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Abstract

In this paper we seek an improved estimate of the Plus-Minus statistic for NBA players using Bayesian
regression. Using a Bayesian approach to model this statistic will allow us to generate a distribution rather
than a point estimate for each player’s true Plus-Minus, providing improved interpretability over
non-Bayesian methods. We work with data from the 2010/11 NBA season up to and including the
2018/19 season, and our methods should be able to be easily applied to any future or past NBA seasons.
We use Bayesian regression to model the Plus-Minus statistic for players, and we use a nested regression
framework to derive logical prior distributions for each player based on their contract value. The model
we arrive at corrects for teammate performance, and we believe the model offers improvements on
conventional methods for evaluating individual player performance by using additional data such as
contract value and offering a measure of uncertainty about a player’s true abilities. We call our model the
Bayesian Contract Plus Minus, or BCPM. However, the model does somewhat struggle to accurately
assess players on rookie contracts, which is an area to explore in future work.

Introduction

There are currently a number of different statistics that are used to measure the performance of NBA
players as this is one of the most prevalent tasks for NBA teams. Every front office would like to be able
to confidently answer questions such as “is player A better than player B?”, allowing them to make better
decisions when building a roster. The plus-minus statistic (Basketball-Reference, 2020) is a very natural
metric to use when measuring players’ contributions to their teams. By definition, plus-minus measures
the net point differential for a player’s team while that player is on the court. For example, suppose player
A entered the game with his team down by 2 points and got substituted out 5 minutes later with his team
up by 3. Player A had a plus-minus of 5 points in that stint of play, and the overall statistic is then
normalized as plus-minus per 100 possessions, with a possession being any time the team who has the
ball changes.



Many estimates of players’ plus-minus statistics are biased due to the fact that there are 10 players on the
court at any given time, so players who frequently play with an elite player like LeBron James will have
an artificially inflated plus-minus compared to players who might be equally productive but play
alongside sub-par players. Additionally, point estimates of plus-minus are less informative than
distributions of plus-minus since distributions would allow us to examine the uncertainty associated with
a certain player’s performance. These are some of the core issues that we seek to address in this paper.

Our main tasks are summarized below:

e Can we come up with reasonably informed, logical prior distributions for the players using
contract value and potentially team ratings to help improve our main Bayesian regression model?

e Can we construct an informative Bayesian regression model that conditions on all players on the
court to eliminate collinearity while also outputting reasonable distributions for plus-minus
statistics?

e (Can we create an intuitive interactive visualization to display the results of our Bayesian model
and allow for comparisons between players?

Data

Contract Data

The first dataset contains information about player contracts. This data was obtained from web-scraping
data found on spotrak.com (2017-2019 seasons) and downloading a data set from Kaggle (1990 - 2017
seasons). These two data sets were joined on player names, and the final data frame resulted in 12,724
total contracts, given to 2406 unique players across 32 teams. The joined data frame consisted of the
following variables:

Player Name

Contract Value

Year of Contract

Team

e Type (Rookie vs Non-rookie)
When joining the data frames, we did run into some difficulty with inconsistencies in player names; for
example “PJ Tucker” and “P.J. Tucker” are the same player but listed differently. Since there was not a
player id common to both data sets and there was not a solution that worked for every player, this issue
was fixed manually.
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Figure 1: Mean Salary by Season in the NBA

As seen in Figure 1 above, the average salary from 1990 to 2019 has been increasing. After adjusting for
this, we decided to use data from during and after the 2010-2011 season, as data before this season had
holes such as entire teams missing or inconsistent number of players per team. As will be discussed in the
methods section, 5 seasons are used to construct priors, so our model produces results from the 2015-2016
season to the 2018 - 2019 seasons.

Games Data

Our NBA games data comes from fivethirtyeight (fivethirtyeight, 2019). This data is actually used by
fivethirtyeight to create ELO rankings for each team updated after each game (though the ELO scores
themselves are not relevant to our work). The data goes back to 1946 and includes variables such as the
final game scores and who had home court advantage. We will use this data to create a team rating system
that may be used to create priors for our bayesian regression.

To actually use this dataset, we end up only using a few variables:
e Team 1 and Team 2
e Final scores for both teams

We use the final scores to calculate a point differential which tells us how much a team won by.
Additionally, we also want an indicator for which team is home. Our dataset contains games data in which
team 1 is always the home team. In order to create this home/away indicator we duplicate each game so
that each game shows twice. So for a game between Team 1 and Team 2, there will be two entries for this
game: one entry will show team 1 as the home team and the other entry will show team 2 as the away
team. This allows us to even out our dataset and factor in home court advantage into our team rankings.
Including home court advantage in our analysis also gives us some convenient information about how
much home court advantage is worth. Figure 2 below shows us the average point differential associated
with home court advantage. This comes out to 2.793 points in the 2018-2019 season and is around 2.5 for
all seasons.
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Figure 2: Distribution of NBA Point Differentials for 2018/19 season
Shifts Data

The last main dataset that we used was derived from NBA play-by-play data from eightthirtyfour (Eight
Thirty Four, 2019). The play-by-play dataset includes a number of different variables with only a few of
interest to us:

score margin

IDs of the players on the court for the home and away teams

ID of a player being substituted on

Home team

Away team

Field goal attempts

Offensive rebounds

Free throw attempts

Turnovers

We perform some data wrangling to reformat this play-by-play data into shifts, where a shift is defined as
a period of time where the same 10 players are on the court without any substitutions. For each shift we
record the home and away teams, the difference between home points and away points, the IDs of the
players on the court for that shift, and the approximate number of possessions that took place during the
shift. The number of possessions in a shift was computed using the formula (NBAstuffer, 2021)

P = 0.96 - (FGA + TO + 0.44(FTA) — OREB),



where P = approximate number of possessions, FGA = field goal attempts, TO = turnovers,
FTA = free throw attempts, and OREB = offensive rebounds.

Shifts were then normalized to record point differential per 100 possessions. The final shifts dataset is
structured such that each row corresponds to a unique shift, the first column stores the normalized point
differential, and the remaining columns (around 500 columns, varies by season) each correspond to an
NBA player for the given season. These columns are all filled with zeros except for the five players from
the home team and the five players on the away team who were on the court during the given shift. The
five home players in a shift are denoted with +1, while the five away players in a shift are denoted with
-1.

This dataset is used to train our Bayesian regression model, where the set of columns corresponding to the
players forms our design matrix X (a sparse matrix of mostly zeros, with five +1s and five -1s per row),
while the first column (corresponding to the normalized point differential) is our response variable. This

S . th . . . th ,
allows for the convenient interpretation that the i coefficient mean is our estimate of the i player’s
plus-minus.

Methods

Deriving Meaningful Priors

When creating our final priors to be used in Bayesian regression, we split the data into rookies and
veterans due to the discrepancies in their contract values. For instance, a player on a rookie contract who
is performing on a superstar level, such as Luka Doncic, could be extremely underrated if his contract
prior was not adjusted upwards, as those on rookie contracts tend to make less than veterans. Our model
has two potential variables that we will consider to try to predict player performance: contract value and
team rating. Contract value is taken as is, after adjusting for contract value inflation, while team rating is
created through linear regression.

To develop team ratings, we use the games data mentioned in the data section above. Our linear
regression takes point differentials of each game in a season as its dependent variable and uses team,
opponent, and location (home or away) as its independent variables. In this manner, by regressing over all
games in a season, we get a coefficient for each team that we then use as team ratings.

Ridge Regression

Ridge regression was used to predict coefficients for each player using a per 100 possession point
differential variable. Specifically, we utilize the sparse matrix of shifts data discussed in the data section
above. We use the point differential per 100 possessions as the dependent variable and our sparse matrix
Xas the design matrix. This does not consider any prior information about the players, their teams, or any
other factors - it simply computes a coefficient for each player based on the shifts data. These coefficients
act as a proxy for how well the player actually performed.



Random Forest Regression and Gradient Boosting Regression

Now that we have our player coefficients from the ridge regression as well as the team rating and contract
values, we can build a model to predict a mean for each player that will serve as the prior mean in the
eventual Bayesian regression.

To select our model we first tested linear and ridge regression but both of these yielded undesirable
results. We ultimately compared two main methods: the random forest regressor and the gradient boosting
regressor. Each model used the following methodology to train and validate in order to select the best
model.

e Each of the models utilize five seasons of past data. During training, each model only uses the
first four seasons of data. The last season is used as the validation set.

e We considered four models: two random forest regressors and two gradient boosting regressors,
each with and without team rating as a prior. All four models included the contract prior.

e The models were compared using MSE (mean squared error) as the main metric for comparison.
We also examined the actual results manually to confirm that the results are reasonable and
informative as priors.

Ultimately, we ended up choosing the random forest regressor with only contract rating as a predictor as
our final model. This model gave us the best results in terms of MSE and manual inspection. The result is
a prior mean that is produced by the random forest regressor and a prior standard deviation that is derived
from the RMSE (root mean squared error) of the model from the validation set. These priors and standard
deviations for each player will then be passed on to our ultimate Bayesian Regression model. An example
of this prior model selection process can be found in the technical appendix under “Prior Model Selection
2015/16”.

Bayesian Regression

Once we have a sound methodology for deriving meaningful prior distributions for NBA players’
plus-minus statistics, we can turn our attention to the second research task of building an informative
Bayesian regression model to estimate plus-minus. With inspiration from Deshpande and Jensen
(Deshpande and Jensen 2016), we seek a model of the form

y=B,+ XB + e,

where y is a vector containing the point differential in each shift, BO is a constant representing home-court

advantage, X is our sparse design matrix described above in the Data section, and [3 is our vector of
coefficients for each player. Note that (3 is p dimensional, X isn X p and y is n dimensional where p is
the number of NBA players who participated in a given season and n is the number of shifts in a season.



Essentially what this becomes is a regression of point differential on only the ten players on the court for
each shift, since all other players take value 0. Also, recall that we have chosen to denote home players
with +1 and away players with -1 in order to stay consistent with our choice of representing point
differential as pointshome - pointsaway. By regressing the point differential on all players on the court,

we should theoretically be able to accomplish the task of obtaining a conditional estimate of players’
plus-minuses given the other players on the court.

We implement this model in Python using the pymec3 package (Salvatier, Wiecki, and Fonnesbeck 2016).
Pyme3 provides a convenient framework for specifying prior distributions, allowing us to input our priors
derived from the random forest model discussed above. Since this is a Bayesian model, the final output is
a distribution for each player’s plus-minus, along with a distribution for the home court advantage
parameter 3 0and a distribution for the error term €. The code used to build this Bayesian regression model

can be found in the technical appendix under “Bayesian Reg 2015/16.
Visualizing Results

The last goal of the project given to us by the client was to create an interactive visualization of the
results. The application is built entirely in R, using the Shiny, Ggplot2, and Plotly packages. The final
application has 4 key visualizations. The first of these visualizations is a plot that displays the selected
players’ BCPM distributions from the appropriate season. The BCPM estimates are displayed below the
plot with the player name, team, mean and standard deviation, as the BCPM is assumed to be normal. The
second visualization is a time series of player mean BCPM over the course of 4 seasons. The third
visualization is a scatter plot of the mean BCPM vs prior value by season of all players; the plot also
allows the user to filter by team. The final plot is a heat-map like matrix, where the user selects a list of
players from any of four seasons, and the plot displays the probability that the true BCPM of Player 1 on
the x-axis is greater than that of Player 2 on the y-axis. This probability is obtained by directly comparing
2000 samples drawn from each player’s BCPM distribution. Further details of implementation can be
found in the Application Code portion of the Appendix. The application itself can be found at
https://coly1119.shinyapps.io/NBA_Project/ .

