
Detecting Learning Discontinuity for Out-of-tutor

Events

Yiwen Zhang, Naifei Pan, Jie Luo

May 2021

Abstract
In this study, we addressed the question of how effective tutors are

on students’ performances in an online intelligent tutoring system. We
used the data from datashop which recorded the 195 students’ learning
progress in an online math tutor program. We utilized the AFM model - a
logistics regression- in our analyses to examine the effects of tutors’ help.
Our results showed that tutors’ interventions had improved the students’
performance in terms of the error rate. Also, students who received tu-
toring earlier also performed better than students who received tutoring
later. This analysis could help improve the scientific understanding of
learning with intelligent tutoring systems.

1 Introduction

In recent years, educational institutions have incorporated new technologies with
traditional education to improve the overall learning experiences. With access to
the internet and feasible devices, students can have a quality education wherever
and whenever they want. On one hand, online education makes it easier to track
students’ progress as it records their performances in each pre-designed problem
with relative knowledge. On the other hand, teachers are able to monitor the
class through the screen and decide if additional help is needed for certain
students. Thus, the effectiveness of educators’ help can be reflected through the
student’s performances who receive the extra help. In this study, we seek to find
out how educators’ interventions affect students’ learning progress on an online
math tutoring system. Specifically, we will address the following questions:

1. Do these interventions put students on a different learning trajectory,
with respect to the specific skills?

2. How can we measure the effect of teacher interventions on learning?

2 Data

The Out-of-tutor event detection data is provided by Datashop[2], which con-
sists of 195 students’ learning records on an online math tutoring system. There
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are 3 sub-datasets, organized by transaction, student step, and student-problem.
In this study, we used the Transaction data and Student Step data.

Each observation in the Transaction dataset is ordered by student and the
transaction time, and the following shows the important variables that were
measured.

Table 1. Description of important variables in Transaction dataset
Variable Description

Row A Row Counter
Anon Student Id DataShop-generated anonymous student Id
Transaction Id A Unique ID that identifies the transaction
Tutor Response Type The type of response made by the tutor
Problem Name The name of the problem
KC The knowledge component for this transaction

Observations in Student Step dataset are ordered by student time of the first
correct attempt (encoded as ”Correct Transaction Time”). Detailed information
for the variables is listed in table 2.

Table 2. Description of important variables in Student step dataset
Variable Description

Anon Student Id DataShop-generated anonymous student Id
First Attempt The tutor’s response to the student;s first attempt

on the step. Example values are ”hint”,”correct”,
and ”incorrect”

Corrects Total correct attempts by the student for the step
Problem Name The name of the problem
KC The knowledge component for this transaction
Opportunity The first chance on a step for students to demon-

strate whether they have learned the associated KC.
Each time a student encounters a problem that has
a listed KC, the opportunity number will increase by
one

We map the tutor intervention as an indicator variable from the transaction
dataset to the Student Step dataset, which indicates whether a tutor has inter-
vened in the learning process during this observation. In this report, we choose
two knowledge components for the analysis.
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Figure 1: Raw error rate for Divide Both Sides By the Variable Coefficient

In Figure 1, we show the raw error rate for KC Divide Both Sides by The
Variable Coefficient. There are 97 students who receive the help and 84 students
who do not. From the plot, we do not observe an obvious difference on the raw
error rate between students who receive tutor helps and students who do not
receive tutor help in this KC.

3



Figure 2: Raw error rate for Combine Constant Terms

Figure 2 shows the raw error rate for kc Combine Constant Terms. We
notice that before opportunity 25, students without help have higher error rate
than students without help. More details from exploratory data analysis can be
found in Appendix 1.

3 Methods

3.1 Method 1

Our analysis has two parts. First, we make an adjustment on the original AFM
model(Aleven Koedinger, 2013) and fit the new AFM model for each KC. For
the original AFM model, we have:

ln
pij

1 − pij
= θi + ΣkβkQkj + ΣkQkj(γkNik)

In this equation, p represents the probability that student i gets the step j
correct. θ represents students’ initial proficiency. β represents the ease of KC
k. γ represents gain for each opportunity to practice KC k. N represents the
number of opportunities each student has to practice KC k, prior to step j. So,
γ ∗N will give us how much the student learned on prior opportunities for this
KC. Q is an indicator variable which represents whether KC k is needed for step
j.
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In our new model, We assume one intervention only influences one KC. For
each KC, we add the teacher intervention effect to the model.

ln
pij

1 − pij
= θi + γkNik + φkNikIik + αkIik

The new AFM model also predicts the log likelihood that student i gets the
correct answer. θ represents students’ initial proficiency for certain KC, γ ∗N
represents how much the student learned on prior opportunities for this KC. I
represents teacher intervention: whether the step is before or after first teacher
intervention. Coefficient φ adjusts the learning rate based on the teacher inter-
vention term, and the coefficient α adjusts the intercept based on the teacher
intervention term. Therefore, if we observe a positive coefficient, that means
teacher intervention may accelerate a student’s learning rate, and vice versa.

To have a clear idea for pre-tutor and post-tutor performance, we also fit two
separate original AFM using pre-tutor observations and post-tutor observations.
More details from exploratory data analysis can be found in Appendix 2-5.

Below is a brief demonstration of how we define pre and post intervention
opportunities.

Figure 3: Illustration for data separation

For each KC, we check when the first intervention happens for each student.
For example, in the table above, for student 1, the first intervention happens
after the first opportunity. Therefore, the first opportunity is pre-tutor data
and whatever after it is post-tutor data. For student 2, the first intervention
happened after the third opportunity, so the first to the third opportunities are
pre-tutor data, and whatever after the third opportunity are post-tutor data.
The same logic applies to each student.

3.2 Method 2

Second, to validate our assumption about the results from method 1, we examine
whether students who received teacher interventions at different times exhibit
different learning rates. For each KC, we split the students into three groups
based on the density plot of the intervention, which are the early-intervention
group, normal-intervention group, and late-intervention group. We compare the
raw error rate of these three groups, and the predicted error rate using a Group
AFM model.

ln
pik

1 − pik
= θik + γkNik + ψkmNikGik + γkmGik
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Similar to our new AFM model. We use an indicator variable G, which
represents the group the student belongs to: “Early”, “Normal” or “Late”.
This model will help us know whether receiving a teacher early or late will have
an effect on a student’s learning rate.

4 Results

We implement the New AFM model using R. In this section we only present
the results for two KCs.

