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Abstract

In this paper we seek an improved estimate of the Plus-Minus statistic for NBA players using Bayesian
regression. Using a Bayesian approach to model this statistic will allow us to generate a distribution rather
than a point estimate for each player’s true Plus-Minus, providing improved interpretability over
non-Bayesian methods. In this paper we work with data from the 2018-19 NBA season, though our
methods should be able to be easily applied to any NBA season. As mentioned earlier we use Bayesian
regression to model the Plus-Minus statistic for players, and we use a nested ridge regression to derive
logical prior distributions for each player based on their team and contract value. [Tentative] The model
we arrive at corrects for both teammate performance and overall team performance; we believe the model
offers improvement on conventional methods for individual player performance. The model does,
however, have some outliers where some role players are overvalued.

Introduction

Our client, Kostas Pelechrinis, is a Professor at the University of Pittsburgh who is interested in obtaining
an improved estimate of the plus-minus statistic for NBA players. There are currently a number of
different statistics that are used to measure the performance of NBA players as this is one of the most
prevalent tasks for NBA teams. Every front office would like to be able to confidently answer questions
such as “is player A better than player B?”, allowing them to make better decisions when building a
roster. The plus-minus statistic is a very natural metric to use when measuring players’ contribution to
their teams simply by definition - plus-minus measures the net point differential for player A’s team while
player A is on the court. For example, suppose player A entered the game with his team down by 2 points
and got substituted out 5 minutes later with his team up by 3. Player A had a plus-minus of 5 points in
that stint of play, and the overall statistic is then normalized as plus-minus per 100 possessions.

Many estimates of players’ plus-minus statistics are biased due to the fact that there are 10 players on the
court at any given time, so players who frequently play with an elite player like LeBron James will have



an artificially inflated plus-minus compared to players who might be equally productive but play
alongside sub-par players. Additionally, point estimates of plus-minus are less informative than
distributions of plus-minus since distributions would allow us to examine the uncertainty associated with
a certain player’s performance. These are some of the core issues that we seek to address in this paper.

Our main tasks are summarized below:
● Can we come up with reasonably informed, logical prior distributions for the players using

contract value and team ratings to help improve our main Bayesian regression model?
● Can we construct an informative Bayesian regression model that conditions on all players on the

court to eliminate collinearity while also outputting reasonable distributions for plus-minus
statistics?

● Can we create an intuitive interactive visualization to display the results of our Bayesian model
and allow for comparisons between players?

Data

Contract Data

The first dataset contains information about player contracts. This data was obtained from two different
sources: web-scraping data found on spotrak.com (2017-2019 seasons) and Kaggle (1990 - 2017 seasons).
These two data sets were joined on player name, and the final data frame resulted in 12,724 total
contracts, given to 2406 unique players across 32 teams. The joined data frame consisted of the following
variables:

● Player Name
● Contract Value
● Year of Contract
● Team
● Type (Rookie vs Non-rookie)

When joining the data frames, we did run into some difficulty with inconsistencies in player names; for
example “PJ Tucker” and “P.J. Tucker” are the same player but listed differently. Since there was not a
player id common to both data sets and there was not a solution that worked for every player, this issue
was fixed manually. The data relevant to this draft are from the 2017-2019 seasons.



As seen in Figure #, the average salary from 1990 to 2019 has been increasing. This isn’t a huge cause for
concern as discussed later in the Methods section since our priors or strictly based on only the previous
season and we are assuming we are blind to the current seasons data. If we used multiple seasons in our
priors, we would need to adjust for this positive trend between time and player salary.

Games Data

Our NBA games data comes from 538 (https://github.com/fivethirtyeight/data/tree/master/nba-forecasts).
This data is actually used by 538 to create elo rankings for each team updated after each game. The data
goes back to 1946 and includes variables such as each team’s pre and post elo scores as well as the final
game scores and who had home court advantage. We will use this data to create a team rating system that
will be used to create priors for our bayesian regression.

To actually use this dataset, we end up only using a few variables:
● Team 1 and Team 2
● Final scores for both teams

We use the final scores to calculate a point differential which tells us how much a team won by.
Additionally, we also want an indicator for which team is home. Our dataset contains games data in which
team 1 is always the home team. In order to create this home/away indicator we duplicate each game so
that each game shows twice. So for a game between Team 1 and Team 2, there will be two entries for this
game: one entry will show team 1 as the home team and the other entry will show team 2 as the away
team. This allows us to even out our dataset and factor in home court advantage into our team rankings.
Including home court advantage in our analysis also gives us some convenient information about how
much home court advantage is worth. Figure 1 below shows us the average point differential associated
with home court advantage. This comes out to 2.793 points in the 2018-2019 season and is around 2.5 for
all seasons.