Results

Plus-Minus Posterior Distributions with Bayesian Regression

Our Bayesian regression model yields BCPM estimates that appear to be quite reasonable. One result we
can examine is the top ten players based on our BCPM metric in a given season. The top ten players from
the 2018/19 NBA season according to BCPM were Jrue Holiday, Steph Curry, James Harden, Paul
George, Damian Lillard, Giannis Antetokounmpo, Al Horford, Gordon Hayward, LeBron James, and
Mike Conley. This is a reasonable list of mostly elite superstar players who we would expect to be on this
list. Some players like Al Horford and Gordon Hayward are slightly overvalued due to extremely high
contract values in this season, but overall these results are encouraging.


https://coly1119.shinyapps.io/NBA_Project/

Examples of the distributions that are fit from the Bayesian model can be found in the next section where
we show a prototype of an interactive visualization to display plus-minus.

Visualizing Results

NBA Player Distributions According to BCPM

User Selects Season and Players. Player distribution, assumed to be normal, is displayed.
Mean and Standard Deviation from our BCPM model.
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Name Team Rating sD
20 Andre Iguodala Golden State Warriors 1.402 2.252
125 Draymond Green Golden State Warriors 6.289 2.361
284 LeBron James Cleveland Cavaliers 7.654 2.200
290  Luis Montero Portland Trailblazers -1.394 3.023
409 Stephen Curry Golden State Warriors 4.325 2.317

Figure 3: BCPM Distributions of Select Players from 2015-2016 NBA Season



Figure 3 shows an example output of our first key visualization. As we would expect, the best
players have the largest mean BCPM. In our example, Lebron James has the highest mean BCPM, while
two other superstars, Draymond Green and Steph Curry are not far behind. An excellent role player in
Andre Igoudala is considered above average, i.e. rated greater than 0, while a lesser known role player in
Luis Montero is labeled as below average. We also witness the behavior that Luis Montero appears to
have a larger standard deviation in BCPM, which can be attributed to less playing time, as having less
data on Montero would contribute to greater uncertainty in his BCPM estimate.

Mean BCPM Rating by Season

User selects Players. Player Ratings from our BCPM model are displayed as a time series
across 4 different seasons.
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Figure 4: Mean BCPM by Season for Select Players

In Figure 4, we have an example output of the time series visualization. We see that the superstars
of the league, Lebron James and Stephen Curry are towards the top. Andre Drummon, known for
producing great stats on poor teams, is listed as slightly above average, save for the 2018-2019 season
when his team, the Detroit Pistons made the playoffs. Austin Rivers, a quintessential average player from
since the 2016-2017 season, has an estimated average that hovers around 0. Furthermore, Bismack
Biyombo, a below average NBA center, is consistently below the average value of 0.



BCPM Player Rating by Contract Prior

User selects Season and Team. Displays a scatterplot of our final BCPM Rating against
Contract prior used to train the model.

Select Season

2018-2019 v
Select Team
All Teams v
Player Ratings by Prior Estimates @
Team
8- ] °
L4 o
° L]
L .
. ° °
%
L] ° L3 [ ]
L ] L ] ° =
4 . . E . : ; ‘ ¢
® L e o o ° L ¢
= " § % o . ® °
'. a o . ° °
. s e oo ° ° g o és *
..o ‘ S © : . o ': ° 3 .
L °
= i. ‘! : 5 ° | ® °
c ! = °ce o °* ® o0 ¢
= o’ }i" . $ °® ° b4 °
o .. ° ¢ LN o °
L ] °
0- ] [ PR ,-8." o o " R
° o "3 . g o8 e 0
. .$ .! . °¢ o [ ]
® of o ® o*
¢ !. -5t . ! G N
o ‘ o 0e° o0 ° ° L] e
. O .i . * o
® < .".o o ° ° .
[ ] :.o o, s L ° °
L ]
-4- ] ® °
LN 2 ¢
L] ° L ]
L 1] °
0 i ; 3 ; ; ’
Prior °

bottom.

Figure 5: Player Ratings by Prior Estimates, 2018-2019 Season
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Figure 5 displays a scatter plot of our final mean BCPM ratings against our model priors. One
thing we notice is that there tends to be groups of players with very similar priors. This is to be expected
as players tend to be paid similarly in factors of 1 million dollars. For example, a solid role player tends to
be paid around 10 to 15 million, while a superstar player will be paid around 30 to 35 million dollars per
season. Another promising factor of our model is that for each vertical cluster by prior, there is a wide
range of final ratings, meaning that our model does a good job of separating similarly paid players based
on performance. The better players tend to be towards the top, while the lesser players are towards the
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NBA Player Comparisons

User selects Season and Players. Displays the probability that Player 1 (P1) is better than
Player 2 (P2). Probability obtained by comparing 2000 samples from relevant distributions
given by BCPM model.
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Figure 6: Player 1 vs Player 2 Probabilities, 2017-2018 Season

In Figure 6, we have a visualization showing the probability that the BCPM of Player 1 (P1) is
greater than or equal to that of Player 2 (P2). Some interesting headlines of the 2017-2018 season were
the race of Most Valuable Player and Rookie of the Year. These races tend to be pretty clear in most
seasons, but for this season both races were heavily debated. The race for Most Valuable Player was
between James Harden and Lebron James. By our metric, the winner, James Harden, slightly edges
Lebron James, with a probability of 0.6040. The Rookie of the Year Race was between Donovan Mitchell
and Ben Simmons; by our metric, the winner Ben Simmons had a lower probability of 0.4335 of beating
out Donovan Mitchell. It was promising to see that the two candidates for each award were very close in
BCPM, while an average player used as a sanity check, Aaron Gordon, was consistently below the other
four players.

Discussion

As mentioned previously, one advantage of our method is that it provides a range of plus-minus values for
each player, which allows us to account for a range of player performance, as opposed to the point
estimates used in conventional methods such as box score plus-minus. The main component of our prior,
the contract value, allowed us to adjust expectations for players based on how a team views the player's
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value. Additionally, we were able to mostly adjust for a teammate's impact on a player's plus-minus by
structuring the Bayesian regression such that we regress on all players on the court in a given shift. For
example, players who always played with LeBron James, one of the greatest basketball players of all
time, but did not produce as much on an individual level had a more muted posterior distribution
compared to the box plus-minus. Another factor that negatively impacts existing metrics like box score
plus-minus is team rating, as superstar players on bad teams suffer from conventional methods. Despite
excluding a team rating variable from any part of the Bayesian or prior models, our resulting BCPM
metric seems to do a much better job of accurately assessing players on below-average teams. One such
example is Bradley Beal on the Washington Wizards - a terrible team during the 2018-2019 season, who
has a box score plus-minus consistent with a decent starter, but has the 13th highest mean by our BCPM
metric - a position more consistent with his superstar status. For future work, we would like to incorporate
team rating into our prior in a way that produces reasonable results.

One major challenge our team faced was determining how accurate our final posteriors were. Since
ranking players is a largely subjective task, there is no ground truth ranking for us to compare our results.
When ranking players by the posterior distribution mean, we did find that the league’s best players were
towards the top, while important role players filled out the top half, with the bottom half being mostly
benchwarmers. Comparing our results with ESPN’s Real Plus Minus, we see a lot of similarities in the
best players; there are anomalies in both metrics, but we believe that by making our standard deviations
publicly available, we are able to provide a more flexible metric.

When manually inspecting our results we did notice that while the vast majority of BCPM ratings seemed
reasonable, our model does tend to struggle to accurately assess players on their rookie contracts. This
result is slightly surprising considering that we did attempt to address this concern by fitting separate prior
models for rookies and non-rookies, but evidently this subject needs to be examined further to improve
our model’s performance on rookie players.
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Appendix: Application Code

Below is the entirety of our application code. It involves three major parts: reading and formatting the data,
formatting the User Interface, and implementing the interactive displays with ggplot and plotly.

library(shiny)

library(plotly)

library(ggplot2)

# results <- read.csv("data/bayesian_results_df.csv")

# results <- results[3:nrow(results)-1,]

# player_names <- read.csv("data/player_index_map.csv")

# results$names <- player_names$player_name

# priors_vet <- read.csv("data/Ridge_Priors+SE_2017 nonrookie.csv")

# priors_rookie <- read.csv("data/Ridge_Priors+SE_2017 rookie.csv")

# priors_all <- rbind(priors_vet, priors_rookie)

# results_merged <- merge(results, priors_all, by.z = "names", by.y = "name")
# results <- results_merged[,c("names", "Team", "mean", "sd.z", "finalpriors")]
# names (results) <- c("Name", "Team", "Rating", "SD", "Prior")

#Read and format results

results_16 <- read.csv("data/bayesian_results_df_2015_16.csv"
results_17 <- read.csv("data/bayesian_results_df_2016_17.csv"
results_18 <- read.csv("data/bayesian_results_df_2017_18.csv")
results_19 <- read.csv("data/bayesian_results_df_2018_19.csv"
results_16 <- results_16[3:nrow(results_16)-1,]

results_17 <- results_17[3:nrow(results_17)-1,]

results_18 <- results_18[3:nrow(results_18)-1,]

results_19 <- results_19[3:nrow(results_19)-1,]

#Read and format indices, add to results

player_names_16 <- read.csv("data/player_index_map_2015-16.csv")
player_names_17 <- read.csv("data/player_index_map_2016-17.csv")
player_names_18 <- read.csv("data/player_index_map_2017-18.csv")
player_names_19 <- read.csv("data/player_index_map.csv")
results_16%names <- player_names_l6$player_name
results_17$names <- player_names_17$player_name
results_18%names <- player_names_18$player_name
results_19$names <- player_names_19$player_name

#read and format priors 2015-2016
priors_vet_16 <- read.csv("data/final_priors_vets_2015_16.csv")
priors_rookie_16 <- read.csv("data/final_priors_rookies_2015_16.csv")
priors_all_16 <- rbind(priors_vet_16, priors_rookie_16)
results_merged_16 <- merge(results_16, priors_all_16,
by.x = "names", by.y = "name")

results_16 <-

results_merged_16[,c("names", "Team", "mean", "sd.x", "finalpriors")]



names (results_16) <- c("Name", "Team", "Rating", "SD", "Prior")

#read and format priors 2016-2017
priors_vet_17 <- read.csv("data/final_priors_vets_2016_17.csv")
priors_rookie_17 <- read.csv("data/final_priors_rookies_2016_17.csv")
priors_all_17 <- rbind(priors_vet_17, priors_rookie_17)
results_merged_17 <- merge(results_17, priors_all_17,
by.x = "names", by.y = "name")

results_17 <-

results_merged_17[,c("names", "Team", "mean", "sd.x", "finalpriors")]
names (results_17) <- c("Name", "Team", "Rating", "SD", "Prior")

#read and format priors 2017-2018
priors_vet_18 <- read.csv("data/final_priors_vets_2017_18.csv")
priors_rookie_18 <- read.csv("data/final_priors_rookies_2017_18.csv")
priors_all_18 <- rbind(priors_vet_18, priors_rookie_18)
results_merged_18 <- merge(results_18, priors_all_18,
by.x = "names", by.y = "name")

results_18 <-

results_merged_18[,c("names", "Team", "mean", "sd.x", "finalpriors")]
names (results_18) <- c("Name", "Team", "Rating", "SD", "Prior")