4.1 Results from Method 1

4.1.1 KC: “Divide both sides by the variable coefficient”

The first KC is ”Divide both sides by the variable coefficient”. We separate all
observations related to this KC into the Pre-tutor subset and Post-tutor subset,
according to Method 1. We create the teacher indicator variable with “0” means
pre-tutor and “1” represents post-tutor. After fitting the new AFM model, we
compute the predicted error rate. To compare the predicted error rates, we
also fit 2 AFM models for the Pre-tutor subset and Post-tutor subset. Later we
compute the predicted error rate with these two models.

Figure 4 shows three predicted error rate series. The blue dash line repre-
sents the predicted error rate for the pre-tutor subset and the black dash line
represents the predicted error rate for the post-tutor subset. The red curve
represents the predicted error rate computed by our New AFM model. We can
see that the predicted error rate decreases quickly in the beginning, but as op-
portunity increases, it would decrease at a much lower speed, suggesting that
the learning rate has comparatively decreased.
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Figure 4: Predicted error rate for three AFM models for KC “Divide both sides
by the variable coefficient”

Table 3 shows the summary of the new AFM model. As the coefficients of
our Teacher-indicator and Opportunity are greater than 0, we identify a positive
effect of tutor’ intervention and students’ natural learning process. However,
we notice a negative coefficient for the interaction term, which suggests that
the learning rate (which is defined as the coefficient of Opportunity) would
decrease after the teacher intervened in the learning process, as the coefficient
for Opportunity would decrease after Teacher-indicator switching from 0 to 1.
This observation contradicts our assumption, as we assume tutor intervention
would be effective in improving both the effect and the learning rate in a learning
process. It is worth noting that this situation is consistent for all KCs. More
detailed analysis can be found in Appendix 2-5.

Table 3. Estimated coefficients for KC “Divide both sides by the variable
coefficient”

Variable Coefficient P-value

Intercept 0.16770 0.581
Teacher-indicator 2.19549 2.93 ×10−12

Opportunity 0.19765 2.38 ×10−11

Teacher-indicator*Opportunity -0.18750 7.09 ×10−10

4.1.2 KC: “Combine constant terms”

The second KC is ”Divide both sides by the variable coefficient”. We use the
same procedure mentioned in section 4.1.1 and visualize the results. In Figure
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5, the blue dash line represents the predicted error rate for the pre-tutor subset.
The black dash line represents the predicted error rate for the Post-tutor subset,
and the red curve represents the predicted error rate computed by our New AFM
model. We observe a similar pattern as last KC that the predicted error rate for
the New AFM model decreases quickly in the beginning but much lower later,
suggesting that the learning rate has comparatively decreased.

Figure 5: Predicted error rate for three AFM models for KC “Combine constant
terms”

The results of the new AFM model on KC: Combine Constant Terms is
shown in table 4. We also observe positive coefficients for Teacher-indicator
and Opportunity and a negative coefficient for the interaction term, which also
contradicts our assumption. However, none of these coefficients are statistically
significant.

Table 4. Estimated coefficients for KC “Combine constant terms”
Variable Coefficient P-value

Intercept 1.41282 0.581
Teacher-indicator 0.20702 0.1117
Opportunity 0.01087 0.0632
Teacher-indicator*Opportunity -0.00392 0.5139

4.1.3 Current Findings and Motivation for The Next Step

From the results so far, we’ve identified a consistent situation for the two
KCs, which is the negative coefficient for the interaction term between Teacher-
indicator and Opportunity. One possible guess is that students who get teachers’
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intervention early might be systematically different from students who get the
teachers’ intervention late. If that is the case, as the opportunity increases, stu-
dents in the pre-tutor subset would gradually switch to the post-teacher subset,
leading to a great change in the sample size of these two groups. Eventually,
all students would become post-tutor students. If there is a difference between
early-intervened students and late-intervened students (for example, if students
who receive tutor intervention early tend to have a lower error rate), it would
cause a great change in the overall predicted error rate computed by our New
AFM model, and thus influence our results. To verify our assumption, we utilize
Method 2 to explore our assumptions.

4.2 Results from method 2

4.2.1 KC: “Divide both sides by the variable coefficient”

To verify our assumption in Result 1, we first explore the raw error rate for
three groups in Figure 6. The black curve represents the error rate for students
who received teachers’ help in an early stage. The blue curve represents the
error rate for the normal group, and the orange curve represents the error rate
for the late group. We observe abnormality after opportunity 40, as the error
rate increases, which is supposed to be decreasing as opportunity increases. We
identify that the fluctuation in the raw error rate mainly comes from the sample
size. Specifically, there were only 3 students left in the Late-intervention group
after opportunity 40, 4 students left in the Normal-intervention group, and 1
student left in the Early-intervention group, while there were 15, 24, 30 students
in each group at opportunity 10. To get rid of the impact of the imbalanced
sample size, we drop data after opportunity 40 and use data before opportunity
40 to fit the Group AFM model and plot the predicted error rate for these three
groups.
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Figure 6: Error rate for three groups in KC “Divide both sides by the variable
coefficient”

The predicted error rate is shown in Figure 7, and we notice that the Early-
intervention group generally has the lowest error rate followed by the Normal-
intervention and the Late-intervention. These results verify our assumption that
there’s a difference between students who receive intervention at different times.
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Figure 7: Predicted error rate for three groups in KC: “Divide both sides by
the variable coefficient”

4.2.2 KC: “Combine constant terms”

For KC Combine Constant Terms, we also explore the raw error rate for three
groups: students who got teachers’ intervention in an early, normal and late
stage in the second KC in Figure 8. The black curve represents the error rate
for students who received teachers’ help in an early stage. The blue curve
represents error rate for the normal group, and the orange curve represents the
error rate for the late group.
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Figure 8: Error rate for three groups in KC “Combine constant terms”

After fitting the Group AFM model, we visualize the predicted error rate for
these three groups in Figure 9. The results also suggests students who receive
tutor intervention early tend to have generally lower error rate.

Figure 9: Predicted error rate for three groups in KC: “Combine constant terms”
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5 Discussion

From the results of Method 1, we observe positive coefficients for teachers’ in-
tervention for both KC’s. It suggests that teachers’ intervention is effective at
improving students’ performances in terms of lowering the error rate. The effec-
tiveness can be measured by the coefficients for Teacher-indicator and Teacher-
Opportunity interaction term.

