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This article gives a comprehensive description of a theory for the efficient assessment of knowledge.
The essential concept is that the knowledge state of a subject with regard to a specified field of
information can be represented by a particular subset of questions or problems that the subject is

capable of solving. The family of all knowledge states forms the know/edge space. It is assumed that
if 2 subsets K and K' of questions are assumed to be states in a knowledge space X, then K U K is
also assumed to be a state in Ji. Such a theory is consistent with the idea that at least some of the

notions in the field may be acquired from different sets of prerequisites. Various aspects of the theory

are discussed. In particular, the problem of constructing a knowledge space in practice is analyzed
in detail. A first sketch of the knowledge space can be obtained by consulting expert teachers in the
field. The mathematical theory necessary to render this consultation efficient is given. This prelimi-

nary construction can then be tested and refined on the basis of empirical data. To this end, a proba-
bilistic version of the theory is developed, which is similar in spirit to some psychometric models,
but it is grounded on the concept of a knowledge space rather than on that of skill or ability. An
exemplary application of this probabilistic theory to a high school mathematics test is described,

based on a sample of several hundred students. By standard likelihood ratio methods, it is shown
how the preliminary knowledge space can be gradually refined, and the number of possible knowl-
edge states substantially reduced. Two classes of Markovian knowledge assessment algorithms are

outlined. Most of the results presented summarize previous articles published in various technical
journals. The application of the probabilistic theory to the high school mathematics test is original
to this article.

Consider the task of assessing an individual's knowledge state

with regard to a specified collection of problems or questions.

For concreteness, a small sample of such problems is shown

below, taken from the standard high school mathematics curric-

ulum. This example will be used throughout the article.
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What is 30% of 34?

Gwendolyn is \ as old as Rebecca.

Rebecca isf as old as Edwin.

Edwin is 20 years old. How old is Gwendolyn?

Testers could ask all five problems and examine the re-

sponses. However, such a method would be inefficient and im-

practical if they had 10,000 students to examine on an 80-prob-

lem test. Efficiency can be improved by taking advantage of an

implicit structure relating these problems. For instance, we can

safely deduce that any student capable of solving Problem 5 can

also solve Problems 1, 2, and 3 (we shall verify this experimen-

tally later in the article). Thus, asking those three problems

would be a waste of time. Similarly, a student who fails Problem

1 should almost certainly not be asked Problems 2,4, or 5.

Before proceeding, let us eliminate some possible misunder-

standings. We are not assuming that the structure is necessarily
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simple (e.g., there is an order of difficulty on the problems, such
as 1 < 3 < 2 < 4 < 5), nor are we suggesting that the structure
merely depends on the logical relationships between the prob-
lems. An example in another field may be helpful: If we discover
that a student can name five of the nine judges of the Supreme
Court of the United States, this student most likely also knows
the name of the vice president of the United States, and that
question need not be asked in a test evaluating the student's
competency in the current U.S. political organization. Clearly,
no logical relationship is involved in such an inference.

In general, we remark that, from the responses (correct or
incorrect) to some problems in a given field, some likely infer-
ences can be made regarding the responses to other problems
in that field; these inferences could be used in the design of
efficient knowledge assessment procedures. Obviously, we have
computerized procedures in mind. In the last few years, our
group has been engaged in developing a mathematical theory
basic to this issue, together with the associated computer algo-
rithms (Degreef, Doignon, Ducamp, & Falmagne, 1986; Doig-
non & Falmagne, 1985, 1987, 1988; Falmagne, 1989a, 1989b;
Falmagne & Doignon, 1988a, I988h; Koppen & Doignon, in
press; Villano, Falmagne, Johannesen, & Doignon, 1987). The
purpose of this article is to give a comprehensive description of
our progress and to discuss in detail an empirical application
of a basic model.

The central concept in our work is that of a knowledge state,
by which we mean a set containing all the problems that some
individual is capable of solving. The collection of all such states
is called the knowledge structure. Specific assumptions focus
consideration on a special class of knowledge structures called
knowledge spaces. No cognitive interpretation is attached to
these concepts. However, they can be shown to be consistent
with some standard features of psychometric theory, such as
skills or abilities (see Knowledge Spaces and Skills section).

Before providing details, we point out that our work has the
potential to be applied in cases superficially very different from
the assessment of knowledge. For example, consider a student
as a system; the task at hand is then to uncover the state of this
system by an appropriate sequence of verifications. Under this
guise, obvious analogies appear between the assessment of
knowledge and other situations, such as those outlined in the
following paragraphs.

1. Failure analysis. Consider a complex device, such as a
telephone interchange (or a computer, or a nuclear plant). At
some point in time, the device's behavior indicates a failure.
The system's administrator (or a team of experts) will perform
a sequence of tests to determine the particular malfunction re-
sponsible for the difficulty.

2. Medical diagnosis. A physician examines a patient. To
determine the disease (if any), the physician will check which
symptoms are present. As in the preceding example, a carefully
designed sequence of verifications will take place. Thus, the sys-
tem is the patient, and the state is his or her medical condition.
(For an example of a computerized medical diagnostic system,
see Shortliffe, 1976, and Shortliffe & Buchanan, 1975.)

3. Pattern recognition. A pattern-recognition device ana-
lyzes a visual display to detect one of many possible patterns,
each of which is defined by a set of specified features. Consider

a case in which the presence of features is checked sequentially,
until a pattern can be identified with an acceptable risk of er-
rors. In this example, the system is a visual display, and the pat-
tern is its state. (For a first contact with the vast literature on
pattern recognition, consult, for example, Duda & Hart, 1973,
andFu, 1974.)

Except for occasional remarks, we do not pursue these analo-
gies further in this article. However, the reader may want to keep
these cases in mind while appraising our theoretical construc-
tions.

Basic Concepts

Initially, the questions we asked ourselves were as follows:
How can we use previous responses given by a subject to some
problems to identify the remaining possible knowledge states?
How can we use that information to choose the next problem
to give the subject? More fundamental, how can we structure
the set of problems to permit such inferences, and how can the
concept of a knowledge state be defined? Some precise notation
will be useful.

We denote by Q the complete set of problems under consider-
ation. In our example, this set contains Problems 1 , . . . , 5. In
practice, the set Q may be quite large and contain dozens,
maybe hundreds of problems. As indicated, we assume that the
responses are coded only as correct or incorrect (the possible
limitations of this convention are addressed in the Discussion
section). The first formalization that comes to mind is based on
the idea that, from observing that a student is capable of solving
a given problem, one can sometimes surmise that this student
can also solve other problems. This suggests the introduction of
a binary relation S, with the following interpretation:

q & t if and only if from a correct response to problem ;
we can surmise a correct response to problem q. '

We shorten this as q can be surmised from t. The relation &
will be called the surmise relation. This relation is obviously
reflexive, and it is reasonable to suppose that it is also transitive.
In other words, it is a quasi-order on the set Q. (For the termi-
nology on order relations, see, for example, Roberts, 1979.)

A plausible surmise relation S for our five problems is shown
in Figure 1. The conventions of the figure (known as a Hasse
diagram in graph theory) are as follows. When some problem
q can be reached from some other problem t by descending
lines, this means that q can be surmised from t; that is, q £ t.
For instance, from a correct response to Problem 5, we can sur-
mise a correct response to Problems 2,1, and 3 (thus, 2 S 5,
1 £ 5, and 3 £ 5). However, from a correct response to Problem
2, we can only surmise a correct response to Problem I (there
is no descending line linking Problems 2 and 3). A complete
list of the possible knowledge states can be inferred from this
representation. The student may know nothing at all, or may
know just Problem 1, or just Problem 3, or maybe Problems 1
and 3, or Problems 1,2, and 3 (etc.). Notice that there is no state
of knowledge containing exactly Problems 1,3, and 5 (from the
knowledge of Problem 5, we can infer the knowledge of Prob-
lem 2). There are 10 knowledge states out of a possible 25 = 32:
0, {!}, {3}, {1, 3}, {1, 2), {1, 2, 3), {1, 2, 4}, {1, 2, 3, 5},
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Figure I. Hasse diagram of a plausible surmise
relation of the five questions.

{1, 2, 3, 4}, and {1, 2, 3, 4, 5}. Formally, the definition of the

knowledge state corresponding to a surmise relation £ is

K s Q is a state <=> (for all q,tE.Q,q£t, and t£K^q£K).

(1)

In plain language: A set Kof problems is called a state if when-

ever K contains some problem (, it also contains all the prob-

lems that can be surmised from (. There is an accidental feature

of our example: There is no case in which two distinct problems

can be surmised from each other. Formally, this means that the

surmise relation S satisfies the antisymmetry condition q£t&

f&q*^ q = t. A quasi-order that is also antisymmetric is called

a partial order. The antisymmetry condition is not required be-

cause it does not make sense as a general rule. We shall return

to this point later in this section.

However appealing the simplicity of this formalization, it has

one undesirable consequence: Any problem t has a unique set

of prerequisites or antecedents, namely, the set of all problems

that can be surmised from /. In the Hasse diagram, those prob-

lems can be reached from ( by descending lines. For instance,

the set of prerequisites of Problem 5 is the set {1, 2, 3}. This

condition may be deemed acceptable in our example, but it is

certainly absurd in general. Counterexamples are easy enough

to manufacture, even in a highly structured field such as mathe-

matics. Suppose that one discovers that a student is capable of

solving a system of linear equations, for example, three

equations in three unknowns. One may infer from this fact that

the student is conversant with the concept of a determinant, or

that the student is capable of inverting a matrix, or that the

student knows how to manipulate equations (adding or sub-

tracting them) as in the Gauss method. Moreover, any combina-

tion of these three hypotheses is possible. Whichever is the case

is not determined.

Thus, the model is too strong. However, which assumption or

assumptions should be dropped is by no means clear. At this

juncture, a change of viewpoint will be profitable. What will be

retained is the fundamental idea that the knowledge state of

some individual is the set of all the problems that this individual

is capable of solving (omitting, for the time being, complicating

factors, such as incorrect responses due to careless errors and

correct responses resulting from lucky guesses). The knowledge

structure is then the collection of all the subsets of problems

representing states. Thus, in our example, denoting by 3 the

knowledge structure, we obtain

{1, 2, 3, 5}, {1, 2, 3,4}, {1, 2, 3,4, 5}} (2).

Clearly, not all subsets of problems are suitable to represent

states. To determine the kinds of constraints that may arise for

a knowledge structure, one may ask: Is there anything special

about the knowledge structure derived from a surmise relation

that happens to be a quasi-order, such as the one represented in

Figure 1? Notice that the collection of states specified by Equa-

tion 2 satisfies the following property:

1 f K and K' are states, then K U K' is also a state.

For example, we have the two states {3} and {1,2}, but we also

have the state {1,2, 3} = {3} U {1,2}. A family of states satisfy-

ing this property will be called union closed, or D-closed. An-

other property, in the same vein but involving intersections, re-

quires that

if K and K' are states, then K Pi K' is also a state.

If this property holds for some family of states, we say that it is

intersection closed, or n-closed. From Equation 2, it is easy to

verify that the family of states 3 of our example is both U-closed

and 0-closed. This example illustrates a general situation,

which can be described in terms of the following classical result.

Theorem 1 (Birkhoff, 1937): For any set Q, the formula

q S i«. (re K~> qe K, for all Ke 3) •(3)

establishes a one-to-one correspondence between the set of all
quasi-ordere S on Q, and the collection of all families 3 of subsets
of gthat are U-closed and n-closed.

(See also Monjardet, 1970, and Doignon & Falmagne, 1985.)

In other words: For any surmise relation S on the set Q, which

is reflexive and transitive, there is exactly one family of states

y that is U-closed and fl-closed, and vice versa. Moreover, the

specifications of 5< by £ and of 5 by 3 are given by Formula 3.
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This result is useful in that it introduces a sharply different
outlook on a collection of knowledge states. Previously, the de-
nning condition was that a collection of states had to be consis-
tent with (or specifiable in terms of) a surmise relation, which
was assumed to be transitive,andl'en'exive. Now, however, the
surmise relation can be dispensed With. We can simply say that
we are considering families ? of knowledge states that are U-
closed and fl-closed. In this for,m, figuring out how the model
can be weakened is much iasie'r. The assumption that the collec-
tion 3 is U-closed seems, on the whole, quite reasonable. Con-
sider a group of subjects engaged in extensive interactions over
a period of lime. Suppose that the knowledge states of Subjects
1, 2, . . . , « are K,, K2, .. .,Kn (with respect to some body of
information). At some point, one of the subjects conceivably
will have accumulated all the knowledge contained in the
group. That is, the knowledge state of that subject will be Kt U
K2 U ... U Kn. We are not asserting that this will necessarily
happen. However, having a state in the structure to cover this
case certainly makes sense because this case might be realized.
On the other hand, the assumption that the collection ? is in-
closed is much harder to justify and may be dropped whenever
appropriate. In such a case, as we shall see in the Knowledge
Spaces, Prerequisites, and Surmise Systems section of this arti-
cle, any given problem may have several sets of prerequisites.

