
NPD Group Capstone Final Report

Frank Kovacs, Ning Gao, Pragya Jain, Wonil Lee ∗

May 17, 2021

Abstract

The main scope of the project was to develop two anomaly detecting algorithms
to identify and report data collection errors for the 3 key variables provided by the
NPD group: receipt count, sum total paid, and item total. The First Differ-
ences Filter calculated the desired quantile of the slopes in the selected window size
to check if future slopes lied between the calculated quantile. The Robust Linear
Regression Filter (RLM) predicted a series of future points by fitting a local linear
regression to points within a defined window size, and utilized Median Absolute
Deviation to compute standard deviations, which served as the anomaly bound-
aries. The 4 moving sequential filters implemented in RLM ensured that both the
slow drift and sudden patterns could be detected in time series data. The final
output for the project was a series of visualization plots and a customized table
of anomalies detected for different merchants, outputted using a Python package
interface.

Keywords. time series anomaly detection, window size, median absolute deviation, robust filters

Contents

1 Introduction 2

2 Data 3
2.1 Data Sets . 3
2.2 Variable Selection . 3
2.3 Exploratory Data Analysis . 4

3 Methods 5
3.1 First Differences Filter . 5
3.2 Robust Linear Regression Filter . 7

3.2.1 Robust Linear Regression Model . 7
3.2.2 Robust Estimate for Standard Deviation . 7
3.2.3 Sequential Filters . 8

3.3 Trimmed Moving Weighted Average Filter . 8
3.3.1 Robust Estimate for Weighted Average . 9
3.3.2 Robust Estimate for Standard Deviation . 9

4 Results 10
4.1 First Differences Filter - Anomaly Detection Sample Results 10
4.2 Robust Linear Model Filter - Anomaly Detection Sample Results 11

∗All authors are from the Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213 USA.
Emails: fkovacs@alumni.cmu.edu, ningg@andrew.cmu.edu, pragyaj@andrew.cmu.edu, and wonillee@andrew.cmu.edu. Techni-
cal advisor: Valerie Ventura. Email: vventura@andrew.cmu.edu.

1

5 Discussion 14
5.1 Filter Comparisons . 14
5.2 Limitations and Improvements . 14

5.2.1 First Difference Filter . 14
5.2.2 RLM Filter . 15

5.3 Next Steps and Conclusion . 16
5.3.1 Additional Response Variables . 16
5.3.2 Other Checks on Response Columns . 16
5.3.3 Removal of Identified Outliers . 17
5.3.4 Boundaries Smoothing . 17
5.3.5 Conclusion . 17

6 Reference 18

7 Technical Appendices 19
7.1 EDA and Variable Selection . 19

7.1.1 Data Preparation and Wrangling . 19
7.1.2 Time Series Visualization . 19
7.1.3 Variable Selection . 20

7.2 Sanity check of the First Difference Filter . 20
7.2.1 First Difference Data Set . 20
7.2.2 Histogram and Quantile Calculations . 20

7.3 Trimmed Moving Weighted Average Filter . 22
7.3.1 Input Parameters Sanity Check . 22
7.3.2 Deletion of Outliers in a Given Window . 22
7.3.3 Half Normal PDF Weights Assignment . 23
7.3.4 Weighted Average Columns . 23
7.3.5 Standard Deviation Columns . 23
7.3.6 Defining Bounds for Anomaly Detection . 24
7.3.7 Detection of Outliers based on 4 filters . 24
7.3.8 Anomaly Detection Method . 25
7.3.9 Anomaly Detection Visualization . 26

7.4 Python Interface . 27
7.4.1 Data Preparation . 27
7.4.2 Base Filter Class . 29
7.4.3 First Difference Class . 29
7.4.4 Robust Linear Regression Class . 30
7.4.5 Moving Weighted Average . 32

1 Introduction

Our client, the NPD Group, Inc, is a market research company. Being a leader in the industry, NPD deals
with more than 8 billion B2B transactions per year. One aspect of their mission includes creating reliable
raw data assets for their end clients. These data sets are useful for their clients to strategize on increasing
their brand’s market share, identifying significant trends in sales, and understanding customer behavior. As
a result, ensuring the quality of data resources becomes critical for the NPD data science team. This report
aims to assist the team in detecting existing data collection anomalies. The detected anomalies will then be
taken a closer look by their data analysts to ensure provision of error-free data to their end clients such as
big retailers.

The project objective is to develop a python package (Appendix 7.4) with implementations of two data-
driven filtering methods to identify different types of anomalies in data and facilitate error-free data delivery.
The report presents an automated anomaly flagging process which can be run weekly to flag new anomalies
in the incoming data series by NPD. The report proposes solutions for the following 3 research questions:

2

1. Detection of unexpected shifts in incoming data series for 3 key variables: receipt count,
sum total paid, and item total. Proposed methods should detect anomalies in addition to errors
already flagged by the client.

2. Ability to detect both rapid changes occurred within one week and slow drifts spanned over larger time
periods such as one month.

3. Detection of both dips and peaks with an emphasis on dips per NPD request.

2 Data

2.1 Data Sets

The data used for the project were provided by NPD. There were 6 candidate response variables that we
were interested in using, which were receipt count, sum total paid, sum items distinct, sum item spend,
item total and panelists (Table 1).

There were overall three csv data sets given: source data, retail data, and issue data. The source
data set consisted of 516 rows and 8 columns, it provided weekly values of the key variables listed above
by 4 different data source types which were iPhone, Android, Sift, and Receipt pal on device. The retail
data set, consisted of 983,953 rows and 11 columns, it provided weekly values of the key variables per each
merchant as well as information about the merchant name/ID and data acquire type/ID. Finally, the issue
data set consisted of 31 rows and 5 columns, it provided information about when (the Acquired date) and
where (merchant name and source type) the data collecting error had occurred.

Table 1: Key Response Variables Description

2.2 Variable Selection

After taking a closer look at the data description provided from NPD, our team explored whether there
were correlations between some of the key response variables, with detailed explanation provided in Appendix
7.1. To elaborate, suspected that receipt count, which was the total number of transaction in given week
might be closely associated with panelist which was the total number of participant in a given week.
Similarly, sum total paid, which was the dollar amount paid in a given week might be closely associated
with sum item spend which was the total number of items purchased. And the same logic went to item total

and sum items distinct.

