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1. INTRODUCTION – A “NEW RIDDLE” OF DEDUCTION

Mathematical investigation, when done well, can confer understanding. This
bare observation shouldn’t be controversial; where obstacles appear is rather
in the effort to engage this observation with epistemology. The complexity
of the issue of course precludes addressing ittout court in one paper, and I’ll
just be laying some early foundations here. To this end I’ll narrow the field
in two ways. First, I’ll address a specific account of explanation and under-
standing that applies naturally to mathematical reasoning: the view proposed
by Philip Kitcher and Michael Friedman of explanation or understanding as
involving theunification of theories that had antecedently appeared hetero-
geneous. For the second narrowing, I’ll take up one specific feature (among
many) of theories and their basic concepts that is sometimes taken to make
the theories and concepts preferred: in some fields, for some problems, what
is counted as understanding a problem may involve finding a way to repre-
sent the problem so that it (or some aspect of it) can bevisualized. The final
section develops a case study which exemplifies the way that this considera-
tion – the potential for visualizability – can rationally inform decisions as to
what the proper framework and axioms should be.

The discussion of unification (in sections 3 and 4) leads to a mathemati-
cal analogue of Goodman’s problem of identifying a principled basis for dis-
tinguishing grue and green. Just as there is a philosophical issue about how
we arrive at the predicates we should use when making empirical predic-
tions, so too there is an issue about what properties best support many kinds
of mathematical reasoning that are especially valuable to us. The issue be-
comes pressing via an examination of some physical and mathematical cases
that make it seem unlikely that treatments of unification can be as straightfor-
ward as the philosophical literature has hoped. Though unification accounts
have a grain of truth (since a phenomenon (or cluster of phenomena) called
“unification” is in fact important in many cases) we are far from an analysis
of what “unification” is. In particular, the degree of unification cannot be
usefully taken to turn upon simple syntactic criteria such as counting axioms
or argument patterns. I’ll argue that existing unification – based accounts
need to be supplemented by an account of qualitative distinctions between
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homogeneous and heterogeneous theories, between “natural” and “artificial”
predicates. I’ll argue further that in both mathematical and broader scientific
practice, rational distinctions between more and less natural properties are
made systematically. The considerations brought to bear to rationalize these
distinctions are typically more complex and varied than philosophical ac-
counts tend to recognize. But though the principles we rely on to distinguish
“natural” from “artificial” categories are varied and case-specific, they are no
less rational for all that.1 I’ll emphasize one particular consideration among
those that are important in practice: the “natural formulation” of a problem
is typically expected to befruitful (to generate further discoveries, “make
things easier” and so on).2 The later parts of the paper take up a specific
case: one among the considerations that is sometimes adduced in practice as
supporting the fruitfulness of a formulation is that it allows crucial problems
or objects to bevisualized.

The role of visual reasoning, as represented by Artin’sGeometric Alge-
bra, is complicated in some cases where mathematical axioms and basic cat-
egories are chosen. This section is meant also to serve a particular dialectical
function. Considerations like “fruitfulness” and especially “visualizability”
are sometimes classed as “merely subjective” or “merely psychological” or
“merely pragmatic”, and therefore not of genuine epistemological signifi-
cance. This dismissive position can gain an initial force because, of course,
some cases where diagrams are preferred, or where “fruitful” techniques are
recommended,are epistemologically uninteresting. One point the conclud-
ing case study is meant to illustrate is that the most interesting cases are
simply too systematic and far-reaching to be shrugged off in this way. “Vi-
sualizability” is a more intricate and more methodologically interesting the-
oretical property than it seems on a cursory analysis. A similar point holds
for the more general case of “fruitfulness”: on examination it turns out to
be so extensively and systematically embedded in our theoretical practices
that to dismiss it on the grounds that it is “psychological” / “subjective” /
“pragmatic” is tatamount to a global skepticism of the “why should our best
theories be true?” variety. (Since this is everyone’s problem, it is not specif-
ically a problem for the student of visualization or fruitfulness.)

The first section is devoted to spelling out why I think these questions are
urgent for the student of methodology and why I am approaching it in just
the way I am. First I’ll note a key historical motivation that will otherwise
serve as an unarticulated background point of reference: the mathematical
revolution initiated by Riemann in the nineteenth century. The rest of the
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section discusses some of the issues the Riemann’s revolution in mathema-
tical style raises, to bring out how systematically embedded in mathematical
practice these methodological issues are.

2. UNDERSTANDING AND EXPLANATION IN MATHEMATICAL
METHODOLOGY: THE TARGET

2.1. Riemann vs Weierstrass: a classic opposition

Toward the end of the nineteenth century, developing into the twentieth, and
in some ways continuing to the present, a division emerged in the proof
methods in complex analysis that raises compelling questions for mathema-
tical methodology. One approach, whose driving force was Weierstrass, was
broadly computational in its outlook: it aimed at finding explicit representa-
tions of functions and explicit algorithms to compute their values. The other,
initiated by Riemann, has appropriately been called “conceptual”: it aimed to
describe functions in terms of general properties, and to prove indirect func-
tion existence results that need not be tied to explicit representations.3 The
ramifications of this split were (and remain) far-reaching. In the words of the
only philosopher to have discussed this development in print: “Mathematics
underwent, in the nineteenth century, a transformation so profound that it
is not too much to call it a second birth of the subject – its first having oc-
curred among the ancient Greeks. . . ” (Stein (1988)) There were differences
in what proof techniques were counted as acceptable, in what connections to
physical applications were available, in which generalizations were natural,
and even in what definitions were accepted for the basic objects of study.4

The opposition persisted through several other changes in the mathematical
scene and in some respects continues to this day.5

This work defined the mathematics of the late nineteenth century and on-
ward. It was so central to the development of contemporary mathematics that
it is a challenge to the philosopher, as an analyst of mathematical method,
to give an account of what was at stake.6 This prompts a second challenge:
once it is granted that these developments are of philosophical importance,
it requires work to find a philosophical niche to put them in.

The historical details and philosophical overtones in the development
of complex analysis are too complicated to be addressed in a single paper;
this paper is one installment in a divide-and-conquer strategy of slicing the
problem into parts. This installment will deal with the questions induced
by the following observations: A) among the points of separation between
the Riemann and Weierstrass approaches are a cluster of considerations that
could reasonably be described as constituting different ways ofunderstand-
ing the subject–matter of complex analysis.7 B) Among the motives for the
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Riemann style is that it proved, and has continued to prove,fruitful both in
facilitating the solution of given problems and in unearthing new important
problems. C) The fact that Riemann surfaces (the basic context for analysis
in the Riemann style) allow complex functions to be easilyvisualized was,
and remains, a contributor to the fruitfulness of the Riemann approach.8 To
keep the discussion relatively simple and independent of specialized back-
ground, I’ll set the motivating case of complex analysis aside, and address
the phenomenon of styles of understanding proving fruitful, with special ref-
erence to visualization as a contribution to that fruitfulness in connection
with more elementary and tractable examples.9

2.2. Understanding as an objective guiding mathematical investigation

This methodological analysis is given a special urgency by the observation –
widely accepted by those familiar with the events – that in Riemann’s work
an entirely new style of mathematical thinking appeared, one that (in dif-
ferent subspecies corresponding to different interpretations of the style) has
come to be part of the core of contemporary mathematics. In this connection
it will be useful to glance at a discussion of some distinctive characteristics
of twentieth century mathematics, as they were perceived by Hermann Weyl
(who, of course, was right in the middle of this research).

We are not very pleased when we are forced to accept a mathe-
matical truth by virtue of a complicated chain of formal con-
clusions and computations, which we traverse blindly, link by
link, feeling our way by touch. We want first an overview of
the aim and of the road; we want to understand theidea of the
proof, the deeper context.

. . . Minkowski contrasted the minimum principle that Ger-
mans tend to name for Dirichlet. . . with the true Dirichlet prin-
ciple: to conquer problems with a minimum of blind compu-
tation and a maximum of insightful thoughts. It was Dirichlet,
said Minkowski, who ushered in the new era in the history of
mathematics. (Weyl, 1995, p. 453)10

In the essay Weyl contrasts the topological style for approaching Rie-
mann’s results – which he takes to be an orthodox descendant of the original
Riemann function theory – with algebraic approaches to the subject.11 (Both
approaches are seen as possessing different, contrasting strengths.) Weyl
echoes some of the themes noted above, singling out fruitfulness as a crite-
rion marking the “natural” generalizations:
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What is the secret of such an understanding of mathematical
matters, what does it consist in? Recently, there have been at-
tempts in the philosophy of science to contrast understanding,
the art of interpretation as the basis of the humanities, with sci-
entific explanation, and the words intuition and understanding
have been invested in this philosophy with a certain mysti-
cal halo, and intrinsic depth and immediacy. In mathematics,
we prefer to look at things somewhat more soberly. . . . I can
single out, from the many characteristics of the process of un-
derstanding, one that is of decisive importance. One separates
in a natural way the different aspects of a subject of mathe-
matical investigation, makes each accessible through its own
relatively narrow and easily surveyable group of assumptions,
and returns to the complex whole by combining the appro-
priately specialized partial results. This last synthetic step is
purely mechanical. The great art is in the first, analytic, step
of appropriate separation and generalization. The mathemat-
ics of the last few decades has revelled in generalizations and
formalizations.But to think that mathematics pursues gener-
ality for the sake of generality is to misunderstand the sound
truth that a natural generalization simplifies by reducing the
number of assumptions and by thus letting us understand cer-
tain aspects of a disarranged whole. Then it is subjective and
dogmatic arbitrariness to speak of the true ground, the true
source of an issue. Perhaps the only criterion of the natural-
ness of a severance and an associated generalization is their
fruitfulness. (Weyl (1995) p. 454-455 emphasis mine)

Among the many things in these remarks is: Weyl associates understand-
ing with the unification of “aspects of a disarranged whole”. I’ll revisit this in
connection with theories of explanation later. In this section I’ll set that point
aside, and concentrate on the idea of understanding and the indicated con-
nections to assessments of “naturalness” and “fruitfulness”. It is of course
a truism that in mathematical practice we seek understanding, not just logi-
cally cogent argument. A characteristic case is described by Michael Atiyah
in these words:

I remember one theorem that I proved, and yet I really couldn’t
see why it was true. It worried me for years and years. . . I
kept worrying about it, and five or six years later I understood
why it had to be true. Then I got an entirely different proof. . .
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Using quite different techniques, it was quite clear why it had
to be true. (Atiyah, 1984, 305)

A proof or proof sketch can give cogent grounds for believing a claim,
but it might fail nonetheless to provide the sort of illumination we can hope
for in mathematical investigation. It is not unusual, nor is it unreasonable, to
be dissatisfied with a proof that doesn’t convey understanding and to seek an-
other argument that does. Sometimes one proof may be counted superior to
a second even though both proofs are carried out within the same theoretical
context (same definitions, primitive concepts, formal or informal axiomatic
formulations, etc.) In other cases, notably those I want to consider here, the
advantages of one argument over another appear to derive partly from the
definitions and/or axioms in terms of which they are framed.12

One among the many reasons accepted in practice for preferring one
formulation over another is that one way of framing and addressing a topic
can be more fruitful than another. When a formulation (set of definitions
or axioms, etc.) is found to be fruitful, this fact often is taken as evidence
that the formulation in question is the “natural” one, that the problem or
subject is properly understood when it is set up this way.13 Moreover, it
is generally a necessary condition on a principle or definition proposed as
natural that it support interesting new proofs.14 Though it is difficult to lay
out with draftsman’s precision what “fruitfulness” is, the effort to devise
fruitful ways of setting up problems and topics is part of what constitutes
mathematical activity and makes it valuable to us.15

Whether or not a framework is “fruitful” is something that must be borne
out by the facts, in the long run. This was a test passed by the Riemann ap-
proach to complex analysis: as devices for visually representing complex
functions Riemann surfaces were indeed helpful, but they would have been
relegated to the marginal shelf labeled “mere handy tricks” had they not con-
sistently, systematically, and in unexpected ways continued to facilitate un-
derstanding and discovery. When they continued to bear fruit in novel and
unexpected ways they were stably accepted as the proper context in which
to study the functions of interest to complex analysis, as “not merely a de-
vice for visualizing the many-valuedness of analytic functions, but rather an
indispensable essential component of the theory; not a supplement, more or
less artificially distilled from the functions, but their native land, the only soil
in which the functions grow and thrive.” as Weyl put it elsewhere.16

That is: if it is judged that some framework or theoretical context is “the
right one” because it is judged to confer understanding in a way that facili-
tates the solution to important problems, the judgement isrevisable. Subse-
quent investigation can reveal that the framework provided just the illusion
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of understanding, if its advantages prove short lived or one – dimensional
while another framework is more flexibly fruitful in the long run.17 This ob-
servation helps address a worry that is especially favored by Wittgenstein en-
thusiasts: the worry that an assessment of “being right” will be empty if there
is no independent criterion of success – if there is no difference between “be-
ing right” and “seeming to be right”. That might seem to be a problem here
if we concentrate solely on the psychological sense of “naturalness” that can
be generated by placing a problem in its “natural” context/finding the “natu-
ral” formulation. But there is more to being the “proper” context/formulation
than just generating that feeling: innovation and proof of important results
must be facilitatedin practice, over the long haul.

What is “natural” about a “natural” formulation typically must belearned:
it will not be obvious on a simple inspection of the formulation.18 The nat-
ural formulation need not be the one that is most initially attractive to the
untutored. This runs counter to a suggestion that has been advanced, and
which has some initial plausibility, that to understand a problem or concept
is to reduce it to terms that are already familiar.19 In many of the most inter-
esting mathematical examples (Riemann surfaces in complex analysis, pro-
jective geometry for the study of (inter alia) conic sections, scheme theory in
algebraic geometry, and much else. . . ) what is counted as “understanding”
is achieved by reformulating familiar problems in terms which are initially
strikingly unfamiliar.

Another related point – one that will be crucial in section 3 and 4, and
will be explored in connection with an example in section 5 – is that these
judgements of “naturalness” and the like arereasoned. It is not just some
brute aesthetic response or sudden, irrational “aha!” reaction that brings
about the judgement that – for example – “the scheme is the more natural
setting for many geometric arguments” (Eisenbud & Harris, 1992, 5) or that
the Artin framework considered in section 5 is “the proper setting for many
problems in linear algebra.” (Hughes & Piper, 1973, 285).20 Quite the con-
trary: elaborate reasons can be and are given for and against these choices.
One job facing the methodologist of mathematics is to better understand the
variety of reasons that can be given, and how such reasons inform mathema-
tical practice.

This factual observation should be beyond controversy: reasoned judge-
ments about the “proper” way to represent and prove a theorem inform mathe-
matical practice. I have found that more contention is generated by the dis-
ciplinary classification of the study of these judgements and the principles
informing them: is thisphilosophy, or something else, like cognitive psy-
chology? It is hard to frame this worry precisely, since it inherits all the
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unclarity of what, precisely, philosophy is. Much of the rest of this paper
will tacitly address the issue, but in addition I should say a few words di-
rectly.

The point of contention is the classification of advantages of theories
that appear to depend on psychological facts about the people who use the
theories. There seems to be a relatively widespread view that a property
of a theory must be “objective” to be the proper object of a philosopher’s
attention.21 (I should note explicitly that I am not endorsing this view, but
only reporting that it is widespread enough that it needs to be confronted.)
The relevant sense of “objective” is hard to pin down precisely, but one as-
pect of the idea seems to be that for an advantage to be “objective” in this
sense it must be an advantage for every possible inquirer. “Subjective” fea-
tures of theories – it is maintained – are someone else’s problem.22

This sort of objection might seem to be an obstacle here. No doubt ex-
traterrestrial beings with different wiring in their brains might differ from us
on what formulations of problems are “most natural”, and would discover
that different ways of setting up problems would be most fruitful, and bet-
ter at facilitating discovery or “making things easier”. And there aresome
cases where mathematicians display nearly uniform preferences that do in-
deed seem to be of interest only to the student of psychology and not the
student of method. The use of “z” as the variable of choice for complex vari-
ables is so entrenched it can be distracting if a different letter is chosen, but
that is hardly a deep and interesting point of method. Using yellow paper
rather than white may reduce fatigue and hence foster creativity, but that is
not the methodologist’s concern.

