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Abstract

Although eyewitness identification is generally regarded as relatively
inaccurate among cognitive psychologists and other experts, testimony
from eyewitnesses continues to be prolific in the court system today. There
is great interest among psychologists and the criminal justice system to
reform eyewitness identification procedures to make the outcomes as ac-
curate as possible. This involves both maximizing the true identification
rate and minimizing the false identification rate. There has been a recent
push to adopt Receiver Operating Characteristic (ROC) curve methodol-
ogy to analyze lineup procedures, but has not been universally accepted
in the field. This paper addresses some of the shortcomings of the ROC
approach and proposes an analytical approach based on log-linear models
as an alternative method to evaluate lineup procedures. We find that log-
linear models can incorporate more information than previous approaches,
and provide flexibility needed for data of this nature.
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1 Introduction

Time and time again, studies have shown that eyewitness identification is un-
reliable. In a study of 300 convictions that have been overturned due to DNA
exoneration, eyewitness identification was a contributing factor of false convic-
tion in over 70 % of cases [5]. Although eyewitness identification does not carry
much weight among those trained in cognitive psychology, juries and judges do
not have the knowledge regarding memory that psychologists have, and still
hold an eyewitness identification as strong evidence against a suspect. There
has been a push in recent years to bridge this gap between scientific knowl-
edge and commonly-held beliefs among the general public by determining how
to construct police lineups to minimize false identifications without sacrificing
true identifications.

Many different procedures have been proposed to improve upon eyewitness
identification including sequential instead of simultaneous presentation, different
instructions given to the witness, implementing a double-blind procedure, and
having a standardized way of choosing fillers to include in the lineup. These
differences are generally measured in a lab setting, however, there is debate
about how to best analyze these different procedures.

Some psychologists have turned to ROC curves (Receiver operating char-
acteristic) to analyze how true and false positive rates change over different
confidence ratings [16][7][14]. In machine learning, these curves are commonly
used to assess binary classification systems across different threshold settings.
The true positive rate is plotted on the y-axis with the false positive rate plotted
on the x-axis. An ideal ROC curve lies high above the positive diagonal [6][8].
In the context of a binary classifier, ROC analysis is a useful tool. However,
there are fundamental differences between the eyewitness identification problem
and a typical classification problem. These differences have led to a divide be-
tween psychologists regarding the correct way to interpret lineup experimental
results. It is extremely important to reconcile these differences and determine
a statistically-sound procedure for analyzing this type of data.

For instance, when the question of sequential versus simultaneous was first
addressed experimentally, the results showed that sequential procedures were
‘better’ in terms of both the true positive and false positive rate, although at
first the decrease in false positive rate was dismissed as insignificant [3]. How-
ever, incorporating the confidence statements and constructing a ROC curve can
lead to concluding that simultaneous procedures lead to better results. Addi-
tionally, after adding confidence bands to the ROC curves comparing sequential
and simultaneous lineups, the difference between the two types of lineups was
indistinguishable [5]. The estimated uncertainties made optimistic assumptions,
and removing these assumptions would lead to even larger confidence bands.

This initial attempt to add statistical rigor to the confidence statement-based
analysis of lineups illustrates the importance to better understand the assump-
tions and uncertainties associated with the chosen analysis. ROC analysis may
not be the appropriate tool to analyze the current data. Typical ROC analy-
sis is an evaluation of a single decision-maker across different thresholds. It is
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frequently used to evaluate radiologists’ ability to detect malignant growths in
images; but they recognize the need for a different ROC curve for each radiol-
ogist. This helps control for the uncertainty in an accuracy statement, as the
threshold for ’X-percent’ certain is likely to remain nearly constant for a given
radiologist. (CITE) This problem has not been addressed in the eyewitness iden-
tification literature, and a single ROC curve is assumed to be representative of
the decision-making threshold for the population of eyewitnesses.

At the heart of the current debate regarding the use of ROC analysis in
eyewitness identification research is the 3× 2 versus 2× 2 classification scheme,
and how filler identifications should be addressed [12][13][15]. To create an ROC
curve, a 2×2 classification scheme must be used, and how this 2×2 classification
table is formed using 3× 2 classification has a significant effect on the outcome
of the analysis.

As an alternative, we propose analyzing the data through the use of a con-
tingency table and log-linear model. The theory behind this categorical data
analysis method has been well developed in the statistics literature, and has
yet to be applied to the eyewitness identification literature as a means of data
analysis. We will show that not only does a log-linear model provide flexibility
and robustness that is lacking in the ROC approach to eyewitness identification
analysis, it is also able to maintain the natural 3× 2 classification structure of
the eyewitness identification task.

