Please add a
basic citation
for +/-.

An Improved Estimate of Plus-Minus for NBA Players Using
Bayesian Regression with Contract and Team Rating Priors

Willis Lu, Andrew Liu, Reed Peterson
Faculty Advisor: Brian Macdonald
Client: Kostas Pelechrinis

Carnegie Mellon University MSP Program

Abstract

In this paper we seek an improved estimate of the Plus-Minus statistic for NBA players using Bayesian

regression. Using a Bayesian approach to model this statistic will allow us to generate a distribution rather

than a point estimate for each player’s true Plus-Minus, providing improved interpretability over

non-Bayesian methods. I‘fﬁﬁﬁ)_a?eru@ work with data from the 2018-19 NBA season, though our

methods should be able to be easily applied to any NBA season. As-srentisned earli use Bayesian

regression to model the Plus-Minus statistic for players, and we use a nested ridge regression to derive

logical prior distributions for each player based on their team and contract value. [Tentative] The model ~ ©k good,
we arrive at corrects for both teammate performance and overall team performance; we believe the model thanks
offers improvement on conventional methods for individual player performance. The model does,

however, have some outliers where some role players are overvalued.

Introduction

Our client, Kostas Pelechrinis, is a Professor at the University of Pittsburgh who is interested in obtaining
an improved estimate of the plus-minus statistic for NBA players. There are currently a number of
different statistics that are used to measure the performance of NBA players as this is one of the most
prevalent tasks for NBA teams. Every front office would like to be able to confidently answer questions
such as “is player A better than player B?”, allowing them to make better decisions when building a
roster. The plus-minus statistic is a very natural metric to use when measuring players’ contribution to
their teams simply by definition - plus-minus measures the net point differential for player A’s team while
player A is on the court. For example, suppose player A entered the game with his team down by 2 points
and got substituted out 5 minutes later with his team up by 3. Player A had a plus-minus of 5 points in
that stint of play, and the overall statistic is then normalized as plus-minus per 100 possessions.

Many estimates of players’ plus-minus statistics are biased due to the fact that there are 10 players on the
court at any given time, so players who frequently play with an elite player like LeBron James will have

an artificially inflated plus-minus compared to players who might be equally productive but play
alongside sub-par players. Additionally, point estimates of plus-minus are less informative than
distributions of plus-minus since distributions would allow us to examine the uncertainty associated with
a certain player’s performance. These are some of the core issues that we seek to address in this paper.

Our main tasks are summarized below:

e (Can we come up with reasonably informed, logical prior distributions for the players using
contract value and team ratings to help improve our main Bayesian regression model?

e Can we construct an informative Bayesian regression model that conditions on all players on the
court to eliminate collinearity while also outputting reasonable distributions for plus-minus
statistics?

e (Can we create an intuitive interactive visualization to display the results of our Bayesian model
and allow for comparisons between players?

Data
Contract Data

The first dataset contains information about player contracts. This data was obtained from two different
sources: gveb-scraping data found on kpotrak.com (2017-2019 seasons) and Kaggle (1990 - 2017 seasons).

These two data setS were joined on player name, and the final data frame resulted in 12,724 total

contracts, given to 2406 unique players across 32 teams. The joined data frame consisted of the following
variables:

e Player Name

e Contract Value

e Year of Contract

e Team

e Type (Rookie vs Non-rookie)
When joining the data frames, we did run into some difficulty with inconsistencies in player names; for
example “PJ Tucker” and “P.J. Tucker” are the same player but listed differently. Since there was not a
player id common to both data sets and there was not a solution that worked for evéry player, this issue
was fixed manually. The data relevant to this draft are from the 2017-2019 seasons.

'---""-—_

and so mostly from spotrak?

Mean Salary by Season

Be+06 -

Ge+06 -

would be more
informative to

adjust for

inflation especially
for a multiple-season
analysis 2e+067

4e+06 -

Mpan Salary (Unadjusted USD)

19‘BD ZIJIEIIJ ZIJI1|] ZIJIEIJ
Figure 1: blah blah blah (sour&&" kaggle.com)
As seen in Figurql#h, the average salary from 1990 to 2019 has been increasing. This isn’t a huge cause for
concern as discussed later in the Methods section since our priors or strictly based on only the previous
season and we are assuming we are blind to the current seasons data. If we used multiple seasons in our
priors, we would need to adjust for this positive trend between time and player salary.

move web address to list of references and
put citation here (remember ASA style in
both places)

Our NBA games data comes from 538 (https://gith m/fivethirtyeight/data/tree/master/nba-forecasts).