For both KC’s we find that the coefficients of the Teacher-Opportunity in-
teraction term are negative, indicating a negative effect in improving students’
learning rate. This phenomenon is explained by our exploration in results from
Method 2. We find that students who receive tutor’ intervention late (i.e. in the
Late-intervention group) would tend to perform poorly in general. One potential
interpretation is that during students’ learning process, all students who take
questions related to a specific KC would eventually get teachers’ intervention.
In other words, more and more students would switch from the pre-tutor subset
to the post-tutor subset as the opportunity increases. Also, due to the fact that
students receiving teachers’ intervention in a late-stage would systematically
perform poorly in the questions, comparatively, these students switching from
Pre-subset to Post-subset would highly influence our predicted error rate. It is
not that the teachers would cause a negative effect on the learning process. It’s
just that students who tend to perform comparatively poorly in this KC grad-
ually switch from the pre-subset to the post-subset, and influence our model.
Thus, we would still consider the tutor’s intervention to be effective.

In future studies, we would recommend starting from the following three
aspects. First, we can try the new AFM model on another dataset. We have
implemented this model for 195 students in a math tutor class. It would be
worth checking the consistency of the model by implementing it in different
sessions or other classes. Second, exploring the relationship between the number
of teachers’ intervention with students’ learning rate could help strengthen our
study. As many students have received teachers’ help more than once, It might
be interesting to check whether the number of interventions influences students’
performance. However, in our study, we only consider the first intervention
time in our analysis. Finally, we should examine the difference in learning rates
between students who received teachers’ intervention and students who did not,
using the AFM model.

13



6 Reference

[1]Ido Roll, Ryan S. J. d. Baker, Vincent Aleven Kenneth R. Koedinger
(2014) On the Benefits of Seeking (and Avoiding) Help in Online Problem-
Solving Environments, Journal of the Learning Sciences, 23:4, 537-560, DOI:
10.1080/10508406.2014.883977

[2]Koedinger, K.R., Baker, R.S.J.d., Cunningham, K., Skogsholm, A., Leber,
B., Stamper, J. (2010) A Data Repository for the EDM community: The PSLC
DataShop. In Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (Eds.)
Handbook of Educational Data Mining. Boca Raton, FL: CRC Press.

[3]Aleven, V., Koedinger, K. R. (2013). Knowledge component approaches
to learner modeling. In R. Sottilare, A. Graesser, X. Hu, H. Holden (Eds.), De-
sign recommendations for adaptive intelligent tutoring systems (Vol. I, Learner
Modeling, pp. 165-182). Orlando, FL: US Army Research Laboratory.

[4]Pavlik Jr, Phil Cen, Hao Koedinger, Kenneth. (2009). Performance Fac-
tors Analysis - A New Alternative to Knowledge Tracing. Frontiers in Artificial
Intelligence and Applications. 200. 531-538. 10.3233/978-1-60750-028-5-531.

[5]Cen H., Koedinger K., Junker B. (2008) Comparing Two IRT Models for
Conjunctive Skills. In: Woolf B.P., Aı̈meur E., Nkambou R., Lajoie S. (eds)
Intelligent Tutoring Systems. ITS 2008. Lecture Notes in Computer Science, vol
5091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69132-
7111

14



Appendices: Detecting Learning Discontinuity for Out-of-tutor
Event

Yiwen Zhang, Naifei Pan, Jie Luo

05/15/2021

Contents

Appendix 1: Initial Data Import & Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Appendix 2: Analysis of The First KC & New AFM model . . . . . . . . . . . . . . . . . . . . . . 4

Appendix 3: AFM Mdoels of Pre & Post Tutor Intervention for The First KC . . . . . . . . . . . . 9

Appendix 4: Analysis of The Second KC & New AFM Model . . . . . . . . . . . . . . . . . . . . . 10

Appendix 5: AFM Mdoels of Pre & Post Tutor Intervention for The Second KC . . . . . . . . . . 15

Appendix 6: Eerly, Normal, and Late Tutor Intervention Analysis for Both KC . . . . . . . . . . . 17

library(tidyverse)
library(ggpubr)

Appendix 1: Initial Data Import & Exploration

Load data

The loaded data is combined version of transaction dataset and studentstep data set which we added the
tutor intervention time. Due to the run-time limitation, we will show the R code of bridging the data along
with our final products.

student_step <- read.delim("student_step.txt")
HCI <- read.csv('HCI_final.csv')

We have 195 students in total

length(unique(student_step$Anon.Student.Id))

## [1] 195

In general, we have 7 KC.

unique(student_step$KC..Default.)[1:8]
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## [1] "Add/subtract_constant_from_both_sides"
## [2] ""
## [3] "Combine_constant_terms"
## [4] "Divide_both_sides_by_the_variable_coefficient"
## [5] "Compute_quotient_for_constant"
## [6] "Compute_quotient_for_variable_coefficient"
## [7] "Add/subtract_variable_from_both_sides"
## [8] "Combine_variable_terms"

Distribution of the number of intervention

tutor_num <- HCI %>%
select(Anon.Student.Id, IfTutor) %>%
group_by(Anon.Student.Id) %>%
summarise(num_intervention = sum(IfTutor)) %>%
arrange(num_intervention)

num_tutor <- tutor_num %>%
select(num_intervention, Anon.Student.Id) %>%
group_by(num_intervention) %>%
summarise(number_student = n()) %>%
add_row(num_intervention=0, number_student=18, .before = 1)

ggplot(data=num_tutor, aes(x=num_intervention, y= number_student))+
geom_bar(stat="identity") +
labs(title="Distribution of Tutor Intervention for All Knowledge Component" ,

y="Number of student",
x= "Number of intervention", subtitle = "Numbers of intervention vary from
0 to 37")+

theme_minimal()
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Distribution for each KC

kc <- c("Add/subtract_constant_from_both_sides",
"Add/subtract_variable_from_both_sides",
"Combine_constant_terms",
"Combine_variable_terms",
"Compute_quotient_for_constant",
"Compute_quotient_for_variable_coefficient",
"Divide_both_sides_by_the_variable_coefficient")

for(k in 1:7){
df <- HCI %>%

filter(grepl(kc[k], KC..Default.)) %>%
select(Anon.Student.Id, IfTutor) %>%
group_by(Anon.Student.Id) %>%
summarise(num_intervention = sum(IfTutor)) %>%
arrange(num_intervention) %>%
select(num_intervention, Anon.Student.Id) %>%
group_by(num_intervention) %>%
summarise(number_student = n())

assign(paste0("kc_",k), ggplot(data=df, aes(x=num_intervention,
y= number_student))+

geom_bar(stat="identity") +
labs(title=paste("Distribution of Tutor Intervention for",

kc[k]),
y="Number of student",
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x= "Number of intervention")+
theme_minimal())

}

ggarrange(kc_1,kc_2,kc_3,kc_4,kc_5,kc_6,kc_7)
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Appendix 2: Analysis of The First KC & New AFM model

KC:Divide both sides by the variable coefficient

For the analysis, We observed the similar pattern and results for all KC. In this report, we picked two KCs
for the analysis.