But while acknowledging thatsome cases should be shunted into the
“not philosophically interesting” scrap yard, it would be a mistake to ig-
nore them all. The situation is similar to the (more widely recognized) one
that faces us when evaluating the role of judgements of “simplicity” in gen-
eral philosophy of science. The assessments of simplicity or fruitfulness we
make would no doubt be different if our brains were wired differently, and
this would affect the mathematics and science that we produced, but still
the judgements we actually make are too systematically embedded in our
actual practices to be simply shrugged off in studies of either scientific or
mathematical method.23 The advantages and shortcomings of the Riemann
approach to complex analysis as opposed to the Weierstrass approach is just
one among many concrete examples that illustrate and anchor the point.24

The reasons that can be cited for the preferences are so far – reaching and
systematic that to set the issue aside as philosophically insignificant would
be to abandon altogether the hope of a philosophically satisfying account
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of mathematical method. Given the thoroughness with which mathematical
method is intertwined with physics, this would be tantamount to conceding
defeat to skepticism of the global “Why should we think our best theories
are true?” variety. Here and in the coming papers of this series I’ll spell
out why we need not make such a drastic sacrifice: if not a refutation of de-
mon skepticism, we can at least get a better sense of what makes our best
mathematical theories deserve the status of “best”.

2.3. Visualization as factor in mathematical reasoning

In my opinion, a well-balanced introduction to topology sho-
uld stress its intuitive geometric aspect, while admitting the
legitimate interest that analysts and algebraists have in the sub-
ject. . . I have followed the historical development where prac-
ticable, since it clearly shows the influence of geometric tho-
ught at all stages. This isnot to claim that topology received its
main impetus from geometric recreations like the seven bridg-
es; rather it resulted from thevisualization of problems from
other parts of mathematics – complex analysis (Riemann), me-
chanics (Poincar´e) and group theory (Dehn). (Stillwell (1993)
vii emphasis in original)

One among the many reasons that can be (and sometimes is) cited for
formulating a subject in one way rather than another is noted in the quoted
remarks: the ability to visualize can be among the factors that shape a sub-
domain of mathematical practice. To avoid unnecessary controversy it is
important to see that the importance of visualization in mathematical rea-
soning can be explored without making any assumptions about the nature
of visualization itself. We don’t have to answer the question of just what
visualization is, or take a position in the now classic debate among cogni-
tive scientists and philosophers of mind about how to make sense of talk of
mental imagery.25 We don’t need to address what it could mean to liter-
ally “form a picture” of an infinite dimensional figure or a Klein bottle. All
that will be needed here is the observation that we have enough of a na¨ıve
grip on the notion of visualization or pictorial representation to acknowledge
that whatever such representation may ultimately amount to, in mathemati-
cal practice there are cases where people try to “visualize” (whatever we may
be doing when we do that), that such visualization often is helpful, and that
this often informs mathematical practice (more often in some fields than in
others).26 (This should not be philosophically contentious: it is just a factual
observation about the methods and theoretical preferences of many working
mathematicians and amateurs.)
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As mentioned above, this aspect of mathematical activity has tended to
be ignored by philosophers, in part because of a sense that the phenome-
non is accidental, or “pragmatic” or “subjective” or “psychological” in ways
that make it philosophically uninteresting. This response is reinforced by the
simple fact that a large number of examples in which visual representation
in diagrams assists reasoning and problem-solving, really are uninteresting
to the student of methodology. It has been well-known to memory system
designers from medieval times that it can be easier to remember information
if one can visualize or draw some table of pictures to list the information.27

In such cases, the fact that visualization is involved might not be particularly
interesting for the present purposes. Cases like this are ubiquitous in math-
ematics too. As an example, consider these two ways of representing the
multiplication table for octonions.28 Here is the multiplication table (with e1

= 1):

e2 e3 e4 e5 e6 e7 e8

e2 −1 e4 −e3 e6 −e5 −e8 e7

e3 −e4 −1 e2 e7 e8 −e5 −e6

e4 e3 −e2 −1 e8 −e7 e6 −e5

e5 −e6 −e7 −e8 −1 e2 e3 e4

e6 e5 −e8 e7 −e2 −1 −e4 e3

e7 e8 e5 −e6 −e3 e4 −1 −e2

e8 −e7 e6 e5 −e4 −e3 e2 −1

This is a lot to absorb. To assist the memory there is a standard picture.
The connecting lines, including the curved lines mark out the products.29

e2

e4

e3 e7 e5

e6

Unquestionably it is helpful to picture the multiplication operation of the
octonions this way. However, the visual representation in a diagram might
plausibly be said to functionsolely as a memory aid. That is, it might be that
the sole advantage gained from the visual representation in this case is that
most people just happen to find information easier to recall if it is encoded
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into pictures of this kind than if it isn’t. It isn’t an implausible suggestion
that it is an accidental feature of our cognitive makeup that memory can be
thus facilitated by visualization. If so, there might not be any philosophi-
cally interesting consequences to the fact that people generally have a strong
preference for the visual arrangement over the tabular one.30

I think that is the right thing to say in this case, and in many others like
it.31 The advantage gained by the diagram of the octonion table is one-off;
it has no interesting systematic connections to anything else. Most signifi-
cantly, the availability of the diagram doesn’t correspond to anything deep
about the basic concepts or proof methods used in the study of the algebraic
structure represented. The point here will be that this case is a misleadingly
simple exemplar. The function of visualization is much more intricate and
systematic in cases like the Riemann approach to complex analysis. This, of
course, is not so much an answer as a gesture in the direction of an answer: if
the Riemann approach is different, we should be able to spell out how. This
paper is a first step toward meeting that challenge.

One point that is worth noting is that the advantages of the diagrammatic
representation of the octonions table seem to beessentially visual: the dia-
gram helps because visual perception is an especially vivid mode of cogni-
tion, and the visual arrangement of the table allows it to be easily “taken in at
a glance”. The cases that interest us here are more complicated: though Rie-
mann surfaces (for instance) admit of visual representation in a particularly
straightforward way, the fruitfulness of this theoretical context for complex
analysis persists even if diagrams are eschewed altogether. One might put
the situation this way: there is a mode of organizing the subject which is
especially natural, and whichhappens to connect to visualization in a direct
way, but the mode of organization is theoretically valuable even without the
essentially perceptual features like the vividness and immediacy of repre-
sentation in diagrams. That is, the connection to vision is an intriguing and
useful bonus, but the issues raised by the Riemann – Weierstrass opposition
are of interest independently.

The distinction between the contexts of discovery and justification might
also be suggested to apply here, since theoretical formulations count as “fruit-
ful” at least partly because of how they facilitate the discovery of proofs.32

It could be suggested – in line with the usual appeals to this distinction –
that fruitfulness is only of interest in the “context of discovery” and that only
what matters to the context of justification is relevant to epistemology, so
once again these issues are someone else’s concern. This issue is compli-
cated and I can only indicate the shape of the answer here, deferring a more
extensive discussion for elsewhere.33 In brief, this is a case where the context
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of discovery/context of justification distinction blurs. The preferred, fruitful
formulation isnot generally dispensable in the “context of justification” be-
cause there might notbe any proofs available that do not use the fruitful
formulation.34 35

It will help us sharpen the issues to look for a philosophical niche served
up by treatments of explanation and understanding in the natural sciences,
since these have been extensively addressed. It will be especially helpful to
consider the treatments of explanation and understanding as bound up with
theoretical unification. I’ll argue that these accounts are correct only with
revisions and qualifications, but following out a presentation of the view and
some of its obstacles will be a useful springboard. This will be the goal of
the next two sections.

3. UNDERSTANDING, UNIFICATION AND EXPLANATION –
FRIEDMAN

Efforts to explain and understand also guide investigation in the natural sci-
ences, and mathematical theories and methods are integral parts of these
investigations. This is a truism. Even if a sharp and principled divide be-
tween “applied mathematics” and “pure mathematics” can be marked out, it
is unlikely that it would be so stark as to exclude unifying methodological
themes. So it makes sense to try to compare explanation and understanding
in science and mathematics.

Of course, there is a crucialdisanalogy. The propositions to be explained
in mathematics are not contingent, and so we can’t appeal to the plausible
and widely accepted suggestion that the explanation of an event provides part
of the causal history of that event. If the plausible suggestion is right, then
whatever is involved in mathematical explanation and understanding must
differ from what is involved in at leastsome cases of scientific explanation
and understanding.36 This is not a problem here: Igrant that the words
“understanding” and “explanation” are probably not used unambiguously to
pick out a single uniform phenomenon, and I agree that many things that are
properly called explanations appeal essentially to causal ancestry. However,
mindful of the fact that some explanations in physics and mathematicsdo
seem to be governed by the same principles, I’ll count it as an advantage of
an account that it supports a uniform treatment of some mathematical and
some physical explanations.

A promising candidate to support a uniform treatment of some pure
mathematical cases and some non-mathematical ones is the treatment of ex-
planation as unification as proposed in the seventies by Michael Friedman
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and Philip Kitcher. In this section I’ll pass through Friedman’s now clas-
sic account in his (1974). Friedman embraces the suggestion that in at least
some important cases, to provide an explanation of an event is to provide the
resources to understand that event, and motivates his account accordingly. A
further reason for considering Friedman’s treatment here is that he states ex-
plicitly a requirement that we noted earlier: accounts of understanding must
be objective. Scrutiny of the way that Friedman understands this condition
will help clarify what is at issue.

This discussion aims to shore up these two points: a) The unifications
that are regarded as valuable in practice involve some kind ofqualitative ad-
vance, by producing a theory that is comparatively homogeneous to subsume
two or more theories that had appeared heterogeneous. Mere reduction in the
number of axioms or basic principles is typically not at issue. B) The con-
ception of “objectivity” that motivates Friedman’s account has to be relaxed
in order to be true to the kinds of example that make unification accounts
plausible. I’ll suggest that Friedman’s desiderata are actually better served
by effecting something of a rapprochement with the view of Stephen Toul-
min, which he examines and rejects.

3.1. Friedman: understanding as “objective”

The core of the Friedman approach is the compelling observation we’ve al-
ready noted, that often it is an important advance to bring about a unification
of theories or hypotheses that had previously seemed disparate, by crafting
a single theory or hypothesis that subsumes both. There are famous cases in
which such unification appears to have been a clear advance: two prominent
examples are Newton’s unification of terrestrial and celestial mechanics and
the unification first by Maxwell, and then within relativity theory, of electric,
magnetic and optical phenomena. The prospect of a super theory encompass-
ing quantum mechanics and gravitation is recognized as a motivating objec-
tive of current physical research. Looking back to the Riemann – Weierstrass
contrast with which we began this study, we find different variations on this
motif marking out Riemann’s style. Riemann’s approach to complex func-
tion theory admits of a variety of points of view in part because he effected
a unification of complex function theory with the theory of complex curves
and surfaces. Also, on a smaller scale, the “proper” choice of unifying def-
initions and basic principles was regarded by Riemann’s contemporaries as
one of the hallmarks of his work. A particularly clear expression appears in
these words of Casorati:

We believe that it is truly admirable with what assimilating
power [Riemann] knew how to gather and establish in some
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compact, simple, and general theory, together with his own,
all of the other studies that had an important relation to them.
Of particular importance were Cauchy’s many studies, spread
over numerous publications, which were conducted with dif-
fering purposes and often wrapped in a heterogeneous variety
of terms and special notations. . . . In paricular it is especially
worth observing how Riemann always sets up his own conven-
tions and definitions in such a way that every theorem can be
stated as true without exception, or how many formulas and
theorems ordinarily thought to be different from each other
can be united in a single formula or theorem. (Casorati (1868,
140 note 2); quoted in (Bottazini, 1986, 218)).

Though it is open to dispute whether such advances are reasonably de-
scribed as “explanations”, it is clear that they are successes, so I’ll treat it as
uncontroversial that unification (whatever it may amount to in the final anal-
ysis) does represent an objective implicit in scientific practice.37 What will
be at issue is the question of how to analyze these acknowledged successes.

Friedman argues that there is an irreducible advantage to reducing the
number of facts that have to be accepted as “brute facts”.38 Friedman faces
the elementary problem that we can reduce the number of axioms in any
theory generated by a finite collection of axioms A1 . . . An just by taking as
a single axiom the conjunction A1&. . . &A n. But of course this wouldn’t be a
theoretical advance. Friedman refines the idea of reducing basic premises by
introducing a characterization of premises as “independently acceptable”. A
successful unification, on his account reduces the number ofindependently
acceptable premises.

Friedman’s treatment doesn’t seem to hang together unless a purelya
priori delineation of “dependent” and “independently acceptable” can be
worked out. Friedman’s efforts to craft a technical definition of “indepen-
dently acceptable” foundered on straightforward counterexamples, the ini-
tial efforts at patching the theory foundered on further counterexamples, and
nothing much has been done to revive this part of the account in the last cou-
ple of decades.39 In light of this I’ll regard Friedman’s theory in this specific
form as untenable. But it will be useful for diagnostic purposes to set aside
this problem: let us say for the sake of argument that we have managed to
fix which propositions are acceptable independently of which others. Even
so, Friedman faces the problem of distinguishing thevaluable syntheses that
can plausibly be called “explanations” or “advances in understanding” from
those that cannot.
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By unifying the theories of electricity and magnetism, Maxwell brought
together two theories that had previously seemed to govern differentkinds
of phenomena. But there is no reason to expect that the new, more encom-
passing framework of electromagnetism had fewer axioms. Say that in some
canonical axiomatisation, Maxwell’s electromagnetism had twelve axioms
and the two theories it replaced had just four each. So what? Would we
cease to regard Maxwell’s electromagnetism as a successful unification if
we discovered, upon actually doing the count, that it had more axioms than
the total axioms of the theories it replaced?40 Similarly, if relativity theory
and quantum mechanics were to be brought together into a single homo-
geneous theory, we would hardly reject the unified theory, or regard it as
a regressive, non-explanatory step, if it had an independent axiomatic ba-
sis with more sentences than the theories it subsumed. In short, reducing
the number of axioms need not increase understanding and increasing the
number of axioms need not detract from understanding.41 We need to focus
not on the number of axioms but rather on what makes a given theory more
homogeneous than just the conjunction of the two that it subsumes.42

Mathematical examples are worth adding, to be consistent with the theme
that the relevant issues arise in both mathematics and natural science. In a
classic paper (1882), Richard Dedekind and Heinrich Weber produced a uni-
fied theory of algebraic functions of one variable and algebraic numbers.43

It would be hard to overstate the importance of this work; much of the sub-
sequent development of German algebraic geometry in the first part of the
twentieth century can be traced back to this source (in both content and
style).44 Much of the jolt of this work comes from the unification of a
paradigmatically arithmetical subject (algebraic numbers) with another (one-
variable algebraic functions) that (in the Riemannian tradition Dedekind oc-
cupied) had been seen as geometric. Key insights were (as we would now put
it) that both algebraic numbers and algebraic functions can form a field, and
that the elements of these fields can be analyzed in terms of ideals, and many
of the crucial properties of both can be seen to depend just on this.45 (In
identifying the concepts of field and ideal as crucial, we can now recognize
that Dedekind and Weber were backing winners. As the subsequent history
has borne out, few concepts can rival these for fruitfulness within mathemat-
ics.) The uniform treatment of two apparently disparate subjects (achieved
in this case by general argument patterns exploiting a “truly central” idea)
gives a provisional credibility to the idea that the concepts involved, within
the theoretical framework as a whole, really laid out what is going on. (The
provisional credibility was, of course, ratified by subsequent research.) Once
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again, this advantage is completely disconnected with any issue of how many
axioms might be involved in the unifying theory.46

This is borne out by the account of Dedekind’s algebraic work in the
Weyl (1995) essay mentioned above. Weyl does say, in one quote given
above that “a natural generalization simplifies by reducing the number of as-
sumptions and by thus letting us understand certain aspects of a disarranged
whole”. But Weyl’s subsequent discussion reveals that these remarks should
not be understood in terms of a reduction of axioms. In the detailed analyses
of Dedekind - style approaches to the theory of algebraic functions of one
variable that form the main body of Weyl’s essay, the idea of “reduction”
in play is conceptual, in the sense that propositions incorporating a variety
of apparently disparate concepts can be reduced to claims incorporating just
one fruitful key idea: Dedekind’s concept of ideal, that “runs through all of
algebra and arithmetic like Ariadne’s thread” (1995, p.649). So far as Weyl’s
analysis is concerned, a reduction of two propositions containing a range of
heterogeneous concepts to more than two propositions framed solely in terms
of ideals would be a unification contributing to understanding. Ideal theory
is a natural framework for these problems, according to implicit and some-
times explicitly articulated criteria of “naturalness” that inform mathematical
practice. We need to address the extra qualitative condition – that the theory
doesn’t just effect a bare, gerrymandered unification but that it does so in the
right terms – before we can understand what gives the unification value and
leads mathematicians to regard it as an advance in understanding.

