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Abstract

The main scope of the project was to develop two anomaly detecting algorithms
to identify and report data collection errors for the 3 key variables, Receipt count,
Sum total paid, and Item total, provided by the NPD group. In particular, the
Moving First Differences Filter calculated the desired quantile of the slopes in
the selected window size to check if the new slope lied between the calculated
quantile. The Trimmed Moving Weighted Average Filter calculated the robust
mean and variance in the selected window size to check if the value of new data
point lies within the weighted average ± 3(standard deviation). The final output
for the project would be a series of visualization plots and a record of all anomalies
detected, outputted using a Python package interface.

1 Introduction

The client ’NPD Group’ is a market research company. Their mission includes creating reliable raw data
assets for their end clients. These datasets are useful for their clients to strategize on increasing their brand’s
market share, identifying up/down trends in sales, and understanding customer behavior. Ensuring quality
of data resources is critical for the NPD team. Being a leader in market research, NPD deals with more than
8 billion B2B transactions per year. This report aims to assist them in automatic detection of anomalies
in incoming data. The detected anomalies will then be assessed more closely by their data team, to ensure
provision of error-free data to their end clients.

The project aims to develop data-driven filtering methods to help identify anomalies in data and facilitate
further data analyst review. The report presents an automated data error flagging process which can be run
weekly to flag new anomalies in the incoming data series. The report proposes solutions for the following
research questions:

1. Detection of unexpected changes in incoming data series for 3 key variables: Receipt count, Sum total paid,
and Item total. Proposed methods should detect anomalies in addition to errors already flagged by the client.

2. Detection of both rapid drops and gradual dips spanned over larger time periods.

3. Detection of peaks with significant amplitude in addition to detection of dips.

2 Data

2.1 Data sets

The data used for the project were provided by our client, the NPD group. There were 6 response
variables that we were interested in using, which were Receipt count, Sum total paid, Sum items distinct,
Sum item spend, item total, and Panelists (Table 1).
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There were overall three data sets given: Source Data, Retail Data, and Issue Data. The source data
set consisted of 516 rows and 8 columns. The data set provided weekly values of the key variables listed
above by 4 different data source types which were iPhone, Android, Sift, and Receipt pal on device. The
second data set, retail data, consisted of 983,953 rows and 11 columns and provided weekly values of the key
variables per each merchant as well as information about the merchant name/ID and data acquire type/ID.
Finally, the issue data consisted of 31 rows and 5 columns and it provided information about when (the
Acquired date) and where (merchant name and source type) the data collecting error had occurred.

Table 1: Key Variables Explained

2.2 Variable Selection

After taking a closer look at the data description provided from NPD, our team explored whether there
were correlations between some of the key response variables. To elaborate, Receipt count, which was the
total number of transaction in given week might be closely associated with Panelist which was the total
number of participant in a given week. Similarly, Sum total paid, which was the dollar amount paid in a
given week might be closely associated with Sum item spend which was the total number of items purchased.
And the same logic went to Item total and Sum items distinct.

In order to test our hypothesis, we first plotted the time series of the variables we wanted to compare to
check if the general trend of the variables matched with one another. As shown in Figure 1 below, the three
pairs of response variables all showed highly similar trends.
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(a) Receipt count vs Panelist (b) Sum total paid vs Sum item spend

(c) Item total vs Sum items

Figure 1: Example: MacDonald Case

Once checking that the trends for each pair of variables were similar, our team calculated the average
correlations between each pair for all merchants. The calculated correlations in Table 2 strongly supported
our hypothesis since all three correlations had a score over 0.99. With both visual and mathematical backups,
our team decided to use only the three variable, Receipt count, Sum total paid, and Item total, as our key
response variables for the project.

Table 2: Correlations Calculated

2.3 Exploratory Data Analysis

Due to the fact that the client provided 31 issues logged by them in the past 2 years, our team decided
to use it as a guide to understand the types of errors their algorithm could detect and also discover hidden
errors that might worth detecting. Exploratory Data Analysis was conducted with the goal of assessing
possible error types existing in the data set and to compare possible errors with errors flagged by the client.
Un-flagged errors were then studied and discussed with the client to discover client’s preferences in detecting
errors.
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Figure 2: EDA Plot for Merchant: McDonald’s

Figure 2 illustrates one compact example for error analysis on merchant ’McDonald’s’. The red dot at
Circle 1 indicated a flagged error, which was a rapid drop marked by NPD. When looking at Circle 1 and
3 at the same time, 3 had a larger rapid drop compared to 1, yet not detected. The observation at Circle
2 happened around the outbreak of COVID-19 pandemic on March 11th, 2020, which was marked using a
blue vertical line. This drop happened across more than a month, instead of over a short period of time like
1, but the dropping trend was not detected. Cirlce 4 contained a sudden peak. Even though the amplitude
change of this jump was definitely greater than Circle 1, it was not detected, which brought the question
of whether NPD had a preference of marking dips over peaks. This compact example was only one out of
many EDA plots generated, please refer to our EDA section in Technical Appendix 6.1 for detailed error
visualizations.