2 Data

We proceed using data collected in an eyewitness identification experiment per-
formed by Wells and Brewer in 2006 [10]. This experiment tested the difference
between biased and unbiased instructions, as well as record confidence state-
ments from participants in target-absent (TA) and target-present lineups (TP)
(Table 11). Unlike published data tables of other studies, we were able to gain
access to this data in very fine detail which has allowed for the application of a
wider range of analysis methods.

This data set was collected by having participants watch a film in which
a crime occurred. In groups of 2-4, they watched the video in which the thief
entered a restaurant and waited in the background while a customer was leaving
his credit card on a counter for a waiter to process. When the customer left,
the thief asked the waiter a question which caused him to turn around, when
the thief then took the credit card from the counter. After watching the video,
participants were given puzzles to work on for fifteen minutes. Each participant
was then given either a target-present or target-absent lineup for the thief;
followed by the other option (target-present or target-absent) for the waiter.
After the participant made a selection, she was asked to report her confidence
level.

The data set consists of 1200 observations taken from 600 subjects, as each
subject participated in two different lineups. To avoid the issue of correlation
between observations taken from the same subject, we have restricted the results
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in this paper to the data collected from the waiter identification task. We chose
to use the waiter identification rather than the thief identification for illustrative
purposes.

3 Receiver Operating Characteristics and its Short-
comings

ROC Curves are often used in 2×2 classification tasks. Each point along a ROC
curve represents the Hit Rate (HR) and False Alarm Rate (FAR) at a certain
point of confidence, where

HR =
True Positives

Target-Present Lineups
FAR =

False Positives

Target-Absent Lineups
.

An ideal ROC curve lies high in the upper left corner and corresponds to low
false alarm rates and high hit rates.

Although a powerful visual comparison tool for a 2 × 2 classification prob-
lem, we discuss four significant statistical issues when using ROC curves for
comparing lineup procedures. The first is that lineup outcomes are actually a
2×3 classification, and using ROC analysis obscures information about the third
class of outcomes. The second is that lineup experiments represent a sample of
the population, and there is thus uncertainty associated with the calculated hit
rate and false alarm rate for each experiment. There is also variability in the
confidence statement taken from each witness, which is used as the ‘threshold’
for lineup ROC curves. In the eyewitness identification literature, ROC curves
are often reported without any uncertainty included. The third issue we discuss
is the calculation of the false alarm rate used in ROC analysis. As there are two
distinct ‘false positive’ outcomes in a lineup task, identification of an innocent
suspect and identification of a filler, there are different ways to calculate a false
alarm rate. Depending on the definition used, ROC curves can lead to conflict-
ing conclusions using the same data. The final issue we discuss regarding ROC
curves is that it restricts to comparisons of two quantities. Any other quantities
of interest, which may include positive predictive value and negative predictive
value, are impossible to calculate using ROC methodology.

3.1 Lineup outcomes are not binary classification

Wells and Smalarz [11] have argued that while ROC curves are designed for
analysis of 2 × 2 classification outcomes, a line-up setting is actually a 2 × 3
classification outcome. This difference is illustrated in Tables 1 and 2. The
third class, which is not included in the 2×2 classification analysis of lineups, is
filler identifications. A filler identification occurs when the eyewitness identifies
a person in the lineup who is not the suspect. This outcome is distinctly dif-
ferent from a suspect identification or a lineup rejection, but is often lost when
it comes to analysis. For ROC analysis, the ‘filler identification’ category is
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often combined into the predict false category in the 2× 2 classification scheme
(Table 1), with the understanding that a filler who is identified will not be pros-
ecuted. This simplification of lineup outcomes has led to a skewed perception
of lineup performance.

Predict + Predict -
Actual + True Positive False Negative
Actual - False Positive True Negative

Table 1: Standard 2× 2 Classification Task

ID Suspect ID Filler Reject Lineup
Suspect Guilty True Positive False Positive False Negative

Suspect Innocent False Positive False Positive True Negative

Table 2: 2× 3 Classification Structure of Lineup Outcomes

Since collapsing the 2 × 3 classification into the 2 × 2 structure essentially
means treating the filler identifications as either false identifications or rejec-
tions, we lose all information about the filler identifications through the use of
a 2 × 2 structure and, by extension, ROC analysis. This is significant, Wells
et. al. argue, because filler identifications can be diagnostic of innocence of
the suspect [13] and obscures the filler siphoning effect [12]. Filler siphoning is
the term used to explain why good lineup fillers draw some of the false identi-
fications away from an innocent suspect when the actual culprit is not in the
lineup.