In order to test our hypothesis, we first plotted the time series of the variables in pairs to check if the
general trends of the two variables matched. As shown in Figure 1 below, the three pairs of response variables
all showed highly similar trends.

3

(a) Receipt count vs Panelist (b) Sum total paid vs Sum item spend

(c) Item total vs Sum items

Figure 1: Correlation Visualizations of Paired Variables: McDonald Case

After checking that the trends for each pair of variables were similar, our team calculated the average
correlations between each pair for all merchants (Appendix 7.1.3). The calculated correlations in Table 2
strongly supported our hypothesis since all three correlations had a score over 0.99. With both visualization
and mathematical backups, our team decided to use only the three variable, receipt count, sum total paid,
and item total, as our key response variables for the rest of the project.

Table 2: Correlations of Paired Variables

2.3 Exploratory Data Analysis

Since our client could only provide 31 issues logged by them in the past 2 years, our team decided to
use it as a guide to understand the types of errors their algorithm could detect and also discover hidden
errors that might worth detecting. Exploratory Data Analysis (Appendix 7.1.1 and 7.1.2) was conducted
with the goal of assessing possible error types existing in the data set and to compare possible errors with
errors flagged by the client. Un-flagged errors were then studied and discussed with the client in order to
discover client’s preferences in detecting errors.

4

Figure 2: EDA Plot for Merchant: McDonald’s

Figure 2 illustrates one compact example for error analysis on merchant ’McDonald’s’. The red dot at
Circle 1 indicated a flagged error, which was a rapid drop marked by NPD. When looking at Circle 1 and 3
at the same time, 3 had a larger rapid drop compared to 1, yet not detected. The observation at Circle 2
happened around the outbreak of COVID-19 pandemic on March 11th, 2020 1, which was marked using a
blue vertical line. This drop happened across more than a month, instead of over a short period of time like
1, but the dropping trend was not detected. Cirlce 4 contained a sudden peak. Even though the amplitude
change of this jump was definitely greater than Circle 1, it was not detected, which brought the question
of whether NPD had a preference of marking dips over peaks. This compact example was only one out of
many EDA plots generated, please refer to our EDA section in Technical Appendix 7.1.2 for detailed error
visualizations.

3 Methods

3.1 First Differences Filter

The first method our team implemented to detect anomalies in the time series was the First Differences
Filtering method. The differences being calculated were the weekly changes from time t to t+1, or essentially
the slope of change. Once the differences were calculated, the large absolute values, which represents the
large sudden change from time t to t+1, could then be spotted. Ultimately, this allowed the user to detect
anomalies based on the past trend of slopes. The logic of this method mainly consisted of two concepts:
shifting windows and quantile calculation for the normal distribution (Appendix 7.2).

To begin with, the shifting window was a concept of selecting proper range of historical data points to
be analyzed at time t, in order to detect anomaly at time t+1. The default window size selected for the
study was 50 units, or 50 weeks. The window was not fixed but set as sliding to ensure that each selected
window reflected the most recent historical trend of changes in slope. For the next point following the chosen
window, the algorithm would perform anomaly detection using the most up-to-date window, i.e. filter of
size 50.

Once the window size is selected by users, the next step is to calculate the appropriate percent quantile
of differences within the defined window (Appendix 7.2.2). Due to the limited amount of data points, which
in this case is for the 50 weeks, we assume the points to be normally distributed. Therefore, we used norm

1The World Health Organization declared a Public Health Emergency of International Concern regarding COVID-19 on 30
January 2020, and later declared a pandemic on 11 March 2020.

5

function from scipy.stats in python to calculate desired quantile of the first differences. Because our client
is more interested in detecting sudden fall (decreasing slope) than in detecting sudden increase (increasing
slope) as discussed in Section 1, the lower bound for the quantile is defaulted to be 2.5% while the upper
bound is defaulted to be 99%. Once the quantile is calculated, the algorithm would identify the value at
time t+1 as an anomaly if it lies outside of the defined quantile ranges.

As a sanity check, the McDonald’s Receipt Count data set collected using iPhone was used to illustrate
how quantile worked. We first divided the data set into 1st half and 2nd half. The 1st half of the data
set represents the data points within selected window and the 2nd half represents future data points to be
collected at time t+1 and forward. The 95% quantile from the 1st half of the data set (Figure 3(a)) was
calculated and applied on the 2nd half of the data set (Figure 3(b)). In Figure 4 which is the first difference of
2nd half of the data with respect to time, any data point that lies outside of the two red quantile boundaries
would be marked as an anomalous point, all detailed R code could be find in Appendix 7.2.2.

(a) 1st Half - Historical Dataset (window) (b) 2nd Half - Test Dataset (t+1 and beyond)

Figure 3: Sanity Check on McDonald’s Data - 1/2

Figure 4: Sanity Check on McDonald’s Data - 2/2

6

3.2 Robust Linear Regression Filter

3.2.1 Robust Linear Regression Model

The second method our team implemented for anomaly detection was the robust linear regression method
[5], which fitted a robust linear model in a chosen time window and generated a prediction for the new point.
For a given window say of size n, a robust linear model was fitted using window length from 1 till n as a
predictor variable, and the response column values within that window, such as receipt count, item total

etc. as the dependent variable. The fitted model was then used to generate one future prediction for the
n+ 1 point in time. This predicted value, along with the standard deviation bounds defined in the following
section, yielded ranges in which a future point would be accepted as non-anomalous.

3.2.2 Robust Estimate for Standard Deviation

In the robust linear regression filter, the standard deviation of the response column values (example:
receipt count, item total etc.) in a window served in defining the boundaries when testing anomalous
behaviour for a future observation. Since standard deviation could be influenced easily by outliers in a data
set, a more stable, robust estimate was needed.