HCI1 <- HCI %>%
filter(grepl('Divide_both_sides_by_the_variable_coefficient', KC..Default.))

97 students received the tutor helps for this KC

length(unique(HCI1$Anon.Student.Id))

## [1] 97

Split the opportunity with situation like: “KC:Add/subtract_constant_from_both_sides ~~ Com-
bine_constant_terms Opportunity: 10 ~~ 19”
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kcname <- "Divide_both_sides_by_the_variable_coefficient"
kc_character <- as.character(HCI1$KC..Default.)
Oppo_character <- as.character(HCI1$Opportunity..Default.)
rows_multi <- which(grepl('~~', Oppo_character))
oppo_first <- rep(0, length(rows_multi))

for (i in 1:length(rows_multi)) {
str_kc<- unlist(strsplit(kc_character[rows_multi[i]], split = '~~'))
str_oppo <- unlist(strsplit(Oppo_character[rows_multi[i]], split = '~~'))
if(str_kc[1] == kcname){

oppo_first[i] <- str_oppo[1]
}
if(str_kc[2] == kcname){

oppo_first[i] <- str_oppo[2]
}

}

Oppo_character[rows_multi] <- oppo_first
# Opportunity we will be using
HCI1$Opportunity_Numeric <- as.numeric(Oppo_character)

Indicator variable suggesting pre-post tutor observation.

tutor.indicator <- rep(0, nrow(HCI1))
for (i in 1:nrow(HCI1)){

if(as.numeric(as.character(HCI1$Opportunity_Numeric[i])) <= HCI1$TutorTime[i])
tutor.indicator[i] <- 0

if(as.numeric(as.character(HCI1$Opportunity_Numeric[i])) > HCI1$TutorTime[i])
tutor.indicator[i] <- 1

}
HCI1$Post <- tutor.indicator

Calculate the original error rate(true error rate) Using success variable

L1 = length(HCI1$Anon.Student.Id)
Success1 = vector(mode="numeric", length=L1)
Success1[HCI1$First.Attempt=="correct"]=1
HCI1$Success1 <- Success1
true_rate <- HCI1 %>%

select(Opportunity_Numeric, Success1) %>%
group_by(Opportunity_Numeric) %>%
summarise("Students with help" = 1- sum(Success1)/n())

Find the students that did not receive the help in this KC

full_name <- unique(student_step$Anon.Student.Id)

name_177 <- unique(HCI1$Anon.Student.Id)

no_help <- full_name[!(full_name %in% name_177)]

stu_no_help <- student_step %>%

5



filter(Anon.Student.Id %in% no_help) %>%
filter(grepl('Divide_both_sides_by_the_variable_coefficient', KC..Default.))

There are 84 students who didn’t received any helps in this KC

length(unique(stu_no_help$Anon.Student.Id))

## [1] 84

Processing the data for students that did not receive the helps

kcname <- "Divide_both_sides_by_the_variable_coefficient"
kc_character <- as.character(stu_no_help$KC..Default.)
Oppo_character <- as.character(stu_no_help$Opportunity..Default.)
rows_multi <- which(grepl('~~', Oppo_character))
oppo_first <- rep(0, length(rows_multi))

for (i in 1:length(rows_multi)) {
str_kc<- unlist(strsplit(kc_character[rows_multi[i]], split = '~~'))
str_oppo <- unlist(strsplit(Oppo_character[rows_multi[i]], split = '~~'))
if(str_kc[1] == kcname){

oppo_first[i] <- str_oppo[1]
}
if(str_kc[2] == kcname){

oppo_first[i] <- str_oppo[2]
}

}

Oppo_character[rows_multi] <- oppo_first
# Opportunity we will be using
stu_no_help$Opportunity_Numeric <- as.numeric(Oppo_character)

Error rate with student with no helps using success variable

L2 = length(stu_no_help$Anon.Student.Id)
Success2 = vector(mode="numeric", length=L2)
Success2[stu_no_help$First.Attempt=="correct"]=1
stu_no_help$Success2 <- Success2
true_rate_no_help <- stu_no_help %>%

select(Opportunity_Numeric, Success2) %>%
group_by(Opportunity_Numeric) %>%
summarise("Students without help" = 1- sum(Success2)/n())

plot raw error rate students with no help vs student with tutor

ggplot() +
geom_line(data=true_rate_no_help, aes(x= Opportunity_Numeric,

y =`Students without help`,
color="balck"))+

geom_line(data=true_rate, aes(x=Opportunity_Numeric,
y = `Students with help`,color="Blue"))+

6



labs(title="Raw Error Rate: students with help vs students without help",
subtitle="KC: Divide both sides by the variable coefficient",
x="Opportunity",
y="Error Rate")+

scale_color_discrete(name="student type", labels = c("Students without help" ,
"Students with help" ))
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Modeling

library(lme4)
AFM1 <- glmer(Success1 ~ (1|Anon.Student.Id) + Post + Opportunity_Numeric +

Opportunity_Numeric:Post, family=binomial(), data= HCI1)

summary(AFM1)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Success1 ~ (1 | Anon.Student.Id) + Post + Opportunity_Numeric +
## Opportunity_Numeric:Post
## Data: HCI1
##
## AIC BIC logLik deviance df.resid
## 1361.7 1389.6 -675.8 1351.7 1949
##
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## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.8242 0.0934 0.1593 0.3460 3.0095
##
## Random effects:
## Groups Name Variance Std.Dev.
## Anon.Student.Id (Intercept) 3.614 1.901
## Number of obs: 1954, groups: Anon.Student.Id, 97
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.16770 0.30406 0.552 0.581
## Post 2.19549 0.31450 6.981 2.93e-12 ***
## Opportunity_Numeric 0.19765 0.02959 6.680 2.38e-11 ***
## Post:Opportunity_Numeric -0.18750 0.03042 -6.164 7.10e-10 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) Post Oppr_N
## Post -0.409
## Opprtnty_Nm -0.515 0.482
## Pst:Opprt_N 0.484 -0.675 -0.947