This data is actually used by 538 to create elo rankings for each team updated after each game. The data

goes back to 1946 and includes variables such as each team’s pre and pos@cores as well as the final define this
game scores and who had home court advantage. We will use this data to create a team rating system that

will be used to create priors for our bayesian regression.

Games Data

To actually use this dataset, we end up only using a few variables:
e Team 1 and Team 2
e Final scores for both teams

We use the final scores to calculate a point differential which tells us how much a team won by.
Additionally, we also want an indicator for which team is home. Our dataset contains games data in which
team 1 is always the home team. In order to create this home/away indicator we duplicate each game so
that each game shows twice. So for a game between Team 1 and Team 2, there will be two entries for this
game: one entry will show team 1 as the home team and the other entry will show team 2 as the away
team. This allows us to even out our dataset and factor in home court advantage into our team rankings.
Including home court advantage in our analysis also gives us some convenient information about how
much home court advantage is worth. Figure 1 below shows us the average point differential associated
with home court advantage. This comes out to 2.793 points in the 2018-2019 season and is around 2.5 for
all seasons.

Figure 1

https://github.com/fivethirtyeight/data/tree/master/nba-forecasts

NBA 2018-2019 Point Differentials

Delete this Iine,D

T T T 1 T
-60 -40 -20 0 20 40

Home Score - Away Score

Figure X: blah blah
$\ Figure number and caption below
Shifts Data figure

The last main dataset that we used was derived from NBA play-by-play data from eightthirtyfour (add 9ood, thanks.
citation here). The play-by-play dataset includes a number of different variables with only a few of
interest to us:

score margin

IDs of the players on the court for the home and away teams

ID of a player being substituted on

Home team

Away team

Field goal attempts

Offensive rebounds

Free throw attempts

Turnovers

We perform some data wrangling to reformat this play-by-play data into shifts, where a shift is defined as
a period of time where the same 10 players are on the court without any substitutions. For each shift we
record the home and away teams, the difference between home points and away points, the IDs of the
players on the court for that shift, and the approximate number of possessions that took place during the
shift. The number of possessions in a shift was computed using the fellessdng formula (include citation

here, nbastuffercom)? (delete colon)
good, mov

web addr to

list of refs and P = 0.96 - (FGA + TO + 0.44(FTA) — OREB), (comma)

put citation lower case

here (both in @E-re P = approximate number of possessions, FGA = field goal attempts, TO = turnovers,

ASA style)
FTA = free throw attempts, and OREB = offensive rebounds.

Shifts were then normalized to record point differential per 100 possessions. The final shifts dataset is
structured such that each row corresponds to a unique shift, the first column stores the normalized point

differential, and the remaining columns (roughly 530 columns) each correspond to an NBA player for the
given season. These columns are all filled with zeros except for the five players from the home team and

the five players on the away team who were on the court during the given shift. The five home players in
a shift are denoted with 1s, while the five away players in a shift are denoted with -1s.

This dataset is used to train our Bayesian regression model, where the set of columns corresponding to the
players forms our design matrix X (a sparse matrix of mostly zeros, with five 1s and five -1s per row),
while the first column (corresponding to the normalized point differential) is our response variable. This

o . th . . . th
allows for the convenient interpretation that the i coefficient mean is our estimate of the i player’s
plus-minus.

Methods

Deriving Meaningful Priors ,)

This section will include linear regression for team ratings as well as the ridge regressio@for priors.
When creating our ultimate priors to be used in bayesian regression, we split the data into tookies and
veterans. Nateretly, [his means that linear and ridge regression were performed separately on the two
classes as rookie contracts do not compare well to non-rookie contracts.

Linear Regression

Our team utilized linear regression in two ways:
e To derive team ratings for each season (described below in the

. . . . subsection on ridge regression)
e To derive standard errors for each player in our nested ridge regression modelr

Use in Deriving Team Ratings

To develop team ratings, we use the games data mentioned in the data section above. Our linear
regression takes point differentials of each game in a season as its dependent variable and uses team,
opponent, and location (home or away) as its independent variables. In this manner, by regressing over all
games in a season, we get a coefficient for each team that we then use as team ratings.