Another important idea must be introduced. Consider the
case in which two particular problems, q and i, are contained
in exactly the same states. This situation, which did not arise in
our example of Equation 2, is illustrated by the collection of
states K: -{0, {4, s}, {q, s, t}, {t}, {t, r}, {q, s, t, r}}. In the
collection Jij, problem q is in a given state if and only if problem
s is in that/state. If such a situation is observed with a large
set of problems and a sufficiently rich collection of knowledge
states, one tempting interpretation is that problems q and s are
actually testing the same abstract notion. We shall go one step
further and call notion any maximal subset of problems, all of
which are contained in exactly the same states. Thus, the subset
{q, s] is a notion, the other notions being {t} and {r}. At this
stage, no cognitive theorizing is attached to this concept, the
primary importance of which lies in the simplification of the
data that it allows. Since q and .$ play exactly the same role vis-
a-vis the states, to confound them makes sense. More generally,
we lose nothing of importance by considering the notions,
rather than the problems, as the basic entities. Consequently,
we sometimes assume in the following sections that this simpli-
fication has been carried out.

Our discussion is summarized by the following fundamental
definition, which is, unfortunately but unavoidably, somewhat
abstract.

Definition 1; A knowledge structure is a pair (Q, 9{) in which Q is
a set of problems or questions and ft is a collection of subsets of
Q, called the (knowledge) slates.

Occasionally, when no ambiguity can arise regarding the set
of problems, we refer to °K, rather than to (Q, "H), as the knowl-
edge structure. The set of all states containing a particular prob-
lem q will be denoted by 3iq. The set of all problems belonging
to the same states as q is denoted by [q] and is called a notion.
Thus,

Clearly, the collection of all notions is a partition of the set of
problems. As an illustration, we have, from Equation 2,

and

5? 4 ={{1,2 ,4} ,{1 ,2 ,3 ,4} ,{1 ,2 ,3 ,4 ,5}}

[4] = {4},

because none of the other problems belong to exactly the same
states as does Problem 4. A knowledge structure is said to be
discriminating when every notion contains exactly one prob-
lem, that is, when [q] = {q} for all problems q. (This is the case

in the knowledge structure 7.)
A knowledge structure (Q, 3i} is called a knowledge space

when the following two axioms hold:

[K 1 ] The set Q and the empty set 0 are states.
[K2] Any union of states is a state (that is, 3i is U-closed).

Suppose that, in addition, the knowledge structure satisfies

[K.3] Any intersection of states is a state (that is, # is n-closed).

Then, J{ will be called quasi-ordinal. A discriminating, quasi-
ordinal space is a partially ondinai space. (It is easy to show that
when a knowledge structurfe 3i is defined from a quasi-order
S, then Ji is discriminating if and only if S is a partial order,
that is, S is antisymmetric.)

The knowledge structure 1 is a partially ordinal space be-
cause Equation 2 defines a discriminating, U-closed, n-closed
knowledge structure.

In the rest of this article, we consider for our five problems,
as a working hypothesis, the knowledge space

{3, 4}, { 1, 2, 3}, { 1, 2, 4}, { 1, 3, 4}, {2, 3, 4},

{1,2, 3,4}, {1,2, 3,5}, {1,2, 3,4,5}}, (4)

which does not satisfy the intersection property of Axiom [K3],
How such a knowledge space can be achieved will be explained
in the Building the Knowledge Space section, in which a general
procedure will be described. According to BirkhofF's theorem,
this collection of states cannot be denned from a transitive, re-
flexive surmise relation because [K3] does not hold. Indeed, the
set {2} = { I , 2, 3} n {1, 2, 4} n {2, 3, 4} is not a state of
3{. Excluding {2} as a state is sensible: Any student capable of
solving Problem 2 should be expected to have mastered either
Problem 1 , or Problem 3, or possibly both. A graphic represen-
tation of the knowledge space defined by Equation 4 is given in
Figure 2.

This figure makes clear that the knowledge space fi also satis-
fies a condition not encountered before. Namely, the lines of
Figure 2 are always joining two "consecutive" states: The state
to the right contains exactly one more problem than does the
state to the left. This condition is not required for general
knowledge spaces, but it plays a critical role in the section titled
A Stochastic Learning Theory for a Knowledge Space in con-
nection with the concept of a "learning path."



INTRODUCTION TO KNOWLEDGE SPACES 205

Figure 2. Graph of the knowledge space of Equation 4. (Each state is

represented by a box, and a line joining two states, K and K', from left

to right indicates that K' is the smallest state strictly including K.)

One might ask why so much attention is given to restrictive
assumptions. Why not have as broad a theory as possible and
simply deal with knowledge structures in general? The closure
under union, the key axiom of a knowledge space, is appealing
for several reasons. We have argued that this condition seemed
realistic in some empirical situations. Moreover, the concept of
a knowledge space appears to be consistent with a more tradi-
tional model formalized in terms of skills (see the Knowledge
Spaces and Skills section). It is also closely related to the AND/
OR graphs of artificial intelligence (see Doignon & Falmagne,
1985). Some practical considerations are relevant. The concept
of a knowledge space can be shown to be equivalent to another
one, which allows a very convenient method of acquiring infor-
mation from experts. This means that the actual construction
of the knowledge space, at least as a working hypothesis, is feasi-
ble (see the Building the Knowledge Space section). Finally,
when a knowledge structure is a knowledge space, an efficient
way of storing (in a computer's memory) the list of knowledge
states is available. We illustrate this fact with our standard ex-
ample. Notice that all 15 states given in Equation 4 can be ob-
tained by taking all arbitrary unions (including the empty
union) of the states included in the subcollection

JB ={{!}, {3}, {1, 2}, {1, 4}, {2, 3}, {3, 4), {1, 2, 3, 5}}, (5)

which only contains 7 states. Such a reduction can always be
achieved. That is, when the set Q of problems is finite, it is al-
ways possible to find a "minimal" subcollection of states £ such
that all the states in the knowledge space "H can be found by
taking unions of states in 2i. The subcollection ® is called mini-

mal in the sense that it is included in any other subcollection of
states generating the states in 3i by taking all possible unions.
There is always exactly one subcollection £ satisfying these
properties; we call it the basis of"K.

Nevertheless, the U-closure assumption may not be fulfilled
in some practical applications. Even in such a case, the main
lines of the general theory developed herein would stand. A full
discussion of this issue is postponed until the Discussion sec-
tion.

This approach to the representation of knowledge, as a step
toward assessing the knowledge states of individuals, prompts
several basic issues, which are discussed in the various sections

of this article.

We started our discussion with a model in which the possible
knowledge states were derived from a binary surmise rela-
tion S on the set Q of problems, which was assumed to be re-
flexive and transitive. This model had the undesirable feature
that to each problem there corresponded a unique set of prereq-
uisites, and the model was rejected for that reason. The concept
of a knowledge space is more general and escapes this criticism;
this will be shown in the next section, where the exact relation-
ship between the collection of states and the prerequisites is de-
scribed.

There is a long-standing tradition in psychology to analyze
the results of mental tests in terms of psychometric models, the
core of which is a representation (uni- or multidimensional, of-
ten numerical) of the concept of ability (Lord, 1974; Lord &
Novick, 1974;Wainer&Messick, 1983; Weiss, 1983). In princi-
ple, knowledge clearly can be assessed in terms of such models,
and this approach may be sensible when one is interested in
broad, long-term predictions of an individual's achievements.
However, when the aim of the assessment procedure is an accu-
rate description of the current knowledge of a specific body of
information, the concept of ability seems a priori to be a costly
detour. In any event, the choice of the most successful model
ultimately will be a matter of empirical comparison. Such a
comparison is an item in our research program, but it is not
undertaken in this article. Beyond these utilitarian considera-
tions, one can also ask whether our approach is conceptually
consistent with more traditional ones on the basis of the con-
cepts of skills or abilities. Some possible relationships are ex-
plored in the Knowledge Spaces and Skills section.

How can a knowledge space be constructed in practice? In
our view, a first sketch of the space must be obtained by system-
atically consulting experienced teachers. However, we cannot
simply ask these experts to give us a list of the possible knowl-
edge states. For one reason, the concept of a knowledge state is
somewhat abstract and may be difficult to convey exactly. For
another, such a list will certainly contain, in any realistic appli-
cation, thousands of states. Thus, what are the right questions
to ask the experts? In the Building the Knowledge Space sec-
tion, we show that the concept of a knowledge space is actually
equivalent to another concept in which the knowledge states do
not appear explicitly: This second concept is much more suit-
able for acquiring the relevant information from experts. We
outline a practical procedure, which we illustrate by an applica-
tion involving our five problems and the knowledge space repre-

sented in Figure 2.
This first sketch of a knowledge space, based on experts' opin-

ions, need not be taken for the final word and should be con-
fronted with experimental data. At this stage, the knowledge
space is regarded as a model capable of making predictions con-
cerning the actual responses of a sample of subjects to the prob-
lems. However, such data are typically "noisy"—for instance, a
subject might make a careless error in a computation or might
guess the correct response. If the knowledge space is essentially
correct, the states will thus govern the subject's responses only
through a mediation by some random process that remains to
be specified. Moreover, the standard evaluations of the goodness
of fit of a model in a noisy situation are hased on statistical
techniques. The correct approach is to build a probabilistic
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model, the core of which is the knowledge space, and to specify,

up to the values of some parameters, the probabilities of all pos-

sible patterns of responses (there are 25 = 32 such patterns in

our example). One such model, which seems especially interest-

ing, is described under the heading of A Stochastic Learning

Theory for a Knowledge Space. The model is simple enough to
allow explicit predictions and offers an appealing explanation

of a complex set of data. The model has been applied to the

responses to the five problems given by 497 high school stu-

dents. This experiment and the results of the statistical analysis

are described in detail in the section An Application of the

Learning Theory. We show how such an analysis leads — via

likelihood ratio techniques — to testing possible simplifications

of the knowledge space.

In practice, how can we uncover the knowledge state of an

individual, once an acceptable knowledge space has been con-

structed? Indeed, the ultimate goal of this work is the construc-

tion of practical, computerized knowledge assessment proce-

dures. In the Uncovering the State of a Student section, two

classes of such procedures are outlined within the framework

of Markovian processes, and we show how such procedures can

be used to determine, at least to a good approximation, the state

of an individual.

The article ends with a discussion of some potential criti-

cisms to our approach and an outline of further developments.

Knowledge Spaces, Prerequisites, and Surmise Systems

Intuitively, a set of prerequisites for some problem qis a mini-

mal set of problems that must have been mastered before tack-

ling Problem q. We claim that, in a knowledge space, any prob-

lem may have more than one set of prerequisites. Our discus-

sion of this fact is based on our standard example and, more

specifically, on the knowledge space obtained in the previous
section, namely

{3,4}, {1,2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3,4},

{1,2, 3, 4}, {1,2, 3,5}, {1,2, 3, 4,5}}

with basis

3 = {{!}, {3}, {1,2}, {1,4}, {2, 3}, {3, 4}, {I, 2, 3, 5}}.

Suppose that all we know about a particular student, named

John, is that he has solved Problem 4. (We still assume that no

careless errors or correct guessing are involved. This assump-
tion is dropped in the Stochastic Learning Theory section.)

What can we infer from this observation regarding John's

knowledge state? Surely, his state must contain Problem 4.
Thus, this state must be a member of

{2, 3,4}, {1,2,3, 4}, {1,2, 3,4, 5}}.

However, we cannot infer that John's state contains Problem 2

or Problem 5: We have no evidence for such conclusions. The

only reasonable inference that can be made is that John's state

Table 1

Clauses for Each of the Five Problems

Problem Clause

1
2
3
4
5

(U
{1,2}, {2, 3}

{3}
{1,4}, {3, 4}
{1,2,3,51

contains Problem 1 or Problem 3: Any state containing Prob-
lem 4 contains Problem 1 or Problem 3. Thus, we have two

possible sets of prerequisites for Problem 4, namely {1} and

{3}. In other terms, John's state includes {1, 4}, or {3, 4}, or

possibly both sets. These two sets will be called the clauses for

Problem 4. Notice that these two clauses are knowledge states.

They are actually the "minimal" states containing Problem 4

(to say that a state Kisa minimal state containing a problem q

means that ̂ contains q and that there is no other state K'CK

containing q).

In the sequel, we focus on the clauses rather than on the set

of prerequisites. (The possible sets of prerequisites for some

problem q are automatically obtained by removing q from the

clauses for q.) In general, if a subject is found to have mastered
a given problem, then at least one of the clauses for the problem

must be included in the subject's state. The clauses for each of

the five problems are listed in Table 1. Notice that each of the

clauses is an element of the basis j8. Conversely, each element
of the basis is a clause for some\problein. This example illus-

trates a general situation. Let 3i,(represent the set of all mini-

mal states containing some problem q in a knowledge space "H

with basis 35. Thus, fiq E ft,, the set of all states containing q.