An example from geometry will be especially helpful in connection with
the discussion of section 5. A breakthrough in the understanding of gen-
eral geometries, and the algebraic structures corresponding to geometries,
was provided by Hilbert’s axiomatization in Hilbert (1899) (refined in sub-
sequent editions). This set out a single framework within which the range
of geometries studied up to that point could be deductively developed and
studied. However, this framework was remarkable in part for thenumber
of axioms it contained. Far from reducing the number of axioms, Hilbert
actually went out of his way to increase it: he aimed to isolate precisely
what axioms a particular theorem depended on. To this end it was impor-
tant to have available the axioms to support fine distinctions of deductive
strength.47 Consequently, even though the framework as a whole unified the
study of diverse geometries, this was not unification according to Friedman’s
analysis; indeed, on Friedman’s analysis it would be a regressive step.

The other mathematicians who set the tone at the turn of the century
seemed also to be indifferent to number of axioms, though they were alert
to differences between frameworks. Thus in his otherwise glowing review
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of Hilbert’s foundations, Poincar´e was silent on the increased number of
axioms, but he indicated one felt lack: unlike Lie’s foundations, Hilbert did
not set the idea of transformation in an important place. (Poincar´e, 1903) For
his own part, Hilbert complained of Lie’s foundations that in Hilbert’s view
Lie’s axioms were insufficiently “elementary”. The points of comparison
and contrast were solely qualitative; which of the frameworks had the fewest
axioms didn’t come into the debate at all.

I’ll turn to the broader standpoint that informs Friedman’s discussion. As
noted above, Friedman suggests that his is the only proposal among those he
considers to be bothobjective and to capture something that might fairly be
called a notion of understanding.48 Friedman appears to take “objective”
to mean something in the ballpark of “ascertainablea priori”, though it is
not clear what positive account of objectivity he has in mind. However,
it is clear what he thinksisn’t objective in his sense: the view proposed
in Stephen Toulmin’sForesight and Understanding, which Friedman calls
(uncharitably, as Friedman acknowledges) “the intellectual fashion view.” I
think this rejection is a mistake. The spirit of Friedman’s view seems to be
salvageable only if something like Toulmin’s position is grafted on, and it is
unclear why we should take this to involve any sacrifice in objectivity.

We’ll need a closer look. On Toulmin’s telling, what counts as “under-
standing” is conditioned by a broader “ideal of natural order”. The function
of these ideals that is interesting for our purposes is that they tell us when
something is in need of explanation and when it may stand unexplained.
Similarly, it colors our view of what properties are “natural” and which “ar-
tificial”. These ideals can change from one era to another. So for example,
action-at-a-distance explanations stood for a time as absurd, then became ac-
ceptable for awhile, and then became unacceptable again. Friedman objects
to incorporating this into an account of understanding because it represents
understanding as “not objective” – as depending on capricious or subjective
factors. But this is not obviously just: it depends onwhat kind of reasons, if
any, are given to support the ideal. If we take something as basic, we need
not be mute aboutwhy we take it as basic. Nor must the reasons we offer
be bad reasons just because other people in different conditions might offer
different reasons, supporting different conclusions. Quite the opposite: espe-
cially if the different conditions include different available data, as generally
they do, we shouldexpect different answers. We don’t want to say that it
is just fashion that leads us to change our minds when welearn more. Our
judgements as to what is basic and what requires explanation, and so on, are
not independent of what is known about the world, and what is appreciated
about method, at a given time. It does not impeach this observation that there
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will generally be no uniform algorithm for going from a theoretical situation
and range of evidence to some fixed range of ideals and natural choices of
basic axioms and properties. The best arguments may be highly case – spe-
cific. But they need be no less rational for all that: there is no way to tell in
advance before we consider what the specific reasons are.

The argument of Friedman’s paper has an instructive instability on this
point. Friedman acknowledges explicitly that by Toulmin’s account the cho-
ice of a particular “ideal of understanding” can typically be defended with
reasons. This (appropriate) concession is in tension with both Friedman’s
core objection and the connotation of the label “intellectual fashion view”
that ideals of intelligibility are arrived at arbitrarily or as caused by indi-
vidual or group psychology rather than adopted as rationally justified. To
be sure, Toulmin invites this uncharitable reading, as at times he appears to
both assert and deny that reasons can be given for a preferred explanatory
framework. For example, he writes:

Those who build up their sciences around a principle of regu-
larity or ideal of natural order come to accept it as self-expla-
natory. Just because (on their view) it specifies the way in
which things behave of their own nature, if left to themselves,
they cease to ask further questions about it. It becomes the
starting point for explaining other things. Yet the correctness
of a particular explanatory ideal (as we shall see) can never
be self-evident, and has to be demonstrated as we go along.
(Toulmin, 1961, 41-42)

The statement that an ideal “can never be self-evident, and has to be
demonstrated as we go along” sits uncomfortably with the suggestion that
this basis cannot be explained further:

There must always be some point in a scientist’s explanations where he
comes to a stop: beyond this point, if he is pressed to explain further the
fundamental basis of his explanation, he can say only that he has reached
rock-bottom. (Toulmin, 1961, 42)

I think it is the first of these that is truer to the facts: even when some-
thing is taken basic or fundamental, this does not preclude the possibility of
arguments for and againstregarding it as basic or fundamental, nor does it
preclude arguments for and against its truth.49 And in many of the interesting
cases (such as Toulmin’s example of magnetism in the nineteenth century)
the changes in the categories taken as central and the principles taken as ba-
sic could be, and were, provided with a detailed rationale. Again, this is
exemplified by the vicissitudes of German action-at-a-distance explanations,
in their course from rejected to accepted to rejected again over the course of
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a century.50 This was a dispute over what to regard as the basic shape of an
acceptable theory, but the proponents and opponents of action-at-a-distance
were hardly reduced to inarticulate grunts. Elaborate reasons were given on
both sides, involving appeal to reflections on general methodology and ap-
peals to the advantages of the known available theories, as well as the range
of known facts. It is hardly caprice or brute fashion if people come to prefer
a different framework when they have gathered more data and learned more,
or when they have formulated attractive theories that had previously eluded
them.

Toulmin’s (unnecessary and in my opinion regrettable) suggestion that
the basic concepts and propositions are the bedrock at which the spade of
argument is turned is (rightly) a sticking point for Friedman. It will be useful
to quote and comment on a long stretch of Friedman’s text to clarify what is
at issue:

There are many cases in the history of science where what
seems explanatory to one scientist is a mere computational de-
vice for another; and there are cases where what is regarded
as intelligible changes with tradition. However, it seems to me
that it would be desirable, if at all possible, to isolate a com-
mon, objective sense of explanation which remains constant
throughout the history of science; a sense of “scientific under-
standing” on which the theories of Newton, Maxwell, Einstein
and Bohr all produce scientific understanding. It would be de-
sirable to find a concept of explanation according to which
what counts as an explanation does not depend on what phe-
nomena one finds particularly natural or self-explanatory. In
fact, although there may be good reasons for picking one “ideal
of natural order” over another, I cannot see any reason but
prejudice for regarding some phenomena as somehow more
natural, intelligible, or self-explanatory than others. All phe-
nomena. . . are equally in need of explanation, though it is im-
possible, of course, that they all be explained at once.

Therefore, although the ‘intellectual fashion’ account may
ultimately be the best that we can do, I don’t see how it can
give us what we are after: an objective and rational sense
of ‘understanding’ according to which scientific explanations
give us understanding of the world. (Friedman, 1974, 13)

There is much in these words I agree with. I am of one mind with Fried-
man in resisting the suggestion that “some phenomena should be seen as
natural, intelligible or self-explanatory”, if this is to mean that the status of
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“natural” cannot be defended by good reasons. It was, I think, a misstep for
Toulmin to cast the issue in these ways. But we do, in practice, see some
categories and principles as “more natural, intelligible or self-explanatory”
in the sense that they are methodologically basic: they are taken as the most
reasonable principles to appeal to in addressing problems of a given kind,
or the most natural categories to employ in connection with a given subject.
That concepts and principles have this status is not inexplicable: part of the
practice of mathematics and science – part of what makes it valuable to us –
is that it incorporates reasons why the basic principles chosen are the good
ones. There can be general changes of mind, because more facts are learned,
or the theoretical situation comes to be better appreciated, or because new
problems are confronted that prompt a reappraisal of accepted techniques,
or just because people working in the field come up with some new ideas.
(Such changes in what is taken as natural and basic can, of course, also be
the result of irrational caprice, but they need not be.) If “natural” is under-
stood as here, there need be no loss of “objectivity”, and no appeal to caprice
or irrationality, in “a concept of explanation according to which what counts
as an explanation does [depend] on what phenomena one finds particularly
natural or self-explanatory.” Section 5 will deal with such a case, in which
choices are made of axioms and basic categories for good reasons.

These observations do not conflict with Friedman’s stated objective “to
isolate a common, objective sense of explanation which remains constant
throughout the history of science; a sense of “scientific understanding” on
which the theories of Newton, Maxwell, Einstein and Bohr all produce sci-
entific understanding.” Indeed, what I’ve written above even strengthens the
case for a (modified and weakened) version of the core theses that under-
standing is an objective of mathematical and natural scientific investigation
and that in some interesting cases something reasonably described as “unifi-
cation” is an important contributor to increased understanding. The quarrel
is only with the details of the analysis of “unification”: it isn’t a reduction
in the number of axioms, but something more complex. The bottom line is
that we can’t expect an account of the sort Friedman desires without con-
crete information about the reasons offered and accepted in scientific and
mathematical practice for choosing what is to count as the “natural” or “rea-
sonable” or “proper” primitive concepts and axiomatic formulations. If some
of the features of theories that make them good examples of “unification” are
more qualitative and (so to speak) “softer”, that doesn’t make them any less
real, important or objective.

To nail down the point, let’s reconsider the concepts of “field” and “ideal”.
Dedekind & Weber (1882) helped bring out what has subsequently become
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patent: these concepts are mathematically central. By contrast, during roughly
the same period, Frege developed the concept of “quantitative domain”, which
is similar to the concept of field in some respects, and which hasn’t caught
on at all.51 The definitions alone don’t make it obvious which of these would
turn out to be the best choice of a framing concept: this has to be discovered
by seeing what they can do. That field theory became central and the concept
of quantitative domain sank below the waves was not because of academic
politics or mob psychology or the whims of capricious fashion. Any work-
ing mathematician today who was introduced to Frege’s definition could give
a cogent rationale for the preference for the concept of “field” over that of
“quantitative domain” as a framing concept.

The explanation will be intricate, though. It is not just that the con-
cept of “field” is used to provemore theorems, since both concepts can be
used for the same number of theorems (i.e. infinitely many). It is rather that
field theory is needed for a striking number of “important” or “interesting”
or “central” theorems. That a theorem deserves such an honorific designa-
tion can in turn be justified in terms of some combination of the connection
to other mathematical subjects or physical applications, the importance of
further theorems, qualitative observations about what is unexpected or sur-
prising, and the like.

Other features of the concept can be invoked beyond just the results that
it supports. For example, it can be pointed out that the concept of field is nat-
urally refined into further fruitful subcases (zero vs. nonzero characteristic,
finite and infinite fields). Once again, the preferences and distinctions that
lead us to count one framework as more natural than another need not rest
on brute, inarticulate preferences or transient fashion.

In sum, to make progress in clarifying what is at issue when theories
are successfully unified, we need to learn more about qualitative features of
theories: what makes a framework, and the categories in it, “natural” and
“homogeneous” or whatever. Of course, there is only so far that a discus-
sion of whether or not a set of reasons count as “objective” in the absence
of the reasons themselves. This will of course depend on the specific case at
issue. It will be the goal of section 5 to illustrate how involved these sorts
of reasons can be in a case that is worked out in some detail. First I’ll look
more carefully at a specific touchstone: the problem of excluding gerryman-
dered predicates. This will provide the occasion to take up the potential for
visualization, as a feature of theories that occasionally (though not always)
contributes to an assessment of a category or framework as natural.
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4. KITCHER: PATTERNS OF ARGUMENT

The account in Kitcher (1976, 1982, 1989) shares with Friedman the em-
phasis on unification as an animating objective in scientific inquiry. An im-
portant point of agreement between Kitcher’s discussion and mine is in his
appreciation of the affinities between some mathematical explanations and
some natural scientific ones. He therefore sets this objective: an account
that will accurately represent explanations in both domains. (1989 p. 482)
Because of the above-noted technical problems in demarcating what is “in-
dependently acceptable”, Kitcher sets aside the suggestion that reduction in
the number of “independently acceptable” premises is the criterion for suc-
cessful unification. Rather, the goal of unification is taken to be a reduction
in the number of argument patterns. The background stance is that expla-
nation involves seeing connections among phenomena, with the degree of
unification depending on how economically this is achieved:

Understanding the phenomena is not simply a matter of re-
ducing the “fundamental incomprehensibilities” but of seeing
connections, common patterns, in what initially appeared to
be different situations. . .Science advances our understanding
of nature by showing us how to derive descriptions of many
phenomena, using the same patterns of derivation again and
again, and in demonstrating this, it teaches us how to reduce
the number of types of facts we have to accept as ultimate (or
brute). (Kitcher (1989) p.432 emphasis his)

Kitcher’s view begins with a set K, “the set of statements accepted by
the scientific community”, with a set of arguments deriving some members
of K from other members of K asystematization of K. Argument patterns are
represented as sequences of schematic sentences, with a restricted class (the
“filling instructions”) of acceptable substitutions into the schematic places.52

(So for example, an argument pattern might have one place restricted to
chemical substances, another to real numbers for arguments relating sub-
stances and atomic weights.) An explanation, for Kitcher, is an argument in
the best systematization – which Kitcher designates E(K). Already – even
before we consider the criteria of goodness of systematizations – an inter-
esting stance on explanation is marked out. According to this view, whether
or not an argument counts as an explanation is a global matter, depending
on the overall structure of the theoretical framework. Explanations are argu-
ments belonging to some class which has theoretical virtues as a class. This
leaves open a range of different possibilities, depending on what criteria of
“bestness” for systematizations are proposed.
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For Kitcher, the best systematization of K is the one that “best satisfies”
the two constraints of “minimizing the number of patterns of derivation em-
ployed and maximizing the number of conclusions generated.” (p.432) There
is, of course, an important point of agreement here; the goal of “maximiz-
ing the number of conclusions generated” is close to the goal of identifying
fruitful formulations discussed above. Also as noted above, to make sense
of comparing two sets of infinitely many conclusions, and to get closer to
actual practice, we will have to introduce some refinements, such as placing
special weight on “important” “interesting” or “deep” conclusions. But this
point will not be at issue here. Unification is thus taken to have this goal:
providing single argument schemes that apply to a variety of special cases,
with a special premium placed on keeping down the number of schemata.

As in the case of axioms, the suggested emphasis on keeping thenum-
bers down isn’t a good fit with actual practice. Quite the opposite, it is
reasonable and common to seek many different arguments for a single re-
sult, each argument exemplifying different principles and exploiting different
techniques, and giving a different theoretical diagnosis. There is no shortage
of examples; the search for novel proofs of already established results is a
standard practice. In the more profound cases (the prime number theorem,
say, or the Riemann – Roch theorem) entirely different subfields are induced
by different proofs of one result.53 This reflects the fact that successfully
identifying unifying generalities is assessed not by counting the total num-
ber of patterns but rather by the quality of the patterns themselves: Are they
the right ones (are they deep or fruitful or revealing or whatever?) Again,
it is a challenge to clarify what these qualitative desiderata amount to, but
we have to tackle them before we can count ourselves as having clarified the
goal of unification in mathematics and science.

This section will address the following points. The first subsection will
take up the suggestion that finding general patterns allows a reduction in the
number of facts taken as brute; I’ll argue to the contrary that the general pat-
terns don’t supersede the particular ones. In the second subsection, I’ll argue
that unification according to Kitcher’s pattern does occur in important cases,
but it is not an unconditional goal. Additional constraints – for example
that the predicates employed in reasoning are not “gerrymandered” – come
into play as well. To lay the groundwork for the final section I’ll consider
one case – graphic statics – which is especially favorable to Kitcher and in
which visualizability is one of the contributing factors to the assessment of
the naturalness of the formulation.
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4.1. Unification: General patterns and Brute Facts

The identification of the general patterns of argument doesn’t reduce the
number of “brute facts” because the general cases typically don’t supersede
the special cases they generalize. The interaction of the special and general
cases is complicated. Kitcher emphasizes the economy of thought that is
gained by identifying these general patterns of reasoning, and he should, but
it is well to realize that generality of this sort is sometimes valuable for the
dual advantage that different special cases may have specific advantages, and
the ability to shift back and forth gives problem-solving advantages. Further-
more, when you have a single pattern of argument unifying two domains, the
pattern might be useful for different reasonsin each: it might generalize in
different directions or admit different fruitful modifications in different in-
stances. That is, a unified general theory can be valuable in part because it
allows the systematic exploitation of residual differences.