Use in Deriving Standard Errors for all Players

Linear regression is also used to derive a standard error for the final prior mean for each player.
The idea is that we want to have a unique prior mean and standard error for each player. A nested ridge
regression gives us the prior mean, but since glmnet and regularized regression techniques don’t provide
good estimates of standard error, we used linear regression. This linear regression follows the same
formula as the nested ridge regression, just without any penalization. We regress player coefficients
generated from an initial ridge regression using a per 100 possession point differential variable on the
contract priors and team rating priors for each player. This gives us an approximation for the standard
error for each player.

N.b. for future work: Ridge regression is Bayesian
regression with priors on the coefficients centered at zero,
and the prior variance is the ridge regression "tuning
parameter”. Since you know how to fit a Bayesian
regression, you could get SE's by fitting this Bayesian
model directly.

Ridge Regression

Ridge regression was used in the following ways:
e Used to predict coefficients for each player using a per 100 possession point differential variable.
e These coefficients were then used as the dependent variable in another ridge regression that tries
to predict this coefficient from team rating and contract prior.

Ridge regression is a method that we used heavily in the process of deriving meaningful prior
distributions for NBA players. Specifically, we used a nested regression framework to compute logical
priors for players in the following manner:

e Run a ridge regression with point differential per 100 possessions as the dependent variable, and)this would be a
pretty standard
multilevel model
(as in 36-617)
with the first
bullet here being
level 1 and the
second being
. . . level 2. Too bad
coefficient estimates for contract value and team ratings. you didn't try

e To obtain a final prior mean for each player, we use this regression model and insert the player’s that!

our sparse matrix X as the design matrix. This does not consider any prior information about the

players, their teams, or any other factors - it simply computes a coefficient for each player
representing their plus-minus estimate for a given season with no prior information.

e The coefficients from this ridge regression are then used as the dependent variable in another
regression model where the covariates are contract value and team ratings. This will give us

contract value and his team’s rating as the new values of the covariates.
(you could even

fit it using the
Bayesian

. . methods you
Bayesian Regression have learned...)

Once we have a sound methodology for deriving meaningful prior distributions for NBA players’
plus-minus statistics, we can turn our attention to the second research task of building an informative
Bayesian regression model to estimate plus-minus. With inspiration from Deshpande and Jensen (citation
. yup, thanks.
here), we seek a model of the fehowing formf” (delete colon)

y=B,+ XB+ € ,(comma)

(lower case)

)Nhere y is a vector containing the point differential in each shift, 8 0 is a constant representing
(space) : (space)

home-court advantage,)5" is our sparse design matrix described above in the Data section, an %ﬁs ur

vector of coefficients for each player. Note that 8 is p dimensional, X isn X p and y is n dimensional
where p is the number of NBA players who participated in a given season and n is the number of shifts in
a season.

Essentially what this becomes is a regression of point differential on only the ten players on the court for
each shift, since all other players take value 0. Also, recall that we have chosen to denote home players
with +1 and away players with -1 in order to stay consistent with our choice of representing point
differential as points home pointsaway. By regressing the point differential on all players on the court,

we should theoretically be able to accomplish the task of obtaining a conditional estimate of players’
plus-minuses given the other players on the court.

Aﬁ a sa_ft‘ity IdWe implement this model in Python using the pyme3 package (include citation here for pycm3). Pymc3 yup
Eeeg?()u:‘):l gou provides a convenient framework for specifying prior distributions, allowing us to input our priors derived
make from the ridge regression discussed above. Since this is a Bayesian model, the final output is a distribution

(a) a scatter ploft‘or each player’s plus-minus, along with a distribution for the home court advantage parameter Boand a

of naive +/ - VS distribution for the error term €.
the posterior

means of your adjusted +/-

Visualizing Results
(b) parallel boxplots great! You guys
of the posterior distribution of have made good

the difference The last goal of the project given to us by the client is to create an interactive visualization of the results. progress, and |
23;:“;22):iur This application is now in its developmental phase, and will be done with R Shiny. The current prototype Isc(::%li‘nfgortvlrz rghtiﬁy
and naive +/-, allows the user to select any number of players from a drop-down list from the 2018-2019 season. The app

for each playerapplication then displays our estimates of each selected player’s plus-minus distribution using ggplot.