We also have #, s J§ for any problem q, and the set <r(q) of all

the clauses for q is obtained by setting

y(q) = ft,. ' (6)

As another illustration, consider u(2) = {{1,2}, {2,3}} =3{2-

Equation 6 specifies how the clauses can be constructed from

the basis of a knowledge space. Notice that such tlauses auto-

matically satisfy three conditions. We have already encountered
one of them, namely

[S1 ] Every clause for a problem q contains Q.

The next condition seems a natural requirement for the concept

of a clause as we understand it: A clause for a problem q is a

minimal set of problems that has to be mastered before prob-

lem q can be solved. However, suppose that C is such a clause

for q and that there is another problem q' contained in C. Surely,

then, q' is on the path to the mastery of q. This means that if,

for example, problem q' has three clauses, at least one of them

must be included in C (Figure 3). In general, we have the follow-

ing condition, which also results from Equation 6.

[S2] If a problem ij' is in some clause C for q, then there must be
some clause C' for q' included in C.
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Clause C for Problem q

Figure 3. Illustration of Condition [2]. (Problem q' is in clause C of
problem q and has the three clauses C', C" and C'". At least one of these
three clauses must be included in C. Shown is C c C.)

Notice that we may have C = C'; thus, C is a clause for both q

and q'. An example is provided by the knowledge space

with basis

The clauses for a are {a, b) and {a, c}. We have b e {a, b}, and

[a, b} is also a clause for b. Condition [S2] is satisfied.

The third condition eliminates a situation in which we would

have two clauses, C and C', for the same problem q, with C' a

proper subset of C. From observing a correct response to prob-

lem q, we have no reason to take C - {q} as a possible set of

prerequisites, because in our interpretation of the clauses, the

mastery of all the problems in the smaller set C' — {q} is suffi-

cient to access problem q. The next condition states that such

cases do not arise.

[S3] Any clause C for q is minimal in the sense that if C is also a
clause for q and C s C, then C = C.

Any set of clauses defined from a knowledge space through

Equation 6 satisfies these three conditions.

Could we go the other way around? That is, suppose that, for

each problem q, we had the collection o{q) of all of its clauses

and that these clauses satisfy Conditions [SI], [S2], and [S3],

now considered as axioms. Could we, then, reconstruct the

knowledge space exactly? The answer is yes. The reader may

notice the resemblance of this situation with that encountered

in the last section in connection with BirkhofT 's result (Theo-

rem 1). On the one hand, there were families of states that were

U-closed and n-closed, and, on the other hand, there were sur-

mise relations & that were quasi-orders, that is, which were re-

flexive and transitive. Birkhoff 's theorem stated, then, that these

two concepts were equivalent. The situation discussed in this

section is similar, but it concerns an equivalence between

knowledge spaces and systems of clauses satisfying the three

Axioms [SI], [S2], and [S3]. The next definition summarizes

the discussion presented thus far and paves the way for a precise

statement of that equivalence in Theorem 2.

Definition 2: Let Q be a set of problems, and let IT be a function
that associates to each element q of Q a nonempty collection tr(q)

of subsets of Q called the clauses for q. Suppose that these clauses
satisfy Axioms [S 1 ], [S2], and [S3]. Then, the pair (Q, a) is called a
surmise system* and a is a surmise function on Q.

Theorem 2: Suppose that Q is a finite set of problems. Then there
is a one-to-one correspondence between the set of all surmise func-
tions a on Q and the set of all knowledge spaces 3i on Q. Moreover,
this correspondence is specified by Equation 6.

This result, which generalizes Birkhoff's theorem in the finite

case, is due to Doignon and Falmagne (1985). A proof can be

found in their article.

Knowledge Spaces and Skills

So far, our approach to the representation of knowledge has

been deliberately free of any cognitive interpretation. Our main

concepts do not rely on traditional explanatory features of psy-

chometric research, such as "latent traits" in the guise of skills

or abilities. However, the concepts can be reconciled with such

features. We briefly explore some of the possible relationships.

Following Marshall (1981), for example, we assume the exis-

tence of some abstract set 5 of skills. For each problem q 6 Q,

there is a corresponding subset f(q) s 5 of skills, namely those

very skills required for (or at least relevant in) solving the prob-

lem. Thus, /is a function mapping Q into the set of all subsets

of S. (Marshall draws an important distinction between compo-

nent skills and their combinations. Such a distinction is valid if

the set of skills is specified. Otherwise, one can always consider

any combination of skills as just another skill. This is the posi-

tion we adopted herein.) Implicitly, the function /defines a hier-

archy between the items: If all the skills required to solve prob-

lem q are also required to solve problem q', then, from observ-

ing that a subject is capable of solving problem q', one should

surmise that this subject is also capable of solving problem q.

This suggests the definition of a binary relation P on Q by the

equivalence

Obviously, such a relation is a quasi-order closely related to the

surmise relation S discussed in the first section. (In principle,

only the method of construction is different.) As in Equation

1, the relation P can be used to generate the knowledge states.

However, the relation P then suffers from the same defects as the

surmise relation £ in that it implies the existence of a unique

set of prerequisites for each problem. This suggests making the

weaker assumption that several sets of skills may be attached

to each problem, every one of which may be used to solve the

problem. In this framework, if we discover that some individual

is capable of solving a given problem, we cannot automatically

infer which skills this individual possesses, because there may

be more than one way to arrive at a solution. The concept of a

latent trait is germane to a distinction made in linguistic theory

between competence and performance (Chomsky, 1965). We

define competency to be a complete set of skills sufficient to

' Our terminology in this definition differs slightly from that used in
Doignon and Falmagne (1985), in which a surmise system was labeled

a space-like surmise system.
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Table 2

Hypothetical Competencies Associated With

Each of the Five Problems

Problem Competency

1
2
3
4

5

{a,b}
{a,b,d}, {c,d}

W
{a,b,e},{c,e}
{a,b,c,d,f}

solve a problem. Thus, to any problem there is associated a

collection of competencies. The key step consists in specifying

from the full collection of competencies the subsets of problems

forming knowledge states; thus, the following definition seems

sensible:

Definition 3: A subset K of problems is a knowledge state if and
only if there is a subset M of skills such that K contains all those
problems having at least one competency included in M and only
those problems. We shall then say that AT and the elements of A" are
generated by M.

Some hypothetical competencies associated with each of the

five problems are shown in Table 2. We assume that six skills

are involved: S = {a, b, c, d, e, f}.

It can easily be checked that the 15 states of the knowledge

space J< of Equation 4 are generated by applying Definition 3

to the competencies listed in Table 2. tor instance, 0 s Q is a

state because it is generated by 0 sX {1, 2} is a state because

it is generated by {a, b, d}; {2, 3,>} is a state because it is gener-

ated by {c, d, e}; and so forth. On the other hand, the 17 non-

states can be obtained from three facts:

1. Any subset of skills generating some state K containing 2 in-
cludes {a, b,d} or {c,d}. Thus, A'also contains I or 3.

2. Any subset of skills generating some state A" containing 4 in-
cludes {a, b, e} or {c, e}. Thus, A^also contains 1 or 3.

3. Any subset of skills generating some state K containing 5 in-
cludes {a, b, c, d, f j. Thus, AT also contains 1, 2 and 3.

Notice that in Table 2, two skills are in some sense redundant:

Skills a and b belong to exactly the same competencies. We

could, without loss of predictive power, decide to combine these

two skills into one.

In this particular case, we have assumed that the set of com-

petencies was finite, but this is by no means necessary. For in-

stance, a quantitative form of a competency might be the set of

all numbers t < 6, with 9 representing some ability level.

The point of this simple example is to show that an interpre-

tation of a knowledge space in terms of a structure of underly-

ing skills is sometimes possible. (It turns out that such a con-

struction is always feasible. We shall not prove this fact herein,

however.) The theory of this type of interpretation remains to

be developed. The types of questions that this theory would ad-

dress are: Under which conditions on the competencies do the

states (as specified by Definition 3) form a knowledge space?

What is the exact structural relation between the knowledge

space and the competencies? The collection of competencies

displayed in Table 2 bears a striking resemblance to the clauses

given in Table 1 (if the redundant skills a and b are combined,

the left column in Table 2 becomes just a relabeling of the corre-

sponding column in Table 1). Is this resemblance fortuitous, or

does it illustrate an essential relationship? These questions will

be discussed in a later publication if the results are of interest.

Building the Knowledge Space

Even for sets of moderate size (e.g., Q contains 30 problems),

the practical construction of the knowledge space is a consider-

able enterprise. This construction must rely partly on experi-

mentation, which means collecting the frequencies of occur-

rence of all the possible patterns of responses in a large sample

of subjects and, through some appropriate analysis, inferring

the knowledge space that can best account for the data. An ex-

ample of what we have in mind will be given in the next two

sections of this article. In our view, this is only the second step

to be taken. There is much to be gained by first obtaining a

sketch of the knowledge space based on expert teachers' opin-

ions. However, as already argued, asking a teacher, no matter

how experienced, whether particular sets of problems are possi-

ble knowledge states does not seem feasible. An indirect ap-

proach must be taken.

There is, however, a type of question that an expert will fully

comprehend and might also be able to answer reliably:

[Q I ] Suppose that a student under examination has just provided
a wrong response to problem q^. Is it practically certain that this
student will then also fail problem q{! We assume that careless er-
rors and lucky guesses are excluded.

For expository purposes, we simplify this to the question: Does

failing q\ entail failing q{!

The teacher can draw from his or her educational experience

with a population of students to decide whether to respond

"yes" or "no." A positive response would mean that some sets

of problems can be eliminated as possible states, namely all

those sets containing problem q2 but not problem q,. Indeed, if

there are some states in the knowledge space containing q2 and

not q,, then there might be a student failing q, but not q2, and

the expert should respond "no" to [Ql], A positive response to

[Ql] will be coded as tjiPfr, and a negative response will be

coded as #iN<?2. Notice that not all such questions need to be

asked. For instance, if we have observed qtPq2 and (fePft, we can

infer q,Pq3 (if failing q^ entails failing q2 and failing ft entails

failing q-,,, then, surely, failing q, entails failing ft). Thus, there

is no need to ask [Ql] for the pair (q,, ft). This means that P,

regarded as a binary relation, is transitive on the set Q of prob-

lems. This transitivity property can be used to considerably fa-

cilitate the task of the expert. Unfortunately, if the only ques-

tions asked were of Type [Ql], we would only be able to con-

struct the knowledge space in some very special cases, namely,

cases in which the space is both U-closed and H-closed (this

follows from Birkhoff's theorem). Clearly, some information

might be missing. Consider Problems 1,2, and 3 in our standard

example, and suppose that the following two questions were

asked: Does failing 1 entail failing 2? Does failing 3 entail failing

2? Assume that the expert is implicitly relying on the knowledge
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Table 3

First 20 Steps of the Procedure for Questioning the Expert, in the Case of Knowledge Space "K of Equation 4

Step*

0
1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

|N,|

0
1
2
3
9

10
11
12
16

17

18
19
22
23
24
25
26
27
28
28
28

|P,I

80
80
80
80
88

88
88
88
92

92
92
92
94
94
94
94
94
94
94
97

100

Observed
response

IN2
1N3
I N 4
IPS

2N1
2N3
2N4
2P5

3N 1
3N2
3N4
3P5
4N 1
4N2
4N3
4N5

12N3
12N4
13P2
I3P4

Pairs added to N,

ill
1 14

S|2 ,S |3 ,5 |4 , I 5|2,
1 5|3, 1 5|4

2| 1
213
2|4

5|1,25|1,25|3,
25|4

3| 1
3|2
3|4

3 5 | I , 3 5 | 2 , 3 S | 4
4| 1
4|2
4|3
4|5

12|3
12|4

—
—

Pairs added to P,

—

1|S, 1 215,1 3|5,14|5,
123 |5 ,124 |5 ,
1 34|5, 1 234 |5

—

—
—

2|5,23|5,24|5,23415

—

—
—

3|5,34|5

—
—
—
—

——
1 3 | 2 , I 3 4 | 2 , I 3 5 | 2
1 3 | 4 , 1 3 5 | 4 , 1 2 3 | 4

Sets deleted from »'

-

{5}, {2, 5), {3, 5}, {4, 5}, {2, 3, 5},
{2,4, 5), {3,4, 5}, {2, 3,4, 5}

—

—
—

{1 5} {1 3 5} {1 4 5) 11 3 4 5}

—

—
—

{1,2,4,5}, {1,2, 5}

—
—
——

—
—

(2), {2,4}

{4}

Note. The first column indicates the step number; the second column contains the current number of negative responses and inferences; the third
column contains the current number of positive responses and inferences; the fourth column lists the observed response at the current step number;
the fifth column contains the negative inferences drawn from the observed response (including the response itself, if it was negative); the sixth column
contains the positive inferences drawn from the observed response (including the response itself); and the seventh column shows which states are
deleted from the current knowledge space if a positive response is obtained (at the start—Step 0—all subsets of problems are considered states).
Dashes indicate nothing is added or deleted.

space 3i of our example, which is specified in Equation 4. Since

there are states in 3i containing 2 and not 1, and (other) states

containing 2 and not 3, the expert should respond "no" to both

questions. However, there are no states in J{ containing 2 but

neither 1 nor 3, so the expert would actually respond "yes" to

the question; Does failing both 1 and 3 entail failing 2? This

positive response would eliminate {2}, {2, 4}, {2, 5}, and {2,

4, 5} as possible states. It will be shown that if only questions

of Type Q1 were asked, we would end up with the following

collection of states;

W= {0, {!}, {2}, {3}, {4}, {1,2}, {1, 3}, {1,4}, ,A

{2,3},{2,4},{3,4U1,2,3} ;{1,2,4U1,3,4},

{2, 3,4}, {1,2,3, 4}, {1,2,3,5}, {1,2, 3,4,5}}.