A mathematical example – the duality of variety and ideal in algebraic
geometry – helps bring out this point.54 The example rests on the “dictio-
nary” connecting ideals in simple algebra and varieties in elementary alge-
braic geometry. It is useful to note how the process of working out this
duality is described in an intermediate – level undergraduate textbook:

In this chapter, we will explore the correspondence between
ideals and varieties. . . . [TheNullstellensatz]55 will allow us to
construct a “dictionary” between geometry and algebra, where-
by any statement about varieties can be translated into a state-
ment about ideals (and conversely). We will pursue this theme
in ##3 and 4, where we will define a number of algebraic op-
erations on ideals and study their geometric analogues. . . . In
##5 and 6 we will study [additional] more important algebraic
and geometric concepts. . . notably the possibility of decom-
posing a variety into a union of simpler varieties and the cor-
responding algebraic notion of writing an ideal as an intersec-
tion of simpler ideals. (Cox et al., 1992, 168)

Although the study of the “ideal” – “variety” duality (in contrast to the
duality in projective geometry that we’ll consider in a few pages) is not di-
rectly framed in terms of linguistic schemata, it still stands as a striking sup-
porting example for Kitcher’s picture of mathematical practice as pursuing
understanding and explanation by seeking out general argument patterns.
General arguments can be transformed into arguments in geometry or argu-
ments in algebra by systematic substitutions into general schemes. The ap-
parent qualitative difference between the subjects of algebra and (algebraic)
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FIGURE 1. y2 − x2 − x3 = 0.

geometry makes the discovered unity all the more compelling. However,
the two subjects remain importantly different. It can be a subtle question
whether a problem is more naturally addressed in one context or the other,
and the ability to shift between the formulations is itself exploited as a prob-
lem – solving strategy.56

Other, less involved examples are easy to come by. Theories of integra-
tion in the plane are indifferent to what the underlying coordinates of the
plane happen to be, but sometimes a careful choice of a specific set of co-
ordinates can transform an integral from nasty to nice.57 Another family of
simple examples appears in the birational geometry of the plane (the study
of properties of figures that are invariant under birational transformations).58

Identifying curves that are birationally equivalent turns out to yield an in-
teresting and useful theory, since certain key properties, such as the genus
of a curve, are invariant under birational transformations. But the resulting
generality does not mean that in studying these curves we should become
indifferent to the specific details. Consider for example the resolution of
singularities.59 Say that in the plane we have the curve (y2 – x2 – x3 ) = 0
(figure 1) which crosses the y-axis twice at a single point. (We count the
origin twice because it is approached in two different ways by tangents.)

It is a bit of an irritation that the intersections coincide like this, and so it
is helpful to exploit the fact that by a quadratic transformation – an especially
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simple birational transformation – the original curve can be mapped into the
parabola y2 - x –1 = 0 crossing the y axis in two distinct places (figure 2).

So, as far as the properties of birational geometry are concerned, nothing
is lost if the more convenient representative stands as a proxy for the less
convenient one. This was a simple example; the gain in order and simplicity
is of course even greater when the zeros occur in clumps from cloverleaf
patterns and such. When we know we can “blow up” singularities in this
way, the fact that we have a general pattern of argument doesn’t lead us
just to focus on the general pattern to the exclusion of specific details. The
general pattern also affords us a way of squeezing more information and
efficiency out of a good choice of special cases.60

4.2. Kitcher Unification in Practice: Projective Duality and the
Gerrymandering Challenge

As we noted above, the goal of “minimizing the number of derivations” faces
a problem analogous to that faced by the candidate goal of “minimizing the
number of premises” in Friedman’s treatment: the quantitative restriction, to
reflect actual practice, needs qualitative reinforcement. The derivations have
to be “the right kind”, the unifying framework has to be “homogeneous”
and its basic categories “natural”. The point also arises in connection with
Kitcher’s account in two ways – one historical, one philosophical. One is an
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analogue of the problem Friedman faced in defining “independently accept-
able”: some “unifications” (like logical conjunction) unify in an artificial
way that doesn’t advance understanding. Another concerns the history of
some developments in mathematics and engineering that support Kitcher’s
account, but only part way. In the examples in question (general projective
geometry, and its particular application to engineering techniques for analyz-
ing the strength of components of physical structures) we find an a striking
example of a mathematical theory being used for the explanation of physical
events, in a way that reflects Kitcher’s theory of explanation to a striking de-
gree. The availability of dual patterns of argument is explicitly marked out
as a theoretical virtue. But also, in this example, the advantages of patterns
of argument that can be exploited in multiple ways is not treated as an un-
conditioned objective: it is also constrained by the assessed “naturalness” of
the basic categories, and the fruitfulness of the framework as a whole. I’ll
take up the second point after addressing the first.

The first problem is that unification will be too easy to achieve unless
we can rule out “gerrymandered” properties as potential substitutions into
argument schemes. If there is no constraint on what can count as a property
then using a device well-known since Goodman’s (1955) it is mere sport to
come up with a theoretical unification of any two claims. Say we have two
facts we want to explain/understand:

a) A ball of uranium under conditions of extreme temperature never at-
tains a radius of ten metres.

b) Actors playing alongside chimps never win Oscars.

Here is an easy recipe to unify these theses. Let’s define:

Pxy iff x is a ball of uranium in state y or x is an actor
playing opposite y

Qx iff x is a state of extreme temperature conditions or x is a
chimp

Rx iff x has a radius of 10 metres or x wins an Oscar.

Then, from the general proposition (x)(y)(Pxy & Qy⊃∼Rx), and some ex-
tra specifications (No actor is a ball of uranium. . . ) we canderive both of
our specific theses. It isn’t difficult to set things up so that the derivations
will be instances of a single argument scheme. This will give us a unified
theory of critical mass and academy awards. We even get some unexpected,
novel verifiable predictions (though not very interesting ones) like “No ball
of uranium in a state of extreme temperature wins an Oscar”. But I expect
that it will be agreed on all sides that we haven’t managed to explain or im-
prove our understanding of either of the claims that we began with. In this
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case the artificiality of the properties defined is evident, and their disjunc-
tive character is written into the syntax of the definition. But of course we
can’t assume that spoiler predicates will always come with such a syntactic
advertisement.61 On what basis are we to distinguish the properties that sup-
port valuable unification from those that give us rubbish that isn’t worth the
effort? Kitcher is aware of this problem, and explicitly addresses a variation
on it, but his response only makes our problem more urgent:

We need some requirements on pattern individuation that will
enable us to block the gerrymandering of patterns by disjoin-
ing, conjoining, tacking on vacuous premises, and so forth.
The strategy sketched in the last paragraph attempts to dis-
guise two patterns as one, and it does so by making distinc-
tions that we take to be artificial and by ignoring similarities
we take to be real. Thus the obvious way to meet the challenge
is to demand that the predicates occurring in the schematic
sentences [and playing other critical roles] all be projectable
predicates of the language in which K is formulated. (Kitcher,
1989, p. 482)

Unfortunately, this answer loses one of the advantages of Kitcher’s ac-
count that was most attractive to us here: the prospect of a unified treatment
of mathematical and physical explanations. To the extent that we have any
grip on the idea of projectibility at all, it has only been specified with ref-
erence to empirical predictions, and it remains to be seen how we should
extend the idea to mathematical contexts.62 So Kitcher’s account of unifi-
cation is incomplete: we need to supplement it with an account of how the
range of acceptable substitutions is delineated in practice. This, of course,
gets us back to our main theme, of how in practice we ascertain the methods
of organization we will take as preferred and “natural”.

It will give us a foothold if we turn to mathematical cases that support
Kitcher’s analysis in an interesting way, though only up to a point. It is
true that uniformity of the kind he indicates has been sought, often quite
self-consciously in the history of mathematics, science and even engineer-
ing. But there is always a bottom line: if the uniform patterns don’t make
things easier, if they don’t support further discoveries, if they don’t provide
satisfying diagnoses, in short if they aren’t fruitful, then they are set aside.
A particularly illuminating example of this is embodied in the principle of
duality in projective geometry and graphic statics in the nineteenth century
and into the twentieth.

In the mid-nineteenth century, the development of projective geometry
is strikingly close to the pattern Kitcher describes.63 After extending the
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FIGURE 3. Pascal’s Theorem.

FIGURE 4. Brianchon’s Theorem.

Euclidean plane with points at infinity, reciprocal relations reveal themselves
in the theorems of the extended system. It is possible to pair up vocabulary
(“point” – “line”; “passes through” – “lies on” etc.; with induced pairings
like “circumscribes”-“inscribes” etc.) so that given any theorem in projective
geometry, the result of uniformly substituting each expression for its partner
is also a theorem. This can yield quite striking pairs, as in the canonical
examples of the Pascal and Brianchon theorems (see Figure 3 and 4):

Pascal’s Theorem: Given a hexagon inscribed in a conic section, the points
at which corresponding sides intersect all lie on a single line.

Brianchon’s Theorem: Given a hexagon circumscribed about a conic sec-
tion, the lines on which corresponding vertices rest all pass through a single
point.64

This fact induces a quite general duplication of reasoning, as the sub-
stitutions also transform proofs into proofs, so that a single schematic ar-
gument delivers two proofs in one. This feature of general geometric rea-
soning became a fundamental aspect of the discipline in the late nineteenth
century, to the extent that the standard convention in elementary textbooks
and advanced research monographs alike was to write arguments in parallel
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columns to display the dual arguments. This was an especially compelling
example because the observed logical affinities among arguments were seen
as more than just remarkable but idle epiphenomena. Duality came to be a
cornerstone of general methodology for many pure and applied geometers in
the mid-nineteenth century and subsequently. Producing theories that would
issue in such dualistic patterns was seen by some geometers working in the
area as a goal guiding the formulation of mathematical theories.65

Projective geometry and cognate fields, structured in this way in con-
formity to duality principles, are striking exemplifications of Kitcher’s ac-
count.66 But even in this highly favorable case, the issue is more compli-
cated. The self-conscious focus on producing general schemata is not an
unconditional goal. Once again it is important not only that the properties
unify but that they are otherwise the “natural” or “right” ones.

A useful illustration here is the application of projective geometry to
structural design, in the so-called “graphic statics” developed in the late
nineteenth century by Maxwell and Culmann and developed further by Cre-
mona. I will consider just the aspects of this rich history that are necessary
to the issues we’re addressing here. Fine details are available in secondary
literature.67

Graphic statics was a theoretical formulation of techniques for analyzing
engineering problems of structural reliability and strength of materials. Pro-
jective geometry is taken as the basic framework in the most ambitious and
systematic formulation, presented in Culmann’sDie Graphische Statik.68

The problems involved a range of forces and pressures on hypothetical struc-
tures. One crucial early breakthrough from Maxwell (1864) was a technique
for analyzing systems of forces in terms ofreciprocal diagrams.69 These
worked by exploiting dualities to effect simplifications in the representations
of forces acting on a structure. We won’t need any further details here, ex-
cept the key observation that this reciprocity allows complex stress diagrams
to be reconfigured into diagrams that are easier to analyze, and which often
display explicitly the desired information about stresses. Here is a relatively
simple illustration:70 (See figure 5.)

Say that the figure on the right represents a bridge in equilibrium with
downward forces W1, W2 and W3 and upward reactions A and B. The lengths
of the lines represent the magnitude of the forces and the direction of the ar-
rows mirror the direction of the forces. The stress diagram is the closed
figure on the left. It will suffice for our purposes here to consider just one
application to illustrate the technique. We can obtain the force on the partic-
ular support marked s by measuring the corresponding line s’ on the stress
diagram. One thing we can learn even without measuring is that the line t’
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FIGURE 5.

corresponding to t in the original diagram is far shorter than s’, reflecting the
fact that the stress on s is much greater than that on t. (s’ and t’ are the lines
between the circled points.) So if s and t are made of the same material and
have no flaws, and the structure collapses because of s buckling, we can read
off of the diagram a (defeasible) answer to the question “Why did s buckle
rather than t?”.

This example is satisfying from Kitcher’s perspective not just because
of the global role of duality in shaping the framework.71 Note also that the
preferred theoretical formulation doesn’t distinguish between physical and
mathematical situations. The account of (for instance) the stability of a con-
figuration is the same whether we are concerned with an abstract vector sum
or the stability of an actual bridge. It is of course an empirical question
what frameworks are adequate representations of given physical situations,
but solely mathematical/geometric criteria came into play in choosing which
among the many equivalent frameworks is to be preferred as the representa-
tion of decomposition into component forces.

This yields a compelling example in which the theoretical virtues that
led to the choice of a mathematical framework (and that consequently inform
the ideas of understanding and explanation that the framework induces) in-
fluence the explanation of physical events as well. The fact that a rooftop
can hold ten inches of dry snow, or that a cantilever bridge collapses, will
be explained not just by appeal to familiar physical properties (the weight
of the snow, the thickness of the roof, the weight of the girders, the tem-
perature,. . . ) butalso by properties of the structure that are filtered through
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the theoretical framework (the distribution of the load, the shear stresses at
critical points. . . ). What counts as an explanation here is shaped by global
aspects of the theory, rather than merely by a picture of individual events
with simple causal dependencies. So for example, the most renowned can-
tilever bridge failure of the time – the Quebec bridge collapse of 1907 – was
set in motion when a single overstressed girder buckled.72 The explanation
of why that girder buckled of course required a grasp of not only the overall
downward force and the strength of the materials but also an account of how
the cantilever frame distributed the downward force through the structure as
a whole, so as to indicate why preciselythat girder was the one to go.73

For the last two decades of the nineteenth century and well into the twen-
tieth, this was the dominant approach for studying the strength and stability
of engineering structures.74 Subsequently it was dislodged from its dominant
position for a battery of reasons, among them that engineers came to con-
front problems of greater complexity than the graphic approach could easily
address, and (more recently) because computers became more central to en-
gineering practice.75 However, our concern here is to addresswhy graphic
statics held sway over its analytical rivals during the time itdid hold sway.
Among the advantages that were noted, two are of special interest here: a)
the theoretical formulation borrowed the fruitfulness of the general projec-
tive geometry that informed the treatments of Culmann and Cremona.76 b)
the visual representations in diagrams systematically conveyed the informa-
tion in particularly vivid and effective ways; among the cited advantages
were that the visual arguments make mistakes easier to catch,77 that the vi-
sual presentation is easier to learn and teach without extensive mathematical
training78, and most importantly the graphic approach has that mysterious
but crucial theoretical advantage: it just makes things easier.79 Here too,
the latter preference cannot be just shunted off into an incidental “context of
discovery” since it shapes the terms in which justifications are given. The
graphic framework was not set aside after it did the work of spurring creativ-
ity.

This brings us to a juncture similar to the one we reached above in the
discussion of Friedman’s account. It turns out to be true that dualities of the
sort Kitcher isolates in his account of understanding have been taken to be
contributors to the fruitfulness of mathematical formulations of problems.
But even in the favorable case we are looking at, there is more going on. The
value of the unifying account is not givenmerely by the fact that there are a
variety of shared patterns (though in this case the sharing of argument pat-
terns is important). The status afforded to graphic statics as the preferred way
to address structural problems (during the period when it was so regarded)
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didn’t depend exclusively on how well the dualities of the background pro-
jective framework effected unification in Kitcher’s sense. In addition – as
the gerrymandering problem would lead us to expect – some additional con-
straints on the formulation have to be in place for the unified patterns of
argument to be seen as worthwhile.