3.2 Uncertainty needs to be incorporated

In traditional ROC analysis, a 2 × 2 classifier is evaluated. This classifier can
be algorithm based - as in machine learning applications - or it can be a human
classifier, as in radiology applications. This application of ROC analysis to ra-
diology is often cited as a justification for use for lineup comparisons CITE .
However, a major concern is how to incorporate uncertainty. In an algorithm-
based classifier, there is no need for the addition of uncertainty. In radiology and
other human classifier evaluation, uncertainty has not been introduced since it
has measured a single classifier (human decision maker) across different trials.
As ROC curves in the context of eyewitness identification are measuring the cor-
rect identification and false identification rate across many different witnesses,
the addition of an uncertainty measurement is necessary. In the eyewitness
identification literature, we have only recently seen uncertainty introduced to
the ROC curves [5] [7].

ROC analysis is being used to compare two different lineup procedures,
therefore, the data consists of many individual human classifiers across a single
trial (rather than the other way around). Since the data is coming from different
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people, there is a need for error measurement since we only have data for a
sample of people rather than the entire population. Additionally, we need more
uncertainty than a confidence band in the usual sense for a line, since there is
uncertainty associated in both the hit rate (Y direction) and the false alarm
rate (X direction). This is illustrated in Figure 1 .

A further issue with analyzing eyewitness identification using ROC curves,
which will be addressed in a later section, is that the threshold value typically
used in ML literature is replaced with a confidence statement taken from the
witness at the time of the lineup. This is justified by the belief that a witness
confidence level is indicative of the decision-making threshold they used in the
identification. In a report on eyewitness identification published by the Na-
tional Research Council [5], the relationship between confidence and accuracy
is discussed. The authors note that uncertainty exists in the (HR,FAR) pair,
which was accounted for, as well as the Expressed Confidence Level (ECL) of the
subjects, which was not. This suggests that even when confidence intervals are
added to account for uncertainty in the hit rate and the false alarm rate, these
confidence intervals are likely optimistic due to the variability and uncertainty
in confidence statements taken from witnesses at the time of the lineup.

3.3 Ambiguous calculation of false alarm rate

One of the strengths of ROC analysis compared to simple hypothesis testing is
ROC’s ability to compare two quantities at once. These quantities are the Hit
Rate (HR) and the False Alarm Rate (FAR). Consider the 2× 2 classification
task that ROC was designed for (Table 1). It is clear that the hit rate has a
direct interpretation for the lineup classification task - when the guilty suspect
is in the lineup, known as a target present lineup, how often is he correctly
identified. That is,

HR =
# Suspect Identifications

# Target-Present Lineups

However, the translation of the false alarm rate from the 2× 2 classification
to the lineup classification is not as clear. If we consider the 3 × 2 lineup
classification (Table 2), any formulation of the false alarm rate should include the
target absent lineups in which an innocent suspect is chosen (False Positives).
In a target absent (TA) lineup, the actual perpetrator is not included in the
lineup, and the suspect the police have included is innocent. The ambiguity
comes in the form of the filler identifications. In the current literature, these
observations are often ignored entirely, under the justification that in an actual
lineup situation, these fillers are known to be innocent and thus would not
be prosecuted [16][7][4]. However, if we’re considering consequences in a true
lineup situation, a filler ID in a target-present lineup means that the guilty
suspect is not identified and she could then possibly go free. In this sense, a
filler identification in a target present lineup is equivalent to a false negative and
by leaving these observations out of the analysis, we are missing information on
a consequential outcome. In a 2×2 classification, the false negative observations
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are implicitly included in the ROC curve, since FNR = 1−HR. In the lineup
setting, we make no adjustment to the (HR, FAR) pair based on the filler
identifications, and so this information is lost.

A potential fix to this loss of information problem is to include filler iden-
tifications in the calculation of the false alarm rate. We would then use an
alternat

FAR =
# False Positives + # Filler ID’s

# TA Lineups + # Filler ID (TP)

3.4 Restricts comparisons to two quantities

The literature has primarily focused on evaluating lineup conditions using quan-
tities involved in ROC analysis. These are the hit-rate and false-alarm rate.
These are typically defined as in the previous section.

If there is no designed ’innocent suspect’ in the target absent lineup, this
false alarm rate is divided by the number of people in the lineup, which is
typically six.