3 Methods

3.1 First Differences Filter

The first method our team implemented to detect anomalies in the time series was the First Differences
Filtering method. The differences being calculated were essentially the slopes of changes from a time t to
t+ 1. Once the difference was know, the large values, which represented the large sudden change, could be
spotted. Ultimately, the First Differences Filtering method allowed the user to detect anomalies based on
the past trend of slopes. The logic of this method mainly consisted of two concepts: shifting windows and
95% quantile.

To begin with, the shifting window was a concept of selecting proper training data set size at time t, to
detect anomaly at time t + 1. The window was not fixed but set as sliding to ensure the training data set
represented the most recent trend of changes in slope. For each point in the future, the algorithm would
perform anomaly detection using the most up-to-date window, or filter of size n.

Once the window size was selected by users, the next step was to calculate the appropriate percent
quantile of differences within the window. The default quantile bounds was set at 5% and 95% for each
window. Once the quantile was calculated, the algorithm would spot the value at time t+ 1 as an anomaly
if it lied outside of the calculated quantile.

As a sanity check, the McDonald’s Receipt Count data set collected from iPhone was used as an example
for illustration purpose. We divided the data set into 1st half and 2nd half. The 95% quantile from the 1st

half of the data set was calculated (Figure 3) and applied on the 2nd half of the data set. In Figure 4, any
data point that lied outside of the two red quantile boundaries would be marked as anomalies.
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(a) 1st Half - Training Dataset (b) 2nd Half - Test Dataset

Figure 3: Sanity Check on McDonald’s Data - 1/2

Figure 4: Sanity Check on McDonald’s Data - 2/2

3.2 Trimmed Moving Weighted Average Filter

The second method our team implemented for anomaly detection was the trimmed moving weighted av-
erage method, which calculated the robust estimates of weighted average and standard deviation in a chosen
time window.

3.2.1 Robust Estimate for Weighted Average

The first step to ensure the weighted average in any given window was robust was to remove a reasonable
amount of outliers from that window. The algorithm could remove up to 20% of data in a set window. To
define such outliers, the median of the data in the window was computed and used as a reference to calculate
distances of all points from it. Depending on the maximum number of outliers user wanted to remove, the
points with largest absolute distances from the median would be dropped. For example, if a user wanted to
drop 2 out of 10 points (20%) in a window of size 10, the algorithm would drop the two points that were
farthest away from the median. The remaining 8 points, in this case, were then used to calculate the robust
weighted average.
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The second step was to assign weight to each remaining points in a given window and compute the
weighted average for all rolling windows. Given that the time series data were not stationary, the algorithm
assigned higher weights to more recent points in order to capture more relevant trend. For example, if the
window spanned from t− 5 to t, with t being the current time, the weight assigned to point at t− 5 would
be the lowest, and assigned to t would be the highest. Specifically, We utilized the reversed half normal
distribution to compute such weights for points in a given window. The half normal pdf was:

wi =

√
2

πσ2
exp(− i2

2σ2
) (1)

In equation (1), the variance σ2 was represented in terms of window size. In particular, the standard devi-
ation was taken to be a third of the window size. Let n represent the size of a window, equation (1) then
becomes:
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Finally, to calculate the weighted average WA, the weight wi for each point in the window would be
mapped to the response column value yi:

WA =

∑n
i=1 wiyi∑n
i=1 wi

(3)

3.2.2 Robust Estimate for Standard Deviation

In the trimmed moving weighted average filter, standard deviation in a window served as the boundaries
when testing anomalous behaviour for a future observation. Since standard deviation could be blown up
easily by outliers in a data set, a more stable, robust estimate was needed.

To achieve such goal, the first step was to take the first differences of points in a given window. For
example, if at time t, the response column value was Yt, then the difference Dt would be:

Dt = Yt − Yt−1 (4)

The second step was to calculate the variance of the first difference Dt. Since,

var[Dt] = var[Yt] + var[Yt−1]− 2cov[Yt, Yt−1] (5)

Let τ2 represent the variance for Dt, and σ2 represent the sample variance, if Yt and Yt−1 are independent
then assuming cov[Yt, Yt−1] to be 0, τ2 became:

τ2 = 2σ2 (6)

Thus, sample variance σ2 was estimated from τ2 i.e. the variance of first differences in a window. However,
since variance was sensitive to outliers, the median absolute deviation (MAD) was applied on τ2 to ease the
influence of outliers. The sample variance was then estimated using:

σ2 =
τ2MAD−estimate

2
(7)

Together, the robust moving weighted average and robust standard deviation granted acceptable ranges
for a future point to land on. This range was defined in terms of 3 standard deviations up and below the
weighted average. If an new observation had a value outside this range, it was then marked as an anomaly.
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3.2.3 Sequential Filters

Furthermore, for anomaly detection at a future point, the algorithm applied 4 sequential filters. All filters
had the same window size but covered different points in the past. For example, if the window size was n,
for a point in the future t+ 1, 4 filters would perform anomaly detection of that point simultaneously. Filter
1 would cover points from t− n to t. Filter 2 would cover points from t− n− 1 to t− 1 and so on.