Figure 1

https://github.com/fivethirtyeight/data/tree/master/nba-forecasts


Shifts Data

The last main dataset that we used was derived from NBA play-by-play data from eightthirtyfour (add
citation here). The play-by-play dataset includes a number of different variables with only a few of
interest to us:

● score margin
● IDs of the players on the court for the home and away teams
● ID of a player being substituted on
● Home team
● Away team
● Field goal attempts
● Offensive rebounds
● Free throw attempts
● Turnovers

We perform some data wrangling to reformat this play-by-play data into shifts, where a shift is defined as
a period of time where the same 10 players are on the court without any substitutions. For each shift we
record the home and away teams, the difference between home points and away points, the IDs of the
players on the court for that shift, and the approximate number of possessions that took place during the
shift. The number of possessions in a shift was computed using the following formula (include citation
here, nbastuffer.com):

𝑃 =  0. 96 · (𝐹𝐺𝐴 +  𝑇𝑂 +  0. 44(𝐹𝑇𝐴) − 𝑂𝑅𝐸𝐵)

Where approximate number of possessions, field goal attempts, turnovers,𝑃 =  𝐹𝐺𝐴 =  𝑇𝑂 =  
free throw attempts, and offensive rebounds.𝐹𝑇𝐴 =  𝑂𝑅𝐸𝐵 =  

Shifts were then normalized to record point differential per 100 possessions. The final shifts dataset is
structured such that each row corresponds to a unique shift, the first column stores the normalized point



differential, and the remaining columns (roughly 530 columns) each correspond to an NBA player for the
given season. These columns are all filled with zeros except for the five players from the home team and
the five players on the away team who were on the court during the given shift. The five home players in
a shift are denoted with 1s, while the five away players in a shift are denoted with -1s.

This dataset is used to train our Bayesian regression model, where the set of columns corresponding to the
players forms our design matrix X (a sparse matrix of mostly zeros, with five 1s and five -1s per row),
while the first column (corresponding to the normalized point differential) is our response variable. This

allows for the convenient interpretation that the coefficient mean is our estimate of the player’s𝑖𝑡ℎ 𝑖𝑡ℎ

plus-minus.

Methods

Deriving Meaningful Priors

This section will include linear regression for team ratings as well as the ridge regression stuff for priors.
When creating our ultimate priors to be used in bayesian regression, we split the data into rookies and
veterans. Naturally, this means that linear and ridge regression were performed separately on the two
classes as rookie contracts do not compare well to non-rookie contracts.

Linear Regression

Our team utilized linear regression in two ways:
● To derive team ratings for each season
● To derive standard errors for each player in our nested ridge regression model.

Use in Deriving Team Ratings

To develop team ratings, we use the games data mentioned in the data section above. Our linear
regression takes point differentials of each game in a season as its dependent variable and uses team,
opponent, and location (home or away) as its independent variables. In this manner, by regressing over all
games in a season, we get a coefficient for each team that we then use as team ratings.

Use in Deriving Standard Errors for all Players

Linear regression is also used to derive a standard error for the final prior mean for each player.
The idea is that we want to have a unique prior mean and standard error for each player. A nested ridge
regression gives us the prior mean, but since glmnet and regularized regression techniques don’t provide
good estimates of standard error, we used linear regression. This linear regression follows the same
formula as the nested ridge regression, just without any penalization. We regress player coefficients
generated from an initial ridge regression using a per 100 possession point differential variable on the
contract priors and team rating priors for each player. This gives us an approximation for the standard
error for each player.



Ridge Regression

Ridge regression was used in the following ways:
● Used to predict coefficients for each player using a per 100 possession point differential variable.
● These coefficients were then used as the dependent variable in another ridge regression that tries

to predict this coefficient from team rating and contract prior.

Ridge regression is a method that we used heavily in the process of deriving meaningful prior
distributions for NBA players. Specifically, we used a nested regression framework to compute logical
priors for players in the following manner:

● Run a ridge regression with point differential per 100 possessions as the dependent variable, and
our sparse matrix as the design matrix. This does not consider any prior information about the𝑋
players, their teams, or any other factors - it simply computes a coefficient for each player
representing their plus-minus estimate for a given season with no prior information.

● The coefficients from this ridge regression are then used as the dependent variable in another
regression model where the covariates are contract value and team ratings. This will give us
coefficient estimates for contract value and team ratings.

● To obtain a final prior mean for each player, we use this regression model and insert the player’s
contract value and his team’s rating as the new values of the covariates.

