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Abstract Introduction Data FO——
Stellar flares are massive explosions that occur in a star’s atmosphere that emit electromagnetic Motivation . Collection £ g
radiation across the entire electromagnetic spectrum. Because of this radiation's potential To observe AD Leo, we employ = 9
impact on human activities on Earth, we are interested in detecting stellar flares and being able We studying stellar flares in order to For this project, we looked at the flare star satellites with instruments capable |5 2- h]hﬂﬂﬂmmmwmm
to describe their properties. The aim of this project was to design a statistical algorithm that better understand the flaring behavior — AD Leo. AD Leo is a Red Dwarf star of class of detecting single photons as they |~ _ 7 [hadfllhTlalfhm ] lﬂTLlThIHTW
automatically detects flares from a given set of data and estimates their significance as well as of our own star: the sun. Flaresonthe M, meaning that its surface temperature is strike a detector. Our datasets come 00 ¥ 04 0 0 0
their starting and ending times. We used two avenues of analysis, exponential fitting and sun strongly influence our activities relatively cool, and that it is relatively from NASA's Extreme Ultraviolet Normalized Time
change point analysis, and merged them together to produce an algorithm which was effective here on Earth (disrupting electronics small (less than half the size of our sun). Explorer satellite in the form of lists
on our dataset. This algorithm was also tested by simulating stellar flares and shown to be and radio communications), so we have  These characteristics make AD Leo an of photon arrival times. e I
sensitive to different flare magnitudes and able to estimate the starting and ending times in a incentive to investigate flaring behavior. excellent choice for the observation of Our particular dataset consists of 8 ﬂ
biased, yet compact and precise manner. ; flares, since we can observe luminosity " | 34,444 separate photon arrival g
J changes more closely. times, covering a span in real time E S
_ of about five days. ol
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. ' . arrivals, we can see two distinct
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Basically, the algorithm compares the photon inter-arrivals of the flare events to the non-flare . Change point as a method attempts to detect local moments of change in data A more useful dataset for our E S
areas in the data. In order to make such a comparison, the non-flare arrival rates of photons . distribution. The change point function is distance based and essentially finds the project is the time between photon § Kl
must first be characterized. point in the data, where fitting different lines to each side of the division, minimizes arrivals: inter-arrival times. Ina plot | - _ W“W%J\N\MWW
In order to estimate the exponential parameter of the distribution of guiescent photon inter- | the most error. Itis appropriate for this particular problem, because in a sense a of these, the spikes show up as g N
arrival times, the influence of outliers (the flare photon inter-arrivals) must be removed. First, flaring event is a sharp deviation from the quiescent level preceding it, resulting in | depressions. 5 . B 0 15000 20000 25000 a0000 35000
the parameter of interest is calculated and based on it, the 20% outliers are omitted and then one change point and a return following the end of the flare to that quiescent level, We then smooth these data to see SN
the parameter is re-calculated. The process is done reiteratively until the estimator converges resulting in another change. the trends more clearly.
within a specified level of precision.
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' ' Though the method has its limitations, it overcomes a variety of problems in creating an
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20000 22000 24000 26000 28000 _ . automated method for flare detection. For the data of AD Leo, the identified flares synchronize
Pheton Number g’ with the visual expectation of flare start and end times.
Oncg a stable estimator .|s attalr.wed, the al.gorlthm uses this mean as.a point c?f reference and The flare’s esjumated s’Far’F and end time mar.k the boundar|e§ of a particular flare. Flare | Start Index | End Index P-Value
obtains the longest continuous intervals (in photon number) where inter-arrival times fall below An exponential model is fit over all the data in the non-flare intervals or >
the mean. observations outside of these newly established boundaries, and the Kolmogorov- 1 3367 4314 3.301x 10
The algorithm calls the change point function on the neighborhood around the first point of the Smirnov Goodness of Fit test is used to calculate the probability that the inter-arrival 2 13883 15836 7.838x107°
flare partition then another neighborhood the last point of the flare partition. Change point is times of a particular flare were generated by the fitted exponential distribution to 3 24198 28314 0
then run over the neighborhoods to find the exact start and end times of the flare. attribute a p-value to each flare.
Identified Flare on Smoothed Data
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A random number generator is For the first test, the ratio of the area of the simulated flare versus - The results show that the 90%
used to build artificial flares by the non-flare area under it was changed to range from 0.42 to 2, - sensitivity level of the algorithm
manually defining the shape of and for each 55 levels of ratio, 50 flares were created and 2 33 is about a flare/non-flare area g
the flares. The random number measured, yielding a total of 2750 flare measurements. The = 3 ratio of approximately 1. The .
approximate the defined shape scatterplot shows the median of the 50 p-values for each value of - simulation also showed that the C I :
and introduce variability in the the ratio. The red lines are smoothed representation of the 25% o estimators for the start and the onciusion
simulated data. Using the and 75% quartiles of the p-values. Sl L e e e —— end of the flares are biased by By examining inter-arrival times and taking short inter-arrivals as indicative of flaring events, the
generated datasets, two - l‘Z - a about 40 photons with a sig- algorithm runs an exponential-based parametric fitting and non-parametric change point analysis
simulation tests were con- nificant flare in a data set of in series to capture the exact boundaries of a flare. The process of partitioning the data into local
ducted, one to measure how Test 2 W 5000 photons. The distribution subsets allowed the algorithm to overcome the sensitivity of the change point function and the
sensitive the algorithm is by . : i : s _ of the start and end times is overall variability of the data, and the change point function in return complimented the
) N The second test involved creating 200 artificial flares and running S , , N : : :
calculating flare significance, : , : : . fairly compact with a 95% range exponential fitting by estimating accurate local bounds on the flare. The flares found in the data
) our algorism to find start and end times. Since these actual values =9 - ) : : : ] . :
and the other by looking at . . ~ of around 40 photons. were sustained depressions in flare inter-arrival times, and though there were three obvious
, , are set in advance when creating flares, we are able to see how o o2 . : .
estimated start and end times ) y ) : - flares found, the technique begs the question of whether other, less significant flares were
much the algorithm’s estimate differ from the real values. The 8 g ) ) , ) )
I RIEIY . : .- R = present in the data. Given the unstable nature of the star’s behavior and the variety of flare
histogram and the superposed density curve show the distribution a4 N e : e . . ]
, , ' , S morphologies, it is a question unanswerable by statistics. However, using statistics to examine
of the difference between the estimated start times and their - . MK _ . e . . N .
: e — . | . the residue of flare emissions (photons) to give insights into the activities of the actual star is
associated true values. A A SO