Suppose that we coerce the structure of a lineup into a 2 × 2 classification
task. Consider the set-up of Table 2. In this format, it’s clear that the hit
rate is solely determined by the top row in the confusion matrix, and the false
alarm rate is solely determined by the bottom row. This can be thought of as
conditioning on whether or not the lineup is target present or target absent. In
other words,

HR = P (Target Identified |Target in Lineup) and

FAR = P ( False ID | Target not in Lineup ).

However, when putting this in the context of the real-world, it seems like
a crucial evaluation metric may be missing. In a true lineup, it is unknown
whether or not the target is in the lineup. There may be additional quantities
of interest, namely

P (Target guilty | Identification made) and P (Target innocent | Lineup is rejected).

In the 2×2 classification terminology, these quantities are known as the Posi-
tive Predictive Value (PPV) and Negative Predictive Value (NPV), respectively.
They are computed through the following:

PPV =
# of Correct IDs

# of ID’s made
and NPV =

# of Correct Rejections

# of total rejections

In the 2 × 2 classification setting, although not directly represented, these
quantities are retrievable through the ROC curve. The FNR (False Negative
Rate) can be calculated using 1−HR, and the TNR (True Negative Rate) can be
calculated with 1−FAR, at each threshold value. Then, provided we know the
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sample size, we can calculate the number of true positives, false positives, false
negatives, and true negatives, and calculate the positive predictive value and
negative predictive value as described above. However, in the 2×3 classification
problem, we are again unable to deal with the filler problem. Then, calculation
of the predictive values through the reported ROC curve is impossible.

4 The Log-Linear Model Approach

As we have seen, ROC analysis evaluates the performance of lineups through the
use of two quantities. These quantities are selected from a collection of counts
that are taken from the lineup results. We can formulate these lineup outcomes
into a contingency table of counts, and rather than use only certain entries of
the table for statistical conclusions, we can perform statistical inference on the
table itself to draw conclusions about each lineup procedure. This allows us to
utilize all of the data collected, and gather a fuller picture of lineup procedures.

Another statistical procedure that has been proposed to analyze lineup data
is logistic regression and its extensions. Logistic regression is a tool used to
model binary or multinomial responses based on explanatory variables. When
applied to lineup data, the response variable would be the outcome from the
lineup procedure, and the explanatory variables describe the conditions of the
lineup. Although the logistic regression method allows for multi-dimensional
analysis in a way that ROC curves do not, we propose a different, but related,
approach - a log linear model. Log linear models rely on much of the same
theory as logistic and multinomial regression, but are more general in the sense
that they allow for multiple response variables [1]. Since we have seen that
lineup outcomes are naturally described through two variables - target present
or target absent and witness choice - log linear analysis allows us to study the
associations between these variables and explanatory variables in a way that
logistic or multinomial regression does not.

If we formulate the lineup outcomes as a contingency table, we can imple-
ment a log-linear analysis of the data [2] . That is, the log of the counts in each
of the cross-classified cells can be fit using a linear model, and the maximum
likelihood estimates for the expected values of each cell can be computed di-
rectly. We denote the observed frequencies in each cell as xS and the expected
value of each cell as mS , where S is the collection of indices for each of the
variables that is used to describe the entry. We use pS to denote the probability
of an outcome falling into the given cell. In the results section, we implement a
log-linear model using both a two-dimensional and four-dimensional model.

Unlike a typical linear model, the parameters are defined using the ‘grand
mean’, u, and deviations from that mean according to variable values. For
instance, in a 2× 2 contingency table, the saturated model is given by

log pij = u+ u1(i) + u2(j) + u12(ij)

where u1(i) represents the deviation from u for the observations which take
value i in variable 1, u2(j) represents the deviation from u for observations which
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Figure 1: Plot (A) shows the default ROC curve with no uncertainty included,
plot (B) shows a binomial confidence interval in the Y direction, and plot (C)
incorporates uncertainty in both the X and Y directions.
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Figure 2: Plot (A) is the usual ROC curve with uncertainty bars.
Plot (B) shows a PROC (Predictive Receiver Operating Characteristic)
curve, where Positive Predictive Value = Correct Identifications

Correct Identifications + Foil Choices and

False Omission Rate = Incorrect Rejections
Incorrect Rejections + True Rejections . In an actual lineup

setting, these predictive quantities may be more important than ROC quanti-
ties.
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take value j in variable 2, and u12(ij) is the deviation from u for variables which
take both value i in variable 1, and value j in variable 2. This formulation of
the model can be extended into higher dimensions, which adds more deviation
terms and indices to the equation. The model selection process determines
which terms can be excluded from the model and still retain a valid fit.