(This can be seen in Table 3. The sets {2, 5} and {2, 4, 5} have

been removed on line 4 of the table, from the Observation 1P5.)

Notice that Ji' is both U-closed and O-closed and contains all

the right states; however, it also contains the three "useless"

states {2}, {4}, and {2,4}.

This discussion suggests a more general type of question for

acquiring information from the expert:

[Q2] Suppose that a student under examination hasjust provided
wrong responses to all the problems in a subset A of Q. Is it practi-

cally certain that this student will then also fail problem q in Q1
We assume that careless errors and lucky guesses are excluded.

Extending our notation, we shall code positive and negative re-

sponses to such questions as A P q and A N q, respectively.

A positive response to the question: Does failing both 1 and

3 entail failing 2? will thus be denoted by {1, 3JP2. It can be

established mathematically that, if all the questions of Type

[Q2] are asked, then the knowledge space can be recovered ex-

actly. This result, which is not proved herein (see Koppen &

Doignon, in press), can be stated in the form of an equivalence

between knowledge spaces and relations P, which is conceptu-

ally germane to the equivalences obtained in Theorems 1 and
2. In the rest of this section, we illustrate these ideas and results

by progressively constructing the knowledge space 3i of Equa-

tion 4 from an appropriate sequence of questions of Type [Q2].

Our first step consists in ordering the questions to be asked

of the experts; that is, we have to order the pairs (A, q) corre-

sponding to the questions: Does failing all the problems in A

entail failing problem (fi It makes sense to begin with the sim-

plest questions. We order the questions by the size of the set A

in the pair (A, q). Thus, we ask (A, q) before (A', q') whenever

\A\ < \A'\. (Herein, and in the sequel, we denote by \S\ the
number of elements in a set S.) This means that all the questions

of Type [Ql] will be asked in the first stage of the procedure.
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For sets A of the same size, a different kind of rule will be used,
based on the fact that numbers have been arbitrarily assigned
to the problems. (The labels q and q' denoting the questions are
positive integers.) Suppose that \A\ - \A'\ = «: for example,

The procedure stops when there are no more undecided ques-
tions, that is, when for some step number s

Then,

A = {<?„ . . . , q,}, A' = { < ? ! , . . . , <f,}.

(A, q) is asked before (A, q')

either q, < q', or (q, = q', and q2 < qfi

or (4, = q\ and q2 = $ and q, < q'3)

or . . .

(The type of ordering denned in the above formula is usually
referred to as lexicographic by analogy with the order of the
words in a dictionary.) Thus, for example, ({3, 5}, 1) is asked
before ({1, 2,3},5) because |{3,5}| =2< |{1,2,3}| = 3, and
({2, 3}, 4) is asked before ({3, 4}, 1) because | {2, 3} | = 2 =
| {3, 4} | , and 2 < 3. Counting the maximal number of questions
that might be needed is useful in designing a stopping rule. In
principle, a question (A, q) may be constructed from any non-
empty subset^ of Q and any problem q. Writing m for the num-
ber of problems in Q, we thus have a maximum of (2" — 1 ) X m
questions; that is, (25 - 1 ) X 5 = 155 questions in our example.
However, many of these questions have positive responses
known in advance. For example, Question ({1, 2, 3}, 3) must
yield a yes response because it means Does failing all three
Problems 1, 2, and 3 entail failing Problem 3? In general, we
must have

q<EA=>APq. (7)

The count of these positive responses known a priori is easy
to make because it only involves counting the elements in the
membership relation £, for all the nonempty subsets of Q, or,
equivalently, for all the subsets of Q. Since each subset of Q,
together with its complement, contributes exactly m to this
number, we obtain 2™ X w/2 = mX 2m~', which becomes 5 X
2" = 80 in our example. We denote by Pa the set of all questions
with positive responses known a priori; thus, P0 is just the (in-
verse relation of the) set membership relation e appearing to
the left of the implication sigh' W in Formula 7. By symmetry,
we denote by N0 the set of all questions with negative responses
known a priori. Because there are no such questions, we have

I .Pol = m X 2 ™ - ' , | JV 0 |=0 .

In our example, we obtain | P01 + | N01 = 80 + 0 = 80.
Our method for questioning the expert proceeds by succes-

sively adding to PO or NO the positive or negative responses ob-
served or inferred, yielding the two sequences of relations

PO S Pi ^ . . . s P, s . . . ,

N0 £ N, £ ... £ N, £ . . . .

\P,\ | =(2m- l)Xm.

We illustrate this procedure using our standard example. We
assume that the expert's responses are consistent with the
knowledge space of Equation 4. The first 20 steps of the proce-
dure are represented in Table 3. In that table and in the sequel,
we abbreviate {qtl . . . , qn}Pq as q, . . . qnPq, with a similar con-
vention for the relation N. We also refer to a question ({q\,. . . ,

Qn}> q) by the shorthand notation q\ . . . qn \ q. The first column
of the table contains the step number. The second and third
columns contain the current values of | N, | and | P, | ; thus, for
Step 0, the entries are 0 and 80, respectively. The fourth column
lists the observed response from the expert, which will be of the
form q, ... qaPqn+i or q, ... qaNqa+1. The next two columns
contain the pairs being added to the relations N, and P,. The
symbol 3il in the heading of the last column denotes the collec-
tion of sets remaining at step /. The entry in this last column
lists the sets being deleted from J{' at Step ;, yielding K'+t . Note
that 3{° is just the collection of all subsets otQ. (At the start of
the procedure, all subsets are potential states.)

We begin by asking Question 1 12. Because there are states
containing Problem 2 but not Problem 1, the response is nega-
tive. Therefore, 1 N2 is recorded in the fourth column of Line
1 in the table, and the pair 1 1 2 is added to N0, forming the
relation N, = { 1 1 2}. Because no positive response is observed
or inferred and no sets are deleted from Jf, we set P, = PO and
3i ' = 3f. Next, we consider Questions 1 1 3 and 1 1 4. Again, two
negative responses must be obtained. At the end of the third
step of the procedure, we have

|N3 |=3, |P3| =80 ,N 3 ={1 |2 , 1|3, 1|4},

The first positive response is observed at Step 4, with Question
1 1 5. Consistent with the fact that the knowledge space has no
state containing 5 but not 1 , the expert gives a yes response. We
add 1 1 5 to P4 in column 6. However, we can also add to P4 all
the pairs of the form 1 g, . . . <?„ 1 5, because failing all the prob-
lems in the set { 1 , q,, . . . ,qn] certainly involves failing Problem

1 . This justifies the additions of 1 2 1 5, 1 3 1 5, . . . , 1 2 3 4 ) 5 .
There are many other consequences to be derived from this pos-
itive response. In particular, several a priori possible states may
be discarded, that is, all states containing 5 but not 1: {5}, {2,
5j, {3, 5}, {4, 5}, {2, 3, 5), {2, 4, 5}, {3, 4, 5}, and {2, 3, 4, 5}.

Thus, eight potential states were eliminated from the 32 ini-
tial ones, as indicated on Line 4 of Table 3 in the last column.
Finally, we consider the addition of pairs to N4 in the fifth col-
umn. Notice that there is no need to ask Questions 5 [2, 5 1 3,
and 5 ) 4 because from 1P5, together with the formulas 1N2,
I N3, and 1 N4 obtained in the first three lines of the table, we
can logically infer 5N2, 5N3, and 5N4.

The argument proceeds by contradiction. Assume, for exam-
ple, that 5N2 does not hold. This means that a positive response
must be obtained for the pair 5 [ 2, which is written as 5P2. Con-
sider the two facts IPS and 5P2. By the transitivity of P on the
set Q, we derive 1P2, contradicting the negative response 1N2
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obtained in Line 1 of the table. The same reasoning applies to
the two other pairs, 513 and 514. Thus, the three Pairs 512,513,
and 514 are added to N3. However, Pairs 1 512,1 5|3,andl 5|4
can also be added. The argument is similar. Suppose, for exam-
ple, 15P2. We have observed IPS, from which we can deduce
that failing 1 entails failing 1 and 5. However, failing 1 and 5,
we have assumed, entails failing 2. Thus, failing 1 entails failing
2; that is, once again 1P2, contradicting our previous result
1N2. We see that, from the single positive response, IPS, we
managed to delete eight potential states, and 13 possible ques-
tions.

We shall not analyze Table 3 any further. The discussion of
these few examples should be sufficient for the reader to under-
stand the basic mechanisms of the procedure.

The knowledge space is obtained at the 20th question. How-
ever, the experimenter will know this fact only after the 29th
question, when noticing that

|N2,| + |P2,| =53+ 102= 155 = 31 X 5.

After Step 20, all further questions receive a no response.
One may ask whether applying such a procedure in a practi-

cal situation, involving many problems, is realistic. One could
easily construct examples requiring a considerable number of
questions to obtain the knowledge structure. However, the col-
lection of states W remaining at Step / of the procedure (for
any value o f t ) is a knowledge space and contains all the states
belonging to 3i, the knowledge space to be found. The proce-
dure can thus be stopped at any time, whenever the cost be-
comes prohibitive. In particular, it can be stopped when all the
questions of the type q \ q' have been asked. There will be at most
m X (m — 1) such questions, and the actual number may be
considerably less. In a recent application, involving 24 prob-
lems in high school algebra, the expert had to respond to 196
questions of the typegl^', outof24 x 23 = 552. This resulted
in a knowledge space with 949 states, an impressive reduction
because, at the start of the procedure, there were 224 =
16,777,216 potential states. The procedure was pursued to the
end, which further reduced the number of states to 312. The
total time spent by the expert was approximately 7 hr.2

We are developing computer programs that will permit an
efficient application of this procedure. The principle of these
programs consists in maximizing the total number of pairs q\
... qn \ gn+t that could be added to either N, or P, as a result of
asking a question, averaged over positive and negative re-
sponses. A sophisticated version of such a program looks ahead
a certain number of steps. Because the program is interactive,
the search for the best question to ask at Step f can end at the
time of the response given at Step t - 1 (in a manner similar to
chess-playing algorithms).

A Stochastic Learning Theory for a Knowledge Space

We shall refer to the procedure discussed in the last section
as QUERY. Suppose that applying QUERY has resulted in the
knowledge space specified by Equation 4 and represented in
Figure 2. To assume that this knowledge space is necessarily
correct in all of its details would be naive. Caution is advisable
for several reasons. For one, an expert may not be fully consis-

tent in the course of the questioning. Any realistic application
of QUERY will take place over several days. Questions of Type
Q2 asked the expert to be "practically certain." The interpreta-
tion of this phrase may vary from one day to the next. For an-
other reason, if several experts participate, as is surely desirable,
they will almost certainly give knowledge spaces that will differ
in some respect, and these differences will have to be reconciled.
The combination rule adopted, however reasonable it might be,
may be a source of distortion.3

The knowledge space obtained from an application of QUERY
has to be verified experimentally. If possible, a large sample of
subjects from a specified population should be used. However,
such data will unavoidably be noisy, and as such they cannot
easily be confronted with a deterministic model such as that
discussed in the preceding section. The appropriate step at this
juncture is to construct a probabilistic model, which would
specify the probabilities P(R) of all the 2m possible patterns R
of responses (with m = | Q \) by the equation

P(R) = (8)

The assumptions of such a model must specify, for each pattern
R and each state AT (possibly up to the values of some parame-
ters), the probability P(K) of state K in the population under
consideration and the conditional probability P(R|/if) of ob-
serving R given K. This model can then be compared to the data
by standard statistical techniques.

Falmagne (1989a) has developed a model of this type, and it
is the topic of this section. An application of this model to some
data pertaining to a high school mathematics test is described
in the next section. We show how a test of the model against
empirical data provides a way of evaluating the soundness of
the knowledge space forming its core. A general strategy will be
illustrated: Initially, we postulate a knowledge space containing
many states, possibly too many, and designed to yield an accept-
able fit. In a second stage, we make simplifying assumptions
that lead to a gradual "pruning" of the knowledge space, with
the succession of simpler and simpler submodels being tested
by common likelihood ratio techniques.