Bayesian Regression

Once we have a sound methodology for deriving meaningful prior distributions for NBA players’
plus-minus statistics, we can turn our attention to the second research task of building an informative
Bayesian regression model to estimate plus-minus. With inspiration from Deshpande and Jensen (citation
here), we seek a model of the following form:

𝑦 = β
0 

+  𝑋β +  ϵ 

Where is a vector containing the point differential in each shift, is a constant representing𝑦 β
0

home-court advantage, is our sparse design matrix described above in the Data section, and is our𝑋 β
vector of coefficients for each player. Note that is dimensional, is and is dimensionalβ 𝑝 𝑋 𝑛 × 𝑝 𝑦 𝑛
where is the number of NBA players who participated in a given season and is the number of shifts in𝑝 𝑛
a season.

Essentially what this becomes is a regression of point differential on only the ten players on the court for
each shift, since all other players take value 0. Also, recall that we have chosen to denote home players
with +1 and away players with -1 in order to stay consistent with our choice of representing point
differential as . By regressing the point differential on all players on the court,𝑝𝑜𝑖𝑛𝑡𝑠

ℎ𝑜𝑚𝑒 
−  𝑝𝑜𝑖𝑛𝑡𝑠

𝑎𝑤𝑎𝑦

we should theoretically be able to accomplish the task of obtaining a conditional estimate of players’
plus-minuses given the other players on the court.



We implement this model in Python using the pymc3 package (include citation here for pycm3). Pymc3
provides a convenient framework for specifying prior distributions, allowing us to input our priors derived
from the ridge regression discussed above. Since this is a Bayesian model, the final output is a distribution
for each player’s plus-minus, along with a distribution for the home court advantage parameter and aβ

0

distribution for the error term .ϵ

Visualizing Results

The last goal of the project given to us by the client is to create an interactive visualization of the results.
This application is now in its developmental phase, and will be done with R Shiny. The current prototype
allows the user to select any number of players from a drop-down list from the 2018-2019 season. The
application then displays our estimates of each selected player’s plus-minus distribution using ggplot.

Results

Plus-Minus Posterior Distributions with Bayesian Regression

So far we have been able to build a reasonable Bayesian regression model to estimate distributions of
players’ plus-minus statistics. Examples of the distributions that are fit from the Bayesian model can be
found in the next section where we show a prototype of an interactive visualization to display plus-minus.

[We are still finalizing some of our results/re-running our models one last time with some final edits, so
more will be added here in the future]

Visualization Prototype:



The figure above shows an example output of when the user selects 3 players. Here, De’Aaron Fox is the
black distribution, Emmanuel Mudiay is the red, and Stephen Curry is the green (currently there is no
legend, but we will resolve this before the final). This is reasonable, as Curry is one of the best players in
the NBA, whereas Fox is an up-and-coming star, and Mudiay is a bench player.

Discussion [Tentative]

As mentioned previously, one advantage of our method is that it provides a range of plus-minus values for
each player, which allows us to account for a range of player performance, as opposed to the point
estimates used in conventional methods such as box score plus-minus. The first component of our prior,
the contract value, allowed us to adjust players based on how a team views the player's value. By doing
this, we were able to mostly adjust for teammate’s impact on a player's plus-minus. For example, players
who always played with LeBron James, one of the greatest basketball players of all time, but did not
produce as much on an individual level had more muted posterior distribution than when compared to the
box plus-minus. Another factor we adjusted for was team rating, as superstar players on bad teams suffer
from conventional methods. One such example is Bradley Beal on the Washington Wizards - a terrible
team during this season, who has a box score plus-minus consistent with a decent starter, but has the 13th
highest mean by our metric - a position more consistent with his star/superstar status.

One major challenge our team faced was determining how accurate our final posteriors were. Since
ranking players is a largely subjective task, there is no ground truth ranking for us to compare our results.
When ranking players by the posterior distribution mean, we did find that the league’s best players were
towards the top, while important role players filled out the top half, with the bottom half being mostly
benchwarmers. There were some outliers, such as Brook Lopez and Donte Divencenzo, two important
role players on the Milwaukee Bucks, were ranked very highly; in contrast, Giannis Antetekounpo, their



MVP teammate, was only the 8th best rating. We believe that this shows that the model is not perfect
when correcting for teammates, but the overall trend is that role players that do not contribute much when
playing with superstar teammates are no longer skewed upwards.

While a visualization can be informative, our group would also like to produce a probabilistic comparison
between two players (i.e. on any given day, Stephen Curry has a 90% chance of being better than
De’aaron Fox). In order to compare player distributions, we plan to utilize a Z-test (to be discussed with
Prof. MacDonald). Future functionality could be to incorporate more seasons.
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