4.1 Fixed vs Random Zeros

In log-linear models, there are two types of zeros that can appear in the ta-
bles. The first is due to chance - these are called random zeros and are due to
sampling. Theoretically, if we were to observe the entire population, we would
expect at least one observation to fall in these cells. Fixed zeros, on the other
hand, are due to the nature of the data and regardless of sample size, we would
not expect any observations to land in those cells. Both types of zeros are
observed in our data set.

Recall the 2× 3 class structure (Table 2). We can then create this table for
each level of confidence and transform the data into a 3× 2× 11 array. In this
fashion, we can create a table with a dimension for each observed variable in a
data set. However, high dimensional tables will be associated with more random
zeros than a low dimensional table with the same number of total observations.
In the eyewitness identification data, it is possible that we would observe a
random zero in the cell associated with ‘Target Absent’, ‘Filler Identification’,
and ‘ECL = 20’, for example. An observation of zero in this cell does not mean
that this combination of variables is impossible, but that our sample was not
large enough to capture any observations in this cell.

However, in many experimental designs, there is no designated innocent
suspect in the target absent lineups. A group of six fillers makes up the lineup,
and only ‘filler identification’ or ‘reject the lineup’ is recorded. A fixed-zero in
the table would thus arise whenever the observation can be cross-classified as
‘Target-Absent’ and ‘Suspect Chosen’. When analyzing the data in this form,
we would want to ensure that any expected value for those cells in the table
maintains a zero, as any nonzero observations in these experimental settings is
impossible.

4.2 Iterative Proportional Fitting

To fit a log linear model to the lineup data, we restrict to hierarchical models.
Hierarchical models are those models in which an exclusion of a term implies
the exclusion of all higher-order terms that would include that interaction that
is excluded. By restricting to hierarchical models, we are able to determine the
maximum likelihood estimates (MLE) for the expected values of the cells in the
contingency table. These estimates are found using the Iterative Proportional
Fitting (IPF) algorithm. This procedure is guaranteed to converge to the unique
set of maximum likelihood estimators, and we are also ensured accuracy to any
given degree of the cell estimates. It is flexible enough that we can account
for both fixed and random zeros to obtain a desired model. The algorithm is
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outlined for a three-dimensional table below.
while |fit(0)− fit(3)| > δ do

fit(1) = fit(0) ×(observedMarginal3/fittedMarginal3)
fit(2) = fit(1) ×(observedMarginal2/fittedMarginal2)
fit(3) = fit(2) ×(observedMarginal1/fittedMarginal1)
fit(0) = fit(3)

end
Algorithm 1: Iterative Proportional Fitting Algorithm

This algorithm is guaranteed to converge to the MLE for three different
sampling schemes: (1) A Poisson random variable for each cell, (2) a single
multinomial sample, and (3) a set of multinomial sampling schemes.

In a Poisson sampling scheme, we assume each cell follows a random Poisson
distribution with a different mean. Lineup data from laboratory experiments
does not follow this scheme, since the number of observations in each cell is
restricted by the total number of participants in the study and other controlled
variables. A single multinomial sampling scheme assumes the number of obser-
vations in each cell is restricted only by the total number of observations, and
a set of multinomial sampling schemes allows for the number of observations in
each cell to be restricted by multiple constraints. In our case, we want to not
only restrict the observations to the total number of participants in the study,
but also the number of target present versus target absent lineups, as well as the
number of cases which received biased instructions versus unbiased instructions.
Then, since our data is drawn using multiple multinomial sampling schemes, we
obtain the MLE’s using the IPF algorithm.

4.3 Model Selection

We describe the graphical model selection process, restricting to two-factor in-
teractions. We first proceed with the conditional edge exclusion test. In this
process, we begin with the model including all two-factor interactions. We de-
cide if the model provides a suitable fit using the likelihood ratio statistic, G2. If
the G2 statistic falls within an acceptable range, it serves as the reference point
for the remaining steps in the model selection process. If it does not provide a
suitable G2 statistic, we must examine the three-factor interaction terms. As-
suming the G2 statistic is acceptable, we remove one of the edges, and calculate
the G2 statistic for that model fit. If the fit is no longer adequate, that edge is
added to the list of necessary edges. We repeat that process for each two-factor
edge, and the result of the unconditional edge exclusion test is the set of edges
which were necessary to maintain an acceptable fit according to the G2 statistic.