Consider first the conditional probabi lilies P(R | K) of the pat-
terns of responses, given the states. Tightening our notation, we
specify any pattern R of responses as a 0-1 vector with m com-
ponents, where 0 and 1 represent the incorrect and correct re-
sponses, respectively, the order of the problems being fixed arbi-
trarily. Thus, in our standard example, ordering the problems
by their numeric labels, we have

R = (0, 1,0, 1, 1), (9)

denoting an error for Problems 1 and 3, and a correct response
for the remaining three problems. To specify the conditional
probabilities P(R|K), we follow the traditional psychometric
concept of "local independence" (Lazarsfeld, 1959). That is,

2 We thank Maria Kambouri for serving as an expert and supplying

us with these data.
3 The problems of comparing and combining different knowledge

spaces are bypassed here and will be discussed in a later publication.
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conditional on the knowledge state of the subject, the responses
to the problems are independent (i.e., any correlation between
responses is completely explained by the slates). Two parame-
ters are associated with each problem: We write ft, for the prob-
ability of a "careless error" response to problem q. Thus, if
problem q belongs to a subject's state, there is nevertheless a
probability &„ that the subject will make an error in responding.
On the other hand, at least in some situations (e.g., multiple-
choice tests), there is a possibility that a subject will provide a
correct response to a problem not belonging to his or her state.
We denote by vq the probability of a correct response to some
problem q not belonging to the knowledge state. Writing K for
the state of the subject, we have, using once more our standard
example,

P(R = (0, 1, 0, 1, 1)|K = {3, 4}) = (1 - (10)

The left member denotes the probability that a subject in State
{3, 4} gives the pattern of responses of Equation 9. The product
appearing in the right member illustrates the conditional inde-
pendence of the responses inherent in the "local independence"

principle.
We now turn to the secondjeg ef the model, namely the speci-

fication of the probabilities f(K) of all the states. One brute-
force possibility consists) in simply assuming the existence of a
probability distribution tpi the collection 3i of all the states. A
major difficulty of this idea* is that, even with a relatively small
number of problems (say < 30), the number of states will be
very large, possibly on the order of several thousand. This auto-
matically means that the model will have several thousand pa-
rameters, which is not an appealing prospect. Another draw-
back is that such a model offers no explanation for the specific
differences, and also the similarities, among data from samples
of subjects of different ages in the same population. In other
words, even though two samples of different ages would, except
for random variations, only differ by one number — the age of
the group — the model would require reestimating all the pa-
rameters to account for the two sets of data. We shall return to
this issue later in this article. The model that we are about to
describe, which is much more ambitious, provides a stochastic
description of the mastery of the successive items along the pos-
sible "learning paths." Within such a model, the difference be-
tween two age groups is represented simply by different values
of one parameter, depending on the age of the group, and speci-
fying the distribution of stages of learning.

We begin by strengthening the conditions defining a knowl-
edge structure. We assume that any knowledge state is on a
learning path, consisting in an increasing sequence of states,
beginning with the empty state 0 and finishing with the full set
of questions Q. such that any state in the path different from 0
contains exactly one more problem than the preceding one.
Such a learning path is called a gradation. To avoid ambiguity,
we reformulate this condition in more conventional mathemat-
ical terminology.

Definition 4: A chain of | Q\ + I subsets of the set of problems Q
in a knowledge structure (Q, 70, all of which are states, is called a
gradation. If any state of the knowledge structure is contained in
at least one gradation , the knowledge space is said to be well graded.

It is easy to see that any well-graded knowledge structure is
discriminating (in the sense of Definition 1 ). As observed ear-
lier, the knowledge space represented in Figure 2 is well graded
and includes 1 6 gradations, which are represented below by the
corresponding order in which the problems are mastered:

12345 12354 12435 13245

13254 13425 14235 14325
31245 31254 31425 32145

32154 32415 34125 342 1 5.

To wit, for the last order in the list, Problem 3 is the first one to
be mastered, followed by Problem 4, then Problems 2, 1, and
finally 5. The corresponding gradation is the maximal chain of
sets

0 C {3} C {3, 4} C {3, 4, 2} C {3, 4, 2, 1 } C {3, 4, 2, 1, 5}.

(11)

In general, we postulate the existence of a probability distribu-
tion on the set of all gradations, which will define, through addi-
tional features of the model, and via some parameters to be esti-
mated from the data, a probability distribution on f{, the col-
lection of states.

One could object that the number of gradations (a priori
I Q | !) may be much larger than the number of states (a priori
2101 < \Q\\, for \Q\ > 3); if so, such a model would be even
less tractable than one postulating directly a probability distri-
bution on 3i. Our expectation was that, in practice, a small set
of gradations would suffice to explain the data. This was con-
firmed by the application of the model described in the next
section: Our analysis showed that a model with four gradations
and nine states was capable of giving a good account (from a
statistical viewpoint) of the test results of several hundred high
school students.

The subject starts the process in State 0, knowing nothing.
Then, a gradation is chosen. We assume that gradation IT is cho-
sen with a probability equal to p, . Thus,

in which G denotes the set of all gradations. (Thus, |G| = 16
in the knowledge space of Figure 2.) In general, the notation
*•(!), ir(2), . . . , represents the successive problems mastered
along gradation jr. If TT denotes the gradation specified by For-
mula 1 1, wehave?r(l) = 3, ?r(2) = 4, . . . , ir(5) = 5. In the sequel,
we consider a subject progressing along that gradation. It seems
reasonable to suppose that the time required for mastering the
first problem depends on the difficulty of that problem and on
the learning ability, or learning rate, of the subject. We formal-
ize this dual contribution as a random variable, which is de-
noted by Trtllx, where \ is a positive number representing the
subject's learning rate and i(l) denotes the first problem en-
countered in gradation IT. Having mastered that problem, the
subject is in state {ir(l)} and proceeds to master problem jr(2),
the next one along that gradation; this will take a (random) time
T,(2),\. More generally, the time required to master the first j
problems along gradation T is symbolized by the sum
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I 1 0 I H{1T(I)}H—i{lT(i),1T(2)}|—I—I

Figure 4. Succession of knowledge states at times 0, t,, r;,
and so forth for a subject progressing along gradation ir.

Notice that the learning rate is assumed to be constant for a

given subject. A realization of this process is represented in Fig-

ure 4, in which the random variables take the values T,(,,,x = t,,

T»<2u = h ~ t\, • • • • Between time 0 and time t\, the subject

remains in State 0; between times t\ and (2, the subject's state

is {?r( 1)}, and so forth. The probability that, at time T, a subject

with learning rate X is in a state including the state ( i r ( l ) , . . . ,

»U)} is

P(TV(i),x + . .. + T,u,x ar) = P(T,j,x < r). (12)

For 0 < j < m = | Q \, the probability that at time T this subject

is exactly in state {*•( 1),. . . , irij)} is

P[{T,JA < T} - {TIJ+U < T}] = PfT,^ < T)

- P(T,J+U < T), (13)

where the minus sign in the left member denotes the set differ-

ence between the event that the subject has mastered at least the

first/ problems in gradation ir and the event that this subject has

mastered at least; + 1 problems in that gradation. Equations 12

and 13 illustrate the type of computation inherent to this

model. However, more work is required before reaching our

goal, namely to obtain a specific prediction for the probability

P(K) of state K. This probability clearly will vary with the time

T of the test, as is natural in a model tracing the course of learn-

ing. So far, we have considered a particular subject with learning

rate X. Actually, we assume that the learning rate has a distribu-

tion in the population under examination. We formalize this

concept by a continuous random variable L, with density/ The

quantity X in Equations 12 and 13 is a particular value of the

random variable L, and/(X) is the density of that value. We also

introduce a random variable G for the gradation. That is, G =

IT denotes the event that a subject is channelled through grada-

tion ir. For simplicity, we suppose that the random variables L

and G are independent. That is,

P(L < X, G = T) = P{L < X}P{G = JT} = P(L < \}pr

This assumption, however debatable it may be, cannot easily

be avoided if one wishes the model to be tractable. Finally, K,

represents the state of the subject at time r, and G(K) the set of

all gradations passing through state K. Notice that fotj > 0, we

have necessarily

K = {»(!), ...,*•(/)} ifandonlyif \K\ =;andir eG(/Q.

Our apparatus is now complete, and the desired prediction can

be worked out. We must compute the probability that a (ran-

domly chosen) subject is in state K at time r. This can be ob-

tained as an average over all cases, that is, over all learning rates

X and all gradations T. Formally, we have

(14)

We assume that the density/vanishes for X < 0, which seems

reasonable for such a concept as learning rate. Together with the

local independence equation, illustrated by Equation 10, this

is the fundamental equation of this model. Despite its rather

formidable appearance, it actually leads to simple develop-

ments, under appropriate assumptions concerning the distribu-

tions of the random variables L and T jx. These are the only

concepts remaining to be specified for the model to be applica-

ble in a practical situation.

Indeed, when \K\ =j, with 0<j<m, for instance, Equation

14 becomes

= J" 2 P(K* = W1),..., TO)} IL = X, G = 7r)pr/(X)rfX

-H-l

= [" 2 P[(2T^0,xir)-(2T I<
0 *&j(K

"I" 2

r)]p,f(\)d\

Similar results hold for the two other cases, K = 0 and K = Q.

We now turn to the parametric assumptions of this model.

We assume that the random variables T,iX are independent and

have the general gamma distribution (see Appendix), with pa-

rameters iii and X, where ̂  is a measure of the difficulty of prob-

lem i. This means that the expectations and the variances of

these random variables satisfy the relations

E(T,X) = (16)

(Johnson & Kotz, 1970). The first equation in Display 16 states

that the average time required to master problem i is the ratio

of the difficulty n, of the problem by the learning rate X of the

subject. It follows that the total time TTJ x required for a subject

with learning rate X to master the first j problems in gradation

ir is also distributed as a general gamma, with parameters

(18)

and X. From Equation 17, it is clear that

E(T,.M) = (i,

In words, the first equation in Display 18 means that the diffi-

culties of the problems are additive: The average time required

for a subject to master the first; problems along gradation v is

the ratio of the sum of the difficulties of the problems, by the

learning rate X of the subject. It remains to specify the distribu-

tion of the learning rate in the population. It turns out that if

we also assume that the learning rate random variable L has a

general gamma distribution, with parameters f > 0 and &>Q,

then Equation 1 5 can be evaluated by routine integration, lead-

ing to simple and explicit expressions in terms of the incomplete

beta function ratio
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in which B is the beta function (see Appendix). We obtain, for
\K\ = y,

and

(21)

where MC is denned by HQ = p,^, for any gradation IT. The third
case is then obtained from the fact that

P(K, = 0) = 1 - 2

The proof of these results are not given in this article (see Fal-
magne, 1989a).

The main appeal of these distribution assumptions lies in
their mathematical convenience and in the fact that they lead
to some reasonable interpretation of the parameters, as illus-
trated in Equations 1 6 and 1 8. However, these distribution as-
sumptions are certainly not essential, and it is natural to ask
whether they could lead to a rejection of an otherwise sound
model. Notice, however, that neither the learning rate nor the
times to mastery are observed directly. Our hope was thus that
the model specified by the local independence assumption, and
by Equations 20 and 2 1 , would in fact be robust to the distribu-
tion assumptions — in the manner, for instance, that the analysis
of variance model is robust to the assumption of a normal dis-
tribution of the errors. A successful test of this robustness is
reported in the next section.

An Application of the Stochastic Learning Theory

The theory described in the preceding section was applied to
the data provided by a sample of high school students from New
York City. Our goals were twofold: We wanted, first, to test the
theory on realistic data and second, to investigate whether it
could be used, by likelihood ratio tests, to refine and simplify a
hypothetical, well-graded knowledge space.

The subjects were 497 students, in Grades 10 or 1 1 , all from
the same high school in Manhattan. The test had 24 problems,
which were completed by each student in the course of one class
lasting 40 min. This amounts to less than 2 min per question,
and some students may have been working under time pressure.
Three equivalent versions of the test were used, which differed
only in the order of the questions and in the specific numerical
values of the quantities entering into the problems to be solved.
Only the results for Problems 1 -5 are considered herein. (A full
analysis of a knowledge space for the 24 problems would re-
quire a much larger data set, that is, many more subjects.)

We started from a knowledge space slightly different from
that represented in Figure 2. This knowledge space was derived
from responses from an expert using methods similar to those
described in the Building the Knowledge Space section. The
data set was split randomly into two unequal sets, of 100 and
397 subjects.

In a first phase, the model was applied to the set of 100. This
data set, even though much too small for statistical tests, never-
theless revealed some trends. This analysis was mostly based on
heuristic considerations, the details of which are not reported
herein. This led to the knowledge space of Figure 2, plus the
hypothesis that the gradations 1 4 2 3 5, 1 4 3 2 5, and 3 4 2 1 5
had negligible probabilities.