To achieve this goal, the first step was to take the first differences of points in a given window. For ex-
ample, if at time t, the response column value was Yt, then the difference Dt would be:

Dt = Yt − Yt−1 (1)

The second step was to calculate the variance of the first difference Dt. Since,

var[Dt] = var[Yt] + var[Yt−1]− 2cov[Yt, Yt−1] (2)

Let τ2 represent the variance for Dt, and σ2 represent the variance of each Yt, if Yt and Yt−1 are independent,
τ2 became

τ2 = 2σ2 (3)

or, σ =
τ√
2

(4)

Thus, sample variance σ2 was estimated from τ2 i.e. the variance of first differences in a window. Further,
to reduce the influence of outliers, median absolute deviation [2] (MAD) was used to estimate τ2 for each
window:

MAD = median(|Dt −median(Dt)|) (5)

A robust estimate for τ can be obtained from median absolute deviation using a factor of 1.4826,

τ = 1.4826 ∗MAD (6)

Thus, the sample variance was estimated using:

σ2 =
(1.4826 ∗MAD)2

2
(7)

or we can say,

σ =
(1.4826 ∗MAD)√

2
(8)

Together, the robust linear regression model and robust standard deviation yielded ranges in which a
future point would be accepted as non-anomalous. Because our client is more interested in detecting sudden
falls than detecting sudden peaks this range was defined in terms of 5 standard deviations up and 4 standard
deviations down the predicted mean. If an new observation had a value outside this range, it was then
marked as an anomaly.

7

3.2.3 Sequential Filters

To facilitate the detection of slow trending anomalies, our algorithm applied 4 sequential filters (Figure 5).
All filters had the same window size but covered different points in the past. For example, if the window size
was n, for a point in the future t+1, 4 filters would perform anomaly detection of that point simultaneously.
Filter 1 would cover points from t-n to t. Filter 2 would cover points from t-n-1 to t-1 and so on.

Figure 5: Illustration on Four Sequential Filters

In the following two illustrations in Figure 6, we can see why using sequential filters is beneficial for
anomaly detection. The blue points in these two plots represent data points from the response column.
Though we don’t see a sharp dip in the data, a gradual downward trend in the data can be observed. The
new point that we are checking for anomalous behaviour is present at time t+1. Filter 1 ends just before
point t+1 and is unable to detect value at point t+1 as an anomaly, since it lies within its bounds. However,
window for Filter 4 ends some points before t+1, and due to this gap, the new point ends up lying outside
its bounds and we are able to detect an anomaly even in a slow moving trend.

(a) Filter 1 - Does not detect anomaly at time t+1 (b) Filter 4 - Detects anomaly at time t+1

Figure 6: Use of Sequential Filters

Thus, we see that in some cases Filter 1 might miss anomalies embedded in a slow moving trend since its
bounds will reflect recent trends. This could impact the ability of Filter 1 in detecting anomalies. However,
Filter 4 would be helpful in such scenarios, since there was a gap between it’s window’s end point and the
future point t+1 being tested for anomalous behaviour. Thus, ensuring some distance between filtering
window and anomalous point would serve in the interest of picking up slow trends in the time series.

3.3 Trimmed Moving Weighted Average Filter

The third method our team implemented for anomaly detection was the trimmed moving weighted average
method, which calculated the robust estimates of weighted average and standard deviation in a chosen time
window. This method was later determined as less efficient comparing to the other two due to it’s lack of
ability in closely mimicking the real moving trend. We decided to only discuss meaningful outputs of the
previous two methods in Section 4, but still included this method in the Python implementation for future
research purposes (Appendix 7.3).

8

3.3.1 Robust Estimate for Weighted Average

The first step to ensure the weighted average in any given window was robust was to remove a reasonable
amount of outliers from that window. Our algorithm can remove up to 20% of data in a set window. To
define such outliers, the median of the data in the window was computed and used as a reference to calculate
distances of all points from it. Depending on the maximum number of outliers user wanted to remove, the
points with largest absolute distances from the median would be dropped. For example, if a user wanted to
drop 2 out of 10 points (20%) in a window of size 10, the algorithm would drop the two points that were
farthest away from the median, i.e. the point with the largest distance and the second largest distance. The
remaining 8 points, in this case, were then used to calculate the robust weighted average (Appendix 7.3.2).

The second step was to assign weight to each remaining points in a given window and compute the
weighted average for all rolling windows. Given that the time series data were not stationary, the algorithm
assigned higher weights to more recent points in order to capture more relevant trend. For example, if the
window spanned from t-5 to t, with t being the current time, the weight assigned to point at t-5 would be
the lowest, and assigned to t would be the highest. Specifically, We utilized the reversed half normal dis-
tribution [4] to compute such weights for points in a given window (Appendix 7.3.3). The half normal pdf was:

wi =

√
2

πσ2
exp(− i2

2σ2
) (9)

In equation (1), the variance σ2 was represented in terms of window size. In particular, the standard devia-
tion was taken to be a third of the window size. Since, 3 sigma covers 99.7 percent of data points in a half
normal distribution, window size was assumed to be 3 sigma wide, and therefore sigma was taken to be a
third of the window size. Let n represent the size of a window, equation (1) then becomes:

wi =

√
2

π(n
3)2

exp(− i2

2(n
3)2

) (10)

Finally, to calculate the weighted average WA, the weight wi for each point in the window would be
mapped to the response column value yi:

WA =

∑n
i=1 wiyi∑n
i=1 wi

(11)

3.3.2 Robust Estimate for Standard Deviation

Robust estimate of standard deviation for the trimmed moving weighted average method follows the
same steps as Section 3.2.2.

9

4 Results

4.1 First Differences Filter - Anomaly Detection Sample Results

The first difference filter proved to be quite flexible and capable of detecting seemingly overlooked anoma-
lies. The nature of the first difference transformation (Eq.1) allows for the removal of long-term trends. This
transformation resulted in previously identified ”sharp jump” outliers and outliers within an overall posi-
tive or negative trend. Anomalies of the latter classification may have previously been missed due to their
location within an overall trend. Figure ?? summarizes the results of the transformation.

(a) Raw McDonald’s Data

(b) First Difference Transformation

Figure 7: McDonald’s Data pre- and post- transformation

We see that the positive trend seen at the start of 2020 is smoother considerably in the difference filter
while the large jumps in March 2020 and August 2020 are still maintained. In examining Figure ??B we
ultimately considered three sets of outliers we wished to classify. The anomalies manually identified are seen
in Figure 8.