#read and format priors 2018-2019
priors_vet_19 <- read.csv("data/final_priors_vets_2018_19.csv")
priors_rookie_19 <- read.csv("data/final_priors_rookies_2018_19.csv")
priors_rookie_19 <- priors_rookie_19[, c("name", "finalpriors", "Team")]
priors_vet_19 <- priors_vet_19[,c("name", "finalpriors", "Team")]
priors_all_19 <- rbind(priors_vet_19, priors_rookie_19)
results_merged_19 <- merge(results_19, priors_all_19,
by.x = "names", by.y = "name")

results_19 <-

results_merged_19[,c("names", "Team", "mean", "sd", "finalpriors")]
names (results_19) <- c("Name", "Team", "Rating", "SD", "Prior")

#format data for times series

results_16$Year <- rep(2016, nrow(results_16))

results_17$Year <- rep(2017, nrow(results_17))

results_18%Year <- rep(2018, nrow(results_18))

results_19%Year <- rep(2019, nrow(results_19))

all_players <- rbind(results_16, results_17, results_18, results_19)
all_players <- all_players[,c("Name", "Year", "Rating")]

teams <- sort(unique(results_16$Team))

teams <- c("All Teams", teams)

#samples data for matriz

samples_16 <- read.csv("data/bayesian_posterior_samples_2015_16.csv")
samples_16 <- samples_16[, -1]

names (samples_16) <- player_names_16$player_name

samples_17 <- read.csv("data/bayesian_posterior_samples_2016_17.csv")
samples_17 <- samples_17[, -1]
names (samples_17) <- player_names_17$player_name



samples_18 <- read.csv("data/bayesian_posterior_samples_2017_18.csv")
samples_18 <- samples_18[, -1]
names (samples_18) <- player_names_18%player_name

samples_19 <- read.csv("data/bayesian_posterior_samples_2018_19.csv")
samples_19 <- samples_19[, -1]
names (samples_19) <- player_names_19$player_name

ui <- navbarPage("NBA Project Visualizations with BCPM Rating",
tabPanel ("Player Distributions",
titlePanel ("NBA Player Distributions According to BCPM"),
sidebarLayout (
# Sidebar panel for inputs —----
sidebarPanel(
p("User Selects Season and Players. Player distribution, assumed
to be normal, is displayed. Mean and Standard Deviation
from our BCPM model."),

selectInput(
inputld = "select_season",
label = "Select Season",

choices = ¢('2015-2016"', '2016-2017', '2017-2018', '2018-2019'),
selected = NULL,

multiple = FALSE,

selectize = FALSE,

width = NULL,

size = NULL
),
conditionalPanel(
condition = "input.select_season == '2015-2016'",
selectInput(
inputld = "select_players_16",
label = "Select Player",
choices = results_16$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL
)
),
conditionalPanel (
condition = "input.select_season == '2016-2017'",
selectInput(
inputld = "select_players_17",
label = "Select Player",
choices = results_17$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL
)



D¢
conditionalPanel (
condition = "input.select_season == '2017-2018'",
selectInput(
inputId = "select_players_18",
label = "Select Player",
choices = results_18$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,

width = NULL,
size = NULL
)
),
conditionalPanel(
condition = "input.select_season == '2018-2019'",
selectInput(
inputId = "select_players_19",
label = "Select Player",
choices = results_19$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL
)
)
s
mainPanel (

plotOutput (outputId = "plot"),
verbatimTextOutput ("player_info")
)
)
)s
tabPanel("Mean Rating by Season",
titlePanel("Mean BCPM Rating by Season"),
sidebarLayout (

# Sidebar panel for inputs —----
sidebarPanel(
p("User selects Players. Player Ratings from our BCPM model
are displayed as a time series across 4
different seasons."),
selectInput(
inputId = "select_players_timeline",
label = "Select Player(s)",
choices = unique(all_players$Name),
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL



),
mainPanel (

plotlyOutput (outputId = "player_timeline")
)

)

tabPanel ("Ratings by Prior",
titlePanel ("BCPM Player Rating by Contract Prior"),
sidebarLayout (

# Sidebar panel for inputs ----
sidebarPanel(
p("User selects Season and Team. Displays a scatterplot
of our final BCPM Rating against Contract prior
used to train the model."),
selectInput (
inputld = "select_season_s",
label = "Select Season",
choices = ¢('2015-2016', '2016-2017', '2017-2018', '2018-2019'),
selected = NULL,
multiple = FALSE,
selectize = FALSE,
width = NULL,
size = NULL
),
selectInput (
inputld = "select_team",
label = "Select Team",
choices = teams,
selected = NULL,
multiple = FALSE,
selectize = FALSE,
width = NULL,
size = NULL
)
Js
mainPanel (
plotlyOutput("plot_scatter", height = 900, width = 1200)
)

)

tabPanel ("Player Matrix',
titlePanel ("NBA Player Comparisons"),
sidebarLayout(

# Sidebar panel for inputs —---
sidebarPanel(
p("User selects Season and Players.
Displays the probability that Player 1 (P1) is better than
Player 2 (P2). Probability obtained by comparing 2000
samples from relevant distributions given by BCPM model."),
selectInput (
inputIld = "select_season_m",



label = "Select Season",
choices = ¢('2015-2016', '2016-2017', '2017-2018', '2018-2019'),
selected = NULL,
multiple = FALSE,
selectize = FALSE,
width = NULL,
size = NULL
)’
conditionalPanel (
condition = "input.select_season_m == '2015-2016'",
selectInput(
inputld = "select_players_16_m",
label = "Select Player",
choices = results_16$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL
)

),
conditionalPanel (
condition = "input.select_season_m == '2016-2017'",
selectInput(
inputld = "select_players_17_m",
label = "Select Player",
choices = results_17$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL
)
):
conditionalPanel(
condition = "input.select_season_m == '2017-2018'",
selectInput(
inputld = "select_players_18_m",
label = "Select Player",
choices = results_18$Name,
selected = NULL,
multiple = TRUE,
selectize = TRUE,
width = NULL,
size = NULL
)
),
conditionalPanel (
condition = "input.select_season_m == '2018-2019'",
selectInput(
inputld = "select_players_19_m",
label = "Select Player",
choices = results_19$Name,



NULL,

TRUE,
TRUE,
NULL,
NULL
)
)
Do
mainPanel (
plotlyOutput( "matrix")
)

server <- function(input, output) {
#normal dist output
output$plot <- renderPlot({
if (input$select_season == '2015-2016"') {
results = results_16
filtered_res <- results[results$Name %inj, input$select_players_16,]
xlow = min(filtered_res$Rating - 3*filtered_res$SD) - 0.5
xhigh = max(filtered_res$Rating + 3*filtered_res$SD) + 0.5
g <- ggplot(filtered_res) +
xlim(xlow,xhigh)

}
else if (input$select_season == '2016-2017'){
results = results_17
filtered_res <- results[results$Name %in% input$select_players_17,]
xlow = min(filtered_res$Rating - 3*filtered_res$SD) - 0.5
xhigh = max(filtered_res$Rating + 3xfiltered_res$SD) + 0.5
g <- ggplot(filtered_res) +
xlim(xlow,xhigh)
}
else if (input$select_season == '2018-2019'){
results = results_19
filtered_res <- results[results$Name %inj, input$select_players_19,]
xlow = min(filtered_res$Rating - 3*filtered_res$SD) - 0.5
xhigh = max(filtered_res$Rating + 3*filtered_res$SD) + 0.5
g <- ggplot(filtered_res) +
xlim(xlow,xhigh)
}
else {
results = results_18
filtered_res <- results[results$Name %in% input$select_players_18,]
xlow = min(filtered_res$Rating - 3*filtered_res$SD) - 0.5
xhigh = max(filtered_res$Rating + 3xfiltered_res$SD) + 0.5
g <- ggplot(filtered_res) +
xlim(xlow,xhigh)
}



if (nrow(filtered_res > 0))

{

for(i in 1:nrow(filtered_res))

{

g <- g + stat_function( dnorm,
list( filtered_res$Rating[i],
filtered_res$SD[il),
aes( I'filtered_res$Name[i]))

}
}
g <- g + labs( 'Player') + xlab("Rating") + ylab("Y")
g
)

#timeline plot
output$player_timeline <- renderPlotly({
filtered_timeline <-
all_players[all_players$Name %in), input$select_players_timeline,]

if (nrow(filtered_timeline) == 0){
p <- ggplot(filtered_timeline, aes(Year, Rating, Name))
}
elseq{
p <- ggplot(filtered_timeline, aes(Year, Rating, Name)) +

geom_line() +
geom_point () +
ggtitle("Player Ratings by Season") +
scale_x_continuous ( c(2016,2017,2018,2019),
c("2016","2017","2018","2019"))
}
ggplotly(p)
b

#scatter plot of rating vs prior
output$plot_scatter <- renderPlotly({

if (input$select_season_s == '2015-2016') results = results_16
else if (input$select_season_s == '2016-2017') results = results_17
else if (input$select_season_s == '2018-2019') results = results_19
else results = results_18
if (input$select_team == "All Teams") results = results
elseq{
results = results[results$Team == input$select_teamn,]
}
p_scatter <-
ggplot(results, aes(Prior, Rating, SD, Name,

Team)) + geom_point() +
ggtitle("Player Ratings by Prior Estimates")
ggplotly (p_scatter)
b

#probability matriz
output$matrix <- renderPlotly({



getPlayerProb <- function(playerl, player2, samples){
sum(samples[,playerl] >= samples[,player2])/nrow(samples)
}
if (input$select_season_m == '2015-2016"){
samples = samples_16
selected_names = input$select_players_16_m
}
else if (input$select_season_m == '2016-2017"'){
samples = samples_17
selected_names = input$select_players_17_m
}
else if (input$select_season_m == '2018-2019'){
samples = samples_19
selected_names = input$select_players_19_m
}
else {
samples = samples_18
selected_names = input$select_players_18_m
}
test <- data.frame(matrix(NA, length(selected_names) "2, 3))
names (test) <- c("P1", "P2", "Probability")

curr_row <- 1
for(pl in selected_names){
for(p2 in selected_names){
test [curr_row, "P1"] = pi1
test [curr_row, "P2"] = p2
test [curr_row, "Probability"] = getPlayerProb(pl, p2, samples)
curr_row = curr_row+l

¥
}
#test <- test[order(test$P2, test$P1, decreasing = TRUE), ]
if (nrow(test) == 0) g <- ggplot(test, aes( P1, P2))
elseq{
g <- ggplot(test, aes( P1, P2)) +
geom_tile(aes( Probability)) +
theme ( element_text ( 90)) +
scale_fill_gradient2( "navy", "white", "red",
0.5, c(0,1))
}
geplotly (g)

)

output$player_info <- renderPrint({
if (input$select_season == '2015-2016"') {
results = results_16
filtered_res <- results[results$Name %inJ, input$select_players_16,]
}
else if (input$select_season == '2016-2017'){
results = results_17
filtered_res <- results[results$Name %in), input$select_players_17,]

3



else if (input$select_season == '2018-2019'){
results = results_19
filtered_res <- results[results$Name %in’, input$select_players_19,]

3
else {
results = results_18
filtered_res <- results[results$Name ’%in), input$select_players_18,]
}
filtered_res[,c("Name","Team","Rating","SD")]
)
}
shinyApp ( ui, server)
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1 Prior Model Selection

This notebook will perform model selection via cross validation for our prior distributions. Models
to be considered are: * Random Forest Regression (covariates: team rating and contract value) *
Random Forest Regression (covariates: contract value only) * Gradient Boosting Regressor (covari-
ates: team rating and contract value) * Gradient Boosting Regressor (covariates: contract value
only)

[126]: import pandas as pd
import numpy as np

# read in all our training data

# MAIN training set for after we've wvalidated
main_train_rookies = pd.read_csv("../data/pre_2015_16/main_train_rookies.csv")
main_train_rookies.drop(main_train_rookies.columns[0], axis = 1, inplace = True)

main_train_vets = pd.read_csv("../data/pre_2015_16/main_train_vets.csv")
main_train_vets.drop(main_train_vets.columns[0], axis = 1, inplace = True)

# training set before walidation
train_rookies = pd.read_csv("../data/pre_2015_16/train_rookies.csv")
train_rookies.drop(train_rookies.columns[0], axis = 1, inplace = True)

train_vets = pd.read_csv("../data/pre_2015_16/train_vets.csv")
train_vets.drop(train_vets.columns[0], axis = 1, inplace = True)

# validation dataset
validate_rookies = pd.read_csv("../data/pre_2015_16/validate_rookies.csv")
validate_rookies.drop(validate_rookies.columns[0], axis = 1, inplace = True)

validate_vets = pd.read_csv("../data/pre_2015_16/validate_vets.csv")
validate_vets.drop(validate_vets.columns[0], axis = 1, inplace = True)

Define x and y variables for model fitting.