All further analyses were based on the set of 397. Several sta-
tistical tests were performed, based on models of increasing
simplicity. In each case, our goal was to predict the proportion
of each of 25 = 32 possible patterns of responses observed and
to test the model by likelihood ratio test techniques.

The 13-Gradation Model

In principle, if we assume that the three gradations 1 4235 ,
1 4 3 2 5 , and 3 4 2 1 5 have zero probability and that the five
"correct guessing" probabilities v\ have also negligibly small
values (which is reasonable in this case because the responses
were open ended), the model is testable. Indeed, we have 31 de-
grees of freedom in the data and 24 parameters, which are listed
below. Recall that ^ is the time of the test, and ^ and S are the
parameters specifying the particular general gamma distribu-
tion of the learning rate.

12 probabilities pT, corresponding to the 13 gradations
5 problem-difficulty parameters M,
5 careless-error probabilities (3,
1 parameter 9 = T/(T + d)
I parameter i/<

24 total parameters.

Thus, in the rest of this section, we assume that p/ = 0 for 1 <
;' < 5. Note that, as indicated by Equations 20 and 21, the pa-
rameters T and 5 are confounded in the equations of the model
and are replaced by a single parameter 6 = T/(T + S).

Actually, 397 subjects constitute too small a sample to yield
reliable estimates of the 32 proportions (and approximate con-
vergence of the likelihood ratio statistic to a chi-square random
variable). The 32 patterns of responses were regrouped into 18,
which only gives 17 degrees of freedom in the data. For the 13-
gradation model to be testable, it has to be simplified in some
way. We assumed (temporarily) that all the difficulty parameters
ft, have equal values, and that all the careless-error probabilities
ft are equal. Thus, 16 parameters remain, for 17 degrees of free-
dom. Because the simplifying assumptions are not very realis-
tic, our goal was not so much to test the model as to estimate
the gradation probabilities, with the hope that some of these
estimates would prove to have negligibly small values, sugges-
tive of a simpler model. We estimated the 16 parameters of the
model by maximum likelihood, using the PRAXIS program (see
Brent, 1973; Powell, 1964; we are indebted to Karl Gegenfurt-
ner for making a C version of this program available to us). The
key results are summarized in Table 4 and Figure 5. Table 4
gives the estimated probabilities of the 13 gradations, and Fig-
ure 5 displays the estimated probabilities of the states and of the
transitions between states. From the gradation probabilities, we
can derive the probabilities of the transitions between states.
Indeed, the probability PK.K-H,} of mastering problem q imme-
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Table 4

Estimated Probabilities (pT) of the Gradations (

in the 13-Gradation Model

13245
1 3254
13425
12345
12354
12435
14235
14325
32415
32145
32154
34125
342 1 5
31245
31254
31425

.11

.06

.11

.00

.09

.00
Set toO
Set toO
.00
.11
.01
.03

Set toO
.45
.03
.00

diately after mastering all the problems in state K is the condi-

tional probability of a gradation going through K + {q}, given

that it passes through K. By the rules for conditional probabili-

ties, this equals the ratio of the probability for a gradation pass-

ing through both K and K + {a} to that for a gradation passing

through K only:

For instance, the estimated probability P0.W of a transition

from the null state to State {3} is equal to the sum of the esti-

mated probabilities of all the gradations ir such that ir(l) = 3,

namely, the sum of all the probabilities in the last column of the

table: . 1 1 + .0 1 + .03 + .45 + .03 = .63. Similarly, the estimated

probability Ppyuj of a transition from State {3} to State {2,

3 } is equal to (. 1 1 + .0 1 )/.63 = . 1 9. All the transition probabili-

Figure 5. The 13-gradation model with the estimated probabilities of

the knowledge states (boxes) and of the transitions (lines) between
states. (The gradations 14235, 14325, and 34215 have been assigned
probability zero a priori. The corresponding segments are omitted in

the graph.)

Figure 6. The eight-gradation model with the estimated probabilities of

the knowledge states (boxes) and of the transitions (lines) between them.
(The states (1,4), (3,4), {1,2,4}, {1, 3,4), and {2, 3, 4} have been

dropped and are not displayed.)

ties are given in Figure 5. The state probabilities are computed

from Equations 20 and 21. The log likelihood ratio statistic

(testing the 13-gradation model against the multinomial model

with 18 classes) is, asymptotically, chi-square distributed with

1 degree of freedom. Even though the model is strongly rejected

(chi-square statistic = 11.3), the results suggest that some states

may never be vistited and could possibly be removed. In partic-

ular, States {3,4}, {1,2,4}, {2,3,4}, and perhaps {1, 3,4} and

{1, 2, 3, 5} may have a negligible probability. This can be seen

in Figure 5.

The 8-Gradation Model

In the next knowledge space that we tested, the eight grada-

tions 1 2 4 3 5 , 1 3 4 2 5 , 1 4 2 3 5 , 1 4 3 2 5 , 3 2 4 1 5 ,

3 4 1 2 5, 3 4 2 1 5, and 3 1 4 2 5 were assigned zero probability

a priori. In applying the model, all parameters are free to vary,

except that the values of the difficulty parameter n, are assumed

to be equal. Thus, we have 17 - (7+ 1+5 +2) = 2 degrees

of freedom. As stated earlier, the parameters are estimated by

maximizing the log likelihood using PRAXIS. The fit of the

model is considerably better: The log likelihood ratio statistic is

3.9 for 2 degrees of freedom. (Again, the model is tested against

the multinomial model with 18 classes.) The results are summa-

rized in Figure 6. The estimated probability of State {1, 2, 3,

5} appears to be very low. This state is dropped in our next

model.

The 4-Gradation Model

In this model, only four gradations remain: 3 2 1 4 5 ,

3 1 2 4 5 , 1 3 2 4 5, and 1 2 3 4 5. All parameters are free to

vary, which gives 17 - (3 + 5 + 5 + 2) = 2 degrees of freedom.

A good fit is obtained: Chi-square statistic = 3.5 for 2 degrees

of freedom. (As before, the model is tested against the multi-

nomial model.) The results are summarized in Figure 7 and

Table 5. The numerical values obtained for the parameters and

for the state probabilities prompt several remarks.

The values of the careless-error probabilities ft seem high.

We recall, however, that the subjects had only 40 min for a 24-

problem test, and some subjects may have had to work under

time pressure in the last part of the test (which was not the same

for all subjects, because three equivalent versions of the test
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Table 5

Estimated Values of the Parameters in the 4-Gradation Model

Parameter Estimate Parameter Estimate Parameter Estimate

1 3 2 4 5
1 2 3 4 5
3 2 1 4 5
3 1 245

6

4>

.19

.22

.33

.26

.71
4.72

/s,
h
ft
ft
ft

.15

.37

.13

.31

.44

ci 2.03
n 4.85
№ 3.16
in 4.59
m 2.58

Nate. The first four entries in the second column are the estimated probabilities of the four gradations in
the first column. The chi-square statistic is 3.5, for 2 degrees of freedom.

were used). This supposition is supported by an examination of

the response sheets, which showed that the last pages of the test

were sometimes incomplete. (This could be checked because

the student had to mark each problem attempted.)

The quantity 6 is a compound parameter, 6 = r/(r + <>), where

T is the time of the test (which may be measured by the grade

level) and 6 is a parameter of the learning rate distribution, in-

versely proportional to the expectation. This means that a large

value of 0 (that is, a value close to 1) may indicate a large value

of the mean learning rate or the fact that the students are tested

late in their education curriculum. A somewhat better under-

standing of this issue could be obtained in a situation in which

several age groups from the same population are compared.

This situation is illustrated by the computations at the end of

this section. It may perhaps come as a surprise that, as shown

in Figure 7, the estimated probability of State {1, 2, 3, 4} is

smaller than that of the two adjacent states, {1, 2, 3} and Q =

{1, 2, 3, 4, 5}. This effect is probably due to the fact that state

Q is the last possible state in the learning process and may act

as a buffer. In other words, there may be some students in our

sample whose competence is beyond state Q. In our representa-

tion, all such students are gathered in state Q for lack of a more

advanced state in the knowledge space. (A similar remark ap-

plies to Figure 8.)

Simpler Models

The analysis of the four-gradation model is not suggestive of

further simplifications. We nevertheless tested several simpler

models. We began by systematically testing all three-gradation

submodels of the four-gradation model. In all cases, the test sta-

tistic was the log likelihood ratio of the three-gradation model

against the four-gradation model of Figure 7. Thus, the test sta-

tistic is, asymptotically, chi-square distributed with 1 degree of

freedom. Only one of the four submodels gave a significant re-

sult (at the 5% level), namely the model assigning a priori zero

probability to the gradation 1 2 3 4 5 (chi-square statistic =

6.82 for 1 degree of freedom). It is probably safe to conclude

that our data were not rich enough to distinguish between the

other submodels.

A similar situation arose with the two-gradation models. We

tested all two-gradation submodels of the four-gradation model

against the best fitting three-gradation model in which they are

included. In three of six cases, nonsignificant chi-squares were

obtained. These models are listed in Table 6 with their chi-

square statistics.

Finally, we tested all 4 one-gradation models, each time

against the best fitting two-gradation model in which they were

included (for which a nonsignificant chi-square had been ob-

tained). All were strongly rejected. The results are summarized

in Table 7. Notice that the one-gradation model 1 3 2 4 5 gives

a better fit than the two-gradation model ( 1 3 2 4 5 , 12345),

which includes it. The paradox is explained by the fact that the

denominators in the likelihood ratio statistic are different. That

is, these models are tested against different alternatives.

Figure 7. The four-gradation model, with the estimated probabilities of
the knowledge states (boxes) and of the transitions (lines) between them.

Figures. The four-gradation model. (Probabilities of occupation of the
knowledge states have been computed for four age groups. The parame-
ter values are those of Table 5, except for 6.)
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Table 6

The Six 2-Gradation Models, With Their Chi-Square Statistics

Model

1 3 2 4 5 , 1 2 3 4 5
3 1 2 4 5 , 3 2 1 4 5
1 2 3 4 5 , 3 2 1 4 5
1 3 2 4 5 , 3 2 1 4 5

1 3 2 4 5 , 3 1 2 4 5
1 2 3 4 5 , 3 1 2 4 5

Chi-square statistic ( 1 df)

19.5
12.1
7.5
3.3
3.1
2.5

Note. A chi-square statistic of 3.843 is significant at the 5% level.

Other Distributional Assumptions

The main purpose of the learning model was to provide a

practical tool for testing and refining some hypothetical knowl-

edge space. From this standpoint, the role of the distributional

assumptions has to be examined with care. The general gamma

distributions for the learning rate and for the learning latencies

were an appealing choice for several reasons. For instance, the

learning latencies were additive over successive problems, with

the difficulty parameter for a set of successive problems being

the sum of its components (cf. Equation 17). These assumptions

also led to simple mathematical expressions for our predictions,

which render the model easily applicable. (The integrals in

equations such as Equation 15, compounding the general

gamma for the learning latencies with the general gamma for

the learning rate, could be evaluated explicitly, leading to the

incomplete beta function ratio expressions in Equations 20 and

2 1 .) Nevertheless, these are considerations of convenience, and

it would be a serious drawback if we were to discover that our

conclusions concerning the knowledge space depend strongly

on these distributional assumptions.

We did not investigate this question fully. We did, however,

test the four-gradation model represented in Figure 7 with

different distributional assumptions. The results were encour-

aging.

Rather than adopting other distributions for the learning rate

and for the learning latencies, we took the easier tack of modify-

ing directly the distributions entering into Equations 20 and 2 1 .

Specifically, we replaced in these equations the incomplete beta

function ratio

with the distribution function

parameters common to both models were remarkably close. We

may thus tentatively conclude that the learning model is, as we

had hoped, fairly robust to the distributional assumptions.

Predicting Data for Several Age Groups

One particular feature of the learning model deserves to be

emphasized. Consider some hypothetical data obtained from

several samples of subjects (from the same population) of

different age groups, say from Grades 9-12. Even the most pes-

simistic observer of the educational process would expect the

test results for these samples to differ widely. Predicting the

overall data by a single model is somewhat of a challenge. In

fact, the learning model discussed here provides simple and spe-

cific predictions for such a situation. Indeed, the only difference

between the samples is the time T of the test, which enters into

the expression of the incomplete beta function ratio in

Equations 20 and 2 1 . All the other parameters of the model

must remain the same if the samples come from the same popu-

lation. Changing the time 7 of the test, for example setting ^ =

9, 10, 1 1, or 12, should, in principle, suffice to yield the desired

predictions.

To illustrate the possibilities of such an analysis, we made

some comparative computations involving the four-gradation

model of Figure 7. As indicated above, we considered Grades

9-12. All the parameter values used in the computations were

those listed in Table 5, except for 6, which was different in each

of the four age groups. We set fi = 4. 1 3 to obtain

10 10

as in Table 5. The values of 9 for the other age groups were then

obtained from

9 + 4.13

11

' 11 +4.13

12

12 + 4.13

= .73,

= .74.