Prediction rate

pred1 <- predict(AFM1, HCI1, type="response")
HCI1$Pred <- pred1

df1 <- data.frame(Opportunity = HCI1$Opportunity_Numeric, Pred = HCI1$Pred) %>%
group_by(Opportunity) %>%
summarise(error= 1 - mean(Pred))

Ture error rate

HCI1$Success1 <- Success1
true_rate <- HCI1 %>%

select(Opportunity_Numeric, Success1) %>%
group_by(Opportunity_Numeric) %>%
summarise(error = 1- sum(Success1)/n())

Plot the prediction result vs the true rate

ggplot() +
geom_line(data=df1, aes(x= Opportunity, y = error), col="Black")+
geom_line(data=true_rate, aes(x= Opportunity_Numeric, y = error),col="red")+
labs(title="True Error Rate vs Predicted Error Rate",subtitle=kcname,

x="Opportunity", y="Error Rate")
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Appendix 3: AFM Mdoels of Pre & Post Tutor Intervention for The First KC

Fit 2 individual AFMs for pre and post subset

HCI1_pre <- HCI1 %>%
filter(TutorTime > Opportunity_Numeric)

HCI1_post <- HCI1 %>%
filter(TutorTime <= Opportunity_Numeric)

L1_pre = length(HCI1_pre$Anon.Student.Id)
Success1_pre = vector(mode="numeric", length=L1_pre)
Success1_pre[HCI1_pre$First.Attempt=="correct"]=1
AFM1_pre <- glmer(Success1_pre ~ (1|Anon.Student.Id) + Opportunity_Numeric,

family=binomial(), data= HCI1_pre)
pred1_pre <- predict(AFM1_pre, HCI1_pre, type="response")
HCI1_pre$Pred <- pred1_pre

L1_post = length(HCI1_post$Anon.Student.Id)
Success1_post = vector(mode="numeric", length=L1_post)
Success1_post[HCI1_post$First.Attempt=="correct"]=1
AFM1_post <- glmer(Success1_post ~ (1|Anon.Student.Id) + Opportunity_Numeric,

family=binomial(), data= HCI1_post)
pred1_post <- predict(AFM1_post, HCI1_post, type="response")
HCI1_post$Pred <- pred1_post
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df1_pre <- data.frame(Opportunity = HCI1_pre$Opportunity_Numeric,
Pred = HCI1_pre$Pred) %>%

group_by(Opportunity) %>%
summarise(error= 1 - mean(Pred))

df1_post <- data.frame(Opportunity = HCI1_post$Opportunity_Numeric,
Pred = HCI1_post$Pred) %>%

group_by(Opportunity) %>%
summarise(error= 1 - mean(Pred))

Visualize the results

ggplot()+
geom_line(data=df1_pre, aes(x=Opportunity, y=error),col="Blue") +
geom_line(data=df1_post, aes(x=Opportunity, y=error), col="Orange")+
geom_line(data=df1, aes(x= Opportunity, y = error), col="Black")+
labs(title="Predicted error rate: Pre, Post, and Combine",subtitle=kcname,

x="Opportunity", y="Predicted Error rate")
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Appendix 4: Analysis of The Second KC & New AFM Model
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KC:Combine constant terms

HCI2 <- HCI %>%
filter(grepl('Combine_constant_terms', KC..Default.))

167 students received the tutor helps for this KC

length(unique(HCI2$Anon.Student.Id))

## [1] 167

Split the opportunity with situation like: “KC:Add/subtract_constant_from_both_sides ~~ Com-
bine_constant_terms Opportunity: 10 ~~ 19”

kcname <- "Combine_constant_terms"
kc_character <- as.character(HCI2$KC..Default.)
Oppo_character <- as.character(HCI2$Opportunity..Default.)
rows_multi <- which(grepl('~~', Oppo_character))
oppo_first <- rep(0, length(rows_multi))

for (i in 1:length(rows_multi)) {
str_kc<- unlist(strsplit(kc_character[rows_multi[i]], split = '~~'))
str_oppo <- unlist(strsplit(Oppo_character[rows_multi[i]], split = '~~'))
if(str_kc[1] == kcname){

oppo_first[i] <- str_oppo[1]
}
if(str_kc[2] == kcname){

oppo_first[i] <- str_oppo[2]
}

}

Oppo_character[rows_multi] <- oppo_first
# Opportunity we will be using
HCI2$Opportunity_Numeric <- as.numeric(Oppo_character)

Indicator variable suggesting pre-post tutor observation.

tutor.indicator <- rep(0, nrow(HCI2))
for (i in 1:nrow(HCI1)){

if(as.numeric(as.character(HCI2$Opportunity_Numeric[i])) <= HCI2$TutorTime[i])
tutor.indicator[i] <- 0

if(as.numeric(as.character(HCI2$Opportunity_Numeric[i])) > HCI2$TutorTime[i])
tutor.indicator[i] <- 1

}
HCI2$Post <- tutor.indicator

Calculate the original error rate(true error rate) Using success variable

L1 = length(HCI2$Anon.Student.Id)
Success1 = vector(mode="numeric", length=L1)
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Success1[HCI2$First.Attempt=="correct"]=1
HCI2$Success1 <- Success1
true_rate <- HCI2 %>%

select(Opportunity_Numeric, Success1) %>%
group_by(Opportunity_Numeric) %>%
summarise("Students with help" = 1- sum(Success1)/n())

Find the students that did not receive the help in this KC

full_name <- unique(student_step$Anon.Student.Id)

name_177 <- unique(HCI2$Anon.Student.Id)

no_help <- full_name[!(full_name %in% name_177)]

stu_no_help <- student_step %>%
filter(Anon.Student.Id %in% no_help) %>%
filter(grepl('Combine_constant_terms', KC..Default.))