NOTE - the 1 in the variable name indicates that team rating is included as a covariate. When
team rating is not included as a covariate, the variable names will have a 2 at the end.



[277] :

# FIRST - with team rating included as a covariate

# x and y for training
x_rookiesl = np.array(train_rookies[['rating', 'mu'l])
y_rookies = np.array(train_rookies['coefs'])

x_vetsl = np.array(train_vets[['rating', 'mu'l])
y_vets = np.array(train_vets['coefs'])

# x and y for walidation
x_rookies_validatel = np.array(validate_rookies[['rating', 'mu'l])
y_rookies_validate = np.array(validate_rookies['coefs'])

x_vets_validatel = np.array(validate_vets[['rating', 'mu'l])
y_vets_validate = np.array(validate_vets['coefs'])

# SECOND - without team rTating as a covariate

# Note that we don't meed to change the y variables since they stay the samey
—regardless of the covariates

x_rookies2 = np.array(train_rookies['mu']).reshape(-1, 1)

x_vets2 = np.array(train_vets['mu']).reshape(-1, 1)

x_rookies_validate2 = np.array(validate_rookies['mu']).reshape(-1, 1)
x_vets_validate2 = np.array(validate_vets['mu']) .reshape(-1, 1)

# Now create dataset for main training sets

x_main_rookies = np.array(main_train_rookies['mu']).reshape(-1, 1)
y_main_rookies = np.array(main_train_rookies['coefs'])

x_main_vets = np.array(main_train_vets['mu']) .reshape(-1, 1)
y_main_vets = np.array(main_train_vets['coefs']) .reshape(-1, 1)

1.1 Now Model Training

We will train and validate 4 models for rookies and vets (so 8 models total) - random forest with and
without team rating as a covariate (2 models), and gradient boosting regressor with and without
team rating as a covariate (2 models). We will select the model for rookies and vets that performs
best on our validation data, then we will retrain that chosen model on ALL the data to get priors
for the 2015/16 NBA season.

1.1.1 First Random Forest Models

A note on whether or not team rating boosts model performance - initially, based on only the
random forest models, it appears that the models perform very slightly better on validation data
WITHOUT team rating as a covariate. We will investigate this in gradient boosting as well, but if
we see similar results there we will officially drop team rating as a covariate since it doesn’t seem
to be helping at all and it needlessly increases model complexity.



[206] :

[206] :

[171]:

1.1.2 Best RF Model for Rookies: random forest with optimized hyperparameters
without team rating (MSE 15.21)

This seems to give the most intuitively reasonable results with Kyrie Irving as the top rookie.

1.1.3 For Veterans: both models look good - we chose optimized params without
team rating (MSE 13.6)

Since we prefer the model without team rating for rookies, we will be consistent and choose the
model without team rating for veterans as well since both perform similarly anyways.

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

# first for rookies with team rating

rf_rookiel = RandomForestRegressor ()

params = {'max_depth': [2,5,10], 'n_estimators': [50, 100, 2001} # optimize,
—over mazr_depth and number of estimators

rf _rookiel GridSearchCV(rf_rookiel, params)

rf_rookiel = rf_rookiel.fit(x_rookiesl, y_rookies)
print(rf_rookiel.best_params_) # print the best parameters so we know what
—we're working with

rf _rookiel = rf_rookiel.best_estimator_ # set the model to be the best estimator

# Now get predictions on wvalidation set and record MSE
preds_rookie_rfl = rf_rookiel.predict(x_rookies_validatel)
mse_rf_rookiel = np.mean((y_rookies_validate - preds_rookie_rfl)**2)
print ("MSE Random Forest Rookies Team Rating: ", mse_rf_rookiel)

# Quickly check <f random forest with default hyperparameters gives more,
—reasonable predictions - answer - not really

# tmp_rf = RandomForestRegressor(max_depth = 2).fit(z_rookiesl, y_rookies)
# tmp_preds_rf = tmp_rf.predict(z_rookies_validatel)

# idx = (-tmp_preds_rf).argsort()[:10]

# tmp_preds_rflidz]

array([1.51133654, 1.51133654, 1.38079844, 1.25516856, 1.24537634,
1.22266694, 1.2224639 , 1.20892296, 1.16704222, 1.12812231])

idx = (-preds_rookie_rf1l).argsort() [:10]
preds_rookie_rf1[idx]



[171]: array([1.28946149, 1.21971329, 1.21555909, 1.16758456, 1.08219275,
1.06770593, 0.95351087, 0.95351087, 0.93633871, 0.80106413])

[172]: validate_rookies.iloc[idx]

[172]: rating Team Type mu sd \

9 6.984504 Oklahoma City Thunder Rookie 0.734000 5
7 6.984504 Oklahoma City Thunder Rookie 0.728320 5
13  6.984504 Oklahoma City Thunder Rookie 1.354000 5
8 6.984504 Oklahoma City Thunder Rookie 1.898225 5
6 7.952643 Los Angeles Clippers Rookie 0.813280 5
3 9.804995 San Antonio Spurs Rookie 0.964686 5
27 5.678120 Golden State Warriors Rookie 1.025293 5
21 5.678120 Golden State Warriors Rookie 1.016640 5
19 5.685673 Houston Rockets Rookie 1.600000 5
144 -3.220032 Cleveland Cavaliers Rookie 2.356910 5

name player_id index player_name coefs
9 Jeremy Lamb 203087 186 Jeremy Lamb -0.460762
7 Steven Adams 203500 152 Steven Adams -0.639499
13 Dion Waiters 203079 65 Dion Waiters -4.674635
8 Enes Kanter 202683 279 Enes Kanter 0.640074
6 Austin Rivers 203085 174 Austin Rivers -7.834556
3 Kawhi Leonard 202695 144 Kawhi Leonard 4.714348
27 Klay Thompson 202691 115 Klay Thompson 3.562053
21 Harrison Barnes 203084 178 Harrison Barnes 1.313442
19  Kostas Papanikolaou 203123 249 Kostas Papanikolaou -3.362832
144 Kyrie Irving 202681 367 Kyrie Irving 3.501904

[189]: # Now rookies without team rating

rf_rookie2 = RandomForestRegressor ()
params = {'max_depth': [2,5,10], 'n_estimators': [50, 100, 2001} # optimize,
—over mazx_depth and number of estimators

rf_rookie2 = GridSearchCV(rf_rookie2, params)

rf_rookie2 = rf_rookie2.fit(x_rookies2, y_rookies)

print(rf_rookie2.best_params_) # print the best parameters so we know what
—we're working with

rf_rookie2 = rf_rookie2.best_estimator_ # set the model to be the best estimator
# Now get predictions on wvalidation set and record MSE

preds_rookie_rf2 = rf_rookie2.predict(x_rookies_validate2)
mse_rf_rookie2 = np.mean((y_rookies_validate - preds_rookie_rf2)**2)



print ("MSE Random Forest Rookies NO Team Rating: ", mse_rf_rookie2)

{'max_depth': 2, 'n_estimators': 200}
MSE Random Forest Rookies NO Team Rating: 15.213135983382914

[273]: idx = (-preds_rookie_rf2).argsort() [:10]
print(preds_rookie_rf2[idx])
print (min(preds_rookie_rf2))
print (max(preds_rookie_rf2))

[1.7361497 0.57008504 0.45770079 0.45770079 0.45770079 0.33339012
0.33339012 0.31222487 0.27037224 0.26797101]

-1.2760203496382783

1.7361497042574094

[191]: validate_rookies.iloc[idx]

[191]: rating Team Type mu sd name
144 -3.220032 Cleveland Cavaliers Rookie 2.356910 5 Kyrie Irving
1 9.804995 San Antonio Spurs Rookie 0.692333 5 Aron Baynes
9 6.984504 O(Oklahoma City Thunder Rookie 0.734000 5 Jeremy Lamb
150 -3.488153 Detroit Pistons Rookie 0.734790 5 Reggie Jackson
7 6.984504 Oklahoma City Thunder Rookie 0.728320 5 Steven Adams
36 4.697486 Portland Trailblazers Rookie 0.807000 5 CJ McCollum
177 -5.228922 Orlando Magic Rookie 0.799280 5 Elfrid Payton
172 -5.228922 Orlando Magic Rookie 0.793531 5 Tobias Harris
114 -0.738064 Denver Nuggets Rookie 0.749923 5 Kenneth Faried
91  0.000000 Atlanta Hawks Rookie 0.811111 5 Shelvin Mack

player_id index player_name coefs
144 202681 367 Kyrie Irving 3.501904
1 203382 391 Aron Baynes 4.288611
9 203087 186 Jeremy Lamb -0.460762
150 202704 188 Reggie Jackson -1.362558
7 203500 152 Steven Adams -0.639499
36 203468 247 CJ McCollum -0.638371
177 203901 380 Elfrid Payton -1.442750
172 202699 59 Tobias Harris 1.912663
114 202702 325 Kenneth Faried 1.791871
91 202714 173 Shelvin Mack 2.658083

[192]: # Now wets with team rating

rf_vetl = RandomForestRegressor ()
params = {'max_depth': [2,5,10], 'n_estimators': [50, 100, 2001} # optimize,
—over maz_depth and number of estimators



rf_vetl = GridSearchCV(rf_vetl, params)

rf_vetl = rf_vetl.fit(x_vetsl, y_vets)
print(rf_vetl.best_params_) # print the best parameters so we know what we're,
—working with

rf vetl = rf_vetl.best_estimator_ # set the model to be the best estimator

# Now get predictions on walidation set and record MSE
preds_vet_rfl = rf_vetl.predict(x_vets_validatel)

mse_rf_vetl = np.mean((y_vets_validate - preds_vet_rf1l)**2)
print ("MSE Random Forest Veterans Team Rating: ", mse_rf_vetl)

{'max_depth': 2, 'n_estimators': 50}
MSE Random Forest Veterans Team Rating: 13.598488981066104

[210]: idx = (-preds_vet_rfl).argsort() [:20]
preds_vet_rf1[idx]

[210] : array([3.457183 , 3.41072155, 3.34612116, 3.31499142, 3.31499142,
3.31317354, 3.31317354, 3.31317354, 3.29430166, 3.26040505,
3.11850324, 3.0928423 , 3.05034568, 2.79658703, 2.79272861,
2.65164843, 2.61761138, 2.61761138, 2.61761138, 2.59595066])

