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Abstract
Stellar flares are massive explosions that occur in a star’s atmosphere that emit electromagnetic 
radiation across the entire electromagnetic spectrum. Because of this radiation's potential 
impact on human activities on Earth, we are interested in detecting stellar flares and being able 
to describe their properties. The aim of this project was to design a statistical algorithm that 
automatically detects flares from a given set of data and estimates their significance as well as 
their starting and ending times. We used two avenues of analysis, exponential fitting and 
change point analysis, and merged them together to produce an algorithm which was effective 
on our dataset. This algorithm was also tested by simulating stellar flares and shown to be 
sensitive to different flare magnitudes and able to estimate the starting and ending times in a 
biased, yet compact and precise manner.

Introduction

Method: Exponential
Basically, the algorithm compares the photon inter-arrivals of the flare events to the non-flare 
areas in the data.  In order to make such a comparison, the non-flare arrival rates of photons 
must first be characterized.

In order to estimate the exponential parameter of the distribution of quiescent photon inter-
arrival times, the influence of outliers (the flare photon inter-arrivals) must be removed.  First, 
the parameter of interest is calculated and based on it, the 20% outliers are omitted and then 
the parameter is re-calculated.  The process is done reiteratively until the estimator converges 
within a specified level of precision.

Once a stable estimator is attained, the algorithm uses this mean as a point of reference and 
obtains the longest continuous intervals (in photon number) where inter-arrival times fall below 
the mean.

The algorithm calls the change point function on the neighborhood around the first point of the 
flare partition then another neighborhood the last point of the flare partition. Change point is 
then run over the neighborhoods to find the exact start and end times of the flare.

Method: Change Point
Change point as a method attempts to detect local moments of change in data 
distribution.  The change point function is distance based and essentially finds the 
point in the data, where fitting different lines to each side of the division, minimizes 
the most error.  It is appropriate for this particular problem, because in a sense a 
flaring event is a sharp deviation from the quiescent level preceding it, resulting in 
one change point and a return following the end of the flare to that quiescent level, 
resulting in another change.

The flare’s estimated start and end time mark the boundaries of a particular flare.  
An exponential model is fit over all the data in the non-flare intervals or 
observations outside of these newly established boundaries, and the Kolmogorov-
Smirnov Goodness of Fit test is used to calculate the probability that the inter-arrival 
times of a particular flare were generated by the fitted exponential distribution to 
attribute a p-value to each flare.

Simulation and Analysis

Conclusion
By examining inter-arrival times and taking short inter-arrivals as indicative of flaring events, the 
algorithm runs an exponential-based parametric fitting and non-parametric change point analysis 
in series to capture the exact boundaries of a flare.  The process of partitioning the data into local 
subsets allowed the algorithm to overcome the sensitivity of the change point function and the 
overall variability of the data, and the change point function in return complimented the 
exponential fitting by estimating accurate local bounds on the flare.  The flares found in the data 
were sustained depressions in flare inter-arrival times, and though there were three obvious 
flares found, the technique begs the question of whether other, less significant flares were 
present in the data.  Given the unstable nature of the star’s behavior and the variety of flare 
morphologies, it is a question unanswerable by statistics.  However, using statistics to examine 
the residue of flare emissions (photons) to give insights into the activities of the actual star is 
astonishing. 

Collection

To observe AD Leo,  we employ 
satellites with instruments capable 
of detecting single photons as they 
strike a detector. Our datasets come 
from NASA’s Extreme Ultraviolet 
Explorer satellite in the form of lists 
of photon arrival times. 

Our particular dataset consists of 
34,444 separate photon arrival 
times, covering a span in real time 
of about five days.

Motivation

We studying stellar flares  in order to 
better understand the flaring behavior 
of our own star: the sun.  Flares on the 
sun strongly influence our activities 
here on Earth (disrupting electronics 
and radio communications), so we have 
incentive to investigate flaring behavior. 

Data Source

For this project, we looked at the flare star 
AD Leo. AD Leo is a Red Dwarf star of class 
M, meaning that its surface temperature is 
relatively cool, and that it is relatively 
small (less than half the size of our sun). 
These characteristics make AD Leo an 
excellent choice for the observation of 
flares, since we can observe luminosity 
changes more closely.

Visualizations

In a histogram of these photon 
arrivals, we can see two distinct 
spikes.

A more useful dataset for our 
project is the time between photon 
arrivals: inter-arrival times. In a plot 
of these, the spikes show up as 
depressions.

We then smooth these data to see 
the trends more clearly.

Results
Though the method has its limitations, it overcomes a variety of problems in creating an 
automated method for flare detection.  For the data of AD Leo, the identified flares synchronize 
with the visual expectation of flare start and end times. 

Method

A random number generator is 
used to build artificial flares by 
manually defining the shape of 
the flares. The random number 
approximate the defined shape 
and introduce variability in the 
simulated data. Using the 
generated datasets, two 
simulation tests were con-
ducted, one to measure how 
sensitive the algorithm is by 
calculating flare significance, 
and the other by looking at 
estimated start and end times 
of flares.

Test 1

For the first test, the ratio of the area of the simulated flare versus 
the non-flare area under it was changed to range from 0.42 to 2, 
and for each 55 levels of ratio, 50 flares were created and 
measured, yielding a total of 2750 flare measurements. The 
scatterplot shows the median of the 50 p-values for each value of 
the ratio. The red lines are smoothed representation of the 25% 
and 75% quartiles of the p-values.

Test 2

The second test involved creating 200 artificial flares and running 
our algorism to find start and end times. Since these actual values 
are set in advance when creating flares, we are able to see how 
much the algorithm’s estimate differ from the real values. The 
histogram and the superposed density curve show the distribution 
of the difference between the estimated start times and their 
associated true values.

Analysis

The results show that the 90% 
sensitivity level of the algorithm 
is about a flare/non-flare area 
ratio of approximately 1. The 
simulation also showed that the 
estimators for the start and the 
end of the flares are biased by 
about 40 photons with a sig-
nificant flare in a data set of 
5000 photons. The distribution 
of the start and end times is 
fairly compact with a 95% range 
of around 40 photons.
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Flare Start Index End Index P-Value

1 3367 4314 3.301 x 10-3

2 13883 15836 7.838 x 10-10

3 24198 28314 0