Figure 5: Illustration on Four Sequential Filters

The use of sequential filters facilitated the detection of slow-trending anomalies. For example, in the
figure above, Filter 1 might miss anomalies embedded in a slow moving trend, since it ended right before the
future point. As a result, the weighted average value would follow the anomalous trend. This could impact
the ability of Filter 1 in detecting anomalies. However, Filter 4 would be helpful in such scenarios, since
there was a gap between its ending point and the future point. In a case where there was a steady, decreasing
trend, the boundary of Filter 4 would reflect on the normal data before the steady drop, and signify such
slow drop by marking the new point as an anomaly. Thus, ensuring some distance between filtering window
and anomalous point would serve in the interest of picking up slow trends in the time series.

4 Results

4.1 Types of anomalies we want to detect

4.1.1 Trimmed Moving Weighted Average Filter

Below are some resultant visualizations using the Trimmed Moving Weighted Average Filter.

Figure 6: Visualization: Merchant=McDonald’s, Acquire Type=Android, Window=10, Outliers Removed=
1, Response Column = Receipt Count
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Figure 7: Visualization: Merchant=McDonald’s, Acquire Type=Android, Window=10, Outliers Removed=
2, Response Column = Receipt Count

5 Discussion

The approach of using variance of first differences was analogous to using variance of residuals. However,
if there was a trend in the series, E[dt] would not necessarily be 0, which was unlike expectation of residuals
after fitting a regression model. This could result in a slightly inflated sample variance, but could be still
reasonably employed for our purposes of bounds in the filter.
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6 Technical Appendices

6.1 EDA and Variable Selection

Data Preparation and Wrangling
## make the date
retailer_data$StartDate <- as.Date(retailer_data$StartDate)
source_data$StartDate <- as.Date(source_data$StartDate)
issue_data$StartDate <- as.Date(issue_data$StartDate,format = "%m/%d/%Y")

issue_data$problem_detected <- rep(1, nrow(issue_data))

## look at the characteristics of retailer_data and the dates
## retailer data has the startDate of the week, we need to check which interval it is in
## i.e. if we have 9/16 and 9/23 with an issue on 9/20, we would have the it matched to 9/16
## for the jersey mikes we have issues in receiptPalOnline but no data for it

## next retailer is 13540 --> U.S. general

merged_data <- subset(retailer_data, MerchantName %in% unique(issue_data$MerchantName) & 
                        MerchantName != "Jerseymikes") %>%
  left_join(x = ., y = issue_data, 
            by = c("MerchantID", "MerchantName","AcquireTypeID", "AcquireTypeDesc", 
                   "StartDate"))
merged_data$problem_detected[which(is.na(merged_data$problem_detected))] <- 0
## add in the jersey mikes data
jerseymikes_retailer <- subset(retailer_data, MerchantName == "Jerseymikes")
jerseymikes_retailer$problem_detected <- rep(0, nrow(jerseymikes_retailer))
## add in the rows
jm_add_df <- subset(issue_data, MerchantName == "Jerseymikes")
jm_add_df$problem_detected <- NULL
jm_add_df$receipt_count <- rep(0, nrow(jm_add_df))
jm_add_df$sum_total_paid <- rep(0, nrow(jm_add_df))
jm_add_df$item_total <- rep(0, nrow(jm_add_df))
jm_add_df$sum_items_distinct <- rep(0, nrow(jm_add_df))
jm_add_df$sum_item_spend <- rep(0, nrow(jm_add_df))
jm_add_df$panelists <- rep(0, nrow(jm_add_df))
jm_add_df$problem_detected <- rep(1, nrow(jm_add_df))
jerseymikes_retailer <- rbind(jerseymikes_retailer, jm_add_df)

merged_data <- rbind(merged_data, jerseymikes_retailer)
unique(merged_data$MerchantName)

##  [1] "McDonald's"        "Walmart"           "SHELL"            
##  [4] "Petco"             "Firehouse Subs"    "Dominos.com"      
##  [7] "U.S. Cellular"     "Moe's"             "Popeyes"          
## [10] "Delivery.com"      "Jimmyjohns.com"    "Dollargeneral.com"
## [13] "Shopjustice.com"   "Customer Center"   "SHEIN"            
## [16] "Jerseymikes"

EDA
SHEIN, Firehouse Subs, JimmyJohns - Receipt Count
shein_data <- subset(merged_data, MerchantName == "SHEIN")

ggplot(data = shein_data, 
       aes(x = StartDate, y = receipt_count, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=shein_data[which(shein_data$problem_detected==1), ],aes(x=StartDate, y=receipt_count), col
our="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'SHEIN - Receipt Count', subtitle = "Blue line: Start of Pandemic / Red dot: Data Collecting 
Issue") + NPD_theme
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Firehouse_data <- subset(merged_data, MerchantName == "Firehouse Subs")

ggplot(data = Firehouse_data, 
       aes(x = StartDate, y = receipt_count, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=Firehouse_data[which(Firehouse_data$problem_detected==1), ],aes(x=StartDate, y=receipt_cou
nt), colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'Firehouse Subs - Receipt Count', subtitle = "Blue line: Start of Pandemic / Red dot: Data Co
llecting Issue") + NPD_theme
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JimmyJohns_data <- subset(merged_data, MerchantName == "Jimmyjohns.com")

ggplot(data = JimmyJohns_data, 
       aes(x = StartDate, y = receipt_count, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=JimmyJohns_data[which(JimmyJohns_data$problem_detected==1), ],aes(x=StartDate, y=receipt_c
ount), colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'JimmyJohns - Receipt Count', subtitle = "Blue line: Start of Pandemic / Red dot: Data Collec
ting Issue") + NPD_theme