[211]: validate_vets.iloc[idx] # this seems reasonable

[211]: rating Team Type mu sd \
20 7.952643 Los Angeles Clippers Non-rookie 6.689521 5
25  6.984504 Oklahoma City Thunder Non-rookie 6.331875 5
156 7.952643 Los Angeles Clippers Non-rookie 5.891537 5
49  4.843455 Miami Heat Non-rookie 6.881467 5
37 5.685673 Houston Rockets Non-rookie 7.145424 5
176 -0.755792 New York Knicks Non-rookie 7.803663 5
171 -0.755792 New York Knicks Non-rookie 7.486000 5
168 -0.489994 Brooklyn Nets Non-rookie 7.726930 5
192 -1.422322 Sacramento Kings Non-rookie 6.439108 5
160 -0.489994 Brooklyn Nets Non-rookie 6.584822 5
127 1.522379 Chicago Bulls Non-rookie 6.287625 5
222 -4.658751 Los Angeles Lakers Non-rookie 7.833333 5
197 -3.220032 Cleveland Cavaliers Non-rookie 6.881467 5
107 2.782586 Memphis Grizzlies Non-rookie 5.500000 5
30 6.984504 Oklahoma City Thunder Non-rookie 5.239687 5
60 4.697486 Portland Trailblazers Non-rookie 5.335333 5
36 5.685673 Houston Rockets Non-rookie 4.909615 5
56 4.843455 Miami Heat Non-rookie 5.000000 5
44 5.678120 Golden State Warriors Non-rookie 5.004000 5



159 -0.489994 Brooklyn Nets Non-rookie 5.239688 5

name player_id index player_name coefs
20 Chris Paul 101108 285 Chris Paul 4.353985
25 Kevin Durant 201142 284 Kevin Durant 7.042239
15 Blake Griffin 201933 76 Blake Griffin 1.336778
49 Chris Bosh 2547 24 Chris Bosh 1.858730
37 Dwight Howard 2730 105 Dwight Howard 6.055062
176 Amar'e Stoudemire 2405 32 Amar'e Stoudemire 4.285844
171 Carmelo Anthony 2546 394 Carmelo Anthony  8.285201
158 Joe Johnson 2207 478 Joe Johnson  4.187927
192 Rudy Gay 200752 349 Rudy Gay 1.973265
160 Deron Williams 101114 316 Deron Williams 1.616904
127 Derrick Rose 201565 79 Derrick Rose 3.908301
222 Kobe Bryant orT7 6 Kobe Bryant 2.311105
197 LeBron James 2544 165 LeBron James 3.792951
107 Zach Randolph 2216 131 Zach Randolph  6.285065
30 Russell Westbrook 201566 451 Russell Westbrook 2.895779
60 LaMarcus Aldridge 200746 55 LaMarcus Aldridge 6.291513
36 James Harden 201935 107 James Harden 12.197839
56 Dwyane Wade 2548 287 Dwyane Wade  2.339740
44 David Lee 101135 339 David Lee 2.191165
159 Brook Lopez 201572 129 Brook Lopez  2.431535

[195]: # Now wets without team rating
rf_vet2 = RandomForestRegressor ()
params = {'max_depth': [2,5,10], 'n_estimators': [50, 100, 2001} # optimize,
—over maz_depth and number of estimators

rf _vet2 GridSearchCV(rf_vet2, params)

rf_vet2 = rf_vet2.fit(x_vets2, y_vets)
print(rf_vet2.best_params_) # print the best parameters so we know what we're,
—working with

rf vet2 = rf_vet2.best_estimator_ # set the model to be the best estimator

# Now get predictions on wvalidation set and record MSE
preds_vet_rf2 = rf_vet2.predict(x_vets_validate2)

mse_rf_vet2 = np.mean((y_vets_validate - preds_vet_rf2)**2)

print ("MSE Random Forest Veterans NO Team Rating: ", mse_rf_vet2)

{'max_depth': 2, 'n_estimators': 50}
MSE Random Forest Veterans NO Team Rating: 13.604154551267278



[212]:

[212]:

[213]:

[213]:

idx = (-preds_vet_rf2).argsort() [:20]

preds_vet_rf2[idx]

array([3.91736504, 3.91736504, 3.91736504,
3.77602607, 3.77602607, 3.77602607,
3.75199967, 3.75199967, 3.59984226,
2.28116092, 2.28116092, 2.28116092,

validate_vets.iloc[idx] # also reasonable
rating Team Type

171 -0.755792 New York Knicks Non-rookie

176 -0.755792 New York Knicks Non-rookie

222 -4.658751 Los Angeles Lakers Non-rookie

1568 -0.489994 Brooklyn Nets Non-rookie

192 -1.422322 Sacramento Kings Non-rookie

37 5.685673 Houston Rockets Non-rookie

197 -3.220032 Cleveland Cavaliers Non-rookie

49  4.843455 Miami Heat Non-rookie

160 -0.489994 Brooklyn Nets Non-rookie

20 7.952643 Los Angeles Clippers Non-rookie

25 6.984504 Oklahoma City Thunder Non-rookie

127 1.522379 Chicago Bulls Non-rookie

15 7.952643 Los Angeles Clippers Non-rookie

107 2.782586 Memphis Grizzlies Non-rookie

93  3.649442 Indiana Pacers Non-rookie

103 2.782586 Memphis Grizzlies Non-rookie

159 -0.489994 Brooklyn Nets Non-rookie

30 6.984504 Oklahoma City Thunder Non-rookie

60 4.697486 Portland Trailblazers Non-rookie

199 -3.220032 Cleveland Cavaliers Non-rookie

name player_id index

171 Carmelo Anthony 2546 394

176 Amar'e Stoudemire 2405 32 Amar'e

222 Kobe Bryant 977 6

158 Joe Johnson 2207 478

192 Rudy Gay 200752 349

37 Dwight Howard 2730 105

197 LeBron James 2544 165

49 Chris Bosh 2547 24

160 Deron Williams 101114 316

20 Chris Paul 101108 285

25 Kevin Durant 201142 284

127 Derrick Rose 201565 79

15 Blake Griffin 201933 76

107 Zach Randolph 2216 131

mu
.486000
.803663
.833333
. 726930
.439108
.145424
.881467
.881467
.584822
.6895621
.331875
.287625
.8915637
.500000
.308560
.276563
.239688
.239687
.335333
.239687

g o101 o101 OO OO OOy OOy O N O NN NN

player_name
Carmelo Anthony

Stoudemire

Kobe Bryant
Joe Johnson

Rudy Gay

Dwight Howard
LeBron James

Chris Bosh

Deron Williams

Chris Paul

Kevin Durant
Derrick Rose
Blake Griffin
Zach Randolph

&3]
Q

o o1 O 0101 OO OO oo OO OO 01 OO OO

O, WN PP, P Wo R DN

3.91736504, 3.77602607,
3.77602607, 3.77602607,
3.52906624, 2.28116092,
2.28116092, 2.28116092])

coefs

.2856201
.285844
.311105
.187927
.973265
.055062
. 792951
.8568730
.616904
.3563985
.042239
.908301
.336778
.285065



93 Paul George 202331 487 Paul George 2.510271
103 Marc Gasol 201188 31 Marc Gasol 6.091420
159 Brook Lopez 201572 129 Brook Lopez 2.431535
30 Russell Westbrook 201566 451 Russell Westbrook 2.895779
60 LaMarcus Aldridge 200746 55 LaMarcus Aldridge 6.291513
199 Kevin Love 201567 472 Kevin Love 7.897965

1.2 Now Gradient Boosting Regressor

NOTE - it appears that the model gives MUCH more reasonable estimates when we do not optimize
over some of the hyperparameters bur rather stick with the defaults.

e When we optimize hyperparameters for rookies with team ratings, the relative ordering of
rookies seems somewhat ok but the magnitudes of the estimates are far too low.

e When we optimize hyperparameters WITHOUT team rating as a covariate, the relative or-
dering of rookies seems actually better than when we do not optimize; however, we see very
small magnitude of estimates again which is a problem.

e For VETERANS - the best model was when we optimized hyperparameters and excluded
team ratings as a covariate. This gave the most reasonable intuitive ordering of top 20
players, but the magnitudes were a bit small again. Perhaps we could just settle for this and
then scale up the magnitudes according to the magnitudes of coefs. Or just leave it as is and
let the Bayesian model do the rest

1.2.1 For Veterans best GBR model - optimized without team ratings (MSE 13.75)

1.2.2 For rookies best GBR model - simple model without team ratings (MSE 15.86)

[265] : from sklearn.ensemble import GradientBoostingRegressor
# first for rookies with team rating
# magnitudes seem good (fairly large), but ordering seems a bit suspect

gbr_rookiel = GradientBoostingRegressor().fit(x_rookiesl, y_rookies)
preds_rookie_gbrl = gbr_rookiel.predict(x_rookies_validatel)

mse_gbr_rookiel = np.mean((y_rookies_validate - preds_rookie_gbrl)**2)
print ("MSE Gradient Boosting Rookies Team Rating: ", mse_gbr_rookiel)

idx = (-preds_rookie_gbrl) .argsort() [:20]
preds_rookie_gbri [idx]



[265] :

[266] :

# attempting to optimize hyperparameters:

# magnitudes are now very small. Only one positive player, the rest negative.
—Thts seems bad.

# ordering seems somewhat acceptable but the magnitudes are just way tooy,
—problematic.

# gbr_rookiel = GradientBoostingRegressor()

# params = {'learning_rate': [0.001, 0.01, 0.1],

# 'subsample': [1, 0.9],
# 'maz_depth': [2,5,10],
# 'n_estimators': [50, 100, 200]}

# gbr_rookiel = GridSearchCV(gbr_rookiel, params)

# gbr_rookiel = gbr_rookiel.fit(z_rookiesl, y_rookies)

# print(gbr_rookiel.best_params_) # print the best parameters so we know what,
—we're working with

# gbr_rookiel = gbr_rookiel.best_estimator_ # set the model to be the best
—estimator

# # Now get predictions on wvalidation set and record MSE

# preds_rookie_gbrl = gbr_rookiel.predict(z_rookies_validatel)

# mse_gbr_rookiel = np.mean((y_rookies_validate - preds_rookie_gbrl)**2)
# print ("MSE Gradient Boosting Rookies Team Rating: ", mse_gbr_rookiel)

MSE Gradient Boosting Rookies Team Rating: 16.699630349352667

array([5.47454242, 4.809936 , 4.809936 , 3.8415315 , 3.59333701,
3.59333701, 3.38100247, 3.17798228, 3.14560827, 3.14560827,
2.44505093, 2.44505093, 2.07707618, 2.01697625, 1.76841536,
1.72551666, 1.53484181, 1.45777023, 1.25750733, 1.14763982])

idx = (-preds_rookie_gbrl) .argsort() [:20]

print (preds_rookie_gbri[idx])

print (min(preds_rookie_gbril))

print (max (preds_rookie_gbrl)) # these are reasonable

[56.47454242 4.809936  4.809936  3.8415315 3.59333701 3.59333701
3.38100247 3.17798228 3.14560827 3.14560827 2.44505093 2.44505093
2.07707618 2.01697625 1.76841536 1.72551666 1.53484181 1.45777023
1.25750733 1.14763982]

-4.501009855233326
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[267] :

[267] :

5.474542416647444

validate_rookies.iloc[idx]

21
27
19
50
42

13
60
59

56
49
105
33

W WOo OO Wwwo NWwOo oo o

|
NG

116 -0.