There are 27 students who didn’t received any helps in this KC

length(unique(stu_no_help$Anon.Student.Id))

## [1] 27

Processing the data for students that did not receive the helps

kcname <- "Combine_constant_terms"
kc_character <- as.character(stu_no_help$KC..Default.)
Oppo_character <- as.character(stu_no_help$Opportunity..Default.)
rows_multi <- which(grepl('~~', Oppo_character))
oppo_first <- rep(0, length(rows_multi))

for (i in 1:length(rows_multi)) {
str_kc<- unlist(strsplit(kc_character[rows_multi[i]], split = '~~'))
str_oppo <- unlist(strsplit(Oppo_character[rows_multi[i]], split = '~~'))
if(str_kc[1] == kcname){

oppo_first[i] <- str_oppo[1]
}
if(str_kc[2] == kcname){

oppo_first[i] <- str_oppo[2]
}

}

Oppo_character[rows_multi] <- oppo_first
# Opportunity we will be using
stu_no_help$Opportunity_Numeric <- as.numeric(Oppo_character)

Error rate with student with no helps using success variable
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L2 = length(stu_no_help$Anon.Student.Id)
Success2 = vector(mode="numeric", length=L2)
Success2[stu_no_help$First.Attempt=="correct"]=1
stu_no_help$Success2 <- Success2
true_rate_no_help <- stu_no_help %>%

select(Opportunity_Numeric, Success2) %>%
group_by(Opportunity_Numeric) %>%
summarise("Students without help" = 1- sum(Success2)/n())

plot raw error rate students with no help vs student with tutor

ggplot() +
geom_line(data=true_rate_no_help, aes(x= Opportunity_Numeric,

y =`Students without help`,
color="balck"))+

geom_line(data=true_rate, aes(x=Opportunity_Numeric,
y = `Students with help`,color="Blue"))+

labs(title="Raw Error Rate: students with help vs students without help",
subtitle="KC: Combine constant terms", x="Opportunity", y="Error Rate")+

scale_color_discrete(name="student type", labels = c("Students without help" ,
"Students with help" ))
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Modeling
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AFM2 <- glmer(Success1 ~ (1|Anon.Student.Id) + Post + Opportunity_Numeric +
Opportunity_Numeric:Post, family=binomial(), data= HCI2)

summary(AFM2)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Success1 ~ (1 | Anon.Student.Id) + Post + Opportunity_Numeric +
## Opportunity_Numeric:Post
## Data: HCI2
##
## AIC BIC logLik deviance df.resid
## 6106.5 6141.6 -3048.3 6096.5 8280
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -9.5438 0.1218 0.2203 0.4026 2.0364
##
## Random effects:
## Groups Name Variance Std.Dev.
## Anon.Student.Id (Intercept) 2.049 1.431
## Number of obs: 8285, groups: Anon.Student.Id, 167
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.527374 0.132499 11.527 < 2e-16 ***
## Post -0.276141 0.217470 -1.270 0.204
## Opportunity_Numeric 0.008647 0.001716 5.040 4.66e-07 ***
## Post:Opportunity_Numeric 0.004195 0.004360 0.962 0.336
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) Post Oppr_N
## Post -0.143
## Opprtnty_Nm -0.363 0.101
## Pst:Opprt_N 0.128 -0.713 -0.375
## convergence code: 0
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?

Prediction rate

pred2 <- predict(AFM2, HCI2, type="response")
HCI2$Pred <- pred2

df2 <- data.frame(Opportunity = HCI2$Opportunity_Numeric, Pred = HCI2$Pred) %>%
group_by(Opportunity) %>%
summarise(error= 1 - mean(Pred))

True error rate
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HCI2$Success1 <- Success1
true_rate <- HCI2 %>%

select(Opportunity_Numeric, Success1) %>%
group_by(Opportunity_Numeric) %>%
summarise(error = 1- sum(Success1)/n())

Plot the prediction result vs the true rate

ggplot() +
geom_line(data=df2, aes(x= Opportunity, y = error), col="Black")+
geom_line(data=true_rate, aes(x= Opportunity_Numeric, y = error),col="red")+
labs(title="True Error Rate vs Predicted Error Rate",subtitle=kcname,

x="Opportunity", y="Error Rate")
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Appendix 5: AFM Mdoels of Pre & Post Tutor Intervention for The Second KC

Fit 2 individual AFMs for pre and post subset

HCI2_pre <- HCI2 %>%
filter(TutorTime > Opportunity_Numeric)

HCI2_post <- HCI2 %>%
filter(TutorTime <= Opportunity_Numeric)

L2_pre = length(HCI2_pre$Anon.Student.Id)
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Success2_pre = vector(mode="numeric", length=L2_pre)
Success2_pre[HCI2_pre$First.Attempt=="correct"]=1
AFM2_pre <- glmer(Success2_pre ~ (1|Anon.Student.Id) + Opportunity_Numeric,

family=binomial(), data= HCI2_pre)
pred2_pre <- predict(AFM2_pre, HCI2_pre, type="response")
HCI2_pre$Pred <- pred2_pre

L2_post = length(HCI2_post$Anon.Student.Id)
Success2_post = vector(mode="numeric", length=L2_post)
Success2_post[HCI2_post$First.Attempt=="correct"]=1
AFM2_post <- glmer(Success2_post ~ (1|Anon.Student.Id) + Opportunity_Numeric,

family=binomial(), data= HCI2_post)
pred2_post <- predict(AFM2_post, HCI2_post, type="response")
HCI2_post$Pred <- pred2_post

df2_pre <- data.frame(Opportunity = HCI2_pre$Opportunity_Numeric,
Pred = HCI2_pre$Pred) %>%

group_by(Opportunity) %>%
summarise(error= 1 - mean(Pred))

df2_post <- data.frame(Opportunity = HCI2_post$Opportunity_Numeric,
Pred = HCI2_post$Pred) %>%

group_by(Opportunity) %>%
summarise(error= 1 - mean(Pred))

Visualize the results

ggplot()+
geom_line(data=df2_pre, aes(x=Opportunity, y=error),col="Blue") +
geom_line(data=df2_post, aes(x=Opportunity, y=error), col="Orange")+
geom_line(data=df2, aes(x= Opportunity, y = error), col="Black")+
labs(title="Predicted error rate: Pre, Post, and Combine",subtitle=kcname,

x="Opportunity", y="Predicted Error rate")
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Appendix 6: Eerly, Normal, and Late Tutor Intervention Analysis for Both KC

KC:Divide both sides by the variable coefficient

Divide students into early-tutor, normal-tutor, late-tutor groups.