10

Figure 8: Illustration on Four Sequential Filters

With the outliers manually identified we analyzed this series with a First Difference filter using the
following parameters:

• Window = 50

• α = 0.025

• β = 0.99

Figure 9: Fitted McDonald’s Data

In Figure 9 we see the results of the First Difference filter. We note that the sharp differences identified
were correctly classified as anomalies.

The strength of the first difference filter comes from its flexibility in using non-parametric method; with
the implementation of mixed-normal distribution, user can fit nearly any data set with different distribution
with relatively a good fit.

4.2 Robust Linear Model Filter - Anomaly Detection Sample Results

In the following section are some resultant visualizations using the Robust Linear Model Filter:

11

(a) Exploratory Data Analysis Plot for Merchant: Dollar General, Acquire
Type: Receipt Pal on Device, Response Column: Receipt Count

(b) Resultant Visualization with Anomalies detected using Robust Linear
Model Filter

Figure 10: Anomaly Detection using Robust Linear Model Filter - Example 1

In the example above, we first have an exploratory plot for the receipt count data series for merchant
Dollar General and acquire type Receipt Pal On Device. The red dotted line marks the start of the
pandemic COVID-19. The big red dot just before January 2021 represents the existing error flagged by
client’s team, which was shared with us in the original data (Section 2). The circles mark some anomalies we
would want to catch. In addition to the existing error flagged, it will be helpful to detect the dip observed
after the pandemic and large peaks.

Figure 9(b) is the resultant visualization after applying RLM filter to this data series with highlighted
anomalies. The blue line represents the original data points and the red line is the RLM fitted line. The
light-red shaded region represents the standard deviation bounds around the fitted line for the most recent
sequential filter: Filter 1 (Section 3.2.3). In the legend we can see that, different shapes and colors have
been used to mark anomalies being detected by 4 different filters. In particular, red square marks anomalies
for Filter 1, green circle marks anomalies for Filter 2, black star marks anomalies for Filter 3 and yellow dot
marks anomalies for Filter 4. We see that in this example, RLM successfully detected the original error by
marking it as an anomaly by all 4 filters. The slower, more gradual dip however, around week 80, was not
detected by Filter 1, but detected by Filter 3 and Filter 4. Thus, sequential filters were helpful in detecting
slow drift right after pandemic, which we would not have detected with a single moving filter.

12

(a) Exploratory Data Analysis Plot for Merchant: Dollar General, Acquire
Type: Sift, Response Column: Receipt Count

(b) Resultant Visualization with Anomalies detected using Robust Linear
Model Filter

Figure 11: Anomaly Detection using Robust Linear Model Filter - Example 2

Similar to the previous example, we first have an exploratory plot for the receipt count data series for
merchant Dollar General and acquire type Sift shown in Figure 10(a). Again, the big red dot just before
January 2021 represents the existing error flagged by client’s team and the circles mark some anomalies we
would want to catch.

In Figure 10(b) we see the resultant visualization after applying RLM filter to this data series, and can
see the anomalies highlighted. Again, We see that all 4 filters detected the original error. There are other
errors which have been identified by 1 to 2 moving filters (out of 4). It is important to note that the number
of filters detecting an error is not associated with the severity of that error point. In the case of slow drifts,
errors will open be spotted only by 1 or 2 filters.

13

5 Discussion

5.1 Filter Comparisons

Figure 12: Filter Comparisons

The two filters developed have both unique and shared advantages, which are listed under Figure 12. For
RLM, one of the advantages is that the choice of the window size is quite flexible. User’s can easily input
different window size parameters and check if the filter performs nicely. RLM is also able to detect slow
drifts due the fact that it has 4 sequential filters (Section 3.2.3). Say if there’s a gradual increase or decrease
in receipt-count, which could be alarming, RLM will be able to detect such trends.

Both filters are robust in a sense that the impact of outliers was reduced. The robust linear model used
in RLM filter helped predict the real trend without being affected by potential outliers. The first difference
stabilizes the mean and variance, thus also reduces the effects of outliers (Section 3.1). Both filters are
de-trended. RLM grants local predictions that reflect only previous trend within a certain time limit, and
first difference removes seasonality and transforms a non-stationary time series to stationary.

Lastly, since first difference is non-parametric, users do not need to know a lot about the data itself before
generating meaningful results. All users have to do is to input a window size that is greater than 50 for the
filter to do a good job.

5.2 Limitations and Improvements

5.2.1 First Difference Filter

Figure 13 shows two limitations of First Difference Filter and improvements that could be made.

Figure 13: First Difference Filter Limitations and Improvements

Firstly, the error boundaries for First Difference Filter are based on quantile calculations (Section 3.1),
thus are greatly impacted by the size of windows selected. For such filter to work nicely, the window sizes

14

cannot go under a certain limit (currently that limit is set as 50). A consequence of some of the data
series having significantly less data points than others is that, if the number of observations is too low, the
anomalies would not be meaningful. As a result, there is no point in running the First Difference Filter.
Thus it would be ideal if we could define an optimal window size which includes just enough points for the
filter to generate reliable results, and prevents eliminating too many data series due to lack of data.

Secondly, the current quantile boundaries are set to be 2.5% and 99%, which could be easily changed by
users to adjust the number of errors spotted.

5.2.2 RLM Filter

Figure 14 shows three limitations of RLM Filter and improvements that could be made.

Figure 14: RLM Filter Limitations and Improvements

To begin with, currently, users can manually choose a window size for the filter. What could happen
is that, users may pick a window size too small or too large, and the anomalies picked by the filters would
be not so accurate. Thus, it is ideal to design a cross validation (CV) function which has the ability to
determine the best window size by minimizing the CV absolute error loss. If we set an acceptable rolling
window size range to be between 10 and 30, then users could generate a CV score for each window size, then
pick the optimal window size to be the one that has the smallest CV score. Noticing that while the filters
are expected to be ran on a weekly basis, the cross validation function does not need too much tuning in a
short period of time – a monthly tuning would be sufficient since running cross validation usually takes more
time than model fitting. To reduce computing complexity and increase model accuracy, it is also suggested
that instead of using all historical data of a specific Merchant and Acquire Type for CV, using the most
recent 50 observations would be enough.