130 -1.
144 -3.

21
27

rating
.984504
.678120
.678120
.685673
. 756517
. 756517
.952643
.984504
.692790
.692790
.984504
.984504
.692790
. 756517
.489994
.697486
738064
.804995
300283
220032

Oklahoma

Minnesota
Minnesota

Oklahoma

Oklahoma

Oklahoma

Minnesota

Portland

name
Enes Kanter

Harrison Barnes

Klay Thompson

19  Kostas Papanikolaou

50
42

13
60
59

56
49
105
33
116

130
144

Andrew Wiggins
Anthony Bennett

Austin Rivers
Dion Waiters
Marcus Morris

Markieff Morris

Steven Adams
Jeremy Lamb
Alex Len
Ricky Rubio

Sergey Karasev

Joel Freeland

Gary Harris
Kawhi Leonard
Anthony Davis
Kyrie Irving

Team
City Thunder

Golden State Warriors
Golden State Warriors
Houston Rockets

Timberwolves
Timberwolves

Los Angeles Clippers

City Thunder
Phoenix Suns
Phoenix Suns
City Thunder
City Thunder
Phoenix Suns
Timberwolves

Brooklyn Nets

Trailblazers

Denver Nuggets

San Antonio Spurs
New Orleans Pelicans
Cleveland Cavaliers

player_id
202683
203084
202691
203123
203952
203461
203085
203079
202694
202693
203500
203087
203458
201937
203508
200777
203914
202695
203076
202681

Type
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie
Rookie

index
279
178
115
249
175
63
174
65
154
153
152
186
44
296
229
53
211
144
87
367

11

NP, OORFRrROFRFRFPFOOOOFH,HROF, PP, PP -

.898225
.016640
.0256293
.600000
.836880
.854640
.813280
.354000
.981074
.996413
. 728320
. 734000
.216640
.690229
.511280
.004504
.506400
.964686
.869080
.356910

mu sd \

g o1 o101 oo oo oo OO OO O1 OO OO On

player_name
Enes Kanter

Harrison Barnes

Klay Thompson

Kostas Papanikolaou
Andrew Wiggins
Anthony Bennett

Austin Rivers
Dion Waiters
Marcus Morris

Markieff Morris

Steven Adams
Jeremy Lamb
Alex Len
Ricky Rubio

Sergey Karasev

Joel Freeland

Gary Harris
Kawhi Leonard
Anthony Davis
Kyrie Irving

coefs

.640074
.313442
.562053
.362832
.459406
.261511
.834556
.674635
.672349
.578282
.639499
.460762
.986509
.114858
.615371
.837147
.113417
. 714348
.546145
.501904



[271]:

# Now rookies nmo team rating

# magnitudes seem far more reasonable. Ordering seems decent. This seems like,
—the best option

gbr_rookie2 = GradientBoostingRegressor().fit(x_rookies2, y_rookies)
preds_rookie_gbr2 = gbr_rookie2.predict(x_rookies_validate2)

mse_gbr_rookie2 = np.mean((y_rookies_validate - preds_rookie_gbr2)**2)
print ("MSE Gradient Boosting Rookies NO Team Rating: ", mse_gbr_rookie2)

idx = (-preds_rookie_gbr2) .argsort() [:20]

preds_rookie_gbr2[idx]

# Attempting to optimize hyperparameters:

# Note - when we optimize hyperparameters, the ordering seems good actually but,
—the magnitudes are way too small.

# also - only two players get positive coefficients and the rest have mnegative.

—This 1s clearly not ideal.

# gbr_rookie2 = GradientBoostingRegressor()

# params = {'learning rate': [0.001, 0.01, 0.1],

# 'subsample': [1, 0.9],
# 'max_depth': [2,5,10],
# 'n_estimators': [50, 100, 200]}

# gbr_rookie2 = GridSearchCV(gbr_rookie2, params)

# gbr_rookie2 = gbr_rookiel. fit(x_rookies2, y_rookies)

# print (gbr_rookie2.best_params_) # print the best parameters so we know whaty
—we're working with

# gbr_rookie2 = gbr_rookiel.best_estimator_ # set the model to be the best
—~estimator

# # Now get predictions on validation set and record MSE
# preds_rookie_gbr2 = gbr_rookie2.predict (z_rookies_validatel)
# mse_gbr_rookie2 = np.mean((y_rookies_validate - preds_rookie_gbr2)**2)

# print ("MSE Gradient Boosting Rookies NO Team Rating: ", mse_gbr_rookie2)

MSE Gradient Boosting Rookies NO Team Rating: 15.859333950289404
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[271]: array([2.61780468, 2.44981099, 2.39852198, 2.27997957, 2.27997957,
2.24406341, 1.98706712, 1.90017838, 1.90017838, 1.84087184,
1.61235094, 1.49840397, 1.34810973, 1.34257192, 1.28329678,
0.98080736, 0.98080736, 0.98080736, 0.88525148, 0.88525148])

[269] : idx = (-preds_rookie_gbr2) .argsort() [:20]
print(preds_rookie_gbr2[idx])
print (min(preds_rookie_gbr2))
print (max (preds_rookie_gbr2))

[2.61780468 2.44981099 2.39852198 2.27997957 2.27997957 2.24406341
1.98706712 1.90017838 1.90017838 1.84087184 1.61235094 1.49840397
1.34810973 1.34257192 1.28329678 0.98080736 0.98080736 0.98080736
0.88525148 0.88525148]

-3.2529270338487772

2.6178046752610786

[270] : validate_rookies.iloc[idx] # this is fairly reasonable, not ideal but not bad

[270] : rating Team Type mu sd \
1 9.804995 San Antonio Spurs Rookie 0.692333 5
116 -0.738064 Denver Nuggets Rookie 0.506400 5
82 1.522379 Chicago Bulls Rookie 0.669583 5
36 4.697486  Portland Trailblazers Rookie 0.807000 5
177 -5.228922 Orlando Magic Rookie 0.799280 5
144 -3.220032 Cleveland Cavaliers Rookie 2.356910 5
56 3.692790 Phoenix Suns Rookie 1.216640 5
208 -10.015718 Philadelphia 76ers Rookie 1.226120 5
80 2.771242 Toronto Raptors Rookie 1.226120 5
8 6.984504 Oklahoma City Thunder Rookie 1.898225 5
189 -5.593750 Utah Jazz Rookie 0.062452 5
105 -0.489994 Brooklyn Nets Rookie 0.511280 5
149 -3.488153 Detroit Pistons Rookie 0.856120 5
212 -10.015718 Philadelphia 76ers Rookie 0.403360 5
206 -10.015718 Philadelphia 76ers Rookie 1.105040 5
9 6.984504  Oklahoma City Thunder Rookie 0.734000 5
7 6.984504  Oklahoma City Thunder Rookie 0.728320 5
150 -3.488153 Detroit Pistons Rookie 0.734790 5
130 -1.300283 New Orleans Pelicans Rookie 1.869080 5
50 3.756517 Minnesota Timberwolves Rookie 1.836880 5
name player_id index player_name coefs
1 Aron Baynes 203382 391 Aron Baynes  4.288611
116 Gary Harris 203914 211 Gary Harris -6.113417
82 Jimmy Butler 202710 159 Jimmy Butler  4.519813
36 CJ McCollum 203468 247 CJ McCollum -0.638371
177 Elfrid Payton 203901 380 Elfrid Payton -1.442750
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144 Kyrie Irving 202681 367 Kyrie Irving 3.501904

56 Alex Len 203458 44 Alex Len -5.986509
208 Thomas Robinson 203080 123 Thomas Robinson -1.546704
80 Jonas Valanciunas 202685 313 Jonas Valanciunas -2.353275
8 Enes Kanter 202683 279 Enes Kanter 0.640074
189 Jack Cooley 204022 428 Jack Cooley -3.126129
105 Sergey Karasev 203508 229 Sergey Karasev  3.615371
149 Andre Drummond 203083 101 Andre Drummond -0.326742
212 Tony Wroten 203100 418 Tony Wroten  3.768908
206 Nerlens Noel 203457 89 Nerlens Noel -0.503336
9 Jeremy Lamb 203087 186 Jeremy Lamb -0.460762
7 Steven Adams 203500 152 Steven Adams -0.639499
150 Reggie Jackson 202704 188 Reggie Jackson -1.362558
130 Anthony Davis 203076 87 Anthony Davis 10.546145
50 Andrew Wiggins 203952 175 Andrew Wiggins 1.459406

[248]: | # Now veterans team ratings
# here we get good magnitudes for estimates — relative ordering not great.

gbr_vetl = GradientBoostingRegressor().fit(x_vetsl, y_vets)
preds_vet_gbrl = gbr_vetl.predict(x_vets_validatel)

mse_gbr_vetl = np.mean((y_vets_validate - preds_vet_gbrl) **2)
print ("MSE Gradient Boosting Veterans Team Rating: ", mse_gbr_vetl)
# attempting to optimize hyperparameters:

# when we optimize parameters here the relative ordering seems pretty good,
—again, magnitude ts ok but still a bit too small

# gbr_vetl = GradientBoostingRegressor()

params = {'learning_rate': [0.001, 0.01, 0.1],
'subsample': [1, 0.9],
'maz_depth': [2,5,10],
'n_estimators': [50, 100, 200]}

# gbr_vetl = GridSearchCV(gbr_vetl, params)

# gbr_vetl = gbr_vetl.fit(z_vetsl, y_vets)

# print (gbr_vetl.best_params_) # print the best parameters so we know what
—we're working with

# gbr_vetl = gbr_vetl.best_estimator_ # set the model to be the best estimator

14



[249] :

[250] :

[250] :

# # Now get predictions on validation set and record MSE
# preds_vet_gbrl = gbr_vetl.predict(z_vets_validatel)
np.mean((y_vets_validate - preds_vet_gbrl)**2)

n

# mse_gbr_vetl =
# print ("MSE Gradient Boosting Veterans Team Rating: ", mse_gbr_vetl)

MSE Gradient Boosting Veterans Team Rating: 15.097709396214167

idx = (-preds_vet_gbrl) .argsort() [:20]
print(preds_vet_gbril[idx])
print (max(preds_vet_gbrl))

print (min(preds_vet_gbrl))

[8.42984127 8.16005703 7.66943092 7.08430715 7.06589504 6.15097835
5.46029541 5.19218033 5.07944451 4.86884289 4.76152705 4.31828591
4.2671245 4.09505441 3.97813703 3.55643397 3.54040484 3.27569912
3.24408631 3.09649349]