library(data.table)
student_error <- data.table(Anon.Student.Id=character(),opportunity=numeric(),

errorrate=numeric())
student_list = unique(HCI1$Anon.Student.Id)
for(s in student_list){

data = filter(HCI1,Anon.Student.Id==s)
e1 <- data %>%
select(Opportunity_Numeric, Success1) %>%
group_by(Opportunity_Numeric) %>%
summarise(error = 1- sum(Success1)/n())
#e1=Error_calculate(data)
student_error = rbind(student_error,data.frame(cbind(as.character(s),e1)),

use.names=FALSE)
}

data_pre = distinct(select(HCI1,c(Anon.Student.Id,TutorTime)))
data_pre = data_pre[-c(4,6,12,26,30,40,44,45,52,59,60,72,78,93,103,106,109),]
#data_pre = data_pre[-c(2,6,9,13,18,22,26,44,46,48,53,62,64,75,78,80,84,85,89,
#91,93,105,107,115,117,118,123,129,133,135,146,150,157,161,176,178,185,186,188,
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#191,202,209),]
total <- merge(data_pre,student_error,by="Anon.Student.Id")
plot(density(data_pre$TutorTime),main = "Teacher Intervention Density Plot",

xlab="Opportunity Number")
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#plot(density(data_pre$TutorTime))

summary(data_pre$TutorTime)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 4.000 7.000 9.701 13.000 50.000

table(data_pre$TutorTime)

##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 22 23 28 31 35 50
## 6 9 8 8 6 8 5 3 4 6 5 4 4 3 1 2 4 1 1 1 3 1 2 1 1

Base on the density plot, we choose tutor time <= 4 as early tutor group, 4 < tutor <= 11 as normal tutor
group. tutor > 11 as late tutor group
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library(nlme)
total = total%>%mutate(Group=ifelse(TutorTime<=4,"Early Teacher Intervention",

ifelse(TutorTime>11,"Late Teacher Intervention",
"Normal Teacher Intervention")))

#early:
early = filter(total,Group=="Early Teacher Intervention")
op_list = unique(early$opportunity)
early_table = data.table(opportunity=numeric(), errorrate=numeric())
for(o in op_list){

o_data = filter(early,opportunity==o)
o_er = mean(o_data$errorrate)
early_table = rbind(early_table,data.frame(o,o_er),use.names=FALSE)

}

early_table$Group = "Early Teacher Intervention"
#late:
late = filter(total,Group=="Late Teacher Intervention")
op_list = unique(late$opportunity)
late_table = data.table(opportunity=numeric(), errorrate=numeric())
for(o in op_list){

o_data = filter(late,opportunity==o)
o_er = mean(o_data$errorrate)
late_table = rbind(late_table,data.frame(o,o_er),use.names=FALSE)

}
late_table$Group = "Late Teacher Intervention"
#normal:
normal = filter(total,Group=="Normal Teacher Intervention")
op_list = unique(normal$opportunity)
normal_table = data.table(opportunity=numeric(), errorrate=numeric())
for(o in op_list){

o_data = filter(normal,opportunity==o)
o_er = mean(o_data$errorrate)
normal_table = rbind(normal_table,data.frame(o,o_er),use.names=FALSE)

}
normal_table$Group = "Normal Teacher Intervention"

plot_df=rbind(early_table,normal_table,late_table)

ggplot(plot_df,aes(x=opportunity,y=errorrate,color=Group))+
geom_line()+
scale_colour_manual(values=c("black", "orange", "blue"))+
labs(title="Error rate for groups",

subtitle ="KC: Divide both sides by the variable coefficient" )+
ylab("Error Rate")+
xlab("Opportunity")
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KC: Divide both sides by the variable coefficient

Error rate for groups

We see that the students with early tutor intervention have lower error rate than students with normal tutor
intervention

New AFM for group

HCI11= HCI1
HCI11$Group = NA
for(s in unique(total$Anon.Student.Id)){

list=which(HCI1$Anon.Student.Id %in% s)
group_name = match(s,total$Anon.Student.Id)
for(l in list){

HCI11$Group[l] = total$Group[group_name]
}

}
HCI11 <- HCI11[HCI11$Opportunity_Numeric<=40,]

L1 = length(HCI2$Anon.Student.Id)
Success1 = vector(mode="numeric", length=L1)
Success1[HCI11$First.Attempt=="correct"]=1
AFM11 = lmer(Success1~(1|Anon.Student.Id) + Opportunity_Numeric +

Group:Opportunity_Numeric + Group,data=HCI11)
summary(AFM11)

## Linear mixed model fit by REML [’lmerMod’]
## Formula:
## Success1 ~ (1 | Anon.Student.Id) + Opportunity_Numeric + Group:Opportunity_Numeric +
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## Group
## Data: HCI11
##
## REML criterion at convergence: 1300.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1515 -0.1749 0.1525 0.4454 2.5908
##
## Random effects:
## Groups Name Variance Std.Dev.
## Anon.Student.Id (Intercept) 0.04989 0.2234
## Residual 0.10627 0.3260
## Number of obs: 1790, groups: Anon.Student.Id, 97
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 7.760e-01 4.848e-02
## Opportunity_Numeric 6.011e-03 1.427e-03
## GroupLate Teacher Intervention -1.075e-01 7.265e-02
## GroupNormal Teacher Intervention -1.413e-01 6.643e-02
## Opportunity_Numeric:GroupLate Teacher Intervention -5.781e-04 2.124e-03
## Opportunity_Numeric:GroupNormal Teacher Intervention -5.955e-06 1.897e-03
## t value
## (Intercept) 16.008
## Opportunity_Numeric 4.213
## GroupLate Teacher Intervention -1.480
## GroupNormal Teacher Intervention -2.127
## Opportunity_Numeric:GroupLate Teacher Intervention -0.272
## Opportunity_Numeric:GroupNormal Teacher Intervention -0.003
##
## Correlation of Fixed Effects:
## (Intr) Oppr_N GrpLTI GrpNTI O_N:GLTI
## Opprtnty_Nm -0.384
## GrpLtTchrIn -0.667 0.256
## GrpNrmlTchI -0.730 0.280 0.487
## Oppr_N:GLTI 0.258 -0.672 -0.465 -0.188
## Oppr_N:GNTI 0.289 -0.752 -0.193 -0.395 0.505

We see that early intervention group has the highest success rate, followed by normal and late

KC:Add constant terms

Divide students into early-tutor, normal-tutor, late-tutor groups.