(All numbers are rounded to the second decimal.) Using these

values of 0 and the other values of the parameters in Table 5, we

computed the probabilities of occupations of the various

knowledge states. The results are presented in Figure 8, which

is similar to Figure 7, except that four different age groups are

log-

where $ is the distribution function of the standard normal ran-

dom variable; 0 < 0 < 1; and MA- = Siac № and a are parameters,

with er > 0. Notice that both of these expressions define distri-

bution functions on the interval (0, 1).

The fit of the model was as good as that obtained for the gen-

eral gamma (the chi-square value was actually the same: 3.5 for

2 degrees of freedom), and the values obtained for the estimated

Table?

The Four 1-Gradation Models, With Their

Chi-Square Statistics

Model Chi-square statistic (1 df)

13245

12345

32145

31245

16.9

32.3

20.5

12.0



218 FALMAGNE, KOPPEN, VILLANO, DOIGNON, JOHANNESEN

Table 8
Illustration of a Deterministic Procedure

Knowledge state

Problem Response 0 {1} {3} {1,3} {2,3} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}

2 F
1 C
3 C

* *

Note. Asterisks indicate the possible states remaining after the given response; dashes indicate the states discarded. F = incorrect response; C =
correct response.

represented. Such results suggest that the learning model may

be useful as a tool for monitoring educational progress.

Uncovering the State of a Student:

Two Markovian Procedures

Suppose that, having applied the techniques described in the

preceding sections, we have constructed and verified a particu-

lar well-graded knowledge space. We now turn to the final goal

of our project, namely to design efficient knowledge assessment
procedures. Before computer programs are written for that

purpose, it is advisable to analyze some possible fundamental

procedures.

Consider the knowledge space obtained for the five problems

as a result of the analysis presented in the previous section (cf.

Figure 7):

{1,2,3}, {1,2,3,4}, {1,2,3,4,5}}. (22)

This knowledge space is well graded (with four gradations). We

begin by assuming the subject's responses never result from a

careless error or a lucky guess (this assumption is relaxed later).

Consider an assessment procedure in which the first problem

posed is Problem 2. If an incorrect response is obtained, all

states containing 2 must be discarded. We indicate this conclu-

sion by marking (with an asterisk) the remaining possible states,

as indicated, in the second line of Table 8. (Obviously, if a cor-

rect response had been observed, all the other states on that line

would have been marked.) Next, if Problem 1 is presented and

we observe a correct response, only { 1 ) and {1,3} remain as
possible states. Finally, asking Problem 3 and observing a cor-

rect response results in State {1, 3}. This is the unique state
consistent (in this deterministic framework) with the data: 2

failed, 1 and 3 correct. Clearly, every state can be uncovered by

such a procedure, which can be represented by a binary deci-
sion tree (see Figure 9).

Several issues pertaining to such a formalization were ex-

plored by Degreef. Doignon, Ducamp, and Falmagne (1986).

For example, suppose that a teacher describes just one particu-

lar decision tree, of the kind exemplified in Figure 9, to be used

in testing students regarding a specific body of knowledge. Is

this information sufficient to recover the full collection of

knowledge states? The answer is yes, provided that the knowl-

edge structure is partially ordinal in the sense of Definition 1 .

In the general case (when no constraints are placed on the

knowledge structure), if all the decision trees are known, then

the collection of all states is recoverable.

A serious difficulty for this assessment procedure is that it

cannot deal effectively with the inherent randomness, or more

generally, instability, of a subject's performance. Obvious ex-

amples are the careless errors and lucky guesses formalized in

the model discussed in the two preceding sections. The instabil-

ity may also have a more fundamental origin: The subject's

knowledge state may actually change slightly in the course of

the procedure. This might happen, for instance, in the case of

a subject tested on material that had been learned a long time

before the test and not exercised recently. The early part of the

test may facilitate the retrieval of material relevant to the last

part. In any event, more robust procedures are required, which

would be capable, despite the noisy data, of uncovering exactly,

or at least approaching closely, the knowledge state of a stu-

dent.4

Two classes of Markovian procedures have been investigated

by Falmagne and Doignon (1988a, 1988b). Both of these classes

can be represented in a common framework, as illustrated by

Figure 10. At the onset of trial n of the procedure, the informa-

tion gathered from the responses to problems presented pre-

viously is summarized by a plausibility junction, which assigns

plausibility values to all the states. The value of this function is

used to choose the problem asked on that trial, using a question-

ing rule, which may take various forms. The subject's response

is then observed, and it is assumed to be governed by the sub-

ject's knowledge state through a response rule. In the simplest

case, we assume that the response is correct if and only if the

problem belongs to the subject's knowledge state. We may also

introduce parameters for careless errors or lucky guesses, as ex-

emplified by the local independence (Equation 10). Finally, the

plausibility function is recomputed by an updating rule, initiat-

ing trial n+ 1.

From a mathematical standpoint, the problem consists in in-

vestigating conditions under which the subject's knowledge

state can be uncovered through systematic testing following a

given procedure. A more complex situation in which the sub-

ject's state varies over trials is also considered. In particular,

we assume that there exists a probability distribution on the

4 We are assuming, of couree, that the knowledge state of the student
changes at most once or twice in the course of the procedure.
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data

. 5 245 {1,2,3.4.5}

219

state

uncovered

213 {3}

213 0

Figure 9. Example of a binary decision tree that permits the discovery of any state in the knowledge space
described by Equation 22 and Figure 7. (The overbars indicate incorrect responses.)

collection of all the knowledge states. This probability distribu-

tion, referred to as a stochastic (knowledge) state, is not observ-

able directly, but it governs the subject's manifest behavior. The

goal is then to uncover this probability distribution, or at least

some of its important characteristics.

In the next two subsections, the two classes of procedures and

some of our main results are outlined. (For a complete descrip-

tion, see Falmagne & Doignon, 1988a, 1988b.) Except when

mentioned otherwise, we assume that the subject is in some

state KO, constant over trials.

A Discrete Markov Chain Procedure

For concreteness, only a special case of the theory developed

by Falmagne and Doignon (1988b) is described, one that ap-

pears important for practical use. As in Table 8, the plausibility

function implements a marking of the states considered plausi-

ble at a given trial. This procedure is designed to quickly narrow

down the collection of marked states until only one such state

remains. At that stage, because of the noisy components of the

situation, the remaining state may not coincide exactly with the

subject's state but may reasonably be assumed to have much in

common with it. Further questioning under a slightly altered

rule achieves a final refinement of the assessment. More spe-

cifically, we denote by Mn the set of marked states on trial n.

The problem asked on trial n, denoted by Qa, is chosen to dis-

criminate between the marked states. At the outset, all states

are marked. In our example, this means that M, = %", with %?

as in Equation 22. The successive problems Q,, Q2, and so

forth, should be chosen to discriminate quickly among the

states in M,. Suppose that Qi = 5. The knowledge space %? =

M! has nine states, only one of which contains Problem 5. If

the response is correct and assuming that the probability of a

correct guess is negligible (we shall return to the issue of the

"noise" in a moment), the subject's state is known. However, if

the response is incorrect, eight states remain possible, and we

have learned little. A priori, all states are equiprobable, so the

probability of learning little is relatively high. The situation

seems intuitively better if we set Qj = 1 or Q, = 3: In either

case, there are six states of MI containing Q! and three states

not containing Q,. Whether or not the subject's response is cor-

rect, a substantial reduction of uncertainty will take place. The

best choice for Qj seems to be Problem 2, which splits MI into

four states containing it and five states not containing it. Table

9 gives the analysis for all five problems. In general, whenever

Mn contains more than one state, the questioning rule is formu-

lated as follows:

For | Mn | > 1, choose Qrt such that M,, is split as equally as possible
between the subset of all states in Mn containing Qn, and the subset
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Questioning Rule

Response Rule

Updating Rule

Figure 1(1. Diagram of the two classes of
Markovian assessment procedures.

of all states in Mn not containing Qn. If there are several problems
satisfying these conditions, choose randomly among them, with
equal probabilities.

We recall that |S| denotes the number of elements in a set S.

According to this rule, Problem 2 should be the first problem

asked. If an error is observed, the second problem should be

chosen randomly between 1 and 3. The updating rule is then

If the response is correct, set M»+1 equal to the subset of Mn con-
taining all the states K such that QB e K. Otherwise, set Mn+, equal
to the subset of Mn containing all those states A"such that Qr £ K.

We denote by R,, = 1 and Rn = 0 a correct and incorrect re-
sponse on trial n, respectively. The updating rule is defined by
the pair of equations

Mn+1 =
i f R » = l ;

ifRn = 0.

Clearly, successively applying these two rules will result in a set

of marked states containing exactly one state, say Mk = {K}. As

was noted, this state need not be taken as the final assessment,
and further questioning usually is required. The next problem

asked is based on Mk augmented with its neighboring stales.

which are defined as those states differing from Kby exactly one

problem; in other terms, states of the form K + {q} or AT— {q}.

Table 8 can actually be taken as representing the first three trials

of an application of the two rules stated above. On Trial 3 + 1 ,

the single state {1,3} remains. Its neighboring states are {!},
{3}, and { 1, 2, 3}. We denote by M'n the collection of states

containing the unique set in MB together with its neighboring

states. Thus, if M4 = { 1, 3}, then

(23)

The modified questioning rule states

For | M,, | = I , choose Q, such that M|, is split as equally as possible
between the subset of all states in M', containing QB, and the subset
of all states in M^ not containing Qn. If there are several problems
satisfying these conditions, choose randomly among them, with
equal probabilities.

The only difference between this questioning rule and the pre-

ceding one is that the split applies to M^ rather than to Mn.

Applying this questioning rule to Mi in Equation 23, we see

that Q4 should be chosen with equal probabilities between

Problem 1 , 2, or 3, because each of them splits Ml, into two

subsets, one of which contains one state and the other, three

states. Suppose that Problem 2 is chosen (thus, Q4 = 2) and

the response is correct. We have, then, M5= {{1,2,3}}. This

illustrates the updating rule in the case | Mn 1 = 1, which is as

follows:

Suppose that M, = {K} and Q, = q:

i. lf«e K and the response is correct, set M,,+ 1 = {K}
ii. Ifg£i K and the response is incorrect, set Mn+ , = {K— {q}}
iii. If «£ A: and the response is correct, set M,,.H = {K+ {q}}
iv. 1 f q ̂  K and the response is incorrect, set Mn+ , = { K} .

Thus, |M»| = 1 necessarily implies |MMi| = 1.

The mathematical properties of this procedure have been an-

alyzed in detail by Falmagne and Doignon (1988b). The sum-

mary of our results given below is intended for a reader familiar

with the basic concepts of Markov chains theory (Feller, 1970;

Kemeny & Snell, 1965). If the subject is in some knowledge

state KQ, constant over trials, then the stochastic process (Mn)

is a Markov chain. This is also true for the processes (MB, Qn)

and (M,, Q,, Rn). We showed that if there are no careless errors

and no correct guessing, then Mn converges to the subject's state

A"o in the sense that

lim P{M, = {*•„}} = 1.

We also proved that if there is a positive probability of some

careless errors but still no correct guessing, then the Markov

chain (M,) had a unique ergodic set E containing {Ko}, and

possibly some Markov states {K} with K £ KO, but no other

Markov states. If, in addition, fla > 0 for all q £ K0, then E is in

fact the family of all those Markov states {K} such that K s K0 .

In the case where the subject's state is stochastic, the process

(Mn) remains Markovian. It was found that, in certain situa-

tions, the distribution characterizing the subject's stochastic

state could be estimated from the frequencies of the observable
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Table 9

Illustration of Questioning Rule in the Discrete Markov Chain Procedure

Knowledge state

Problem 0 {1} {3} {1,3} {2,3} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}

2 - - - - + + + + +

3 - - + + + - + + +
4 - - - - - - - + +

Note. Each problem splits the set of states into two subsets containing, respectively, the states containing
the problem (+) and the states not containing the problem (-). The best discrimination is achieved by
Problem 2, which splits M, into two subsets of five and four states, respectively.

responses. For the time being, however, these results have only

anecdotical interest.

Some preliminary simulations were performed (see Villano

et al., 1987) that suggest that this discrete Markov procedure

may be as efficient as the considerably more demanding one

outlined in the next subsection.

A Continuous Markov Procedure

Only a short description of the stochastic process developed

by Falmagne and Doignon (1988a) will be given. We assume

that the plausibility function takes the form of a likelihood

function K -» Ln%K denned, for any trial number n, on the collec-

tion J< of all knowledge states. We suppose that

0 < Ln:K < 1 for all states K £ Ji, and 2 Ln,K = 1 .
KX

Thus, Ln is a probability distribution on Ji , assigning, on every

trial, a positive probability to every knowledge state.

Two questioning rules were considered. The first one, called

the half-split rule, is similar in spirit to the questioning rule used

in the discrete Markov procedure just described. Notice that

each problem q splits the total mass of the likelihood function

into two parts:

2 Lajf and \- = 2 L,x,
K.<£'«

that is, the total mass of all those states containing q and the

total mass of all those states not containing q. Problems for

which these two masses are as close as possible may be consid-

ered more informative than others. The problem Qn is selected

at random among such questions.