8.429841267709886
-4.140874964168131

validate_vets.iloc[idx] # seems ok (amare stoudemire had a huge contract —

—outlier) -

except Lebron isn't top 20, so probably mnot totally correct

rating Team Type mu sd \
176 -0.755792 New York Knicks Non-rookie 7.803663 5
171 -0.755792 New York Knicks Non-rookie 7.486000 5
1568 -0.489994 Brooklyn Nets Non-rookie 7.726930 5
222 -4.658751 Los Angeles Lakers Non-rookie 7.833333 5
17  7.952643 Los Angeles Clippers Non-rookie 0.018591 5
18 7.952643 Los Angeles Clippers Non-rookie 0.129211 5
25  6.984504 Oklahoma City Thunder Non-rookie 6.331875 5
11 9.804995 San Antonio Spurs Non-rookie 0.041701 5
107 2.782586 Memphis Grizzlies Non-rookie 5.500000 5
192 -1.422322 Sacramento Kings Non-rookie 6.439108 5
49  4.843455 Miami Heat Non-rookie 6.881467 5
30 6.984504 Oklahoma City Thunder Non-rookie 5.239687 5
160 -0.489994 Brooklyn Nets Non-rookie 6.584822 5
184 -1.300283 New Orleans Pelicans Non-rookie 4.966313 5
26 6.984504 Oklahoma City Thunder Non-rookie 4.116667 5
20 7.952643 Los Angeles Clippers Non-rookie 6.689521 5
15 7.952643 Los Angeles Clippers Non-rookie 5.891537 5
8 9.804995 San Antonio Spurs Non-rookie 4.166667 5
127 1.522379 Chicago Bulls Non-rookie 6.287625 5
19 7.952643 Los Angeles Clippers Non-rookie 3.813375 5
name player_id index player_name coefs
176 Amar'e Stoudemire 2405 32 Amar'e Stoudemire 4.285844
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171 Carmelo Anthony 2546 394 Carmelo Anthony 8.285201
158 Joe Johnson 2207 478 Joe Johnson 4.187927
222 Kobe Bryant 977 6 Kobe Bryant 2.311105
17 Lester Hudson 201991 320 Lester Hudson 3.148040
18 Dahntay Jones 2563 263 Dahntay Jones -8.197401
25 Kevin Durant 201142 284 Kevin Durant 7.042239
11 Reggie Williams 202130 273 Reggie Williams -2.220307
107 Zach Randolph 2216 131 Zach Randolph 6.285065
192 Rudy Gay 200752 349 Rudy Gay 1.973265
49 Chris Bosh 2547 24 Chris Bosh 1.858730
30 Russell Westbrook 201566 451 Russell Westbrook 2.895779
160 Deron Williams 101114 316 Deron Williams 1.616904
184 Eric Gordon 201569 1 Eric Gordon 0.301299
26 Serge Ibaka 201586 248 Serge Ibaka 3.379049
20 Chris Paul 101108 285 Chris Paul 4.353985
15 Blake Griffin 201933 76 Blake Griffin 1.336778
8 Tony Parker 2225 162 Tony Parker -2.466196
127 Derrick Rose 201565 79 Derrick Rose 3.908301
19 DeAndre Jordan 201599 474 DeAndre Jordan -0.893175

[255]: | # Now weterans no team rating

# magnitudes seem good, ordering seems ok but missing lebron in top 20 seems bad

H*

gbr_vet2 = GradientBoostingRegressor().fit(z_vets2, y_vets)
# preds_vet_gbr2 = gbr_wvet2.predict(z_vets_validate2)

# mse_gbr_vet2 = np.mean((y_vets_validate - preds_vet_gbr2)**2)
# print ("MSE Gradient Boosting Veterans NO Team Rating: ", mse_gbr_vet2)

# attempting to optimize hyperparameters:
# magnitudes a bit small again, relative ordering seems solid.
gbr_vet2 = GradientBoostingRegressor()
params = {'learning rate': [0.001, 0.01, 0.1],
'subsample': [1, 0.9],
'max_depth': [2,5,10],

'n_estimators': [50, 100, 200]}

gbr_vet2 = GridSearchCV(gbr_vet2, params)

gbr_vet2 = gbr_vet2.fit(x_vets2, y_vets)
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print(gbr_vet2.best_params_) # print the best parameters so we know what we're,
—working with

gbr_vet2 = gbr_vet2.best_estimator_ # set the model to be the best estimator

# Now get predictions on wvalidation set and record MSE

preds_vet_gbr2 = gbr_vet2.predict(x_vets_validate2)

mse_gbr_vet2 = np.mean((y_vets_validate - preds_vet_gbr2) **2)

print ("MSE Gradient Boosting Veterans NO Team Rating: ", mse_gbr_vet2)

{'learning rate': 0.01, 'max_depth': 2, 'n_estimators': 200, 'subsample': 0.9}
MSE Gradient Boosting Veterans NO Team Rating: 13.74526264802979

[256]: idx = (-preds_vet_gbr2).argsort() [:20]
print(preds_vet_gbr2[idx])
print (min(preds_vet_gbr2))
print (max (preds_vet_gbr2))

[3.3983553 3.02276823 3.02276823 3.02276823 3.02276823 2.93608538
2.93608538 2.93608538 2.93608538 2.92441884 2.91714446 2.91714446
2.91714446 2.91714446 2.07440845 2.07440845 2.07440845 2.07440845
2.07440845 2.07440845]

-1.0444379307401035

3.3983565296125337

[257]: validate_vets.iloc[idx]

[257]: rating Team Type mu sd \
107 2.782586 Memphis Grizzlies Non-rookie 5.500000 5
222 -4.658751 Los Angeles Lakers Non-rookie 7.833333 5
168 -0.489994 Brooklyn Nets Non-rookie 7.726930 5
176 -0.755792 New York Knicks Non-rookie 7.803663 5
171 -0.755792 New York Knicks Non-rookie 7.486000 5
160 -0.489994 Brooklyn Nets Non-rookie 6.584822 5
192 -1.422322 Sacramento Kings Non-rookie 6.439108 5
127 1.522379 Chicago Bulls Non-rookie 6.287625 5
25 6.984504 Oklahoma City Thunder Non-rookie 6.331875 5
156 7.952643 Los Angeles Clippers Non-rookie 5.891537 5
20 7.952643 Los Angeles Clippers Non-rookie 6.689521 5
37 5.685673 Houston Rockets Non-rookie 7.145424 5
197 -3.220032 Cleveland Cavaliers Non-rookie 6.881467 5
49  4.843455 Miami Heat Non-rookie 6.881467 5
137 1.428164 Washington Wizards Non-rookie 4.915333 5
94  3.649442 Indiana Pacers Non-rookie 4.966313 5
239 -5.593750 Utah Jazz Non-rookie 4.915333 5
36 5.685673 Houston Rockets Non-rookie 4.909615 5
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184 -1.300283 New Orleans Pelicans Non-rookie 4.966313 5

7 3.929484 Dallas Mavericks Non-rookie 4.900000 5

name player_id index player_name coefs
107 Zach Randolph 2216 131 Zach Randolph  6.285065
222 Kobe Bryant or7 6 Kobe Bryant 2.311105
158 Joe Johnson 2207 478 Joe Johnson 4.187927
176 Amar'e Stoudemire 2405 32 Amar'e Stoudemire 4.285844
171 Carmelo Anthony 2546 394 Carmelo Anthony  8.285201
160 Deron Williams 101114 316 Deron Williams 1.616904
192 Rudy Gay 200752 349 Rudy Gay 1.973265
127 Derrick Rose 201565 79 Derrick Rose 3.908301
25 Kevin Durant 201142 284 Kevin Durant 7.042239
15 Blake Griffin 201933 76 Blake Griffin 1.336778
20 Chris Paul 101108 285 Chris Paul 4.353985
37 Dwight Howard 2730 105 Dwight Howard 6.055062
197 LeBron James 2544 165 LeBron James 3.792951
49 Chris Bosh 2547 24 Chris Bosh 1.858730
137 John Wall 202322 338 John Wall 5.769088
94 Roy Hibbert 201579 134 Roy Hibbert -2.399553
239 Gordon Hayward 202330 399 Gordon Hayward  3.804865
36 James Harden 201935 107 James Harden 12.197839
184 Eric Gordon 201569 1 Eric Gordon 0.301299
7 Chandler Parsons 202718 473 Chandler Parsons 2.804578

2 Summary

Overall - our best random forest models seem to outperform our best gradient boosting models
based on MSE for both rookies and non rookies.

2.1 Final Model Selection:
e Rookies - Random Forest Regression with optimized hyperparameters without team rating
as a covariate

e Veterans - Random Forest Regression with optimized hyperparameters without team rating
as a covariate

3 Now actually calculate priors and store them

[287]: | # read in contract data for 2015/16 season which will be used as the new datay
—1n our model to get priors

newdata_vets = pd.read_csv("../data/Contract+team2015_NonRookie.csv")
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[288]:

[289] :

[290] :

newdata_rookies = pd.read_csv("../data/Contract+team2015_Rookie.csv")

newdata_vets.drop(newdata_vets.columns[0], axis = 1, inplace = True)
newdata_rookies.drop(newdata_rookies.columns[0], axis = 1, inplace = True)

x_final rookies = np.array(newdata_rookies['mu']) .reshape(-1, 1)
x_final_vets = np.array(newdata_vets['mu']).reshape(-1, 1)

# train rookie model and veteran model on all of our main data

rf_rookie2 = RandomForestRegressor (max_depth = 2, n_estimators = 200).
—fit(x_main_rookies, y_main_rookies)

rf_vet2 = RandomForestRegressor (max_depth = 2, n_estimators = 50).
~fit(x_main_vets, y_main_vets)

# NOTE - keep the MSE's from walidation set and this will be used as our,
—standard error in the priors

mse_vets = mse_rf_vet2

mse_rookies = mse_rf_rookie2

priors_rookies_means = rf_rookie2.predict(x_final_rookies)
priors_vets_means = rf_vet2.predict(x_final_vets)

sigma_rookies = np.sqrt(mse_rookies)
sigma_vets = np.sqrt(mse_vets)

newdata_vets['finalpriors'] = priors_vets_means
newdata_rookies['finalpriors'] = priors_rookies_means

newdata_vets['finalse'] = sigma_vets
newdata_rookies['finalse'] = sigma_rookies

/Users/reedpeterson/opt/anaconda3/1ib/python3.7/site-
packages/ipykernel_launcher.py:5: DataConversionWarning: A column-vector y was
passed when a 1d array was expected. Please change the shape of y to

(n_samples,), for example using ravel().

# Now add player id and index columns by merging with the player index map for,
—~2015/16

player_index_map_2015 = pd.read_csv("../data/player_index_map_2015-16.csv")
player_index_map_2015.drop(player_index_map_2015.columns[0], axis = 1, inplace

—= True)

player_index_map_2015.head ()
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[290] : player_id index player_name

0 201952 0 Jeff Teague
1 203471 1 Dennis Schroder
2 203488 2 Mike Muscala
3 203145 3 Kent Bazemore
4 203503 4 Tony Snell
[291] : newdata_vets = newdata_vets.merge(player_index_map_2015, how = "inner", left_on,
—= "name", right_on = "player_name")
newdata_rookies = newdata_rookies.merge(player_index_map_2015, how = "inner",
—left_on = "name", right_on = "player_name")
newdata_vets
[291]: rating Team Type mu sd \
0] 6.239155 Golden State Warriors Non-rookie 0.833333 5
1 6.239155 Golden State Warriors Non-rookie 4.000000 5
2 6.239155 Golden State Warriors Non-rookie 3.790262 5
3 6.239155 Golden State Warriors Non-rookie 4.766667 5
4 6.239155 Golden State Warriors Non-rookie 3.903485 5
245 -13.598845 New York Knicks Non-rookie 4.333333 5
246 -13.598845 New York Knicks Non-rookie 0.933333 5
247 -13.598845 New York Knicks Non-rookie 0.550000 5
248 -13.598845 New York Knicks Non-rookie 0.452049 5
249 -13.598845 New York Knicks Non-rookie 1.633333 5
name finalpriors finalse player_id index \
0] Leandro Barbosa -0.782111 3.688381 2571 12
1 Andrew Bogut 1.213735 3.688381 101106 365
2 Stephen Curry 1.178937 3.688381 201939 405
3 Draymond Green 2.835642 3.688381 203110 9
4 Andre Iguodala 1.178937 3.688381 2738 339
245 Robin Lopez 1.386358 3.688381 201577 127
246 Kevin Seraphin 0.134907 3.688381 202338 128
247 Lance Thomas -0.863502 3.688381 202498 7
248 Sasha Vujacic -0.863502 3.688381 2756 75
249 Derrick Williams 0.452774 3.688381 202682 199

player_name
Leandro Barbosa
Andrew Bogut
Stephen Curry
Draymond Green
Andre Iguodala

s W NN -, O
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[296] :