Results

Plus-Minus Posterior Distributions with Bayesian Regression
So far we have been able to build a reasonable Bayesian regression model to estimate distributions of
players’ plus-minus statistics. Examples of the distributions that are fit from the Bayesian model can be

found in the next section where we show a prototype of an interactive visualization to display plus-minus.

[We are still finalizing some of our results/re-running our models one last time with some final edits, so
more will be added here in the future] ok

Visualization Prototype:

NBA Posterior Esimates yo0d start

Select Player

Stephen Cumry De'Aaron Fox
Emmanuel Mudiay

Actually, parallel boxplots, or even
just means with 95% credible
interval error bars, would carry the
same information as these normal
curves, and would likely be easier
for folks to interpret.

The figure above shows an example output of when the user selects 3 players. Here, De’ Aaron Fox is the
black distribution, Emmanuel Mudiay is the red, and Stephen Curry is the green (currently there is no
legend, but we will resolve this before the final). This is reasonable, as Curry is one of the best players in
the NBA, whereas Fox is an up-and-coming star, and Mudiay is a bench player.

Discussion [Tentative] ©k

As mentioned previously, one advantage of our method is that it provides a range of plus-minus values for
each player, which allows us to account for a range of player performance, as opposed to the point
estimates used in conventional methods such as box score plus-minus. The first component of our prior,
the contract value, allowed us to adjust players based on how a team views the player's value. By doing
showing this, we were able to mostly adjust for teammate’s impact on a player's plus-minus. For example, players
graphs [who always played with LeBron James, one of the greatest basketball players of all time, but did not

illustrating
both points | produce as much on an individual level had more muted posterior distribution than when compared to the

Ezrfe:?ymd box plus-minus. Another factor we adjusted for was team rating, as superstar players on bad teams suffer
neat from conventional methods. One such example is Bradley Beal on the Washington Wizards - a terrible

team during this season, who has a box score plus-minus consistent with a decent starter, but has the 13th
|_highest mean by our metric - a position more consistent with his star/superstar status.

compgringth One major challenge our team faced was determining how accurate our final posteriors were. Since
our «/-wi
ﬁaive +-and Tanking players is a largely subjective task, there is no ground truth ranking for us to compare our results.

being able to When ranking players by the posterior distribution mean, we did find that the league’s best players were

E:gg?nbﬁ:}chtowards the top, while important role players filled out the top half, with the bottom half being mostly
thetwo are benchwarmers. There were some outliers, such as Brook Lopez and Donte Divencenzo, two important
similar as Well 5] players on the Milwaukee Bucks, were ranked very highly; in contrast, Giannis Antetekounpo, their
as cases in which

the two are different,

would go some

distance toward

validating your

methodology.

MVP teammate, was only the 8th best rating. We believe that this shows that the model is not perfect
when correcting for teammates, but the overall trend is that role players that do not contribute much when
playing with superstar teammates are no longer skewed upwards.

:I,ngucaagr?i NYhile a visualization can be informative, our group would also like to produce a probabilistic comparison
you can " between two players (i.e. on any given day, Stephen Curry has a 90% chance of being better than

directly sampl®¢’aaron Fox). In order to compare player distributions, we plan to utilize a Z-test (to be discussed with
from the postepor . . .

distribution rof. MacDonald). Future functionality could be to incorporate more seasons.
of the difference in +/- of the two

players and estimate the prob

that the References

difference exceeds zero.

e Deshpande, S. & Jensen, S. (2016), Estimating an NBA player’s impact on his team s chances of
winning. Journal of Quantitative Analytics Sports.

e Salvatier J., Wiecki T.V., Fonnesbeck C. (2016) Probabilistic programming in Python using

PyMC3. Peer] Computer Science 2:¢55 DOI: 10.7717/peerj-cs.55.

https://eightthirtyfour.com/data

https://www.nbastuffer.com/analytics 101/possession/

Spotrak.com

https://www.kaggle.com/whitefero/nba-player-salary-19902017

good start on references. be sure
to put them in ASA form.

https://doi.org/10.7717/peerj-cs.55
https://www.nbastuffer.com/analytics101/possession/

TECHNICAL APPENDIX (INCOMPLETE)_Still need to cite in main
document

good, thanks for remembering

Bayesian Regression

This notebook should be a cleaner, more updated version of Bayesian_reg_2. Here we will use the priors that were computed from the nested ridge regression
methodology, and we will run the regression on 20k shifts. We will run it for three values of sigma - 2, 3, and 4 since these seem to be the most reasonable.