Secondly, we are currently using Median Absolute Deviation of the first difference to calculate standard
deviations of each rolling window. However, if there was a trend in the series, the expectation of the first
differences E[dt] would not necessarily be 0, which was unlike the expectation of residuals after fitting a
regression model. This could result in a slightly inflated sample variance (Section 3.3.2). The alternative
way is to replace the current approach with computing residuals of RLMs [3]. This new approach could
potentially be more relevant and time efficient.

Additionally, for now we are using 4 standard deviations up and 3 standard deviations down as our
default error boundaries for RLM Filter (Section 3.1 and 3.3.2). In order to manipulate the total number of
errors detected, users could try lower and higher boundaries instead.

15

5.3 Next Steps and Conclusion

In this section, we will discuss some future steps in order to better utilize the two filters delivered to
NPD.

5.3.1 Additional Response Variables

Due to the high correlations between sets of variables mentioned in Section 7.1.3, as well as data com-
plexity mentioned in Section 2.1, we are currently only using receipt count as our response column.

For future steps, we could easily apply the existing filters to another 2 variables, which are sum total paid

and item total. For both filter, the only thing that the user will need to change is to replace the response
column name with one out of these 2 variables.

On top of the existing variables, we could compute two new variables, which are the average sum total paid

per receipt and average item total per receipt. The motivation behind is that when observations are ag-
gregated, some information about individual receipt is lost. All of the previous variables we studied so far
are summations. To detect the variation of user behaviors in the amount spent per receipt, we will need to
break-down the summation accordingly. Tracking the two average mentioned will help detect if an average
customer is spending more or less than usual. A caveat to keep in mind is that, for these two newly created
variables, the standard deviation needed to be scaled accordingly to generate meaningful boundaries.

5.3.2 Other Checks on Response Columns

A further next step is to compare response column values with another response column. For example,
since it is possible for a panelist to upload more than one receipt, values in receipt count response column
should be equal or higher than panelists. Similarly, values in response column item total should be equal
or higher than column sum items distinct since sum items distinct captures the same information but
only for distinct items. Further, it may be helpful to study the ratio of sum total paid by sum item spend.
Column sum total paid refers to the final receipt amount, while column sum item spend is the sum of
itemized prices.

Table 3: Ratio of sum total paid by sum item spend

We see that the ratio varies a lot. It can be less than 1 in cases where a final discount was applied before
calculating the final receipt total. The ratio can be higher than 1 where taxes were added after adding the
itemized amounts. We see for majority of cases ratio ranges from 1 to 1.2. This could reflect taxes of 0 to
20 percent, but they can be even higher in some locations. However, if the ratio is too high, like we see
in around 1 percent cases, further checks can be incorporated to analyse the cause and check for any data
recording errors.

These checks can be performed at an overall level or after splitting the data merchant and acquire type
wise. If a merchant usually follows a known ratio range, any fluctuations can be marked as an anomaly for
future investigations.

16

5.3.3 Removal of Identified Outliers

Although it requires one additional step in the anomaly detection process, we recommend to remove
obvious outliers by setting cut-offs in a given rolling window before calculating the trend (mean) and anomaly
boundaries (either standard deviation or quantile) for both filters. The main goal is to reduce the slightly
inflated boundaries that present in both filters.

5.3.4 Boundaries Smoothing

A further next step is to smooth the boundaries for both methods. For the RLM Filter, at time t, we are
finding the prediction at t+1 by applying RLM to the k previous observations, and predicting the one ahead
(Section 3.2.1). In the future, we could find the prediction for standard deviation at time t+1 by smoothing
the k previous robust standard deviation estimates and predicting the one ahead. This would help to remove
some of the wiggles in the boundaries shown in Section 4.2.

For the First Differences Filter, we could select the last k points, and then smooth the estimated quantile
using by applying RLM on these points. The advantage of applying smoothing technique on the quantile is
that it permits using a smaller k (i.g.k = 10 instead of k = 50) when choosing reasonable window sizes.

5.3.5 Conclusion

We believe that the current python generative anomaly detection implementations could produce relevant
and insightful results for all data-series provided by our client. Section 5 mainly serves as a guide in cases
that our client wants to investigate our current implementation and add more functionalities and improve-
ments. We also hope that this report could serve as a reference for future researchers who are interested
in implementing robust anomaly detection filters using both parametric and non-parametric approaches on
time series data.

17

6 Reference

References

[1] Samaneh Aminikhanghahi and Diane J. Cook. “A Survey of Methods for Time Series Change Point
Detection”. In: Knowledge Information System 51.2 (2017). doi: doi:https://doi.org/10.1007/
s10115-016-0987-z.

[2] Christophe Leys and Olivier Klein. “Detecting outliers: Do not use standard deviation around the mean,
use absolute deviation around the median”. In: Experimental Social Psychology (2013).

[3] Peter J. Rousseeuw and Christophe Croux. “Alternatives to the Median Absolute Deviation”. In: Amer-
ican Statistical Association 88.424 (1993). doi: https://doi.org/10.2307/2291267.

[4] Michael Wallner. “A half-normal distribution scheme for generating functions”. In: European Journal
of Combinatorics 97 (2020). doi: https://doi.org/10.1016/j.ejc.2020.103138.

[5] Chun Yu and Weixin Yao. “Robust linear regression: A review and comparison”. In: Communications
in Statistics - Simulation and Computation 46.8 (2017). doi: https://doi.org/10.1080/03610918.
2016.1202271.

18

7 Technical Appendices

7.1 EDA and Variable Selection

7.1.1 Data Preparation and Wrangling

As a first step of EDA, our team decided to merge the three data sets provided by the client. The resulting
data set, or the merged data set consisted of 12 columns and 4907 rows and information about the sources and
merchant as well as information about the anomalies detected for the 6 response variables,receipt count,
sum total paid, sum items distinct, sum item spend, panelist and item total, were provided.

7.1.2 Time Series Visualization

Once the data sets have been cleansed and merged to be used for the analysis, the next step was to
visualize the time series of response variables. With the R codes shown below, our team has visualized the
plots for the response variables with the error detected (reflected with the red dots) and the vertical line for
when the COVID pandemic has occurred.

19

7.1.3 Variable Selection

Given limited amount of time for the project, performing anomaly detection for all 6 response variable
was not feasible. Therefore, we have decided to see whether there were similarity in trends among the
variables and checked both the trends of time series and correlations between selected pairs. The following
R codes visualize the time series of the response variables and calculates the average correlations among the
variables.