This resulting model is then built upon using the conditional edge inclusion
test. The G2 statistic from the unconditional edge exclusion test is computed
and serves as the reference statistic for conditional edge inclusion test. Each
edge that was removed from the model is added back in, one at a time, and the
difference in G2 is calculated. If adding the excluded edge results in a significant
change in G2, that edge is included in the final model. This process is repeated
until we have found all significant edges.
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5 Results

5.1 Two-Dimensional Cross-Classification

First, we collapsed all other variables and looked at how well the iterative pro-
portional fitting procedure was able to fit the 2×3 classification scheme described
in section 3.

We start with the data organized into a 2×3 contingency table (Table 3 ). We
used the loglin implementation of iterative proportional fitting algorithm in R

[9]. The traditional iterative proportional fitting procedure yields the expected
values seen in Table 4 (G2 = 678.36, df=2), while adjusting for the structural
zero yields the expected values in Table 5 (G2 = .3149, df=1). Thus we see a
superior fit when adjusting for structural zeros in addition to evidence that the
independence assumption is valid for this set-up of the data.

A natural question that arises from this result is whether or not this inde-
pendence is due solely to the structural zero. It is also important to note that
the structural zero only exists in experimental data in which there is no des-
ignated innocent suspect in the target-absent lineups. In order to recommend
further use of this model, we would want to know if the assumptions still hold
for a different experimental design. We thus transform the data and treat it
as it would have been during the original ROC analysis - that 1

6 of the filler
identifications in target-absent lineups should be considered as innocent suspect
identifications, and the remaining 5

6 of those filler identifications should continue
to be treated as fillers. The resulting contingency table is shown in Table 6. The
IPF procedure produces expected values shown in Table 7 (G2 = 359.86, df=2)
and we see that the independence assumption no longer holds. This suggests
that witness choice depends on whether the lineup is target absent or target
present, which we would expect. It also suggests that more variables need to be
included in the analysis to explain the data.

5.2 Four-Dimensional Cross-Classification

One of the major benefits of ROC analysis as a comparison tool is that it
combines information about four different variables. In one graph containing
two curves, we are able to visualize

1. the Hit Rate

2. False Alarm Rate

3. Biased or Unbiased instruction and

4. Expressed Confidence Level (ECL)

Thus a successful alternative method should have the ability to include, at
minimum, the same information. We have already included (a) and (b) in the
log-linear model, as well as including the analysis of other lineup outcomes. To
include (c) and (d), we must add more dimensions to the analysis.

In the following tables, we use the following numeric notation:
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Witness 
choice

Bias Confidence
Target absent/
Target present

Figure 3: Final graphical model results

1. To represent witness choice (possible values: suspect ID, foil ID, reject
lineup)

2. To represent target status (target absent or target present)

3. To represent lineup condition (biased or unbiased instruction)

4. To represent ECL (0,10,20,...,90,100)

We approach the problem from a graphical model standpoint, and we restrict
possible models to two-term interaction and lower. To perform model selection,
we first implement an unconditional edge exclusion tests (Table 8). This test
uses a G2 goodness-of-fit test on the graphical model containing all but one of
the edges. Models that produce significant p-values suggest that any possible
model excluding that specific edge leads to a poor fit. Therefore, all edges that
fail the unconditional edge exclusion test must be included in the final model.
The entries in the table with significant p-values correspond to (1, 2), (1, 3), (1, 4)
edges.

We then perform a conditional edge inclusion test. This method also uses
a G2 goodness-of-fit test. We start with the resulting model from the uncondi-
tional edge exclusion test and compare it to a model including one of the other
possible edges. We then look at the difference in G2 between the two models
and determine if adding that edge results in a significantly better fit. As seen
in Table 9, none of the differences are found to be significant and we don’t add
any more edges. The resulting graphical model is shown in Figure 3

5.3 Robustness to Expressed Confidence Level

One of the identified shortcomings of ROC methodology applied to eyewitness
identification is the use of Expressed Confidence Level (ECL) as the threshold
for decision making. As discussed in section 3, each point on the ROC curve
represents the hit rate and false alarm rate for a given ECL. The concern for this
design comes from the variability in the expressed confidence level of the witness.
We would expect variability both between and within witnesses. That is, we
expect different witnesses to have different ECL for the same ‘true’ confidence
in a given lineup, and we also would expect a singular witness to have variability
in ECL across many different trials.
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ID Suspect ID Foil Reject Lineup
Target-Absent 0.00 329.00 272.00 601
Target-Present 367.00 132.00 100.00 599

367.00 461.00 372.00 1200.00

Table 3: Observed counts under no innocent suspect designation.