Note - at this time we have not yet addressed the issue of rookie contracts, so players like Luka Doncic and Donovan Mitchell have inaccurate priors.

In [1]: import pymc3 as pm
import pandas as pd

import numpy as np The commentary in
import arviz as az the 2nd half of the
appx is very

data = pd.read_csv("../data/shifts_data_final_2818_19.csv")
data.drop(data.columns[@], axis = 1, inplace = True)
data.head()

interesting.

] I'think you could
out[1]: point_diff_per_100 | home_team |away team|0 (1 |2 |3 (4 |5 |6 |..|519|520|521|522|523|524|525|526 (527|528 improve the

-36.458333 Celtics Nuggets [1.0[1.0|{0.0|0.0|0.0|c.0|00|..|0.0 [0.0|0.0 |00 |0.0|0.0 |00 |0.0 |00 |00 commentary in tl_1e
1st half to make it

o

139.062500 Celtics Nuggets |0.0|1.0|0.0|0.0|0.0{0.0{00|. {00 0.0 [0.0 0.0 |0.0|0.0 |00 |00 |00 |00 more readable and

2|-72.337963 Celtics Nuggets |0.0|0.0|1.0|0.0|0.0{c.0]00] |00 0.0 (0.0 |0.0 00|00 |00 |00 |00 |00 make clearer what

3|-36.168981 Celtics Nuggets |0.0|0.0|1.0[00|0.0l0.0]00|. |00 |00 |00 |00 |00 |00 |00 |00 |00 |00 y‘i’_lu are doing and
why.

438.296569 Celtics Nuggets |0.0|0.0|1.0|0.0|0.0{c.0]00] {00 |00 0.0 |00 |00 |00 |00 |00 |00 |00 Y

5 rows x 532 columns

Note - the priors are too small. Scale them up to range from like -10 to 10

So far with standard dev of 4, the results are worse with these priors compared to the old priors we used before. We see random players with very high +/-

In [2]: priors_df = pd.read_csv("../data/Ridge_Priors+5E_2817.csv")
priors_df.drop(priors_df.columns[@], axis = 1, inplace = True)
priors_df.columns = ['Team', 'mu’, 'sd’, 'name’, 'coefs', 'idx', 'player_id', 'finalpriors’, ‘finalse’]
priors_df.head()
priors_df.sort_values(by = ['idx'], inplace = True)
rookie_priors_df = pd.read_csv("../data/priors_rookies.csv")
rookie_priors_df.columns = ["idx", "mu", "sd", "name", "type"]
rockie_priors_df

priors_range = max(priors_df.finalpriors) - min(priors_df.finalpriors)
priors_range

rookie_priors_range = max(roockie_priors_df.mu) - min(rookie_priors_df.mu)
rockie_priors_range

factor = priors_range / rookie_priors_range * ©.75 # we will rescale rookies to have 75% of the range of vets since they shouldn't be equ
ivalent to someone Like Lebron

rockie_priors_df.mu *= factor

rockie_priors_df.mu -= np.mean(roockie_priors_df.mu) # center rookie means

rookie priors_df.sd = max(priors_df.finalse) # set the se for all rookies to be the max se found among veterans since rookies should be m
ore variable intuitively
rockie_priors_df

max (rookie_priors_df.mu) - min(rookie_priors_df.mu)
factor = 15 / priors_range

#HoH

%

priors_df.finalpriors *= factor
priors_df.sort_values(by = ['finalpriors']).tail(28)

ey

priors_df.finalpriors -= np.mean(priors_df.finalpriors)

priors_df.sort values(by = ['finalpriors']).tail(26)

Out[2]:

In [3]:

Out[3]:

idx (mu sd name type
0 |1 |2.249577 |0.761081|Jayson Tatum Rookie
1 |2 [1.237387 |0.761081 [Jaylen Brown Rookie
2 |3 |-0.164070|0.761081 | Terry Rozier Rookie
3 |14 |-0.889821|0.761081 | OG Anunchy Rookie
4 |16 |-0.503590|0.761081 | Delon Wright Rookie
97 |494|-0.510240|0.761081 | Dario Saric Rookie
98 |504|-0.916798 | 0.761081 | Aaron Holiday Rookie
99 |507|-0.622432|0.761081 | Lonnie Walker IV | Rookie
100 | 514 | 1.625617 | 0.761081 | Brandon Ingram Rookie
101|515 |-0.864193 | 0.761081 [Chandler Hutchison | Rookie