library(data.table)
student_error <- data.table(Anon.Student.Id=character(),opportunity=numeric(),

errorrate=numeric())
student_list = unique(HCI2$Anon.Student.Id)
for(s in student_list){

data = filter(HCI2,Anon.Student.Id==s)
e1 <- data %>%
select(Opportunity_Numeric, Success1) %>%
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group_by(Opportunity_Numeric) %>%
summarise(error = 1- sum(Success1)/n())
#e1=Error_calculate(data)
student_error = rbind(student_error,data.frame(cbind(as.character(s),e1)),

use.names=FALSE)
}

data_pre = distinct(select(HCI2,c(Anon.Student.Id,TutorTime)))
data_pre = data_pre[-c(4,6,12,26,30,40,44,45,52,59,60,72,78,93,103,106,109),]
#data_pre = data_pre[-c(2,6,9,13,18,22,26,44,46,48,53,62,64,75,78,80,84,85,
#89,91,93,105,107,115,117,118,123,129,133,135,146,150,157,161,176,178,185,186,
#188,191,202,209),]
total <- merge(data_pre,student_error,by="Anon.Student.Id")
plot(density(data_pre$TutorTime),main = "Teacher Intervention Density Plot",

xlab="Opportunity Number")
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#plot(density(data_pre$TutorTime))

summary(data_pre$TutorTime)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 5.00 12.00 14.73 21.00 64.00
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table(data_pre$TutorTime)

##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 9 13 12 12 7 12 5 6 5 8 6 5 2 7 3 5 8 10 5 3 3 2 4 3 2 4
## 27 28 29 30 31 32 33 38 39 40 42 43 46 47 50 53 64
## 1 3 3 3 3 3 4 1 1 1 1 1 1 1 1 2 1

Base on the density plot, we choose tutor time <= 5 as early tutor group, 5 < tutor <= 17 as normal tutor
group. tutor > 17 as late tutor group

library(nlme)
total = total%>%mutate(Group=ifelse(TutorTime<=5,"Early Teacher Intervention",

ifelse(TutorTime>17,"Late Teacher Intervention",
"Normal Teacher Intervention")))

#early:
early = filter(total,Group=="Early Teacher Intervention")
op_list = unique(early$opportunity)
early_table = data.table(opportunity=numeric(), errorrate=numeric())
for(o in op_list){

o_data = filter(early,opportunity==o)
o_er = mean(o_data$errorrate)
early_table = rbind(early_table,data.frame(o,o_er),use.names=FALSE)

}

early_table$Group = "Early Teacher Intervention"
#late:
late = filter(total,Group=="Late Teacher Intervention")
op_list = unique(late$opportunity)
late_table = data.table(opportunity=numeric(), errorrate=numeric())
for(o in op_list){

o_data = filter(late,opportunity==o)
o_er = mean(o_data$errorrate)
late_table = rbind(late_table,data.frame(o,o_er),use.names=FALSE)

}
late_table$Group = "Late Teacher Intervention"
#normal:
normal = filter(total,Group=="Normal Teacher Intervention")
op_list = unique(normal$opportunity)
normal_table = data.table(opportunity=numeric(), errorrate=numeric())
for(o in op_list){

o_data = filter(normal,opportunity==o)
o_er = mean(o_data$errorrate)
normal_table = rbind(normal_table,data.frame(o,o_er),use.names=FALSE)

}
normal_table$Group = "Normal Teacher Intervention"

plot_df=rbind(early_table,normal_table,late_table)

ggplot(plot_df,aes(x=opportunity,y=errorrate,color=Group))+
geom_line()+
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scale_colour_manual(values=c("black", "orange", "blue"))+
labs(title="Error rate for groups"

,subtitle ="KC: Divide both sides by the variable coefficient" )+
ylab("Error Rate")+
xlab("Opportunity")
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KC: Divide both sides by the variable coefficient

Error rate for groups

We see that the students with early tutor intervention have lower error rate than students with normal tutor
intervention. This could be the reason why we observed the negative coefficients for the interaction term

New AFM for group

HCI22= HCI2
HCI22$Group = NA
for(s in unique(total$Anon.Student.Id)){

list=which(HCI1$Anon.Student.Id %in% s)
group_name = match(s,total$Anon.Student.Id)
for(l in list){

HCI22$Group[l] = total$Group[group_name]
}

}

L1 = length(HCI22$Anon.Student.Id)
Success1 = vector(mode="numeric", length=L1)
Success1[HCI22$First.Attempt=="correct"]=1
AFM22 = lmer(Success1~(1|Anon.Student.Id) + Opportunity_Numeric +
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Group:Opportunity_Numeric + Group,data=HCI22)
summary(AFM22)

## Linear mixed model fit by REML [’lmerMod’]
## Formula:
## Success1 ~ (1 | Anon.Student.Id) + Opportunity_Numeric + Group:Opportunity_Numeric +
## Group
## Data: HCI22
##
## REML criterion at convergence: 1419.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9262 -0.1020 0.2104 0.4848 2.1903
##
## Random effects:
## Groups Name Variance Std.Dev.
## Anon.Student.Id (Intercept) 0.04989 0.2234
## Residual 0.12122 0.3482
## Number of obs: 1735, groups: Anon.Student.Id, 40
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 0.7268541 0.0499694
## Opportunity_Numeric 0.0006762 0.0006844
## GroupLate Teacher Intervention -0.0404663 0.0447029
## GroupNormal Teacher Intervention -0.0566952 0.0473628
## Opportunity_Numeric:GroupLate Teacher Intervention 0.0001702 0.0008502
## Opportunity_Numeric:GroupNormal Teacher Intervention 0.0008143 0.0008681
## t value
## (Intercept) 14.546
## Opportunity_Numeric 0.988
## GroupLate Teacher Intervention -0.905
## GroupNormal Teacher Intervention -1.197
## Opportunity_Numeric:GroupLate Teacher Intervention 0.200
## Opportunity_Numeric:GroupNormal Teacher Intervention 0.938
##
## Correlation of Fixed Effects:
## (Intr) Oppr_N GrpLTI GrpNTI O_N:GLTI
## Opprtnty_Nm -0.552
## GrpLtTchrIn -0.559 0.647
## GrpNrmlTchI -0.553 0.577 0.561
## Oppr_N:GLTI 0.452 -0.803 -0.804 -0.433
## Oppr_N:GNTI 0.449 -0.781 -0.496 -0.757 0.642

Early group has the highest success rate. The observations are similar to last KC
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