7.2 Sanity check of the First Difference Filter

7.2.1 First Difference Data Set

In order to perform the sanity check of the first difference filter, our team first created new data sets of
the first differences. Four data sets were created for each merchant which was based on the data acquire
sources as shown in the following codes.

7.2.2 Histogram and Quantile Calculations

For the sanity check, McDonald’s data sets have been selected to be the sample data sets. Data sets of
each source have been divided into first and second half where the 95% qunatile has been calculated on the
first-half of the data set and used in second-half of the data set for anomaly detection.

20

21

7.3 Trimmed Moving Weighted Average Filter

7.3.1 Input Parameters Sanity Check

This section of code was implemented to ensure that the users only input parameters that were acceptable.
If not, an error message would pop up to guide users to re-choose a parameter in the correct form.

7.3.2 Deletion of Outliers in a Given Window

In order to remove outliers in rolling windows, total list was used to store list of all possible rolling win-
dows with size n. For each rolling window, the median was firstly computed. The absolute distance between
each point and the median was then computed and ranked. Based on user’s max outlier (x) preference, the
top x points which had the biggest distance would be dropped from the list.

22

7.3.3 Half Normal PDF Weights Assignment

Now having the modified total list after dropping outliers, the next step was to assign weight to each
points remaining in the rolling windows. The weights were calculated and mapped to each point using the
reversed half-normal distribution. Then the weighted averages were calculated accordingly.

7.3.4 Weighted Average Columns

Once all the weighted averages were computed, the values were then added to the actual data frame 4
times. In particular, a shifting effect was applied to each w avg column to ensure that the weighted averages
were matched up with the actual period of time in the data set, with w avg 1 started at (initial time +
window size), w avg 1 started at (initial time + window size + 1) and so on.

7.3.5 Standard Deviation Columns

need to add more code for standard deviation computation. Similar to weighted average, once
all the standard deviations were computed, the values were then added to the actual data frame 4 times. In

23

particular, a shifting effect was applied to each w std column to ensure that the standard deviations were
matched up with the actual period of time in the data set, with w std 1 started at (initial time + window
size), w std 1 started at (initial time + window size + 1) and so on.

7.3.6 Defining Bounds for Anomaly Detection

Now having both weighted average values and standard deviation values ready, the 3 sigma boundaries
were calculated and appended to the same data frame for anomaly filtering purpose.

7.3.7 Detection of Outliers based on 4 filters

In details, a new point was categorized as an anomaly when it landed outside of 3 standard deviations
in any of the 4 filters defined. The outliers were then recorded in binary forms, with 1 as an indicator of
anomaly.

24

7.3.8 Anomaly Detection Method

This function served as an initializer for the trimmed moving weighted average filter to run and output
anomalies in a data frame as the result. The data frame would then be called by the plot function to output
anomaly detection visualizations for any given time series data.

25

7.3.9 Anomaly Detection Visualization

Once all outliers were identified, matplotlib was utilized to visualize anomalies detected using all filters.
Four different shapes and colors were used on anomalies to distinguish which filter detected them.

26

7.4 Python Interface

As per NPD’s request we packaged our anomaly detection functionality in a python package PyAnoma-
lyDetect. The package was written with the principles of single responsibility in that class, method and
function performs one specific action and tracability. To reflect these principles we divided the anomaly
detection process into two distinct steps; data preparation and analysis.

7.4.1 Data Preparation

What user does: 1. Subset by merchant and acquire type
What package does: 2. everything else
To ensure that our package was broadly applicable to the data analyzed by NPD. The data provided

was defined primarily by the merchants, data acquisition methodology and a collection of six variables. To
provide optimal functionality we designed a data structure, AnomalyDf, to capture the relevant information
needed to prepare the data for analysis. The data structure can be defined by the following parameters
within the init function:

1 def __init__(self , data: pd.DataFrame ,

2 response_column: str ,

3 time_column: str , scale_column: str = ""):

• data: A pandas.DataFrame with p ≥ 2 columns and n ≥ 3 rows. When provided it is assumed that
the data will be reflective of a unique merchant-acquisition combination. We will refer to the data
parameter as ”the raw data” henceforth and will distinguish this from ”processed data” produced in
the constructor function.

• response column: A python string indicating the name of the column to be considered as the response
variable. As this parameter will be used to subset the provided data the constraint response_column ∈
columns(data).

• time column: A python string indicating the name of the column of data containing the time variable.
As this parameter will be used to subset the provided data the constraint time_column ∈ columns(data).

• scale column: A python string indicating the name of the column used to scale the measures of spread.
Defaults to None.

Provided the above parameters the AnomalyDf constructor will create an instance of the AnomalyDf

class. In imagining and implementing the class we sought to balance processing work done by the user while
standardizing the interface. Our initial exploration and calculations saw repeated tracking of the columns
to be examined and therefore implemented the relevant columns as parameters. The get data(column)

method is used almost exclusively to access the data to reduce the repetition of the column names. The
interface furthermore removes the burden from the user to format the data in a specific way.

• df: A pandas.DataFrame with n rows and p ∈ [2, 3] columns. The columns present are the columns
corresponding to the time column, response variable and the scaling column, if applicable. Note that
this variable is public to allow for easy examination of the data but should be accessed with the
get data(variable) function.

• sd: A numpy.array with dimension (n,). This field is initialized to an array of zeroes (produced by
self.sd = numpy.zeros(self.df.shape[0]). We designated the calculation of the spread measures
to the update sd method both to adhere to the principle of single responsibility and to ensure that
the user can change the standard deviation calculation without needing to recreate the instance.

• diff taken: A boolean indicating if the first difference of the processed data (df) was computed. If
True then the first differences of the response column may be found in the diff field.

The following methods are needed to modify, access and ultimately utilize the data in a standardized
manner. The seemingly trivial methods (such as nrows() and ncols) were designed to reduce the user’s
interacions with the underlying data and discourage modification of the data.

27

1 def nrows(self):

This method takes no arguments and returns the number of rows in the processed data (self.df).

1 def ncols(self):

This method takes no arguments and returns the number of columns in the processed data (self.df).
Note that this method will always return either two or three.