SHEIN, Firehouse Subs, JimmyJohns - Sum Total
ggplot(data = shein_data, 
       aes(x = StartDate, y = sum_total_paid, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=shein_data[which(shein_data$problem_detected==1), ],aes(x=StartDate, y=sum_total_paid), co
lour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'SHEIN - sum total paid', subtitle = "Blue line: Start of Pandemic / Red dot: Data Collecting
Issue")+ NPD_theme
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ggplot(data = Firehouse_data, 
       aes(x = StartDate, y = sum_total_paid, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=Firehouse_data[which(Firehouse_data$problem_detected==1), ],aes(x=StartDate, y=sum_total_p
aid), colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'Firehouse Subs - sum total paid', subtitle = "Blue line: Start of Pandemic / Red dot: Data C
ollecting Issue")+ NPD_theme
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ggplot(data = JimmyJohns_data, 
       aes(x = StartDate, y = sum_total_paid, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=JimmyJohns_data[which(JimmyJohns_data$problem_detected==1), ],aes(x=StartDate, y=sum_total
_paid), colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'JimmyJohns - sum total paid', subtitle = "Blue Line: Start of COVID Pandemic, Red Dot: Data 
Collecting Issue")+ NPD_theme

SHEIN, Firehouse Subs, JimmyJohns - item total
ggplot(data = shein_data, 
       aes(x = StartDate, y = item_total, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=shein_data[which(shein_data$problem_detected==1), ],aes(x=StartDate, y=item_total), colour
="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'SHEIN - item total', subtitle = "Blue Line: Start of Pandemic, Red Dot: Data Collecting Issu
e")+ NPD_theme
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ggplot(data = Firehouse_data, 
       aes(x = StartDate, y = item_total, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=Firehouse_data[which(Firehouse_data$problem_detected==1), ],aes(x=StartDate, y=item_total)
, colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'Firehouse Subs - item total', subtitle = "Blue Line: Start of Pandemic, Red Dot: Data Collec
ting Issue")+ NPD_theme
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ggplot(data = JimmyJohns_data, 
       aes(x = StartDate, y = item_total, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=JimmyJohns_data[which(JimmyJohns_data$problem_detected==1), ],aes(x=StartDate, y=item_tota
l), colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'JimmyJohns - item total', subtitle = "Blue Line: Start of COVID Pandemic, Red Dot: Data Coll
ecting Issue")+ NPD_theme

SHEIN, Firehouse Subs, JimmyJohns - panelist
ggplot(data = shein_data, 
       aes(x = StartDate, y = panelists, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=shein_data[which(shein_data$problem_detected==1), ],aes(x=StartDate, y=panelists), colour=
"red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'SHEIN - panelists', subtitle = "Blue Line: Start of Pandemic, Red Dot: Data Collecting Issue
")+ NPD_theme
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ggplot(data = Firehouse_data, 
       aes(x = StartDate, y = panelists, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=Firehouse_data[which(Firehouse_data$problem_detected==1), ],aes(x=StartDate, y=panelists),
colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'Firehouse Subs - panelists', subtitle = "Blue Line: Start of Pandemic, Red Dot: Data Collect
ing Issue")+ NPD_theme
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ggplot(data = JimmyJohns_data, 
       aes(x = StartDate, y = panelists, col = AcquireTypeDesc)) + 
  geom_line() + 
  geom_point(data=JimmyJohns_data[which(JimmyJohns_data$problem_detected==1), ],aes(x=StartDate, y=panelists
), colour="red", size=2) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "blue") +
  labs(title = 'JimmyJohns - panelists', subtitle = "Blue Line: Start of COVID Pandemic, Red Dot: Data Colle
cting Issue")+ NPD_theme

Sample Dataset creation
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# Creating a Sample Data of McDonald's
sample_data <- subset(merged_data, MerchantName == "McDonald's")

# Dividing the Sample Data by the data sources
sample_data1 <- subset(sample_data, AcquireTypeID == 3)
sample_data2 <- subset(sample_data, AcquireTypeID == 4)
sample_data3 <- subset(sample_data, AcquireTypeID == 7)
sample_data4 <- subset(sample_data, AcquireTypeID == 8)

# Making datasets of the first differences for the 4 datasets created above
mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data1$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data1$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data1$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data1$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data1$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data1$panelists)
mcdonald_iphone <- as.data.frame(mcdonald_diff)

mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data2$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data2$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data2$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data2$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data2$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data2$panelists)
mcdonald_android <- as.data.frame(mcdonald_diff)

mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data3$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data3$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data3$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data3$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data3$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data3$panelists)
mcdonald_sift <- as.data.frame(mcdonald_diff)

mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data4$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data4$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data4$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data4$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data4$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data4$panelists)
mcdonald_mobile <- as.data.frame(mcdonald_diff)

mcdonald_iphone$StartDate <- sample_data1$StartDate[-1]
mcdonald_android$StartDate <- sample_data2$StartDate[-1]
mcdonald_sift$StartDate <- sample_data3$StartDate[-1]
mcdonald_mobile$StartDate <- sample_data4$StartDate[-1]