A more elaborate way of evaluating the information content

of a problem relies on a computation of the entropy of the likeli-

hood function. On trial n, the entropy is by definition

The idea is to choose Q, so as to minimize the entropy of the

likelihood function on trial n + 1 . By itself, however, this con-

cept does not provide a manageable criterion for choosing Q,

because this is actually an expected entropy, the value of which

depends, for any problem q, on the probability pn(q) of a correct

response and also on the particular updating rule adopted. In

other terms, to apply this rule, we must compute, for each prob-

lem q, the conditional expected entropy

H(Ln+, ]/.„, Q. = «) = P,(«)H(Ln+, |Ln, Qn = q, R,, = 1)

+ [1 - Pn(«)]H(L,+1 1 L,, QB = q, «„ = 0) (24)

and minimize H(i,+, |L,, Q, = q) over all problems q. Any

questioning rule based on this principle is called informative.

Equation 24 may also be written more explicitly

, |QB = q) L»; q, 1)]

in terms of the updating rule «:

(£,„, Qn, RJ -* u(Ln; <?„, R.) = Ln+l.

The updating rule u is thus an operator depending on the prob-

lem asked and the response given (and on some numerical pa-

rameters to be calibrated), which transforms the likelihood

function on trial n into the likelihood function on trial n + 1 .

Two classes of updating rules are analyzed in Falmagne and

Doignon (1988a). One of them is shown to be "commutative,"

in the sense that it results in the same value for the likelihood

function on trial n, regardless of the order of the problems asked

on preceding trials. This commutative rule is proven to be con-

sistent with a Bayesian principle. (Fora survey of similar updat-

ing rules, in this and other contexts, see Landy & Hummel,

1986.)

As mentioned earlier, despite their apparently much more so-

phisticated use of the response data, these continuous Markov

procedures do not seem to be preferable, from the viewpoint of

the accuracy of the assessment, to the discrete Markov proce-

dure outlined in the first part of this section. However, our re-

sults in this regard are far from complete.

Discussion

With this article, we intended to give a comprehensive de-

scription of our progress in a fairly ambitious project, namely,

designing and implementing efficient knowledge assessment

procedures that are capable of competing successfully with a

competent human examiner engaged in a one-to-one interac-
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tion with a student or a candidate and general enough to be
widely applicable. Such a project necessarily involves many
phases. The puzzle is not complete, but there are relatively few
missing pieces, and it is quite clear what they are. There are also
several potential objections to our approach, which we consider
in this section.

The algebraic core of the theory consists in the concept of a
knowledge space, conceived as a collection of subsets of prob-
lems or questions. Each of those subsets is a knowledge state,
which we interpret as the set of all problems that a subject is
capable of solving correctly, without help or guessing, with the
assumption that careless errors do not occur.

A potential criticism to this formalization concerns the cod-
ing of a subject's response into two categories only: correct or
incorrect. In many situations, other types of responses are re-
corded, such as a response latency or the method of solution
used. In our view, this binary coding is not a serious limitation.
Suppose, for instance, that the latency of the reaction to a par-
ticular problem has been measured, and that we want to include
this information in the description of the subject's response.
Thus, the set of possible responses to this problem is theoreti-
cally uncountable. In practice, however, the data can always be
recoded to fit our framework. Because the assessor is certainly
not interested in recording the response latency in milliseconds,
or even in seconds, we can always decompose the particular
problem into a finite list of related problems with binary re-
sponses, such as a correct response in less than 30 s (yes or no),
a correct response in less than 1 min (yes or no), and so forth.
The theory could be reworked to allow for multiple responses if
this generalization is judged important.

We also reconsider the U-closure axiom, that is, the assump-
tion that the union of knowledge states is always a knowledge
state. This axiom plays an important role in our construction.
Nevertheless, examples can be given that suggest that this axiom
may not always be valid in practical applications. One example
involves two world-class mathematicians working in different
fields. Suppose that their respective knowledge states are AT and
K'. It is most unlikely that there would be another mathemati-
cian whose knowledge state would be equal to or would include
K U K'. Thus, the U-closure axiom may be adding useless states
at the "edge" of the knowledge structure. Another counterex-
ample (provided by a reviewer) involves the concept of skill de-
scribed in the Knowledge Spaces and Skills section. Consider
the case of a set Q = {1, 2, 3}, with four relevant skills—a, b, c,
and d—and the following correspondence:

Problem Skills required

a. b
c,d
a,c

If we assume that an individual can have any subset of skills,
the feasible knowledge states are: 0, {!}, {2}, {3}, {1, 3}, {2,
3}, and {1,2,3}. Indeed, a single skill is never sufficient to solve
a problem. Similarly, some sets of two skills are also useless,
namely {a, d}, {b, c}, and f b, d}, because they yield knowledge
state 0. The three remaining sets of two skills give the states
{!}, {2}, and {3}, which are also generated by some sets of

three skills. For example, {a, b, d} yields {1}. The states {1,3},
{2, 3} are generated by the two sets of three skills {a, b, c} and
{a, c, d}, respectively. However, no individual can be in State
{1,2} = {1}U{2J because any subject having mastered Prob-
lems 1 and 2 necessarily has the skills a, b, c, and d and is thus
in State {1,2, 3}. These examples show that there may be some
states in a knowledge space as we define it that cannot be real-
ized in practice. Our position with respect to such examples is
as follows.

For the purpose of this discussion, we refer to any state of
a knowledge space which can never be realized empirically as
fictitious. We do not deny that there may be situations in which
a knowledge space contains fictitious states. Our working hy-
pothesis is that the number of such states will be relatively small.
Because our main goal is to have a knowledge structure in
which all subjects in a population of interest can be described,
the fact that there may be a few descriptions that will never be
used is of little consequence. This strategy thus involves enlarg-
ing the collection of states for the sake of simplicity. In that light,
the U-closure axiom is in line with many idealizing assumptions
in scientific theory. However, if the number of fictitious states is
large and if considering such states renders the knowledge as-

sessment too costly, then this assumption will have to be
dropped, at least at the ultimate stage of our construction of the
knowledge space. However, notice that it can still play a useful

role in the intermediate stage. We recall that the determination

of the knowledge space was accomplished in two major stages.
In the Building the Knowledge Space section, we showed how a
first sketch of the knowledge space could be obtained by system-
atic questioning of experts, using the algorithm QUERY. Succes-
sive steps of this algorithm yield smaller and smaller knowledge
spaces. In the second phase, which is based on the analysis of
empirical data in terms of the stochastic learning theory, the

remaining set of states is further refined. At that point, the as-
sumption that the knowledge structure is U-closed can be aban-
doned. We could, for instance, simply suppose that the knowl-
edge structure satisfies the axiom of well-gradedness (cf. Defi-
nition 4). No major damage to the theory would ensue.

Another objection is that no explicit distinction is made in

our work between procedural knowledge and factual knowl-
edge. Our contention is that such a distinction, however inter-
esting it may be for other purposes, is not essential in our ap-

proach. A procedure can practically always be cast as a problem
(e.g., "Give a proof by induction of the following fact").

More generally, some critics argue that the description of the
knowledge space, as the term is understood in our work, is not
very detailed. Consider the case of a student failing to solve a
multiplication problem. One may wish to know the type of er-
ror made and have the mechanism of the error included in the
description of the student's knowledge state. However, this ob-
jection overlooks the obvious possibility of having a wide and
highly structured array of multiplication problems, the re-
sponses to which would provide, within the same knowledge
space framework, a precise diagnostic of the faulty algorithm
used. (One might have one-digit multiplications, two-digit mul-
tiplications, multiplications involving decimals, etc.) We ven-
ture that any error mechanism can always be specified, as accu-
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rately as one might wish, by the collections of problems solved
and failed.

An important set of results at the focus of our work concerns
the mathematical equivalence between three distinct concepts:
the knowledge spaces, the surmise systems, and the relation P
at the basis of the QUERY procedure for building the knowledge
space. The additional condition of well-gradedness for knowl-
edge spaces was introduced at a later stage and was found to
play an important role, both in the sections on the description
and application of the stochastic learning theory and in the pre-
vious section on the discrete Markov procedure. It is natural to
ask what the corresponding condition is for surmise systems
and relation P. We have only a partial solution to this question;
we know what condition on a surmise system renders this con-
cept equivalent to a well-graded knowledge space (see Koppen,
1988). However, we do not know what particular kind of rela-
tion P corresponds exactly to a well-graded knowledge space.
This is a weakness, in that, for the time being, we cannot adapt
the QUERY procedure for constructing a well-graded knowledge
space. We are hopeful that this difficulty will be solved in the
near future.

Turning to the learning theory, we recall several minor, some-
what technical drawbacks. Some of our assumptions were made
for convenience and had no other justification than the need to
keep our model within manageable bounds. One example is the
supposition that the learning rate remains constant in the
course of learning. Another concerns the assumed indepen-
dence between the choice of a gradation and the learning rate.
These assumptions are certainly not realistic and would cer-
tainly fail under close examination. The distributional assump-
tions on the learning rate and on the learning latencies may also
appear rather arbitrary.

Standard arguments can be given to defend such assump-
tions. Mathematical simplicity, for the sake of rendering a
model applicable, should not be hastily and automatically dis-
carded as an unworthy goal because it is conceivable, and one
can always hope, that the unrealistic assumptions actually make
little difference in the predictions. This hope was justified by the
analysis of the data. Not only did we obtain a good fit of the
model to realistic data (cf. Table 5 and Figure 7), but a much
more specific validation was also recorded. Our main interest in
the stochastic learning theory was in the convenient statistical
analysis of the data that it provided, which could lead to succes-
sive simplification of the well-graded knowledge space. In other
words, we were not primarily interested in the details of the
theory. Rather, we wanted to use it to confirm and refine a par-
ticular knowledge space to pave the way for an application of
the knowledge assessment procedures. In this respect, side as-
sumptions such as those concerning the distributions were just
useful technical devices. This position received at least partial
support in the statistical results obtained from drastically modi-
fying the distributional assumptions. This was discussed in the
learning theory application section, in which we reported that
an equally good fit to the four-gradations model was obtained
when we changed the expressions of the incomplete beta func-
tion ratio in Equations 20 and 21 to express a completely
different distribution function, defined by the composition of
the logit function by the standard normal distribution function.

A large-scale application of these techniques is in progress,
based on a knowledge space with 50 problems. We also plan
to undertake a systematic comparison between human experts
examining students and computerized assessment procedures
of the type described in the previous section.

The theoretical constructions of this article depart from tra-
ditional approaches to psychometric testing. As recalled in the
Knowledge Spaces and Skills section, psychometric models are
typically based on the concept of skills or abilities. Most often,
these concepts are given a numerical interpretation in the
framework of a model that is completely specified except for the
values of some parameters. There is no doubt that knowledge
can be assessed by way of such models (see, for instance, Weiss,
1983, for articles reviewing this line of work). The knowledge
state of an individual can be identified with some ability level,
which can be uni- or multidimensional. The assessment pro-
ceeds by successively asking several questions to the individual
and gradually refining some estimates of parameters in the
model, representing ability levels. These numbers can then be
used to predict actual knowledge. Whether psychometric ap-
proaches to knowledge assessment are more efficient than those
described in this article is left for further investigation. We
must, however, emphasize a fundamental difference between
standard psychometric models and the theoretical construc-
tions discussed in this article.

The standard psychometric models can be rightly described
as quantitative, with the usual meaning of this term in science,
which has a strong numerical connotation. These psychometric
models, in which intellectual competence is assessed by a small
number of abilities evaluated numerically, are simple and con-
venient representations. It must be understood that, until very
recently, numerical models were essential because they were the
only models capable of being analyzed in any depth, for which
detailed predictions could actually be worked out. Simplicity
could have been operationally defined by the fact that the analy-
sis of the model could be performed with a desk calculator or a
first-generation computer.

The situation has changed dramatically in the last two de-
cades or so, with the coming of age of much more powerful com-
puters. The models now developed by scientists are often pro-
foundly different from what they were. The concept of simplic-
ity (as applied to scientific theories) itself may be changing. As
a consequence, more realistic models, combinatorial in charac-
ter, may be considered. The work presented in this article offers
an example of this trend. Twenty-five years ago, such modeling
would have made little sense and could have been discarded as
mere speculation without any practical use.
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Appendix

The gamma function is a real valued function T, defined for all posi- This result leads to defining the density /of a general gamma random

tive real numbers a by the integral variable with parameters a, f > 0, by the formula

The beta function (p, q) -» B(p, q) is denned by the equation

(A2)

For a, £ > 0, we derive from Equation A1

/W = [r/r(«)];v*~Vf\ for any A > 0, *

with/(A) = 0 for A s 0. The incomplete beta function ratio of Equation

19 is defined in terms of the beta function specified by Equation A2.
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