Any case like this will be complicated, with many factors involved, but
we do have one foothold in the case of graphic statics sinceone of the princi-
ples taken to govern the theoretical formulation is stated unambiguously: it
was taken to be a selling point that the representations of forces arevisualiz-
able. The interaction between visual representation and conceptual organiza-
tion can be intricate. In particular, a survey of the textbooks of the time gives
an interesting glimpse at a fact that will occupy us in the next section: some
textbooks which were explicitly directed at laying out the valuable features
of graphic statics didn’t contain a single diagram.80 The graphic framework
remains valuable even if we do not directly exploit diagrams or visionat all.
One reason for this is that rules for vector addition of forces is built into the
principles for manipulating and interpreting the diagrams. At the time, the
abstract versions of the ideas of vector space and vector sum were still imper-
fectly worked out and not well understood. Naturally the theoretical value of
studying forces as vectors subject to rules of vector composition and decom-
position goes well beyond the value that derives from the fact that they can
be represented in diagrams. That is: some of the value of the visual presenta-
tion derives from features of the organization of information that are shared
by the diagrammatic presentation and some analytic presentations. For these
advantages the visual presentation – the fact that we cansee it in the way we
do – is incidental. This is true more generally of the projective framework
that forms the background of the Culmann – Cremona treatment of graphic
statics. Even in the abstract analytic presentation given by homogeneous co-
ordinates, where diagrams or other visual representations need not be used,
patterns of “geometric argument” are often judged to be especially acute.81

Let’s review the state of play before moving on. We began with the
challenge to clarify what was philosophically and methodologically at is-
sue in the nineteenth century revolution in mathematical thought initiated
by Riemann. We claimed a foothold in section 2 with the observation that
one type of success is recognized in both mathematical and scientific rea-
soning, and counted as a contribution to understanding: Unifying apparently
disparate phenomena within a single homogeneous framework. What was
at issue was clarifying what the valuable unifications should be taken to be.
The two candidate analyses we considered turned out to be at best incom-
plete, needing supplementation by an account of what reasons were given
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for basic principles and axioms and how preferred (“non-gerrymandered”)
categories were arrived at. This requires some appeal to an idea of “natural”
categories and principles, but contrary to what was argued by Friedman, we
do not have to set this aside as “non-objective” if the choice of candidate ax-
ioms and principles is based on good reasons. (This shifts the question of the
objectivity of the “natural” categories to the question of what the supporting
reasons are.) In classical projective geometry, especially in its application in
graphic statics, we found an example exemplifying, on a smaller scale, one
principle informing the hard case (Riemann’s complex analysis) that we set
out to approach. In some cases, a contributor to an assessment of the “nat-
uralness” of a framework and its basic categories is that the arguments and
analyses of the framework can be visualized. Finally, we noted that some of
the advantages of the visualizable frameworks we considered persisted even
when they were formulated in non – diagrammatic terms, as systems of ab-
stract analytic geometry or vector addition. This helps narrow our search:
we need to get a better sense of how this sort of indirect connection to vision
can inform our choice of theoretical frameworks.

5. ARTIN AND AXIOM CHOICE: “VISUAL REASONING” WITHOUT
VISION

Implicit in sections 3 and 4 was this answer to the problem of identifying
“gerrymandered” predicates: it may well be that there is no generala priori
principle that will divide categories into natural and artificial. But the ab-
sence of a generala priori answer doesn’t indicate that everything is caprice:
in particular cases, good reasons can be given for the choice of one frame-
work as preferred. We also considered one basis that is cited in at least some
cases: a framework can be preferred if it has a desired kind of connection to
visual representation.

A relatively tangible example of the choice of a framework is given by
the choice of axioms for a mathematical theory, which motivates the case
study of this section: the choice of axioms and basic concepts within Artin’s
Geometric Algebra (Artin, 1957). Before engaging the details we need some
ground – clearing concerning the use of the word “axiom”. Contrary to what
the expression may have meant in the past, in mathematical practice today
“axioms” are not “self – evident truths neither needing nor admitting proof.”
Most of the axioms we’ll see here are not self-evident, nor are they treated
as unprovable.82 What makes them the right candidates for axioms is that a
good case can be made that they divide up the topic in the proper way.

Artin’s volume has a polemical aspect. He is striving to revive a “geo-
metric” style of presentation, as he notes in his preface. (This is not just
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a casual remark: the preferences it indicates are followed out consistently
throughout the volume.)83

Many parts of classical geometry have developed into great in-
dependent theories. Linear Algebra, topology, differential and
algebraic geometry are the indispensable tools of the math-
ematician of our time. It is frequently desirable to devise a
course of geometric nature which is distinct from these great
lines of thought. . . (Artin, 1957, p. vi).

The specific orientation this stance involves is indicated later when Artin
indicates how an algebraic result should be restructured. Artin is discussing
the isomorphism connecting the ring of homomorphisms of an n-dimensional
vector space (over a field K) into itself and the ring of nxn matrices (with
entries from K). This isomorphism introduces two different modes of pre-
sentation, a fact upon which he comments as follows:

Mathematical education is still suffering from the enthusiasms
which the discovery of this isomorphism has aroused. The re-
sult has been that geometry was eliminated and replaced by
computations. Instead of intuitive maps of a space preserving
addition and multiplication by scalars (these maps have an im-
mediate geometric meaning), matrices have been introduced.
From the innumerable absurdities – from a pedagogical point
of view-let me point out one example and contrast it with the
direct description.

Matrix method: A product of a matrix A and a vector X
(which is then an n-tuple of numbers) is defined; it is also a
vector. Now the poor student has to swallow the following
definition:

A vector X is called an eigen vector if a numberλ exists such
that AX = λX.

Going through the formalism, the characteristic equation,
one then ends up with theorems like: If a matrix A has n dis-
tinct eigen values, then a matrix D can be found such that
DAD−1 is a diagonal matrix.

The student will of course learn all this since he will fail
the course if he does not.

Instead one should argue like this: Given a linear trans-
formation f of the space V into itself. Does there exist a line
which is kept fixed by f? In order to include the eigen value
0 one should then modify the question by asking whether a
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line is mappedinto itself. This means of course for a vector
spanning a line that
f(X) = nX.

Having thus motivated the problem, the matrix A describ-
ing f will appear only for a moment for the actual computation
of n. It should disappear again. Then one proves all the cus-
tomary theorems without speaking of matrices and asks the
question: Suppose we can find a basis of V which consists of
eigen vectors; what does this imply for the geometric descrip-
tion of f? Well, the space is stretched in the various directions
of the basis by factors which are the eigen values. Only then
does one ask what this means for a description of F by means
of a matrix in terms of this basis. We have obviously the diag-
onal form. . . .

It is my experience that proofs involving matrices can be
shortened by 50% if one throws the matrices out. (Artin, 1957,
13-14).

There is much to comment on here. First, a basic observation: The struc-
tures of matrices and of homomorphismsare isomorphic but the differences
between the structures are not, in this case, dismissed. Consider the open-
ing question Artin floats (sticking to just two dimensions, for simplicity).
Given a linear transformation of the plane with two independent eigenvec-
tors is there a way to change the basis of the plane so that the transformation
relative to that basis is representable as a diagonal matrix? There are two
different ways to arrive at an answer. Artin’s preferred approach sets up a
visualizable situation and – only when needed – appeals to an algebraic rep-
resentation of it. The second deals throughout with the computations that
can be performed in the algebraic representation.

My informal canvassing has turned up the expected result that almost
everyone is of one mind with Artin that the first of these approaches is
preferable.84 As noted earlier, this is echoed in print. In one example Hughes
and Piper (1973) speak of Artin’s framework as “the proper setting for many
problems in linear algebra.” (p.285) There are many reasons for this. First
of all, as a pedagogical observation most people find his preferred approach
much easier to grasp on first exposure, as Artin observes. There are also
gains in the most elementary kinds of economy like proof length, if Artin’s
observation that proof length can often be shortened “by 50%” is correct, as
I will take it to be. These are important advantages of Artin’s perspective
that need to be taken seriously. But there are deeper, more systematic ad-
vantages as well, which will come out as the picture unfolds in more detail.
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However, the point cannot be that pictures are an essential part of “geomet-
ric” presentation, since Artin has hardly any!85 86 There are only 6 diagrams
in a book of over 200 pages (all but one of these are meant to clarify the
axioms to be considered in a moment.)87 Rather, we find that a “geometric
language” (p.26) which facilitates certain “intuitive pictures” (p.26) and vi-
sual handwaving is developed and fleshed out with axioms, but the power of
the framework lies principally in its systematic theoretical fecundity.

The core concept of the approach is that of atransformation (or sym-
metry): the idea of moving a point from one position to another, thereby
tracing a line. (This perspective is actually much closer to some “philosoph-
ical” analyses of space and intuition than it might appear to those unfamiliar
with the tradition, but since this point will take us too far afield, I’ll leave
it to be developed in other work.88) Two axioms are set down to ensure the
basic structure of parallelism: I) given two distinct points there is a unique
line connecting them II) Given a point P and a line l, there is a unique line
parallel to l passing through P. Also there is an axiom that states that there
are three distinct non-collinear points. Given this, as Artin puts it “We can
hope for a ‘good’ geometry only if the geometry has enough symmetries.”
(Artin, 1957, 58). Hence the remaining axioms posit the existence of sym-
metries, where these aredilatations: mappingsσ such that given a line l,
the imageσ( l ) is parallel to l.89 A sub-class of the dilatations is distin-
guished: atranslation leaves no point fixed. (That is:τ is a translation if
there is no point P such thatτ(P) = P). The only dilatation leaving more than
one point fixed is the identity, which leaves everything where it is, so every
non-degenerate dilatation that isn’t a translation or the identity leaves exactly
one point fixed. (Among the reasons to regard these as reasonable choices as
basic ideas are algebraic: the dilatations form a group with the translations
as a normal subgroup.)

Thus we have the general framework: there are points and lines, and
symmetries mapping lines into parallel lines. The axioms will take the form
of statements as to the existence and properties of symmetries. Given what
we are looking for, these are the choices that suggest themselves right away:

Desargues Axiom 1:Given any two points P and Q there is a translation P
such thatτ(P) = Q.

Desargues Axiom 2:For any points P, Q and R, there is a dilatation that holds
R fixed and such thatσ(P) = Q.90
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Just by inspection we can say that these axioms certainlyseem natural, in
this framework. A deeper point, which comes out when we consider the rea-
sons for regarding the axiom as a good axiom candidate, is that these axioms
ought to seem natural: it is a strength of the framework that these axioms
come out as natural – seeming as they do. First, though, it should be noted
that the framework itself – representing the subject in terms of transforma-
tions of objects – has a compelling rationale of its own. It would require a
separate paper – a long one – to even begin to develop the manifold ways that
it has proven to be valuable to formulate a subject in terms of transformations
and invariants. From physical theories of space and time to classifications of
general geometries in the Klein program, to Galois theory and the theory
of Lie groups, and untold other areas, pure and applied, this framework has
shown itself to be a good one to choose, and the Artin framework of geome-
tric algebra inherits these bona fides.

This point is worth emphasizing in connection with efforts to cut through
the gerrymandering challenge by emphasizing elementary syntactic features
of predicates – that they are “disjunctive” for example – as reasons to ex-
clude them. This example illustrates a fairly general moral: whether or not
something admits of a simple expression is going to depend upon global fea-
tures of the framework it is studied in. In this particular case, the broader
framework of studying geometries in terms of symmetries makes the Desar-
gues axioms simple and immediate; the fact that we should treat especially
seriously things that look simple in this particular framework is not justified
by anya priori argument employing purely philosophical or linguistic cri-
teria or appeals to principles of basic metaphysics. The justification of the
framework has to appeal to the details of the subject – matter, including our
amassed experience with frameworks of this type.

I’ll return to the axioms themselves. For orientation it will be helpful to
consider their classical forms:

(Classical) Desargues axiom 1:

If l 1, l2 and l3 are parallel lines in the (affine) plane and P1, P1’, P2, P2’, and
P3, P3’ be points on l1, l2 and l3 respectively. Say that the line P1P2 is parallel
to P1’P2’ and P1P3 is parallel to P1’P3’. Then P2P3 is parallel to P2’P3’.

Diagram:



PROOF STYLE AND UNDERSTANDING 39

P3 P3’

l1

l2

l3

P2 P2’

P1 P1’

(Classical) Desargues axiom 2:

If l 1, l2 and l3 are lines in the (affine) plane intersecting in a point P* and P1,
P1’, P2, P2’, and P3, P3’ be points on l1, l2 and l3 respectively. Say that the
line P1P2 is parallel to P1’P2’ and P1P3 is parallel to P1’P3’. Then P2P3 is
parallel to P2’P3’.

P∗

l1

l2

l3

P1

P1’

P2 P2’

P3’
P3

There are canonical reasons why these are good axioms.91 A simple
point is that the first Desargues axiom is equivalent to the uniqueness of a
vector sum.92 A more intricate consideration derives from the structure of
familiar school analytic geometry. It is possible to assign coordinates to any
collection of objects and introduce functions on those coordinates, so long
as we are not too picky about what properties the coordinates and functions
themselves have. If we assign coordinates in a general way to the objects
of our geometry, the first Desargues property is equivalent to the statement
that we can introduce operations of plus and times on the coordinates so that
the equations of lines will be the familiar linear equations from school: ax+
b = y.93 A further, distinct consideration arises from the relations between
planes and space: (relative to a reasonable axiomatisation of the geometry of
space) the second Desargues axiom is equivalent to the thesis that the plane
can be embedded in three dimensional space. The second Desargues axiom
corresponds to further algebraic conditions on the addition and multiplica-
tion (the distributive law for the multiplication and addition operations on
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the coordinates) to form a skew field. (i.e. a field minus commutativity of
multiplication)94 These reasons for regarding the Desargues axioms as dis-
tinguished draw on the fact that they are “robustly” central, in that when
we reformulate our theory in other terms, with quite different structures and
motivations, the Desargues axioms in their new forms remain rationally de-
fensible as natural axiom candidates.

A further consideration that tells in favor of the Desargues theorems as
axiom choices is the interest and richness of the divides they mark. Geome-
tries in which the Desargues theoremfails have proven in practice to be a
class of uncommon interest, sustaining extensive, interesting programs of
research. On the positive side, the theorem itself is of considerable intrinsic
interest, both for the consequences it supports and for the depth and intri-
cacy the theorem reveals under more detailed study.95 There is more that can
be said to support the claim that the Desargues theorem really does deserve
to be granted a distinguished status as axiom, but what has been said so far
will suffice to illustrate the key point: Artin’s choice of transformations as
a basic category and of Desargues’ Axioms as basic principles can be ra-
tionally defended by appeal to a range of different considerations. Even in
this context, where empirical predictions are not directly in the offing, the
distinction between natural and artificial/gerrymandered properties can be
objectively made out.

In connection with the issues we have been concerned with, here is
where we have arrived:

i) The theory developed by Artin does have a deep and important con-
nection to visual reasoning but

ii) as a means of organization of the subject – matter it has value inde-
pendent of the connection to vision and furthermore

iii) The basic details of the framework – its fundamental concepts and its
axioms – admit of extensive justifications. That something is “basic”
or an “axiom” is not bedrock at which the spade of explanation and
argument is turned. Some of the reasons for shaping the framework
as it is shaped may seem to be immediate brute responses or appeals
to the brevity and simplicity of the expressions used (for example: the
Desargues axioms in their symmetry forms just “look natural” in this
context, and the statements don’t invoke “disjunctive” properties or
other funny looking constructions) while others reach far afield even
to applications (for example: the “rightness” of the framework taking
transformations as basic extends to physics).

Of course, these judgements are defeasible. We might decide, when we
come to learn more about the subject, that this framework is not the right
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setting for the problems addressed within it. But of course, the fact that
in a different epistemic situation we would call different frameworks and
categories “natural” for different reasons doesn’t impeach the reasons we
actually have, in the epistemic situation we are actually in, for our actual
decisions as to what we regard as natural and what we don’t. Much of the
reasoning that goes into this decision is “quasi – empirical”: among the infor-
mation that the decision about what is a natural formulation or a good axiom
choice draws on is information about what is fruitful, about what works and
what doesn’t. This makes it especially unlikely that a purely philosophical
criterion of “gerrymanderedness” will suffice to exclude artificial, Goodman
style properties. Our decisions about how to formulate the mathematical
theories that we apply don’t rest ona priori philosophical bedrock, and it
appears unlikely that anya priori “rational reconstruction” could reproduce
our best mathematical practice on abstract philosophical or logical grounds
alone.

6. SUMMARY - THE “NEW RIDDLE OF DEDUCTION”

The paper began with two related questions. What philosophical niche can
we find for a discussion of what was at stake in Riemann’s revolution in
mathematical method? What significance for general methodology should
we grant to the role of visual representation as a mode of organization color-
ing some mathematical reasoning? We’ve arrived at a kind of mathematical
analogue to Goodman’s problem, but without the direct connections to cau-
sation and empirical prediction that are often taken to ground answers in the
more familiar gruesome cases. To find a place for unification as a scientific
and mathematical success, as it is treated in practice, we need to clarify cer-
tain qualitative features of theories and the properties they deal with. Which
classes and theories are homogeneous and which are heterogeneous? Which
classifications and properties are natural and which artificial? We need to
be clear about what sorts of considerations are brought to bear, in deciding
what formulations are the right ones to use. The conclusion suggested here,
especially as exemplified in the case ofGeometric Algebra, is that these dis-
tinctions are, in practice, made out in a way that is rationally justifiable, but
also that they appeal to details of mathematical and scientific practice that
are more involved and case-specific than philosophical accounts of expla-
nation as unification have appreciated. This suggests that we reorient our
conception of the methodology of mathematics in a “bottom up” direction:
we can’t hope to understand what mathematics contributes to our overall
view of the world by shuffling philosophical abstractions alone; we need to
get our hands dirty with the details of mathematics as it is done. To invert a
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famous Kripkean slogan, in this case there is also no philosophical substitute
for mathematics.