Variable Selection
# Comparing time series for receipt_count & panelists
ggplot(sample_data1, aes(x=StartDate)) + 
  geom_line(aes(y=receipt_count, color="red")) + 
  geom_line(aes(y=panelists, color="blue")) +
  labs(title = 'Mcdonald - receipt count vs. panelists', subtitle = "Blue Line: Panelists, Red line: Receipt
_counts", y = "Total Counts") + 
  theme(legend.position = "none")
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# Comparing time series for sum_total_paid & sum_item_spend
ggplot(sample_data1, aes(x=StartDate)) + 
  geom_line(aes(y=sum_total_paid, color="red")) + 
  geom_line(aes(y=sum_item_spend, color="blue")) +
  labs(title = 'Mcdonald - sum_total_paid vs. sum_item_spend', subtitle = "Blue Line: sum_item_spend, Red li
ne: sum_total_paid", y = "Total Counts") + 
  theme(legend.position = "none")

# Comparing time series for item_total & sum_items_distinct
ggplot(sample_data1, aes(x=StartDate)) + 
  geom_line(aes(y=item_total, color="red")) + 
  geom_line(aes(y=sum_items_distinct, color="blue")) +
  labs(title = 'Mcdonald - item_total vs. sum_items_distinct', subtitle = "Blue Line: sum_items_distinct, Re
d line: item_total", y = "Total Counts") + 
  theme(legend.position = "none")
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# Calculating the Average Correlations for the Key Variables
cor(merged_data$receipt_count, merged_data$panelists)

## [1] 0.9937866

cor(merged_data$sum_total_paid, merged_data$sum_item_spend)

## [1] 0.9990581

cor(merged_data$item_total, merged_data$sum_items_distinct)

## [1] 0.9991476

# Selecting only the Key Variables used for the Project (receipt_count, sum_total_paid, item_total)
mcdonald_iphone <- mcdonald_iphone[c(1:3,7)]
mcdonald_android <- mcdonald_android[c(1:3,7)]
mcdonald_sift <- mcdonald_sift[c(1:3,7)]
mcdonald_mobile <- mcdonald_mobile[c(1:3,7)]
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6.2 First Difference Filter

First Differences Calculation (slope)
# Creating a Sample Data of McDonald's
sample_data <- subset(merged_data, MerchantName == "McDonald's")

# Dividing the Sample Data by the data sources
sample_data1 <- subset(sample_data, AcquireTypeID == 3)
sample_data2 <- subset(sample_data, AcquireTypeID == 4)
sample_data3 <- subset(sample_data, AcquireTypeID == 7)
sample_data4 <- subset(sample_data, AcquireTypeID == 8)

# Making datasets of the first differences for the 4 datasets created above
mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data1$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data1$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data1$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data1$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data1$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data1$panelists)
mcdonald_iphone <- as.data.frame(mcdonald_diff)

mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data2$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data2$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data2$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data2$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data2$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data2$panelists)
mcdonald_android <- as.data.frame(mcdonald_diff)

mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data3$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data3$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data3$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data3$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data3$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data3$panelists)
mcdonald_sift <- as.data.frame(mcdonald_diff)

mcdonald_diff <- list()
mcdonald_diff$receipt_count <- diff(sample_data4$receipt_count)
mcdonald_diff$sum_total_paid <- diff(sample_data4$sum_total_paid)
mcdonald_diff$item_total <- diff(sample_data4$item_total)
mcdonald_diff$sum_items_distinct <- diff(sample_data4$sum_items_distinct)
mcdonald_diff$sum_item_spend <- diff(sample_data4$sum_item_spend)
mcdonald_diff$panelists <- diff(sample_data4$panelists)
mcdonald_mobile <- as.data.frame(mcdonald_diff)

mcdonald_iphone$StartDate <- sample_data1$StartDate[-1]
mcdonald_android$StartDate <- sample_data2$StartDate[-1]
mcdonald_sift$StartDate <- sample_data3$StartDate[-1]
mcdonald_mobile$StartDate <- sample_data4$StartDate[-1]

First Differences Filter
Mcdonald’s - iPhone
library(dplyr)
library(zoo)

## 
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
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# Dividing the Dataset into 1st and 2nd half where 1st half is training set and 2nd half is test set
mcdonald_iphone_1st <- mcdonald_iphone[1:64,]
mcdonald_iphone_2nd <- mcdonald_iphone[65:128,]

#Calculating the 95% Quantiles for the 3 variables in the training set
qts_rc <- quantile(mcdonald_iphone_1st$receipt_count, probs = c(0.025,0.975))
qts_stp <- quantile(mcdonald_iphone_1st$sum_total_paid, probs = c(0.025,0.975))
qts_it <- quantile(mcdonald_iphone_1st$item_total, probs = c(0.025,0.975))

#receipt count
par(mfrow = c(1,2))
hist(mcdonald_iphone_1st$receipt_count, nclass = 10, main = "receipt_count - training", xlab = "Value")
abline(v=qts_rc[1], col = 'red')
abline(v=qts_rc[2], col = 'red')

barplot(mcdonald_iphone_2nd$receipt_count, main = "reciept_count - test")
abline(h=qts_rc[1], col = 'red')
abline(h=qts_rc[2], col = 'red')

