis
independently axes. The right plot shows a netCV fold assignment after randomizing the
axes together.

fold by the following rule

Aij =

 v Li = Lj = v

0 Li 6= Lj

(1)

This assignment results in assigning node pairs in V diagonal blocks to non-zero folds,

and all of the other node pairs to fold zero. During the cross-validation procedure edges

assigned to fold zero never appear in a validation set, but always appear in the training set

for each fold.

One consequence of defining the folds this way is that the size of each training set is

N V 2−1
V 2 , where N is the total number of edges in the network, thus the training set sizes are

comparable to those in V 2 fold random edge CV. However the most important consequence

of this assignment procedure is that the total number of edges used in validation sets is N
V

,

meaning the size of the validation set decreases as we increase V .
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2.2 Model Selection Methods

2.3 Community Detection Methods

3 Simulation Study Design

Our goal is to compare the performance of the methods described above on simulated data.

For this simulation study we are focusing on networks generated from the Stochastic Block

Model (SBM), initially introduced in Snijders and Nowicki (1997).

3.1 Data Generation Parameters

When simulating data for any experiment one important consideration is the sample size.

For network data the sample size, n, is simply the number of nodes in the network. To deter-

mine a range of node sizes from which to simulate networks we surveyed the social network

literature. Figure 3 shows a histogram of the number of nodes found from that survey. Most

of the networks contained fewer than 300 nodes, with a few networks having more than 1000

nodes. For our simulation study we will generate networks with n = 30, 60, 120, 300, and

1000 nodes.

While surveying the literature, we also kept track of the number of blocks either known

to be present or used to fit a model. A large majority of the networks had ten or fewer

blocks, and thus we will simulate data from SBMs with K = 1, ..., 10 blocks.

Once we know the number of nodes and the number of blocks from which to simulate

networks, we still need to know two more specifications. First we need to know how to

assign memberships, πi, for each node i. We start by considering membership assignments

that assign an equal number of nodes to each of the K possible blocks. Then we consider

assignments that result in a power law distribution on the block sizes (Add specificity

here).

Lastly we need to know the probability of there being a tie between a node in block l and
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another node in block k for all l, k = 1, ..., K. This set of block tie probabilities is generally

represented using a matrix B where the entries are each blk = P(Yij = 1|πi = l, πj = k).

Many examples where an SBM seems appropriate are those where each block corresponds

to a community of nodes that are more connected with each other than with those outside

of the community. For this reason we consider a set of tie probability matrices where the

probability of a tie between nodes in different blocks is fixed at some constant, b, and

the probability of a tie between nodes in the same block is rb for some r > 1. Networks

generated with these types of tie probability matrices also conform to the assumptions of

community detection methods such as modularity maximization reviewed in section 2.3.

We also consider tie probability matrices where each element blk ∼ Uniform(0, 1). While

tie probability matrices of this form are rare, some datasets have been found that have tie

densities that have no obvious form - see for example the network of neural connections in

C. Elegans (Pavlovic et al., 2014).

3.2 Model Estimation

Since we are simulating data from stochastic block models with 1 to 10 blocks, we chose

to estimate model parameters for SBMs with 1 to 11 blocks. This set of estimating models

allows the opportunity to choose more than the true number of blocks for each K in the

simulation study. To estimate parameters for the Stochastic Block Model we will be using

a variational EM algorithm based on the mean-field approximation (?). To initialize the

algorithm we use spectral clustering on the adjacency matrix to obtain an initial set of block

memberships, similar to the method in Chen and Lei (2014).

Since we are using a cross-validation procedure to estimate risk for these models, our

estimation methods need to be able to deal with missing data. The EM algorithm can

deal with missing data by simply computing the conditional likelihood marginalized over the

missing ties. Due to the conditional independence of the ties, marginalizing over any single tie

is equivalent to computing the likelihood without that tie. Unfortunately, spectral clustering
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Figure 3: Left: Histogram of the number of nodes in a selection of networks drawn primarily
from the social science and medical literature. There were additionally 4 networks with 500-
2000 nodes and 4 networks with greater than 200,000 nodes in our sample of networks from
the literature. Right: Histogram of the number of blocks found in the same selection
of networks. There were additionally 3 networks with greater than 5000 blocks, and one
network with 40 blocks in our sample.
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requires a complete dissimilarity matrix to perform the singular value decomposition. Since

we are only using spectral clustering to initialize our algorithm, we simply complete our

matrix by substituting the mean tie value for each missing element in the matrix, including

the diagonal entries. We also considered substituting missing values with 0’s, but found that

using the average tie-value resulted in better recovery of the block memberships.