NOTES
0Special thanks for comments and criticism to Ian Proops, Larry Sklar, Colin

McLarty, Jim Joyce, Rich Thomason and Peter Railton. An early version of some of
this material was presented at a conference in the University of Toronto; Thanks to
the audience, especially Jan Zwicky, Ian Hacking, Margaret Morrison, Jim Brown,
Francis Sparshott and Achille Varzi for helpful reactions and/or encouragement.
Thanks too to the audience at the Roskilde conference, especially Paolo Mancosu,
Marcus Giaquinto, Reviel Netz, Jim Brown again, and Karine Chemla. Also spe-
cial thanks for a range of assistance to Klaus Jørgensen. Thanks also to my extra-
departmental colleagues Andrzej Nowak and Karen Smith for patient answers to
questions on civil engineering and algebraic geometry respectively. Finally, a very
early version of some of this material was presented at Princeton and a meeting of
the Association of Symbolic Logic many years ago; thanks to those audiences, es-
pecially Gil Harman, Gideon Rosen, David Hilbert, Paul Benacerraf, Neil Delaney,
Ed Nelson, Phil Ehrlich and Pen Maddy.

1This negative point – that there is no principled general delineation of the “es-
sentially general” predicates – is argued in Railton (1993). This paper may be seen
as a follow – up: if we accept that there is no generala priori account that will seg-
regate the “essentially general” from the “gerrymandered” predicates, our attention
naturally turns to working out the details in specific examples, with an eye to iden-
tifying defeasible heuristics and shared patterns that may be displayed in a range of
cases. We can learn a great deal so long as we don’t obsessively cling to an unre-
alistic picture of how simple a “philosophical” account of uniformity is allowed to
be.

2I’m not, of course, suggesting that this idea of “fruitfulness” is clear or sharply
defined, or even that it is a single uniform phenomenon, but only that it is a consider-
ation that is in fact is appealed to in practice (under a variety of names). Explaining
more clearly what “fruitfulness” amounts to is of course one of the jobs that has to
be done.)

3The label “conceptual” is adopted for Riemann’s innovative style in Laugwitz
(1999) among others. The broader change in mathematical style that emerged in
Göttingen in the mid-nineteenth century is explored with special reference to Dirich-
let in the superb philosophical essay Stein (1988).

4The core details of the split in the approach to complex analysis have been
well-explored by historians in recent years. An illuminating presentation of the
Riemann stance is in Laugwitz (1999). On Weierstrass, Laugwitz (1992) is a helpful
counterpoint. Good presentations of both sides of the split are Bottazini (1994) and
Neuenschwander (1980) and (1981). Currently Jeremy Gray and Umberto Bottazini
are carrying out joint work which promises to shed further light on the situation.
I explore some of the philosophical ramifications of this split, and its historical
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connections to the development of the foundations of mathematics, in a manuscript
in progress.

5Contemporary texts in complex analysis tend to be unreflectively Riemannian
in outlook. One historically sensitive text that is self-consciously Riemannian is
Remmert’s textbook of function theory. (Remmert (1991) and (1998)). Textbooks
that areavowedly Weierstrassian in general outlook are harder to find, but they do
exist: Abhyankar (1964) is one example. The fact that this division of styles has
been robust enough to persist this long reinforces the point that more than merely
transient “spurs to discovery” are at issue.

6By contrast, the historical details of the events constituting this contrast have
been reasonably well – explored in recent years, and current research promises to
push our historical understanding even deeper. In my own work I am exploring
some of the philosophical overtones of the mathematical developments (with special
reference to Frege) (see Tappenden (2001c)). The Frege connection appears because
Frege was trained in the Riemann tradition (then a minority stance) and continued
to work in that vein in his subsequent teaching and research. This can be seen to
have colored his methodology in several respects, such as his stance on the “Caesar
problem”, his definition of magnitude, and his regular criticism of Weierstrass.

7I am sure that only the loosest family resemblance unites all the things that we
call “understanding”. I am certainly not setting out to provide anything like ananal-
ysis of “understanding” in the sense of a set of necessary and sufficient conditions
such that all and only persons who satisfy those conditions understand something.
However, even in the absence of an analysis of the notion of understanding, it is
possible to isolate aspects of what we commonly associate with the idea, and work
out their significance for epistemology and logic.

8I do not mean to suggest that the visualizability of Riemann surfaces is the
sole advantage, or the most important one. It just happens to be the one feature of
Riemann’s approach that I am addressing here. In fact, it is one aspect of the revolu-
tionary character of Riemann’s research that there have been, historically, so many
different ways of cashing out what is important in it. Just to consider the point at
issue here: some Riemann students – notably Dedekind – strove to purge Riemann’s
results of their visual character, while others (Felix Klein, the Italian tradition of al-
gebraic geometry, much contemporary theory of functions of one complex variable)
embraced the visual character and strove to exploit it. (For an especially forceful
discussion of the importance of visual intuition to this mathematical tradition see
Segre (1904) (especially p. 454–455)).

9So as not to leave the impression that these issues pertain solely to the nine-
teenth century, it is worth mentioning another example exemplifying the themes dis-
cussed here: the concept of scheme in algebraic geometry. Though scheme theory is
an extremely compelling example in the current connection, and I will consequently
refer to it from time to time, it is also complicated enough that I will have to defer a
sustained treatment for some later part of the project, when Colin McLarty’s work
on Grothendieck is ready to circulate. (Why do today what someone else is going
to do tomorrow!) However, to reinforce the connection of the issues discussed here
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to contemporary mathematics as well as that of the nineteenth century, I’ll carry on
a running commentary of scattered remarks about schemes in the footnotes.

Among the many reasons why scheme theory is especially interesting here is
that one of its acknowledged virtues is that it supports a unification of number theory
and algebraic geometry. It is an interesting question of methodology whether this
theoretical unification is analogous to the benchmark unifications in physics, like
Maxwell’s or Newton’s or in any important way different. In this connection it
is worth noting that Grothendieck himself reportedly had equally grand hopes for
the theory of “motives”, envisioning a potential unification of Galois theory and
topology. (cf. Cartier (2001, 405)).

10For smooth exposition I’m (inessentially) fudging some distinctions between
Weyl’s essay and my project, but it is worth a footnote to avoid leaving a misim-
pression. In my studies of the mid-century G¨ottingen revolution in mathematical
methodology I have emphasized Riemann and his successors. Weyl (like Stein
(1988)) emphasizes Dirichlet, Riemann’s predecessor as professor at G¨ottingen;
the reference to the Dirichlet principle could indeed be taken as a bit of a jab at
Riemann’s lack of contemporary rigor. For the issues I am most concerned with,
Riemann is a better representative, and he is more important as a figure in Frege’s
intellectual environment. (Or at least he can be more easily documented to be a sig-
nificant figure in Frege’s Jena context.) But both figures represent, in different ways,
the “conceptual” reorientation: Dirichlet was far more rigorous at the level of detail
in argument, while Riemann’s contributions to the stylistic innovations were more
profound (full of what Ahlfors calls Riemann’s “cryptic messages to the future.”)
though less rigorous. The work of both exemplified, in different ways, the style that
in retrospect was a critical revolution laying the support for the twentieth century.

That it isn’t distorting to take Weyl’s words about Dirichlet’s mathematics as
remarks about Riemann’s is borne out by the subsequent discussion in Weyl’s essay:
most of the mathematics he uses as his illustrations of contemporary work traces
back to Riemann rather than Dirichlet.

11I speak about “algebraic approaches” in the plural here because Weyl runs to-
gether here what I count as two very different traditions and styles with the label
“algebraic”: a computational tradition of Kronecker and a distinctive “structural”
algebraic approach exemplified by Dedekind. There is no reason, in the present es-
say, to refine Weyl’s classification further, but I don’t want to leave a misimpression.

12A useful illustration of this point is the article Harris (1992). There the devel-
opment of algebraic geometry in the twentieth century is framed by the observation
that “progress in algebraic geometry is measured more by its definitions than its
theorems.” (Harris, 1992, 99)

13I’m not suggesting fruitfulness is the only relevant consideration that bears on
whether a formulation will be taken as “natural”. One point of section 5 is to illus-
trate just how intricate the reasons for such judgements of “naturalness” can be.

14These remarks from Zariski give a typical statement of the mathematician’s
pragmatism in this regard:
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There is no doubt that the introduction of the concept of “schemes”
due to Grothendieck was a sound and inevitable generalization of the
older concept of “variety” and that this generalization has introduced
a new dimension into the conceptual content of algebraic geometry.
What is more important is that this generalization has met with what
seems to me to be the true test of any generalization, that is, its
effectiveness in solving, or throwing new light on, old problems by
generalizing the terms of the problem (for example: the Riemann-
Roch theorem for varieties of any dimension). . . . (Zariski, 1978, p.
xvii)

15I do not know of any systematic studies of fruitfulness as a guiding criterion in
mathematics or elsewhere, but the basic observation has some antecedents. Frege
makes some fragmentary but rich remarks inGrundlagen which tie his logic and his
account of “extending knowledge” to what he calls “the truly fruitful concepts”. (I
develop this observation about Frege in my (1995).) Thomas Kuhn observes that a
crucial guide in practice to theory choice in the natural sciences is that the theory
be “fruitful of new research findings: it should, that is, disclose new phenomena
or previously unnoted relationships among those already known.” (1977, 322) I
don’t know anywhere that Kuhn, or anyone else, expands on this bare observation.
In the paper cited, Kuhn does not expand on his observation beyond the footnote
remark: “The last criterion [listed], fruitfulness, deserves more emphasis than it has
yet received.” (How true.)

16(Weyl, 1955, VII) My attention was originally drawn to this passage by (Wilson,
1992, p. 111). It should be noted in connection with these words that in context
Weyl is not endorsing them unequivocally. Rather he is describing an attitude he
expressed when, as a young man he wrote Weyl (1913), which the older Weyl spoke
of as revealing a certain youthful naivet´e. “Even more than the text, the enthusiastic
preface betrayed the youth of the author.” (p.VII)

17Once again, the history detailed in Harris (1992) is a useful illustration. Through-
out the twentieth century there was a sequence of better and better candidates for the
natural context for algebraic geometry. The reasons for one candidate succeeding
another was never merely that the preferred candidate “seemed right” but that it in
fact facilitated the solution to key problems.

18One simple example is the use of homogeneous coordinates/projective space
(“the unifier” in the words of Clemens (1980, 5) in the study of curves, especially
over the complex numbers (“the great unifier” – (Clemens, 1980, 7)). This is ac-
cepted as the right context for a range of problems, and it does indeed bring out
forcefully many properties of (for example) conic sections. But it requires work to
see this; it is not obvious at first sight. People who have had a standard North Amer-
ican mathematical education find ordinary Cartesian coordinates over the real plane
so natural as to be almost inescapable; to come to see complex projective space as
the natural context requires re-education.
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19See for example the venerable Bridgeman ((1938, 37 andpassim) and (Camp-
bell, 1919/1957, 113 andpassim)). I am grateful to John Norton for pressing me on
the “explanation/understanding as reduction to the familiar” line. I do think that in
an important range of cases we count something as an explanation, or as contribut-
ing to understanding, when it effects a reduction to the familiar, but the cases I am
looking at aren’t like that.

20It will be useful to give another example of broad motivating remarks concern-
ing the concept of scheme. Though nothing can substitute for an analysis of the use
of the concept in practice, some examples of what those mathematicians who use
the concept say about its importance may serve as a temporary buffer until such an
analysis is worked out. Here is how David Mumford puts it in a retrospective intro-
duction (in 1988) to the publication of his by then already classic 1960’ssamizdat
introduction to schemes in algebraic geometry. This contains a (long) book-length
defense of the thesis that scheme theory provides the “natural language” of algebraic
geometry. The reasons on which the defense rests include the ability of the frame-
work to cleanly express results in a variety of different other conceptual frameworks,
its connection to “geometric intuition”, and its ability to support new and very ex-
citing results”:

It may be of some interest to recall how hard it was for algebraic ge-
ometers, even knowing the phenomena of the field very well, to find
a satisfactory language in which to communicate to each other. At
the time these notes were written, the field was just emerging from
a twenty-year period in which every researcher used his own defi-
nitions and terminology, in which the “foundations” of the subject
had been described in at least half a dozen different “mathematical
languages”. Classical style researchers wrote in the informal geo-
metric style of the Italian school, Weil had introduced the concept
of specialization and made this the cornerstone of his language, and
Zariski developed a hybrid of algebra and geometry. . . But here was
a general realization that not all the key phenomena could be clearly
expressed and a frustration at sacrificing the suggestive geometric
terminology of the previous generation.

Then Grothendieck came along . . . [with] the new terminology
of schemes as well as with a huge production of new and very excit-
ing results. These notes attempted to show something that was still
very controversial at that time: that schemes really were the most
natural language for algebraic geometry and that you did not need
to sacrifice geometric intuition when you spoke “scheme”. (Mum-
ford (1988) p. V – VI)

The attitude that “scheme” was a thematically proper generalization and that
the test of this was effectiveness in problem solving was echoed even by members
of the old guard, as indicated by the quote from Zariski given in footnote 14.



PROOF STYLE AND UNDERSTANDING 47

21One illustration, especially pertinent here, appears in Steiner (1978) when he
dismisses the suggestion that something counts as a mathematical explanation only
if it can be visualized, on the grounds that such a condition would make mathema-
tical explanation “subjective”. (p. 139) I think he is right to regard the proposed
criterion as inadequate, but here I’ll be concerned also to spell out some ways that
visualization in mathematical practice is more intricate and systematic than it might
seem at first view. (This is in accord with another remark of Steiner’s, which is
that any “satisfactory theory of mathematical explanation must show why [the “ex-
plaining is making visual” thesis] is plausible.” (p.139) I am indebted to Bertrand
Guilliou here.

22Sometimes “pragmatic” is also used as a pejorative with the connotation “on
to the ‘not philosophically interesting’ scrap heap with this one”. So for example
in his interesting account of the contributions of asymptotic explanations to our
understanding of physical systems, Batterman (2002, 44) uses ‘pragmatic’ to frame
a point with affinities to the one I am making in the text.

23One refinement is needed here. I’m not suggesting that no cases admit of anal-
ysis in “objective” terms. In some cases the advantages of a particular formulation
can be analyzed in terms which are indisputably independent of psychological pecu-
liarities of human reasoners. A paradigm of this sort of work is the analysis in Pratt
& Lemon (1997). There certain advantages of diagrammatic reasoning are analyzed
in the tangible terms of the computational complexity of algorithms. This work
is extremely revealing and interesting, and I look forward to learning from further
research of Pratt, Lemon and their collaborators. The attitude motivating the cur-
rent work is not incompatible with that work, but rather complementary, studying
some aspects of the choice of theoretical frameworks (especially in connection with
the potential for visualization) that don’t obviously admit an analysis in tangible
complexity – theoretic terms.

(Clearly there are interesting cases where an analysis in terms of computational
complexity is not going to help us much, even when what we gain are advantages in
facilitatedpractical computation. One simple example is the use of homogeneous
coordinates in computer modeling. The advantages of homogeneous coordinates
over Cartesian coordinates are, I gather, well-established in practice, despite the
(non-robust) complication of an extra parameter and the initial unfamiliarity of the
framework (for most students). However, it is unlikely that computational complex-
ity theory will support an analysis of the advantages of homogeneous coordinates,
since the transition from homogeneous to Cartesian coordinates and back can be
accomplished by operations that are insignificant from a complexity-theoretic point
of view. And indeed, when advantages are explicitly noted for homogeneous co-
ordinates in visual modeling they are qualitative advantages rather than complexity
theoretic ones. (For example: the existence of dualities or the simplification of the-
oretically important expressions. See Reisenfeld (1981) and Stolfi (1991) especially
ch. 1.)
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24Another is the formulation of contemporary algebraic geometry in terms of
the concept of scheme. See for example Eisenbud & Harris (1992), or the ex-
tended version Eisenbud & Harris (2000), which is largely devoted to explaining
why “The scheme is. . . a more natural setting for many geometric arguments.”
(1992, 5); (2000, 8) In formulations of arguments in algebraic geometry in terms of
schemes rather than antecedents like Weil’s concept of “specialization”, the concept
of scheme is taken by some algebraic geometers to represent an advance because
it is counted as “geometric”. Another reason it is counted as an advance is that it
supports aunified theory of key parts of algebraic geometry and number theory. The
default assumption is surely that this unifying function is no more to be dismissed by
the student of method as a “psychological” phenomenon than the unifying function
of Maxwell’s electromagnetic theories or relativity should be so dismissed.