1 def get_copy(self):

This method returns a deep copy of the processed data. Users are strongly encouraged to use this function
when accessing or modifying the data to prevent aliasing issues that can be abundant in pandas.

1 def get_data(self , column: str):

This method takes a string column argument and returns an n× 1 pandas.DataFrame with data of the
indicated column type. column must be one of "response", "time" or "scale" indicating the response,
timing and scaling columns respectively.

1 def update_sd(self , sd_method: str , window: int):

This method is a non-constructive method that modifies the sd and sd initialized functions to rep-
resent the measure of spread and a boolean indicating if it has been modified, respectively. The parameter
sd method is a string that can be one of "Qn", "IQR" or "mad" indicating Rossousseeuw-Croux, interquartile
range or median absolute deviation metric respectively.

1 def take_difference(self):

This method computes the first difference and stores it in a field that can be accessed with the
get difference(self) method. Note that the difference will be of dimension n × 1 with the first row (at
index 0) is NaN. This relic was kept to maintain consistency and reduce confusion for later operations.

1 def get_difference(self):

This method provides an easy way to access the previously calculated difference. The method returns an
n × 1 pandas.DataFrame with indices set as [0, n − 1] and a column named first diff. The method will
raise an AttributeError if differences have not been calculated.

1 import numpy as np

2 import pandas as pd

3 from PyAnomDetect import AnomalyDf

4

5 MERCHANT_WANTED = "Mcdonald ’s"

6 METHOD_WANTED = "iPhone"

7 DATE_COLUMN = "StartDate"

8

9 ## Load the data and user processing

10 raw_data = pd.read_csv(PATH_TO_DATA)

11 raw_data = raw_data[raw_data.MerchantName == MERCHANT_WANTED]

12 raw_data = raw_data[raw_data.AcquireTypeDesc == METHOD_WANTED]

13 raw_data[DATE_COLUMN] = pd.to_datetime(raw_data.DATE_COLUMN)

14

15 ## create the class

16 data_obj = AnomalyDf(df, "panelists", "StartDate")

17

18 ## get number of rows and columns

19 data_obj.nrows()

20 data_obj.ncols()

21

22 ## calculate the standard deviations

23 data_obj.update_sd("Qn", 10)

24

25 ## create a deep copy of the data

26 copied_data = data_obj.get_copy ()

27

28 ## get the response column

29 resp_column = data_obj.get_data("response")

30

31 ## get the time column

32 time_column = data_obj.get_data("time")

28

7.4.2 Base Filter Class

Most of the analysis will be conducted within implementations of the Filter interface. The interface was
created with the GRASP design framework as a guiding principle. In our pyAnomDetect package Filter is
an interface written as a meta class so that the filters will be written as implementations of this abstract
class. Our decision to use a meta class rather than an interface stems from our desire to re-use code. The
initialization processes and preconditions are nearly identical for all methods. The primary methods and
preconditions of the meta class can be seen below. Note that certain static methods and functionality was
omitted from the sample to emphasize the core aspects of the interface. Note that the function definitions
can be altered for subclasses in minor terms (such as changing parameter options).

1 from abc import ABCMeta , abstractmethod

2 import numpy as np

3 import pandas as pd

4 import AnomalyDf

5

6 class Filter(metaclass=ABCMeta):

7 def __init__(self , data_obj: AnomalyDf , window: int , max_outliers: int):

8 if window <= 2 or window >= data_obj.nrows():

9 raise ValueError (""" Window must be greater than 2 and

10 less than the size of the data """)

11 if max_outliers == 0 or max_outliers >= data_obj.nrows ():

12 raise ValueError (""" Max_outliers must be a positive integer

13 less than the rows of the data """)

14 # rest of initialization code omitted ...

15

16 @abstractmethod

17 def fit(self , scaling=False):

18 pass

19

20 @abstractmethod

21 def detect(self , new_data: pd.DataFrame , alpha: float = 0.05):

22 if alpha <= 0 or alpha >= 1:

23 raise ValueError ("Alpha must be a float in (0, 1)")

24 pass

25

26 @abstractmethod

27 def deviation_stats(self):

28 pass

29

30 def plot(self , data_label):

31 pass

The implementation of a filter (as we have described them in this paper) are the filters we will use.

7.4.3 First Difference Class

1 def __init__(self , data_obj: pyAnomDetect.AnomalyDf , window: int , max_outliers: int):

2 pass

• data obj: An instance of the AnomalyDf class. This class prepared and standardizes the data for
analysis. The object can be passed as a parameter with no initialization (save for the creation of the
AnomalyDf object).

• window: Window size indicating how many prior points are to be considered in our anomoly detection.

1 def fit(self , slide = True , alpha = 0.025, beta = 0.99):

The fit method is used to calculate the fitted values for each point, determine the upper and lower
bounds and classify each point as an outlier or not. Error bounds are calculated from an inverse normal
PDF of the first differences with the median used as an estimate of µ and 1.4826 ×MAD for the first
differences.

29

• slide: Determine if a sliding window should be used when calculating error bounds. Defaults to
‘True‘.

• alpha: Floating point value to determine the cutoff point below which a point will be considered an
outlier. At α points less than the bottom α percent of all observations. Defaults to 0.025. Passed to
an internal call of deviation stats

• beta: Floating point value to determine the cutoff point above which a point will be considered an
outlier. At β points greater than the top β percent of all observations. Defaults to 0.99. Passed to an
internal call of deviation stats.

1 def deviation_stats(self , slide = True , alpha = 0.025, beta = 0.99):

The deviation stats method adds the sd column to the quantile df object. This method will be
called (if not already called) within the fit method. Note that the parameters are repeated from the fit

method.

1 def get_plot_variables(self)

The get plot variables method is an accessor method to extract the variables used to create a plot.
Returns the time, time point, fitted value, original value, lower and upper bounds. For the first difference
bounds the dimensions of the dataframe returned is n × 6.

1 def plot(self):

The plots method is allows for the plotting of transformed data with the lower and upper bounds plotted.