3.3 Performance Measures

We consider three measures of performance. Our primary goal is to select methods that

perform well at the task of model selection. Thus our first criterion is the model selection

accuracy, defined to be the percentage of times a given method selected the true number of

blocks, K. We also want to consider how well the block memberships are being estimated,

whether or not a method chose the correct number of blocks.

It’s possible that a method could choose the true number of blocks, but still result in

block memberships that are inaccurate. Similarly, if the wrong number of blocks is chosen,

the block memberships could still be similar to the true memberships. It could be that a

single block was split in two or a single node was an outlier and was placed in its own block.

In either case we would like to have some measure of the quality of the estimated block

memberships. Following Lancichinetti and Fortunato (2009) we use the Normalized Mutual

Information (NMI) criterion to measure the similarity between the true and estimated block

memberships.

To Calculate the NMI we first need to construct a distribution for each membership

assignment. To do this, suppose we have two membership assignments, V and W. We then

construct random variables V,W ∈ {1, ..., K} to have joint distribution

P (V = v,W = w) =
nvw

n
, (2)

where nvw is the overlap in the two assignments. This gives us marginal distributions of
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P (V = v) = nv/n and P (W = w) = nw/n. The mutual information is then defined to be

I(V,W ) =
K∑
v=1

K∑
w=1

P (v, w) log

(
P (v, w)

P (v)P (w)

)
. (3)

The problem with using mutual information as a similarity criterion is that when W is

a finer subdivision with more blocks, the mutual information is always equal to H(V ) :=

−
∑k

v=1 P (v) log(P (v)), the entropy of V . Thus, we obtain the same criterion no matter how

fine a subdivision W is of V . To solve this problem we simply normalize by the entropy of

V and W , giving us

Inorm(V,W) =
2I(V,W )

H(V ) +H(W )
. (4)

This normalized version equal 1 if the assignments are exactly the same, and is expected to

equal 0 if the assignments came from independent distributions.

The last criterion that we will use to evaluate our methods is the mean squared-error

(MSE) loss between the estimated tie probability matrix, P̂ , and the true tie probability

matrix, P . Since the diagonal elements of P are assumed to be 0 for all of our models, the

MSE loss is defined to be

L(P, P̂ ) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(pij − p̂ij)2. (5)

We use this last criterion as a measure of the overall goodness of fit to the true tie probabilities

underlying the observed network.

As mentioned above, the primary goal of this simulation study is determine which meth-

ods are most accurate at recovering the true model. Preliminary simulations suggest that

cross-validation performs remarkably well at the task for stochastic block models. When us-

ing NMI as the performance criterion, previous work by Lancichinetti and Fortunato (2009)

showed that the infomap method performed best. However, their studied used a differ-

ent set of simulation parameters related to the GN bencmarks (?). Finally, for the task
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of minimizing the loss between the estimated and true tie probability matrices, we expect

the cross-validation methods to perform best. Since cross-validation provides an estimate

of risk (the expected loss between P and P̂ ), and we choose the model that minimizes the

CV estimate of risk, we would expect the loss between that estimate and P to be relatively

small.

4 Results

4.1 Comparing edgeCV and latinCV

Early results suggest that latinCV has little improvement over edgeCV. Using the full results

we should be able to confirm or refute this fact.

4.2 Comparing edgeCV and networkCV

Early results suggest that networkCV performs better than edgeCV when the accuracy of

both methods is low, and edgeCV performs better when the accuracy is high. This result

seems to be related to the increased variability of the networkCV estimate of risk. If the

increased variability is the culprit, the difference in performance should correspond to the

region where the true model minimizes the risk.

4.3 Comparing edgeCV and Community Detection

Currently I plan to compare edgeCV to the infomap method. The infomap method was

found to be the best community detection algorithm by Lancichinetti and Fortunato (2009).

5 Conclusions and Discussion

1. Comparison of Cross-validation methods
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• networkCV appears to perform significantly worse than edgeCV in any scenario
where the accuracy of either method is above 10-20 percent.

• latinCV appears to have similar accuracy to edgeCV. Is there a slight positive
effect? If so, the procedure is simple enough to warrant using as an alternative.

2. Comparison to other methods

• BIC - Do we still see BIC performing worse than the CV methods? If so is it
actually significant?

• Infomap - Appears to do worse at the model selection task. I still need to compare
performance on NMI, which the Lancichinetti paper claimed performed best on
their benchmarks. (Should I compare our benchmarks?)

• Modularity Maximization...

3. Overall CV seems to do better at model selection.

4. I need to check how well it performs at the label assignment task using NMI

5. I would guess that it will also do the best at choosing the model that minimizes distance
from the true P , given that it’s essentially trying to estimate that distance, and then
find the minimizer of that estimate.
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