#sum total paid
par(mfrow = c(1,2))
hist(mcdonald_iphone_1st$sum_total_paid, nclass = 10, main = "sum_total_paid - training", xlab = "Value")
abline(v=qts_stp[1], col = 'red')
abline(v=qts_stp[2], col = 'red')

barplot(mcdonald_iphone_2nd$sum_total_paid, main = "sum_total_paid - test")
abline(h=qts_stp[1], col = 'red')
abline(h=qts_stp[2], col = 'red')
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#items total
par(mfrow = c(1,2))
hist(mcdonald_iphone_1st$item_total, nclass = 10, main = "item_total - training", xlab = "Value")
abline(v=qts_it[1], col = 'red')
abline(v=qts_it[2], col = 'red')

barplot(mcdonald_iphone_2nd$item_total, main = "item_total - test")
abline(h=qts_it[1], col = 'red')
abline(h=qts_it[2], col = 'red')
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# Labeling the dates for when the anomalies occurred
mcdonald_iphone_2nd$rc_anom <- (mcdonald_iphone_2nd %>% mutate(i = receipt_count > qts_rc[2] | item_total < 
qts_rc[1]))$i
mcdonald_iphone_2nd$stp_anom <- (mcdonald_iphone_2nd %>% mutate(i = sum_total_paid > qts_stp[2] | item_total
< qts_stp[1]))$i
mcdonald_iphone_2nd$it_anom <- (mcdonald_iphone_2nd %>% mutate(i = item_total > qts_it[2] | item_total < qts
_it[1]))$i

Mcdonald’s - Android
# Dividing the Dataset into 1st and 2nd half where 1st half is training set and 2nd half is test set
mcdonald_android_1st <- mcdonald_android[1:64,]
mcdonald_android_2nd <- mcdonald_android[65:128,]

#receipt count
qts_rc <- quantile(mcdonald_android_1st$receipt_count, probs = c(0.025,0.975))
barplot(mcdonald_android_2nd$receipt_count, main = "receipt_count")
abline(h=qts_rc[1], col = 'red')
abline(h=qts_rc[2], col = 'red')

#sum total paid
qts_stp <- quantile(mcdonald_android_1st$sum_total_paid, probs = c(0.025,0.975))
barplot(mcdonald_android_2nd$sum_total_paid, main = "sum_total_paid")
abline(h=qts_stp[1], col = 'red')
abline(h=qts_stp[2], col = 'red')
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#items total
qts_it <- quantile(mcdonald_android_1st$item_total, probs = c(0.025,0.975))
barplot(mcdonald_android_2nd$item_total, main = "item_total")
abline(h=qts_it[1], col = 'red')
abline(h=qts_it[2], col = 'red')

# Labeling the dates for when the anomalies occurred
mcdonald_android_2nd$rc_anom <- (mcdonald_android_2nd %>% mutate(i = receipt_count > qts_rc[2] | item_total 
< qts_rc[1]))$i
mcdonald_android_2nd$stp_anom <- (mcdonald_android_2nd %>% mutate(i = sum_total_paid > qts_stp[2] | item_tot
al < qts_stp[1]))$i
mcdonald_android_2nd$it_anom <- (mcdonald_android_2nd %>% mutate(i = item_total > qts_it[2] | item_total < q
ts_it[1]))$i

Mcdonald’s - Sift
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# Dividing the Dataset into 1st and 2nd half where 1st half is training set and 2nd half is test set
mcdonald_sift_1st <- mcdonald_sift[1:64,]
mcdonald_sift_2nd <- mcdonald_sift[65:128,]

#receipt count
qts_rc <- quantile(mcdonald_sift_1st$receipt_count, probs = c(0.025,0.975))
barplot(mcdonald_sift_2nd$receipt_count, main = "receipt_count")
abline(h=qts_rc[1], col = 'red')
abline(h=qts_rc[2], col = 'red')

#sum total paid
qts_stp <- quantile(mcdonald_sift_1st$sum_total_paid, probs = c(0.025,0.975))
barplot(mcdonald_sift_2nd$sum_total_paid, main = "sum_total_paid")
abline(h=qts_stp[1], col = 'red')
abline(h=qts_stp[2], col = 'red')
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#items total
qts_it <- quantile(mcdonald_sift_1st$item_total, probs = c(0.025,0.975))
barplot(mcdonald_sift_2nd$item_total, main = "item_total")
abline(h=qts_it[1], col = 'red')
abline(h=qts_it[2], col = 'red')

# Labeling the dates for when the anomalies occurred
mcdonald_sift_2nd$rc_anom <- (mcdonald_sift_2nd %>% mutate(i = receipt_count > qts_rc[2] | item_total < qts_
rc[1]))$i
mcdonald_sift_2nd$stp_anom <- (mcdonald_sift_2nd %>% mutate(i = sum_total_paid > qts_stp[2] | item_total < q
ts_stp[1]))$i
mcdonald_sift_2nd$it_anom <- (mcdonald_sift_2nd %>% mutate(i = item_total > qts_it[2] | item_total < qts_it[
1]))$i

Mcdonald’s - recipepaidpal
# Dividing the Dataset into 1st and 2nd half where 1st half is training set and 2nd half is test set
mcdonald_mobile_1st <- mcdonald_mobile[1:64,]
mcdonald_mobile_2nd <- mcdonald_mobile[65:128,]