1 ## import statements

2 from pyAnomDetect.Filters.FirstDifference import FirstDifference as FD

3 from pyAnomDetect.AnomalyDf import AnomalyDf

4

5 raw_data = pd.read_csv("data/merged_data.csv")

6 raw_data["StartDate"] = pd.to_datetime(raw_data.StartDate)

7

8 data_obj = AnomalyDf(df, "receipt_count", "StartDate")

9 data_obj.take_difference ()

10

11 ## plot it

12 data_obj.plot()

13

14 fd_series = FD(data_obj , 50)

15 fd_series.fit()

16 fd_series.plot()

7.4.4 Robust Linear Regression Class

The Robust Linear Regression class is an implementation of the Filter meta class and performs the
calculations described in our analysis.

1 def __init__(self , data_obj: pyAnomDetect.AnomalyDf , window: int):

2 pass

• data obj: An instance of the AnomalyDf class. This class prepared and standardizes the data for
analysis. The object can be passed as a parameter with no initialization (save for the creation of the
AnomalyDf object).

• window: Window size indicating how many prior points are to be considered in our anomoly detection.

1 def fit(self , c_down = 4, c_up = 5, use_differences):

30

The fit method is used to calculate the fitted values for each point, determine the upper and lower
bounds and classify each point as an outlier or not. This method calls the method deviation stats method
if it has not been called at this time. Note that in the definition of the outliers the c up and c down

parameters have the following roles:

[lower, upper] = [x̂i − cDown× SD, x̂i + cUp× SD]

• c down: Constant to multiply the spread by when formulating the lower bound. Defaults to 4.

• c up: Constant to multiply the spread by when formulating the upper bound. Defaults to 5.

• use differences: use differences: Indicate if the median absolute deviation (MAD) of the first differ-
ences should be used in the calculation of the error bounds. If false the stadnard deviation of the raw
values are used to calculate the measure of spread. Defaults to True.

1 def deviation_stats(self , c_down = 4, c_up = 5, use_differences):

The deviation stats method adds the sd column to the quantile df object. This method will be
called (if not already called) within the fit method. Note that the parameters are repeated from the fit

method.

1 def get_plot_variables(self , model_number: int = 1)

• model number: A variable determining the number of shifts to use when calculating the upper and
lower bounds

The get plot variables method is an accessor method to extract the variables used to create a plot.
Returns the time, time point, fitted value, original value, lower and upper bounds. For the first difference
bounds the dimensions of the dataframe returned is n × 6. For the FirstDifference filter the model number

parameter defines how many shifts should be used when determining if a point is an anomaly.

1 def plot(self , model_number: int = 0):

The plot method is allows for the plotting of transformed data with the lower and upper bounds plotted.

• model number: A variable determining the number of shifts to use when calculating the upper and
lower bounds. If 0 all possible models are plotted.

1 ## import statements

2 from pyAnomDetect.Filters.RobustLinearRegression import RobustLinearRegression as RLM

3 from pyAnomDetect.AnomalyDf import AnomalyDf

4

5 raw_data = pd.read_csv("data/merged_data.csv")

6 raw_data["StartDate"] = pd.to_datetime(raw_data.StartDate)

7

8 data_obj = AnomalyDf(df, "receipt_count", "StartDate")

9 data_obj.take_difference ()

10

11 ## plot it

12 data_obj.plot()

13

14 rlm_series = RLM(data_obj , 50)

15 rlm_series.fit()

16 rlm_series.plot()

31

7.4.5 Moving Weighted Average

The MovingWeightedAverage class is an implementation of the Filter class and allows for the imple-
mentation of methods previously described.

1 def __init__(self , data_obj: pyAnomDetect.AnomalyDf , window: int , max_outliers: int):

2 pass

• data obj: An instance of the AnomalyDf class. This class prepared and standardizes the data for
analysis. The object can be passed as a parameter with no initialization (save for the creation of the
AnomalyDf object).

• window: Window size indicating how many prior points are to be considered in our anomoly detection.

• max outliers: Maximum number of outliers to search for. Defaults to 0. Note that a value of 0
indicates that no outliers will be removed. If set to a number greater than the number of rows in a
data set this will be reset to the number of rows minus 1. Large max outliers values can drastically
slow down computation time.

1 def fit(self , c_down = 3, c_up = 4, use_differences):

The fit method is used to calculate the fitted values for each point, determine the upper and lower
bounds and classify each point as an outlier or not. This method calls the method deviation stats method
if it has not been called at this time. Note that in the definition of the outliers the c up and c down

parameters have the following roles:

[lower, upper] = [x̂i − cDown× SD, x̂i + cUp× SD]

• c down: Constant to multiply the spread by when formulating the lower bound. Defaults to 3.

• c up: Constant to multiply the spread by when formulating the upper bound. Defaults to 4.

• use differences: use differences: Indicate if the median absolute deviation (MAD) of the first differ-
ences should be used in the calculation of the error bounds. If false the stadnard deviation of the raw
values are used to calculate the measure of spread. Defaults to True.

1 def deviation_stats(self , c_down = 3, c_up = 4, use_differences):

The deviation stats method adds the sd column to the quantile df object. This method will be
called (if not already called) within the fit method. Note that the parameters are repeated from the fit

method.

1 def get_plot_variables(self , model_number: int = 1)

• model number: A variable determining the number of shifts to use when calculating the upper and
lower bounds

The get plot variables method is an accessor method to extract the variables used to create a plot.
Returns the time, time point, fitted value, original value, lower and upper bounds. For the first difference
bounds the dimensions of the dataframe returned is n × 6. For the FirstDifference filter the model number

parameter defines how many shifts should be used when determining if a point is an anomaly.

1 def plot(self , model_number: int = 0):

The plot method is allows for the plotting of transformed data with the lower and upper bounds plotted.

• model number: A variable determining the number of shifts to use when calculating the upper and
lower bounds. If 0 all possible models are plotted.

32

1 ## import statements

2 from pyAnomDetect.Filters.MovingWeightedAverage import MovingWeightedAverage as MWA

3 from pyAnomDetect.AnomalyDf import AnomalyDf

4

5 raw_data = pd.read_csv("data/merged_data.csv")

6 raw_data["StartDate"] = pd.to_datetime(raw_data.StartDate)

7

8 data_obj = AnomalyDf(df, "receipt_count", "StartDate")

9 data_obj.take_difference ()

10

11 ## plot it

12 data_obj.plot()

13

14 mwa_series = MWA(data_obj , 50)

15 mwa_series.fit()

16 mwa_series.plot()

33