245 Robin Lopez
246 Kevin Seraphin
247 Lance Thomas
248 Sasha Vujacic
249 Derrick Williams

[250 rows x 11 columns]

newdata_vets.to_csv("../data/final_priors_vets_2015_16.csv")
newdata_rookies.to_csv("../data/final_priors_rookies_2015_16.csv")

4 Notes -

To replicate this process for another year (2016/17 for example) using the final models selected
here, we would do the following: * First two code cells are the same as in this file, just switch the
years of the data that we read in. * Fit the two random forest models (rookies and vets) on the
small train data for that year, then get mse on the validation data for that year and save this as it
will be used as the prior standard error. * Then just use the 6 code cells above this one and make
sure to put the correct year. That’s all.
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bayesian reg 2015 16
May 17, 2021

1 Bayesian Regression Model 2015/16 using priors from optimized
random forest model

[1]: import pymc3 as pm
import pandas as pd
import numpy as np
import arviz as az

data = pd.read_csv("../data/shifts_data_final_2015_16.csv")
data.drop(data.columns[0], axis = 1, inplace = True)
data.head ()

[1]: point_diff_per_100 home_team away_team 0 1 2 3 4 5 6 \
0 -26.939655 Hawks Pistons 1.0 0.0 0.0 1.0 0.0 0.0 0.0
1 -32.349896 Hawks Pistons 1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.000000 Hawks Pistons 1.0 0.0 0.0 0.0 0.0 0.0 0.0
3 8.373526 Hawks Pistons 0.0 1.0 0.0 0.0 0.0 0.0 0.0
4 104.166667 Hawks Pistons 0.0 1.0 0.0 0.0 0.0 0.0 0.0

466 467 468 469 470 471 472 473 474 475

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[6 rows x 479 columns]

[2]: priors_df_vets = pd.read_csv("../data/final_priors_vets_2015_16.csv")
priors_df_vets.drop(priors_df_vets.columns[0], axis = 1, inplace = True)
# need to rename the index column to idzx
priors_df_vets.columns = ['rating', 'team', 'type', 'mu' ,'sd', 'name',
—'finalpriors', 'finalse', 'player_id', 'idx', 'player_name']

priors_df_rookies = pd.read_csv("../data/final_priors_rookies_2015_16.csv")
priors_df_rookies.drop(priors_df_rookies.columns[0], axis = 1, inplace = True)
# need to rename the index column to idzx



[10]:

[10]:

[3]:

[4] :

[4] :

priors_df_rookies.columns = ['rating', 'team', 'type', 'mu' ,'sd', 'name',
—'finalpriors', 'finalse', 'player_id', 'idx', 'player_name']

priors_df_vets.sort_values(by = ['idx'], inplace = True)
priors_df_rookies.sort_values(by = ['idx'], inplace = True)

priors_df_vets.loc[priors_df_vets['idx'] == 405]

rating team type mu sd name
2 6.239155 Golden State Warriors Non-rookie 3.790262 5 Stephen Curry

finalpriors  finalse player_id idx player_name
2 1.178937 3.688381 201939 405 Stephen Curry

prior_means = np.zeros(476)
prior_sigmas = np.full(476, 4)

for i in range(len(prior_means)):
if i in np.array(priors_df_vets['idx']):
prior_means[i] = priors_df_vets.loc[priors_df_vets['idx'] ==,
—i]['finalpriors'].iloc[0]
prior_sigmas[i] = priors_df_vets.loc[priors_df_vets['idx'] ==,
—i]['finalse'].iloc[0]
elif i in np.array(priors_df_rookies['idx']):
prior_means[i] = priors_df_rookies.loc[priors_df_rookies['idx'] ==,
—i] ['finalpriors'].iloc[0]
prior_sigmas[i] = priors_df_rookies.loc[priors_df_rookies['idx'] ==,
il ['finalse'] .iloc[0]

home_teams = data['home_team']

away_teams = datal['away_team']

# now drop these columns from the main training dataframe
data.drop(['home_team', 'away_team'], axis = 1, inplace = True)
data.head()

point_diff_per_100 0 1 2 3 4 5 6 7 8 466 \

0 -26.939655 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

1 -32.3498%9%6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.000000 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 8.373526 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 104.166667 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
467 468 469 470 471 472 473 474 475

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

i 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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3
4
[6 rows x 477 columns]

[5]: # need to rename columns now since numbers confuse pymc3
new_cols = []
for i in range(np.shape(data) [1]):
if i == O:
new_cols.append("point_diff")
else:
new_cols.append("p" + str(i-1))

# z_df = data.tloc[:20000, ]
x_df = data
x_df.columns = new_cols

x_df
[5]: point_diff p0 pl p2 p3 p4d pb p6 p7 P8 p466 \

0 -26.939656 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
1 -32.34989%6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.000000 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 8.373526 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 104.166667 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33884 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33885 -8.768238 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33886 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33887 72.337963 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33888 236.742424 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p4A67 p468 p469 pATO paAT1 p4aT2 pAT3 paT4 pAT5

0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0.0
1 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3388¢ 0.0 0.0 0.0 0.0 O0.0 0.0 0.0 0.0 o0.0
3388 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0.0
33886 0.0 0.0 0.0 0.0 O0.0 0.0 0.0 0.0 o0.0
33887 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0.0
33888 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0.0

[33889 rows x 477 columns]



[6]:

x
y

np.array(x_df.iloc[:,1:])
np.array(x_df.iloc[:,0])

x_shape = np.shape(x) [1]

with pm.Model() as model:
# priors
sigma = pm.HalfCauchy("sigma", beta=10) # arbitrarily defined
intercept = pm.Normal ("Intercept", 0, sigma=20) # arbitrarily defined
X_prior_means = prior_means # defined above
X_prior_sigmas = prior_sigmas # defined above
# z_prior_means = np.zeros(xz_shape) # just testing with mean zero to,
—compare to ridge
x_coeff = pm.Normal("x", mu = x_prior_means, sigma=x_prior_sigmas, shape =
—x_shape) # original method - no list comprehension

likelihood = pm.Normal("y", mu=intercept + x_coeff.dot(x.T), sigma=sigma,
—observed=y) # original method - no list comprehension

trace = pm.sample(1000, tune = 1000, cores = 1)

/Users/reedpeterson/opt/anaconda3/1ib/python3.7/site-
packages/pymc3/sampling.py:468: FutureWarning: In an upcoming release, pm.sample
will return an “arviz.InferenceData™ object instead of a "MultiTrace™ by
default. You can pass return_inferencedata=True or return_inferencedata=False to
be safe and silence this warning.

FutureWarning,
Auto-assigning NUTS sampler..
Initializing NUTS using jitter+adapt_diag.
Sequential sampling (2 chains in 1 job)
NUTS: [x, Intercept, sigma]

<IPython.core.display.HTML object>

/Users/reedpeterson/opt/anaconda3/1ib/python3.7/site-packages/pymc3/math.py:246:
RuntimeWarning: divide by zero encountered in loglp

return np.where(x < 0.6931471805599453, np.log(-np.expml(-x)),
np.loglp(-np.exp(-x)))

<IPython.core.display.HTML object>

Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws
total) took 1641 seconds.



1.1 Save the trace:

[33]: with model:
path = pm.save_trace(trace, directory = "trace_2015_16")

[7]: with model:
results_df = az.summary(trace)

[7]: player_index_map_2015 = pd.read_csv("../data/player_index_map_2015-16.csv")
player_index_map_2015.head()

[7]: Unnamed: O player_id index player_name
0 0 201952 0 Jeff Teague
1 1 203471 1 Dennis Schroder
2 2 203488 2 Mike Muscala
3 3 203145 3 Kent Bazemore
4 4 203503 4 Tony Snell

[8]:|# player_index_map_2015.loc[player_index_map_2015['index'] == 163]
player_index_map_2015.loc[player_index_map_2015['player_name'] == "Stephen,
—Curry"]

[8]: Unnamed: O player_id index player_name
405 405 201939 405 Stephen Curry

[9]: print((results_df.loc[results_df['mean'] > 4]).sort_values(by=['mean']))

mean sd hdi_3% hdi_97) mcse_mean mcse_sd ess_bulk \
x[459] 4.032 2.114 0.198 8.061 0.032 0.026 4279.0
x[200] 4.063 2.348 -0.224 8.482 0.039 0.033 3540.0
x[32] 4.271 2.326 -0.041 8.618 0.033 0.031 5132.0
x [42] 4.316 2.268 -0.178 8.340 0.034 0.032 4427.0
x[183] 4.318 2.159 0.178 8.259 0.033 0.027 4200.0
x[405] 4.325 2.317 -0.121 8.792 0.034 0.030 4593.0
x[114] 4.430 2.629 -0.869 8.828 0.038 0.035 4715.0
x[256] 4.487 2.134 0.404 8.285 0.028 0.023 5986.0
x[439] 4.565 2.240 0.283 8.797 0.034 0.029 4253.0
x[201] 4.607 2.213 0.653 8.779 0.031 0.030 4954 .0
x[413] 4.616 2.212 0.378 8.599 0.030 0.026 5356.0
x[427] 4.619 2.158 0.657 8.759 0.029 0.026 5501.0
x [48] 4.631 2.208 0.546 8.845 0.032 0.033 4845.0
x[111] 4.672 2.254 0.564 8.962 0.034 0.030 4306.0
x[329] 4.814 2.182 0.912 8.965 0.033 0.028 4382.0
x[304] 4.945 2.093 1.141 9.010 0.033 0.025 4009.0
x[78] 5.265 2.176 1.015 9.130 0.032 0.025 4761.0
x[23] 5.396 2.161 1.182 9.389 0.032 0.026 4666.0
x[303] 5.562 2.341 1.249 10.052 0.038 0.031 3826.0



[34]:

x[27] 5.761
x[138] 5.833
x[38] 5.854
x[163] 5.962
x [455] 6.164
x[9] 6.289
x[35] 6.366
x[82] 7.654
x[93] 8.216
sigma  81.049
ess_tail
x [459] 1696.0
x[200] 1460.0
x[32] 1224.0
x[42] 1296.0
x[183] 1670.0
x [405] 1597.0
x[114] 1727.0
x[256] 1538.0
x[439] 1152.0
x[201] 1286.0
x[413] 1713.0
x[427] 1554.0
x[48] 1064.0
x[111] 1558.0
x[329] 1561.0
x[304] 1363.0
x[78] 1640.0
x[23] 1333.0
x[303] 1484.0
x[27] 1122.0
x[138] 1423.0
x[38] 1407.0
x[163] 1595.0
x [455] 1544.0
x[9] 1215.0
x[35] 1585.0
x[82] 1404.0
x[93] 1409.0
sigma 1195.0
with model:

tmp = trace.get_values("x")

# np.shape (tmp)
# np.mean(tmp, axris =
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tmp_df = pd.DataFrame (tmp)
tmp_df.to_csv(r'../data/bayesian_posterior_samples_2015_16.csv')

[35]: results_df.to_csv(r'../data/bayesian_results_df_2015_16.csv')