#receipt count
qts_rc <- quantile(mcdonald_mobile_1st$receipt_count, probs = c(0.025,0.975))
barplot(mcdonald_mobile_2nd$receipt_count, main = "receipt_count")
abline(h=qts_rc[1], col = 'red')
abline(h=qts_rc[2], col = 'red')
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#sum total paid
qts_stp <- quantile(mcdonald_mobile_1st$sum_total_paid, probs = c(0.025,0.975))
barplot(mcdonald_mobile_2nd$sum_total_paid, main = "sum_total_paid")
abline(h=qts_stp[1], col = 'red')
abline(h=qts_stp[2], col = 'red')

#items total
qts_it <- quantile(mcdonald_mobile_1st$item_total, probs = c(0.025,0.975))
barplot(mcdonald_mobile_2nd$item_total, main = "item_total")
abline(h=qts_it[1], col = 'red')
abline(h=qts_it[2], col = 'red')
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# Labeling the dates for when the anomalies occurred
mcdonald_mobile_2nd$rc_anom <- (mcdonald_mobile_2nd %>% mutate(i = receipt_count > qts_rc[2] | item_total < 
qts_rc[1]))$i
mcdonald_mobile_2nd$stp_anom <- (mcdonald_mobile_2nd %>% mutate(i = sum_total_paid > qts_stp[2] | item_total
< qts_stp[1]))$i
mcdonald_mobile_2nd$it_anom <- (mcdonald_mobile_2nd %>% mutate(i = item_total > qts_it[2] | item_total < qts
_it[1]))$i
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6.3 Trimmed Moving Weighted Average Filter

6.3.1 Input Parameters Sanity Check

This section of code was implemented to ensure that the users only input parameters that were acceptable.
If not, an error message would pop up to guide users to re-choose a parameter in the correct form.

6.3.2 Deletion of Outliers in a Given Window

In order to remove outliers in rolling windows, total list was used to store list of all possible rolling win-
dows with size n. For each rolling window, the median was firstly computed. The absolute distance between
each point and the median was then computed and ranked. Based on user’s max outlier (x) preference, the
top x points which had the biggest distance would be dropped from the list.

6.3.3 Half Normal PDF Weights Assignment

Now having the modified total list after dropping outliers, the next step was to assign weight to each
points remaining in the rolling windows. The weights were calculated and mapped to each point using the
reversed half-normal distribution. Then the weighted averages were calculated accordingly.
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6.3.4 Weighted Average Columns

Once all the weighted averages were computed, the values were then added to the actual data frame 4
times. In particular, a shifting effect was applied to each w avg column to ensure that the weighted averages
were matched up with the actual period of time in the data set, with w avg 1 started at (initial time +
window size), w avg 1 started at (initial time + window size + 1) and so on.

6.3.5 Standard Deviation Columns

need to add more code for standard deviation computation. Similar to weighted average, once
all the standard deviations were computed, the values were then added to the actual data frame 4 times. In
particular, a shifting effect was applied to each w std column to ensure that the standard deviations were
matched up with the actual period of time in the data set, with w std 1 started at (initial time + window
size), w std 1 started at (initial time + window size + 1) and so on.

6.3.6 Defining Bounds for Anomaly Detection

Now having both weighted average values and standard deviation values ready, the 3 sigma boundaries
were calculated and appended to the same data frame for anomaly filtering purpose.
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6.3.7 Detection of Outliers based on 4 filters

In details, a new point was categorized as an anomaly when it landed outside of 3 standard deviations
in any of the 4 filters defined. The outliers were then recorded in binary forms, with 1 as an indicator of
anomaly.

6.3.8 Anomaly Detection Method

This function served as an initializer for the trimmed moving weighted average filter to run and output
anomalies in a data frame as the result. The data frame would then be called by the plot function to output
anomaly detection visualizations for any given time series data.
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6.3.9 Anomaly Detection Visualization

Once all outliers were identified, matplotlib was utilized to visualize anomalies detected using all filters.
Four different shapes and colors were used on anomalies to distinguish which filter detected them.
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6.4 Python Interface

As per NPD’s request we packaged our anomaly detection functionality in a python package PyAnoma-
lyDetect. The package was written with the principles of single responsibility in that class, method and
function performs one specific action and tracability. To reflect these principles we divided the anomaly
detection process into two distinct steps; data preparation and analysis.

6.4.1 Data Preparation

What user does: 1. Subset by merchant and acquire type
What pacakge does: 2. everything else
To ensure that our package was broadly applicable to the data analyzed by NPD. The data provided

was defined primarily by the merchants, data acquisition methodology and a collection of six variables. To
provide optimal functionality we designed a data structure, AnomalyDf, to capture the relevant information
needed to prepare the data for analysis. The data structure can be defined by the following parameters
within the init function:

def i n i t ( s e l f , data : pd . DataFrame ,
response column : str ,
t ime column : str , s ca l e co lumn : str = ”” ) :

• data: A pandas.DataFrame with p ≥ 2 columns and n ≥ 3 rows. When provided it is assumed that
the data will be reflective of a unique merchant-acquisition combination. We will refer to the data
parameter as ”the raw data” henceforth and will distinguish this from ”processed data” produced in
the constructor function.