Suspect Foil Reject
TA 183.81 230.88 186.31
TP 183.19 230.12 185.69

Table 4: Expected values under in-
dependence with no correction for
fixed-zero cells. χ2 = 530.71;G2 =
678.36; df = 2

Suspect Foil Reject
TA 0.00 332.61 268.39
TP 366.86 128.47 103.67

Table 5: Expected values under
independence with correction for
fixed-zero cells. χ2 = 0.3143;G2 =
.3149; df = 1

Suspect Foil Reject
TA 55.00 274.00 272.00
TP 367.00 132.00 100.00

Table 6: Observed counts under al-
ternative organization and innocent
suspect designation

Suspect Foil Reject
TA 211.35 203.34 186.31
TP 210.65 202.66 185.69

Table 7: Expected values under in-
dependence. χ2 = 359.86;G2 =
391.73; df = 2

Excluded χ2 G2 p df
(3,4) 14.62 14.98 0.66 18.00
(2,4) 12.15 12.73 0.81 18.00
(2,3) 12.19 12.62 0.76 17.00
(1,4) 93.46 95.30 0.00 20.00
(1,3) 57.33 58.25 0.00 18.00
(1,2) 315.91 330.25 0.00 18.00

Table 8: Unconditional Exclusion Test Re-
sults. Resulting model yields the following
goodness of fit results: G2 = 15.57, df = 21,
p = 0.79

Edge ∆G ∆df P-value

(2,3) 0.16 1.00 0.69
(2,4) 0.26 2.00 0.88
(3,4) 2.51 2.00 0.28

Table 9: Conditional Edge
Inclusion Test. We con-
clude that the resulting
model from unconditional
edge exclusion test does not
change. The final model is
showin in Figure 3
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Figure 4: ‘Best’ case scenario simulation results

Through adding uncertainty intervals to the hit rate and false alarm rate in
a given ROC curve in section 3, we have addressed the issue of between-witness
variability. We now turn to within-witness variability and attempt to compare
log-linear models to ROC curves through a simulation study.

We first assume a distribution for the variability of confidence across a given
witness. Since ECL’s in our case take values 0-100 in increments of ten, we have
assumed these ECL distributions are within ±20 of the observed value. We then
simulate a new ECL for each witness according to that distribution, plot the
ROC curve, fit the log-linear model from the previous section (Figure 3) and
calculate a G2 value to summarize the fit. We repeat this simulation 1000 times
for each assumed distribution.

We tested a range of distributions, with the most optimistic distribution
simulating the same ECL 80% of the time, and simulating the ECL - 10 and ECL
+ 10 ten percent of the time each. The least optimistic distribution takes each
of the ECL values ±20 of the observed value 20% of the time. We include the
graphical results for each of these situations in Figure 4 and Figure 5 below. We
also tested assumed distributions that are both left-skewed and right-skewed.
In all cases, the ROC curves overlapped on at least a range of ECL values,
making the procedure unable to discriminate between the two lineup conditions.
However, even in the least optimistic case, the log-linear model fit the data over
99% of the time. The numeric results from all experiments are shown in Table 10.
We conclude that log-linear models provide robustness for variability in ECL in
a way that is not feasible in ROC curve methodology.
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Figure 5: ‘Worst’ case scenario simulation results

-20 -10 0 +10 +20 Ḡ2 ŝe(G2) Reject
0 .1 .8 .1 0 71.44 8.94 0
0 0.25 0.5 0.25 0 73.71 10.59 0
.1 .2 .4 .2 .1 75.20 11.92 1
.2 .2 .2 .2 .2 76.27 11.51 2
0 0 .7 .2 .1 69.78 9.68 0
.1 .2 .7 0 0 74.38 10.59 0

Table 10: Simulation results for different assumed ECL distributions

5.4 Flexibility for different experimental assumptions

As discussed before, there are often experimental designs which do not desig-
nate an innocent suspect. In these cases, it is often assumed that each filler is
identified by the witness uniformly, and the ‘suspect ID’ cell in the table is filled
with 1

Size of Lineup · Filler ID’s . This has important implications in the analy-
sis of the data, and there is a need for analysis methods that can handle the
difference between designs. This difference in cross-classification is illustrated
below.