Some functions of schemes are more complicated, and whether or not they are
appropriate concepts depends on what questions are being addressed. In particu-
lar, the concept of scheme initially arises as an effort to extend a basic duality that
occurs between restricted classes of rings, which appear in algebra, and varieties
(loci of zeros of polynomials) that appear in algebraic geometry. This is a simpler
version of a basic correspondence (“dictionary” in the words of (Cox et al., 1992,
168)) between ideals in simple algebraic settings and varieties in elementary alge-
braic geometry. This gives rise to a circumstance where two frameworks (algebraic
and geometric) that are – in some important sense – equivalent are also – in another
equally important sense as different as chalk and cheese. The philosophy of math-
ematics has emphasized the first sense, according to which the frameworks are the
same if they are deductively equivalent, over the second. One could see the point of
this paper as arguing that the sense in which the equivalent frameworks are crucially
different also needs to be clarified before we can take ourselves to have made sense
of the principles informing successful mathematical practice.

25The classic papers in this debate are assembled in Block (1981).
26The point here is not that the use of visual representation is uniform among

mathematicians: it isn’t. The point is rather that the preference is sufficiently wide-
spread to make a mark on mathematical method.

27This has long been known. (See for example Yates (1966) for some history.)
More recently it has been well-studied by cognitive psychologists. For some early
research into the mnemonic advantages of imagery, see Bower (1972).

28Here is a quick explanation of what these are. There are familiar extensions
of the real numbers gained by adding additional square roots of 1. The complex
numbers are obtained by addingi and closing under+ and×. The quaternions are
obtained by adding three new roots of –1:i, j,k. For this extension to be adequately
specified we need to say more than just thati2 = j2 = k2 = −1. The results of
multiplying the new elements must be stated too:i j = − ji = k for example, and
further details need to be made explicit. The octonions are the numbers obtained
with eight roots of−1.
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29So for example the curve from e4 to e7 extends to the product e6 = (e4·e7). The
sign of the product depends on the direction of travel: counter-clockwise products
are negative, clockwise are positive.

30To avoid misunderstanding, I should make explicit that my discussion of this
example is meant only to draw a contrast. Hence the discussion gives away sev-
eral points for dialectical reasons. For example, I don’t mean to grant more than
provisional credence to the idea that some advantages are “solely” mnemonic. The
facts about how memory interacts with reasoning are quite involved. Nor indeed
do I want to assert that the preference for diagrammatic representations would be
devoid of philosophically interesting consequences even in cases where the prefer-
ence turned out to have purely mnemonic advantage. My point only that there is
an at leastprima facie plausible case to be made for these suggestions. In present-
ing this material, thatprima facie plausibility has had a sufficiently strong pull for
sufficiently many people that it is worthwhile to make explicit that the case for the
philosophical importance of visualization in the cases I am studying here can be
made out even if these points are granted.

In fact, I think the question of how to separate the methodologically interest-
ing from “accidental” uses of visual representation is complicated. Even cases that
might seem to use vision in a philosophically uninteresting way, such as when pic-
tures are used as memory aids, can be surprisingly involved. I concede that there are
some uninteresting cases, but this doesn’t mean that I want to say that all cases that
might appear uninteresting in this way reallyare uninteresting in this way. In cases
where visual memory aids are well–developed and systematic, as in the elaborate
medieval memory systems studied in Yates (1966) and Rossi (2000) it is surpris-
ingly hard to make out sharp boundaries between visual coding as an accidental
concomitant of artificial memory techniques and visual coding that facilitates mem-
ory in virtue of being embedded in an broader system of reasoning. The intricacy
of the interweaving of systems of thought and systems of visual representation that
was involved in the medieval arts of memory is especially emphasized throughout
the uncommonly illuminating studies Carruthers (1990, 1998). Gaukroger (1995)
(p.160-164 andpassim) points out that this perceived connection between visual
imagery and thought informs Descartes’Regulae in striking ways. Conversations
with Terri Palmer, Ian Hacking and Raviel Netz have helped me here.

Moreover, lest my frame of reference and choice of examples (stressing axiom
choice and de-emphasizing actual diagrams, pictures and mental images) leave a
misimpression, I should emphasize that I think that the study of the details of con-
crete visual representation (as in diagrams, etc.) and the manipulation of actual
diagrams is extremely interesting to the philosopher of mathematics. By approach-
ing the topic of visualization and geometry as I am, I am in no way meaning to slight
those who have approached the topic of reasoning with actual diagrams. Quite the
opposite, I regard the recent richness of work on the reasoning with diagrams and
its connection to mathematical reasoning as of the greatest interest. (This work has
been advanced from different perspectives and with reference to diverse problems by
Barwise and Etchemendy (and their students), Oliver Lemon, Ian Pratt (and others
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in the Manchester group studying visual reasoning) Marcus Giaquinto, Jim Brown,
Robert Lindsay, and others. Also of genuine interest in this connection is the work
of Achille Varzi and Roberto Casati ((1994) etc.) on the logical structure of theories
of spatial structure. Readers interested in such work can choose a beginning among
the papers in Allwein & Barwise (1996), or Glasgow et al. (1995) and follow out the
references. Also helpful for jump-off points from additional perspectives is Pratt &
Lemon (1997). An unusual and stimulating investigation of overlapping themes by
two mathematicians is in Carbone & Semmes (2000). Also worth mentioning in this
connection is Hartshorne’s (2000) masterful reexamination of Euclid’s elements.

31Several books by Tufte on the visual arrangement of information (see, for in-
stance, his (1983) and (1997)) are good collections of examples. What we find here
are visual representations (tables, graphs, maps) that are clearly the most effective
and forceful ways to present the information they present. In these cases, the func-
tion of visual representation appears to be important solely from a “pragmatic” point
of view – in the sense of “pragmatic” that seems to connote ‘not deserving philo-
sophical attention’ according to some philosophers’ usage. If there is philosophical
interest in such examples, it will be of a different kind from what we’re exploring
here.

32This is especially pressing in the case of the contrast of Riemann and Weier-
strass since just this comparison of the two was made long before Reichenbach
introduced the distinction into general methodology: “The method of Riemann is
above all a method of discovery; the method of Weierstrass one of proof.” (Poincar´e,
1898, 7)

33I treat this point further in Tappenden (2001b).
34This was, for example, true of the concept of scheme. When Grothendieck

introduced it, one clear testament to its fruitfulness was that it opened the way to
a proof of the Weil conjectures. But to apply the context of discovery/context of
justification distinction makes no sense here. Not only did Grothendieck (and sub-
sequently Deligne) prove the Weil conjectures using his newly introduced scheme
theory, but he provided what still remain as theonly proofs available despite exten-
sive attempts in some circles to find proofs that avoid the Grothendieck machinery.
(Here I am indebted to correspondence with Colin McLarty and a conversation with
Karen Smith.)

35This is, of course, an example of a widespread phenomenon in studies of con-
firmation: the familiar debates presuppose some language or framework remaining
fixed. When this can’t be taken for granted, many further assumptions break down.
Examples of this phenomenon are revealingly treated in Earman (1992) chapter 5
and chapter 8.4.

36There is one alternative that is worth attention, but I will have to leave it for
another place. In a paper (Kim, 1994) that touches on some of the issues addressed
here, Jaegwon Kim suggests that the causal component of causal explanations might
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be derivative from a prior idea ofdependence. If the idea of metaphysical depen-
dence can be made out, it could in principle be extended to mathematical explana-
tions as well, to provide a unified treatment. Michael Strevens has developed an
account with this shape in unpublished work.

The idea that mathematical explanation turns on an idea of logical or meta-
physical priority over others was a feature of Bolzano’s account of mathematical
explanation as Paolo Mancosu has pointed out in recent work. (Mancosu, 1999)

37The thesis of Morrison (2000), which is the best general descriptive treatment
of scientific unification I know, is that unification is often an objective of scientific
inquiry but it has little if anything to do with explanation. I agree with much of
this, but my final position is a bit more concessive to the idea of unification as un-
derstanding: sometimes (but not always) we count ourselves as having understood
or explained some phenomena because we have set them in a unified framework,
though generally unification alone is not enough unless the framework has other
attractive features. (I’ll add in this connection that I’m completely in agreement
with this upshot of Morrison’s perceptive treatment: theory unification is far more
complicated in practice than it often is taken to be in the literature.)

38I should note that the positions Friedman takes in this early work need not
be preserved in his more recent writings. Indeed, his most recent work on scientific
theories and the “relativized a priori” has obvious affinities with the “rapprochement
between (early) Friedman and Toulmin” that I suggest is necessary.

39The most effective display of counter – examples is in Kitcher (1976). The
whole controversy is given a retrospective postmortem in (Salmon, 1989, 94 – 101).

40To simplify the discussion I am assuming that the theories we are dealing with
are given to us already rendered into axiomatic form. In practice, of course, this
can’t always be assumed. (For example, continuum mechanics was studied for many
years before Noll provided an axiomatization, as Clifford Truesdell often pointed
out. (Truesdell, 1984, p. 137 andpassim)) But since I am just using the assumption
to simplify the formulation of this negative point against Friedman, the assump-
tion is harmless here. Clearly if we are dealing with an unaxiomatized theory, the
“reduction in the number of basic principles” account is even harder to defend.

41A variation on this point has already been made effectively by Humphries
(1993), who pointed out the disconnect between number of axioms and understand-
ing with respect to various axiomatizations of propositional logic.

42Readers familiar with the scholarly literature on William Whewell will recog-
nize echoes of the ideas here in Whewell’s notion of “consilience”. Though there
are no specific points at which this essay was informed by this literature, I do owe a
general debt to the papers (Butts, 1973) and Morrison (1997).

43Algebraic numbers are real number solutions to polynomials xn + a1xn−1 + . . .
+ an where the coefficients ai are rational. Algebraic functions result when the ai

are themselves one-variable functions. Useful treatments of this material in the sec-
ondary literature are W. Geyer (1981) and throughout Dugac (1976). (Dieudonn´e
(1985) is a good, though brief English – language discussion of the content of
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Dedekind & Weber (1882). A clear (mid-twentieth century presentation) of gen-
eral versions of results of Dedekind & Weber (1882), in a broadly Dedekindian
style, plus a nod to other styles of proving the same results, is in (van der Waerden,
1991, Ch. 19). Another textbook presentation of the theory of algebraic functions of
one variable that isavowedly in the spirit of Dedekind & Weber (1882) is Chevalley
(1951).

44In retrospect, Dedekind & Weber (1882) appears as one of a handful of papers
of the nineteenth century that inaugurated distinctive styles marking the twentieth
century in mathematics. Dieudonn´e (1985) lauds the paper for originality and im-
portance, and counts it as second only to Riemann’s work in its “introduction of a
series of notions which have become fundamental in the modern era.”

45A field is a collection of objects with two associative, commutative operations
defined on the whole collection. Relative to one of the operations (addition) there is
an identity element 0 (one for which a + 0 = 0+ a = a) and everyelement a has an
inverse a−1 such that a+ a−1 = 0. Relative to the other operation (multiplication)
there is an identity and inverses for the collection consisting of every element but
the additive identity 0. Distributive laws hold.

To convey what an ideal amounts to, I’ll define a special case (though the more
general definition exploits the concept of “ring”, which is weaker than “field”). A
field I contained in another field F is an ideal, if given any a in I and any b in F the
product ab is in I.

For the precise definition see any university level text, such as Jacobson (1974).
46Again we find this emphasis on the “qualitative” unification in contemporary

discussions in algebraic geometry. This is not just true of the schemes and motives
discussed in earlier footnotes; another instance – not at all exceptional – is the dis-
cussion in Smith et al. (2001) of the pre-Grothendieck work by Weil and Zariski as
distinguished by how it brought out “deep connections between previously separate
areas of mathematics, such as number theory and the theory of Riemann surfaces”
(p.2) Once again, it is hard to see that these connections would lose any value, or
be any less unifying, if they turned out not to reduce the number of brute facts in
Friedman’s sense.

47A historical aside: this is a point over which Frege and Hilbert simply stood at
cross–purposes. Frege held as Friedman does (mistakenly, I think) that there is an
intrinsic advantage to be gleaned from reducing the number of axioms, and indeed
he held that the value of an explanation was directly proportional to the reduction.
(1979, 36) A hint of this difference shows up in Frege’s reaction to his first viewing
of Hilbert’s foundations. Frege states that he (Frege) believed he could have made
do with fewer primitives. (cf. (Frege, 1980, 35))

48For example, Friedman argues that the well-known deductive – nomological
account Hempel proposes falls afoul of the second requirement – it fails to connect
explanation with something plausibly called “understanding” – though Friedman
counts it as appropriately objective.
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49I leave aside the expression “self-evident”, as it has epistemological resonance
that I want to shed. A proposition can be a reasonable choice as an axiom with-
out being obvious, and a category can be a reasonable choice as natural without it
appearing natural on first encounter. We’ll see some examples in section 5.

50An accessible discussion of the basic points of this historical evolution, with
glimpses at more recent showings of the action-at-a-distance view like the Feynman
– Wheeler incarnation, is in (Hesse, 1961, ch. VII and VIII and p. 279-289). The
discussion throughout Darrigol (2000) is illuminating on the give – and – take be-
tween action-at-a-distance accounts and rivals. A. Assis (1994) develops one of the
nineteenth century theories in considerable detail, from a contemporary perspective,
with an illuminating systematic comparison between theories in the Gauss – Weber
style and the Maxwell – inspired theories that dominate today.

51See (Frege, 1980, 57) andpassim. Also (Frege, 1903, 160) andpassim.
52There are additional details in Kitcher’s subtle analysis, but they will not be rel-

evant to the points I’ll be making here. For the full account of Kitcher’s presentation
of “patterns of argument” see his (1989, p. 432-435)

53More on the first example: the Erd¨os – Selberg (“elementary”) proofs of the
prime number theorem contrast with the (“analytic”) proofs exploiting the Riemann
zeta function following the path blazed by Hadamard and De Vall´ee-Poussin. The
former have the advantage that they use only “elementary” techniques, while the
latter, though presupposing much more analytic machinery, seem to be widely held
to better “go to the heart of the matter.” (Even setting aside such a suggestion as
potentially too loaded it is clear that the analytic proofs are shorter, far less intricate
and more easily understood.) For a textbook presentation of both styles of proof
(presupposing only high school mathematics) see (Apostol, 1976, ch. 4 and ch. 13).

The many proofs of the Riemann – Roch theorem serve up a more complicated
story, which I hope to discuss in further work. The early history is illuminatingly
discussed in Gray (1998).

54It is worth pointing out as well that this is a twentieth-century example, which
raises issues that remain alive in current work. Indeed, preserving this duality in a
general setting is one of the more elementary functions of the concept of (affine)
scheme. I mention this to reinforce the point that the issues raised by the devel-
opment of projective geometry in the nineteenth century are not confined to some
distant time, irrelevant to mathematics as it is currently practiced.

55You don’t have to know what theNullstellensatz is. I retained reference to it
in the quote just as a benchmark for discussions in future work. (The point is that
where theNullstellensatz doesn’t generally hold (in finite fields, for example), a new
concept is needed to retain the algebra – geometry correspondence. This is part of
the work that the concept of scheme does for us.)

56A similar point noted in a different connection by Batterman (2000, 233), who
complains that the unification account “fails to respect the individuality of prob-
lems” (a neat phrase he attributes to Mark Wilson). I don’t see this as an objection to
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the unification account as much as it is a further subtlety that the account should in-
corporate. Unification is an important goal in scientific practice, but a multi-faceted
one.

57Anyone who reflects on the miraculous solution of the integral∫ ∞
−∞e−x2dx ef-

fected by recasting the question into polar coordinates will know what I mean.
58Birational transformations are 1-1 transformations that can be represented as

fractions in which both the numerator and denominator are polynomials; in the
plane these are also called Cremona transformations. An old-fashioned, concrete
presentation of the topic is in Coolidge (1959). A presentation in more contempo-
rary terms is in (Smith et al., 2000) see especially ch. 7.

59I’m grateful to Karen Smith for help with this example.
60Another example is the use of “reciprocal diagrams” to be considered in a few

pages. Here too we have a device which both creates a dual pattern of reasoning that
is interesting both because it isolates a significant general pattern and also because
it allows the exploitation of shifts from special case to special case.

Naturally we don’t see this interaction between general case and special just in
mathematics: it shows itself whenever one physical realization of a general theory
is used as a tangible model for another.

61There are very simple examples of properties that appear disjunctive in one
context but which are revealed not to be disjunctive in the “natural setting”. Whether
or not a property is “disjunctive” can depend upon ontology – on what objects there
are in the domain. The simplest example is perhaps the idea of “intersection” in
the projective plane. In the Euclidean plane, arguments typically have annoying
special cases that arise when two lines are parallel. By expanding the plane with
“points at infinity” where parallel lines intersect, the artificial predicate “intersecting
or parallel” becomes simply “intersecting”, thus eliminating the special cases. (This
motive for introducing points at infinity is discussed in many introductory level
discussions; see for example (Courant & Robbins, 1941, 180ff).)