• response column: A python string indicating the name of the column to be considered as the response
variable. As this parameter will be used to subset the provided data the constraint response column
∈ columns(data).

• time column: A python string indicating the name of the column of data containing the time variable.
As this parameter will be used to subset the provided data the constraint time column ∈ columns(data).

• scale column: A python string indicating the name of the column used to scale the measures of spread.
Defaults to None.

Provided the above parameters the AnomalyDf constructor will create an instance of the AnomalyDf
class. In imagining and implementing the class we sought to balance processing work done by the user while
standardizing the interface. Our initial exploration and calculations saw repeated tracking of the columns
to be examined and therefore implemented the relevant columns as parameters. The get data(column)

method is used almost exclusively to access the data to reduce the repetition of the column names. The
interface furthermore removes the burden from the user to format the data in a specific way.

• df: A pandas.DataFrame with n rows and p ∈ [2, 3] columns. The columns present are the columns
corresponding to the time column, response variable and the scaling column, if applicable. Note that
this variable is public to allow for easy examination of the data but should be accessed with the
get data(variable) function.

• sd: A numpy.array with dimension (n,). This field is initialized to an array of zeroes (produced by
self.sd = numpy.zeros(self.df.shape[0]). We designated the calculation of the spread measures
to the update sd method both to adhere to the principle of single responsibility and to ensure that
the user can change the standard deviation calculation without needing to recreate the instance.

• diff taken: A boolean indicating if the first difference of the processed data (df) was computed. If
True then the first differences of the response column may be found in the diff field.

The following methods are needed to modify, access and ultimately utilize the data in a standardized
manner. The seemingly trivial methods (such as nrows() and ncols) were designed to reduce the user’s
interacions with the underlying data and discourage modification of the data.
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def nrows ( s e l f ) :

This method takes no arguments and returns the number of rows in the processed data (self.df).

def nco l s ( s e l f ) :

This method takes no arguments and returns the number of columns in the processed data (self.df).
Note that this method will always return either two or three.

def get copy ( s e l f ) :

This method returns a deep copy of the processed data. Users are strongly encouraged to use this function
when accessing or modifying the data to prevent aliasing issues that can be abundant in pandas.

def get data ( s e l f , column : str ) :

This method takes a string column argument and returns an n× 1 pandas.DataFrame with data of the
indicated column type. column must be one of "response", "time" or "scale" indicating the response,
timing and scaling columns respectively.

def update sd ( s e l f , sd method : str , window : int ) :

This method is a non-constructive method that modifies the sd and sdinitializedfunctionstorepresentthemeasureofspreadandabooleanindicatingifithasbeenmodified, respectively.Theparametersdmethodisastringthatcanbeoneof"Qn", "IQR"or"mad"indicatingRossousseeuw − Croux, interquartilerangeormedianabsolutedeviationmetricrespectively.def take_difference(self):This method computes the first difference and stores it

import numpy as np

import pandas as pd

from PyAnomDetect import AnomalyDf

MERCHANT_WANTED = "Mcdonald ’s"

METHOD_WANTED = "iPhone"

DATE_COLUMN = "StartDate"

## Load the data and user processing

raw_data = pd.read_csv(PATH_TO_DATA)

raw_data = raw_data[raw_data.MerchantName == MERCHANT_WANTED]

raw_data = raw_data[raw_data.AcquireTypeDesc == METHOD_WANTED]

raw_data[DATE_COLUMN] = pd.to_datetime(raw_data.DATE_COLUMN)

## create the class

data_obj = AnomalyDf(df, "panelists", "StartDate")

## get number of rows and columns

data_obj.nrows ()

data_obj.ncols ()

## calculate the standard deviations

data_obj.update_sd("Qn", 10)

## create a deep copy of the data

copied_data = data_obj.get_copy ()

## get the response column

resp_column = data_obj.get_data("response")

## get the time column

time_column = data_obj.get_data("time")

import numpy as np

def incmatrix(genl1 ,genl2):

m = len(genl1)

n = len(genl2)

M = None #to become the incidence matrix

VT = np.zeros((n*m,1), int) #dummy variable

#compute the bitwise xor matrix

M1 = bitxormatrix(genl1)

M2 = np.triu(bitxormatrix(genl2),1)

for i in range(m-1):

for j in range(i+1, m):

[r,c] = np.where(M2 == M1[i,j])

for k in range(len(r)):

VT[(i)*n + r[k]] = 1;

VT[(i)*n + c[k]] = 1;

VT[(j)*n + r[k]] = 1;

VT[(j)*n + c[k]] = 1;

if M is None:

M = np.copy(VT)

else:

M = np.concatenate ((M, VT), 1)

VT = np.zeros ((n*m,1), int)

return M

library(ggplot2)and to be lightweight, customisable and informative to the user. In designing the package we separated the anomaly detection process into two distinct steps; data preparation and
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Technical Appendix: A: EDA variable selection - Wonil B: First difference - Frank C: Weighted

Average - Ning Pragya D: Interface - Frank

- weighted average - rolling window (sort in lists of list) - compute median, drop max outliers

- assign weights (based on half normal) to points in window [ equation] - compute the weighted

average [equation]

- Standard deviation - rolling window (sort in lists of list) - compute first difference

[equation] - compute variance tau [equation] - apply MAD on variance [equation]
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