1. Ideal Setting

ID Suspect ID filler Reject Lineup
Target Present True Positive Filler ID (TP) False Negatives
Target Absent Innocent ID Filler ID (TA) True Negatives

2. Commonly implemented in practice

17



ID Suspect ID Filler Reject Lineup
Target Present True Positive Filler ID (TP) False Negatives
Target Absent X Filler ID (TA) True Negatives

3. How this experimental design is analyzed

ID Suspect ID Filler Reject Lineup
Target Present True Positive Filler ID (TP) False Negatives
Target Absent 1

6Filler ID (TA) 5
6Filler ID (TA) True Negatives

Since this set-up assumes that each filler is chosen uniformly at random, one
question we aim to answer is whether the analysis methods are dependent on
this assumption. To do so, we arbitrarily chose different fractions to calculate
innocent suspect identifications. For instance, if we choose 1

3 , we are testing the
scenario that a designated innocent suspect is chosen 1

3 of the time, while the
other fillers are chosen 2

3 of the time.
We created a new cross-classified dataset for each of the fractions 1

6 ,
1
4 ,

1
3

and 1
2 . We then plotted the ROC curves based on this new data, then fit the

log-linear model from the previous sections and calculated the G2 statistic for
that fit. As illustrated in Figure 6, the ROC curves stretch out over more of the
FAR axis the larger the fraction is. Although this doesn’t change which curve
produces better classification results, it does have implications for calculating
uncertainty in results. We see that each fraction produces a G2 statistic from
the log linear model that is well within the acceptable range.

This suggests that while ROC analysis is impacted by a change in the in-
nocent suspect identification calculation, the log-linear model allows for more
flexibility. Whether fillers are chosen uniformly at random, or one filler is cho-
sen more often than another, the log linear model continues to fit the data well.
Note that while the graphical model structure remains the same, the expected
values for each cell may change.

6 Conclusions

We have identified shortcomings of ROC analysis in the context of eyewitness
identification experiments. Although a useful tool for evaluating 2 × 2 classi-
fiers, ROC analysis is not the right tool for the complex classification structure
associated with lineup outcomes. We have shown that depending on how the
false alarm rate is calculated, ROC analysis can lead to concluding that either
biased or unbiased lineups produce better results. As the definition of ‘False
Alarm Rate’ is not well-defined in the field, this is a troubling issue as different
research groups may make opposite conclusions based on the same results. A fur-
ther statistical issue we have examined is that of quantifying uncertainty. Once
uncertainty is added, using even the most optimistic assumptions, ROC does
not detect a difference between procedures. Since other statistical procedures
have detected differences in lineup conditions after accounting for uncertainty,
we would expect a new method of analysis to retain the power to detect these
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Figure 6: Comparison of different innocent suspect designation fractions

differences. We have also identified other quantities of interest, such as the pos-
itive and negative predictive value, which are obscured when using solely ROC
curve to analyze experiments.

As an alternative, we have proposed treating lineup outcomes as a contin-
gency table and utilizing log-linear analysis, which has been well-established
in the statistical community for other categorical data analyses. In the four-
dimensional cross-classification, log-linear analysis leads to the exclusion of two-
way interaction terms between Target status, Lineup condition, and Confidence
statement. Any further exclusions of interaction terms in log-linear analysis
leads to a poor model fit; this suggests that biased instructions interacts with
Witness choice and has an effect on lineup outcomes. We have shown that log-
linear analysis solves the statistical issues associated with ROC analysis, and is
flexible enough to be used for different lineup experiments and assumptions.

We have provided what we believe is the first attempt to address the uncer-
tainty associated with expressed confidence levels taken from the witness at the
time of identification. Through a simulation study, we have illustrated both the
robustness of the log-linear model approach and the variability in ROC curves
once this uncertainty is taken into account. We have also tested the log-linear
model under different simulated experimental conditions, where it continues to
perform well when modeling the data.

Future problems include combining results from multiple experiments into
a single log-linear model to better understand the interaction between different
lineup conditions. This analysis of eyewitness identification has also led us to
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the broader issue of the gap between psychology lab studies and implementation
in the criminal justice system. More complex experimental design and data
collection is necessary to fully understand the effect and interaction of different
lineup conditions. There is a need for data collected from the actual application
area (in this case, the police departments conducting the lineups) in order to
justify the extrapolation from laboratory results to real-world settings.

20



7 Appendix

7.1 Data

Confidence level (%) 0-20 20-40 40-60 60-80 80-100

Thief-Correct ID 9 21 50 88 54
Thief-Foil ID 12 23 36 24 10

Thief-False ID 13 40 73 61 10
Waiter-Correct ID 8 48 96 117 98

Waiter-Foil ID 12 34 44 31 11
Waiter-False ID 34 73 131 74 17

Thief-Correct Rejection 15 32 110 161 84
Thief-Incorrect Rejection 23 48 85 76 42
Waiter-Correct Rejection 26 45 76 79 46

Waiter-Incorrect Rejection 11 13 28 29 19

Table 11: Confidence statement distributions across different lineup possibilities.
[10]
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