62One point is worth noting in passing here, though it is sufficiently complicated
that I’ll have to set it aside here; I will be developing it in future work. There is this
much of an anchor to the idea of “projectibility” in mathematics, in that a judgement
to the effect that a definition or principle is fruitful incorporates a prediction that re-
sults of desired kinds will in fact be produced in the future by those who adopt the
definition or principle as part of their working repertoire. The connections between
these previsions of future discoveries and judgements of plausibility in mathemat-
ics are quite involved, and bear some affinities to versions of the problems of old
evidence that are familiar in the study of Bayesian methodology. Both seem to
arise from a common root, in which assessments of likelihood depend crucially on
expectations that the empirical event of the discovery of a necessary truth occurs.

63(I will concentrate just on the plane for simplicity – similar patterns emerge in
higher dimensions.)

64Some expressions – conic section, hexagon – are self-dual. In these theorems,
“hexagon” is understood more broadly than we learned in school.
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65Notably Chasles, in an influential essay of (1837) who called it a “general prin-
ciple of science”. For a statement of the general methodological significance of
duality in the English literature, J. Booth (1873) is an especially unrestrained exam-
ple. See especially p. xi - xiv

66Of course, it is important for the plausibility of Kitcher’s account that we should
find at leastsome cases where theories are consciously designed in a way that con-
forms to his general picture. If Kitcher is right that unification as he characterizes
it is a governing objective of scientific and mathematical practice, we should expect
that sometimes the pursuit of the goal would be self – conscious. So it is reassur-
ing that in the case of nineteenth-century duality, the pattern Kitcher presentswas
self-consciously pursued.

Another case in which a variation on Kitcher’s picture was a self-consciously
adopted methodological guide was in the early nineteenth century debate over the
adoption of the Leibnizian notation in Great Britain. Babbage, in his essay “On
the Influence of Signs in Mathematical Reasoning” (1827) spells out examples of
how a careful choice of notation can unify a proof that consists of several distinct
arguments in Newton’sArithmetica Universalis into one single pattern. I discuss
this in more detail in Tappenden (2001b).

67A good short overview of the subject is Scholz (1994). For further details, see
Benvenuto (1991), Timoshenko (1953) and Charlton (1982). The role of duality
considerations in the development of graphic statics is especially well brought out
in Scholz (1989). Dubois (1877) is an English – language textbook of the time
which gives a good glimpse into the subject and the attitudes toward it. Also helpful
is Graham (1887) which contains extended contrasts and comparisons of analytic
and graphic methods.

68Culmann (1865); the projective background is made more explicit and system-
atic in the second edition (1875).

69These are sometimes calledCremona diagrams because Luigi Cremona pop-
ularized the technique in his widely used textbooks Cremona (1872) and (1874).
(English translations in (Cremona, 1890).)

70This particular example is taken from Ziwet (1904) p. 226; I have chosen this
example both because it is a good illustration of the point and also for a somewhat
sentimental reason. The long – dead Ziwet has been a great help in my current
projects (in ways that it would take too long to explain) so I’m happy to grasp the
opportunity to cite him in some way. But similar examples are analysed in sources
that are easier to obtain today: so for example there are several examples like this
one worked out with characteristic clarity in the Schaum’s outline on statics and
strength of materials. (Jackson & Wirtz, 1983, 117 - 135).

71It should be noted, though, that graphic statics is not a perfect illustration in
one respect: there is only an indirect connection between the dualistic patterns that
best exemplify Kitcher’s picture of explanation and the applications to engineering.
(This is, of course, a price that has to be paid for choosing actual examples: the
real world rarely serves up events that are as clean as the thought experiments that
can be crafted at will in the thought laboratory.) On the abstract side, in general
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projective geometry, the parallel patterns of argument were, and were taken to be, an
important feature of the theoretical structure. In its applied form in graphic statics,
dual diagrams played a central role, but these dualities didn’t translate into a line-by-
line parallelism of proofs and arguments, as in the abstract case. (I have only found
one engineering textbook – Crotti (1888) – where the formal duality of argument
is spelled out explicitly and represented in the “dual columns” format of projective
geometry textbooks. (According to Charlton (1982, 155)) Crotti’s text was unique
in this regard.)) What we have in graphic statics is a case in which a framework
explicitly informed by Kitcher – type patterns of multiple argument is applied to
concrete problems, thereby coloring what counts as explanations of these concrete
problems. This is good enough for the present purposes, though the example would
of course be cleaner if the dualities of argument that shape the abstract mathematical
investigations figured more prominently in the engineering applications.

72On the Quebec bridge collapse see (Ferguson, 1992, 172-178). An illuminating
glimpse into the patterns of explanation characteristic of turn-of-the-century engi-
neering can be found in the pages of the professional weeklyEngineering News
during the months after the disaster, where candidate reasons for the collapse are
dissected and discussed at length.

73I am indebted here to Nancy Cartwright (1983, 56-67) who advances the similar
point that against the background of realism about forces, patterns of vector addition
and decomposition may involve reference to theoretical fictions. My point here is
different – I am setting aside any questions of ontology – but Cartwright’s discussion
was helpful in nudging my thoughts at a crucial juncture.

74An illustration of its importance is that graphical statics was taken to deserve
a massive (90 page) chapter to all to itself in the Physics volume of Klein’sEncyk-
lopädie der Mathematischen Wissenschaften. See Hennenberg (1903).

75Though it might be noted that a residual nostalgia for the older techniques per-
sists. In his discussion of graphic statics, Ferguson remarks: “Even though digital
computers are making graphical methods seem both old-fashioned and insufferably
slow, a few younger engineers, along with the old fogeys, are beginning to under-
stand that speed has sometimes been bought at the cost of understanding.” (Fergu-
son, 1992, 152)

In this connection it is worth noting further that some of the old results of
graphic statics have recently been revived and generalized. (See for example (Crapo
& Whiteley (1982)) and Whiteley (1985). On this work I am grateful to Walter
Whiteley for email correspondence and to Branko Gr¨unbaum for sending me a copy
of his unpublished lectures Gr¨unbaum (1976).) Here too the interest of the results
does not depend exclusively upon the visualizable character of the represented struc-
tures, though the visual flavor of the work is still important.

76See for example (Dubois, 1877, iv) (Cremona, 1890, 121,123-4,131-137) (Cul-
mann, 1875, vii–xv etc.)

77So for example, the engineering professor Rankine remarks that an advantage
of the graphical methods compared to analytical methods that they make mistakes
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much easier to catch. ((Rankine, 1869, 411); quoted with tacit agreement in (Cre-
mona, 1890, 133)). The point was reiterated in these terms in more recent days by
a contemporary engineer defending the virtues of the old ways: “When nearly all
engineers carried out structural analysis using . . . graphic statics [and similar meth-
ods]. . . the advantages of visually monitoring one’s calculations (Does it look right?
Are the numerical answers reasonable?) were built into the graphical mathematics
they used.” (Ferguson, 1992, 152)

78As one textbook of graphic statics puts it, with a quaint Victorian flair: “. . .
the power conferred by the graphical method is to a large extent at the disposal of
those who have had but little mathematical training. The writer once had occasion
to explain a practical application of the triangle of forces to a class of working men,
who seemed at once to grasp and appreciate it.” (Clarke, 1888, v)

79A characteristic opinion is expressed in Rankine’s discussion of reciprocal fig-
ures:

When compared with algebraic methods, the simplicity and rapid-
ity of execution of the graphic method is very striking. . . If this is
the case when the loads are uniform or symmetrical, the advantage
is much more strikingly in favour of the graphic method when the
loads are not symmetrical, and when they are inclined. . . or as in
such cases as the framed arch and suspension bridge. In fine, the
diagram once drawn acts as a sort of graphic formula for the strain
on every part of the bridge or roof, and it is a formula which can
hardly be misapplied. ((Rankine, 1869, 441); part of this passage is
quoted with tacit agreement in (Cremona, 1890, 133))

80One example is Dubois (1877).
81This is an oft-repeated theme in the literature on analytic projective geometry;

I’ll mention just two examples that illustrate the point. Referring in particular to
the nineteenth century analytic geometer Pl¨ucker, Felix Klein commends his style
of argument in these terms:

In Plücker’s geometry, the bare combination of equations is trans-
lated into geometrical terms, and the analytic operations are led back
through the geometric. Computation is avoided as much as possible,
but by doing this, a mobility heightened to the point of virtuosity,
of inner intuition, of the geometric interpretation of given analytic
equations, is cultivated and extensively applied. (Klein, 1926/79,
110)

Bear in mind that Klein is here discussing someone who bucked the trend of
the then – dominant synthetic geometry in favor of streamlined analytic methods.
The praise is not for the use of diagrams but rather for a certain way of organizing
the analytic methods so as to gain an elegant means of addressing the subject. This
is reinforced by the Klein’s subsequent illustration of his remarks with “an example
of Plücker’s way of thinking” (p.110). He presents a device (“abridged notation”)
Plücker used to systematically manipulate and transform analytic equations so as to
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better fix on the crucial parts of the underlying geometric situation. Even without
any connection to vision, the symbolic technique was, and remains a valuable (if
now somewhat old-fashioned) tool.

A more recent commentator on essentially the same phenomenon of Pl¨ucker’s
style of analytic argument is Dieudonn´e:

One of the attractions of [nineteenth century] complex projective
geometry is its relative independence from algebra and the formal
independence of its results, in contrast to the massiveness of most
of the coordinate calculations of the preceding century. . . . Möbius,
Plücker, and Cayley give projective geometry a solid base by the use
of homogeneous coordinates accompanied by a harmonious choice
of indexing notation that maintains a symmetry and a clarity in the
calculations so that they closely follow the geometric argument.
(Dieudonné, 1985, 9)

Here again an advantage of the “geometric” framework is taken to include an
elegant way of formulating the subject matter, which happens to have an important
tie to visual representation but which is valuable independently of it.

82A particularly charming illustration of this point appears in Coxeter’s textbook
The Real Projective Plane where Desargues’ theorem is adopted as an axiom of
projective geometry. After providing one proof of Desargues’ theorem, Coxeter
remarks “Since we will eventually take Desargues’ theorem as an axiom, it seems
worthwhile to give an alternative proof.” (1992, 7) and he proceeds to give it.

83It should be noted that Artin’s use of “geometric” is somewhat idiosyncratic.
Artin was one of the greatest forces propelling the abstract turn of twentieth century
algebra, and even when working in a self-consciously “geometric” vein, his tastes
tilt to the algebraic. This makes his treatment especially useful for present purposes:
“geometry” for Artin turns out to have an exceedingly indirect connection tovision.

This peculiarity of Artin’s attitude hasn’t gone unnoticed. A noted algebraic
geometer told me in conversation that in his opinion Artin’s text was “not really
geometric” (except in the sense emerging from the Klein program of characterizing
geometries with groups of transformations). We also find a variant of this opinion
in a review of Artin (1957):

Most of this book is devoted to the study of algebraic structures
arising from various geometries. The approach is algebraic rather
than geometric. . .

. . .
In Chapter II [the focus of this article], affine geometry is intro-

duced axiomatically and then coordinatized. Even here the approach
is algebraic. (Jans, 1957, 604)

84Not everyone, though. The approach to matrices in Edwards (1996) is mo-
tivated by an explicit preference for computations that is apparently as strong as
Artin’s animus.
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85Another advantage, mentioned in some textbooks that adopt the Artin approach,
is that it allows a smooth introduction of coordinates, in contrast to the “messy”
algebraic approach of (for example) Hall (1943). See (Hartshorne, 1967, 101) and
(in nearly identical language) Kadison & Kromann (1996) (p. 105 – 106) Here too
there is nothing specifically “visual” about this advantage.

86In a treatment of overlapping material, with some ideological affinities to Artin’s
book (Dieudonn´e, 1969) the absence of diagrams is principled. After emphasiz-
ing the importance of material which can be represented in visual intuition (p.12),
Dieudonné continues: “I have taken the liberty of omitting all diagrams from the
text, if only to show that they are unnecessary” (p.13) Though Dieudonn´e doesn’t
present himself as resurrecting a geometric presentation as Artin does, the approach
is nonetheless “geometric” in Artin’s sense to the extent that I) the concept of map-
ping rather than computation with coordinates is explicitly marked out as basic and
systematically developed. (p.13-14 andpassim) II) the core intuitions are spun out
from a consideration of intuitive maps on linear varieties. (see especially chapter
III) So we can draw the same conclusion: that this material admits of representation
in diagrams is valuable, but it doesn’t exhaust the value of this particular framework
for organizing information.

87Though I should note that the point about the absence of pictures is slightly
softened by Artin’s instruction to the reader to draw pictures while reading. (Artin,
1957, 52) But even with this qualification it is clear from Artin’s discussion that he
sees the role of pictures as secondary in his “geometric” presentation.

88This historical point should be flagged, though it would represent too much of
a digression to work it out here. Artin’s approach to rendering the idea of geometric
intuition rigorous has a distinguished pedigree: many debates in the mathematics
of the nineteenth century are illuminated if this is recognized. In particular, as
Michael Friedman points out in a superb article, (Friedman, 2000) Helmholz in-
terpreted Kantian “intuition” in terms of transformations of space, setting aside the
idea of “construction in intuition”. (Friedman credits Robert DiSalle for key obser-
vations in this connection.) This forged a bridge with the new geometry that was
then emerging.

The Friedman-DiSalle insight that the Kantian idea of intuition was undergoing
a metamorphosis among scientifically informed students of geometry is of broad
significance for our understanding of mathematicians’ talk of intuition at the time.
In particular, the insight allows one to flesh out some gnomic remarks Frege makes
in Grundlagen about intuition and geometrical knowledge, and fit them into other
features of his mathematical environment. I develop this point further in Tappenden
(2001a).

89This version of the definition leaves aside a degenerate case that will be of no
interest here.

90The second axiom implies the first.
91It deserves mention, but I won’t expand on this point here, that classic versions

of the Desargues theorem have historically been quite important in applied geome-
try, especially in the development of the theory of linear perspective in painting and
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architecture. A good general source is Field (1997). On the geometry and theory of
perspective of the historical Desargues see Field and Gray (1987). On Desargues’
theorem and the historical development of perspective, Field (1987) and (1988) are
detailed and helpful.

92This point is discussed in (Blumenthal, 1961, 81–84).
93Artin notes this fact on p. 51. It is discussed more extensively in this symmetry-

based context by (Kadison & Kromann, 1996, 116–120).
94The additional constraint that the multiplication operation be commutative (i.e.

that the coordinates are a field) corresponds to a further geometric axiom with a
classical pedigree: the Pappus theorem. The Pappus theorem is another illustration
of the themes of this section, but I will leave discussion of it for another time.

95An interesting discussion of the Desargues theorem from this point of view is
in (Rota, 1997, 140–146) especially p. 141 on the “zen ideal” combined with many
applications and 145 on the “horizon of possibilities” the Desargues theorem opens
up. Rota’s account of reasons for regarding the Desargues theorem as central draws
on a venerable analysis of Desargues’ theorem in connection with the underlying
combinatorial situation (the “Desargues configuration”) detailed at length in Baker
(1929). This, incidentally, gives yet another point of view from which the Desargues
axioms turn out to represent a natural carving point: it also corresponds to deep and
rich facts in finite combinatorics. I won’t be exploring this perspective further here:
for those who are interested a contemporary introduction to this point of view, in
which the Desargues configuration shows itself prominently, is Batten (1997).
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Dieudonné, J. (1985).History of Algebraic Geometry, Wadsworth Books, Monterey.
J.Sally, (trans.).

Dubois, A. (1877).The Elements of Graphical Statics and their Application to
Framed Structures, Wiley and Sons, New York.

Dugac, P. (1976).Richard Dedekind et les Fondements des Math ématique, Vrin,
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metic,Synthése 102: 319 – 361.

Tappenden, J. (2001a). “Geometrical Invariance and Mathematical Practice in
Frege’s Foundations of Geometry”. In preparation.

Tappenden, J. (2001b). “Proof Style and Understanding in Mathematics II: Nota-
tion”. In preparation.

Tappenden, J. (2001c).A Reassessment of the Mathematical Roots of Frege’s Logi-
cism I: The Riemannian Context of Frege’s Foundations. (Working title) manuscript
in progress.

Timoshenko, S. (1953).History of the Strength of Materials, Dover Publications,
New York. 1983 reprint.

Toulmin, S. (1961).Foresight and Understanding, Harper and Row, New York.

Truesdell, C. (1984).An Idiot’s Fugitive Essays on Science, Springer-Verlag, New
York.

Tufte, E. (1983).The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Conn.

Tufte, E. (1997).Visual Explanations, Graphics Press, Cheshire, Conn.

van der Waerden, B. (1991).Algebra, Vol. II, Springer, New York. Translated by J.
Schulenberger.

Weyl, H. (1913).Die Idee Der Riemannschen Fläche, Teubner, Leipzig.
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