102 rows = 5 columns

N
NOWw We

drop_lst = []

for 1 in range(len(priors_df)):
cur_idx = priors_df.iloc[i]["idx"]

if cur_idx in np.array(rookie_priors_df[idx']):

drop_lst.append(i) #

priors_df.reset_index(drop

we need to go through priors_df and drop any rows

add this index to the List

True, inplace = True)

that are

fo

r players with rookie contracts

s to be dropped

priors_df.drop(drop_lst, inplace = True)
priors_df

Team mu sd | name coefs idx | player_id | finalpriors | finalse
70 |Boston Celtics 1.666667 |5 | Marcus Morris -4.003747 |0 | 202694 |-0.269767 |0.259020
68 |Boston Celtics 1.881800 |5 |Jayson Tatum 3.790331 |1 1628369 |-0.158154 | 0.253661
67 |Boston Celtics 1.652160 |5 |Jaylen Brown -5.338793 |2 1627759 |-0.277293 | 0259416
73 |Boston Celtics 0.662840 |5 | Terry Rozier -2.256052 |3 1626179 |-0.790558 |0.295269
308 | Chicago Bulls 4.596167 |5 |Robin Lopez 3294456 |4 | 201577 | 1.249145 | 0414105
179 | Miami Heat 4651333 |5 |James Johnson -6.849357 | 509 | 201949 | 1.278399 | 0251177
171 | Charlotte Homets | 0.900000 (5 | Michael Carter-Williams | -4.064299 | 510| 203487 | -0.667793 | 0.239569
320 | Phoenix Suns 1.050977 |5 |T.J. Warren 5.711320 | 513203933 |-0.5390305 | 0455433
214 | Los Angeles Lakers | 1.839800 |5 |Brandon Ingram 1.426551 | 514 (1627742 |-0.180359 |0.214220
84 | Boston Celtics 0.030953 |5 | Demetrius Jackson -1.072410| 516 | 1627743 | -1.118385 | 0.325535
299 rows = 9 columns
Note - priors_df is missing any players with no contract data due to name inconsistencies. We

prior_means =

np.zeros(529)

for i in range(len(prior_means)):
if i in np.array(priors_df['idx"]):
= priors_df.loc[priors_df['idx'] == i]['finalpriors’'].iloc[@]
elif i in np.array(rockie_priors_df['idx']):
prior_means[i] = rookie_priors_df.loc[rookie_priors_df[*idx"] == i]['mu’].iloc[8]

prior_means[i]

u
+
(=]
+
=~
m
2
o
[~]

In [5]: |prior_sd = np.full(529, np.mean(priors_df.finalse)) # initialize all standard error

for i in range(len(prior_sd)):
if i in np.array(priors_df[idx']):
prior_sd[i] = priors_df.loc[priors_df['idx'] == i]['finalse'].iloc[8]
elif i in np.array(rookie_priors_df['idx']):
prior_sd[i] = rookie_priors_df.loc[rookie_priors_df['idx"] == i]['sd"].iloc[8]

prior_sd4
prior_sd3
prior_sd2

doH H

In [B6]: |# store home and away teams for potential use later when we incorporate team ratings
home_teams = data[home_team']
away_teams = data[away_team']
now drop these columns from the main training dataframe

data.drop(["home_team’, 'away_team'], axis = 1, inplace = True)
)

data.head(

Out[s]: point_diff_per_100(0 |1 |2 |3 |4 (5 |6 |7 (8 |..|519(520|521|522|523|524|525|526 527|528
0|-26.458333 1.0(1.0(0.0|0.0{00|0.0(0.0{0.0|0.0|...{0.0 (0.0 [0.0 |00 |0.0 (00 |0.0|0.0 |00 |00
1139.062500 0.0(10|00|00|00|00(00|00|00(...(0.0 |00 |00 (00|00 |00 (00 |0.0]0.0 |00
2|-72.337963 0.0|00|1.0{00|00|00(00|00|00(...(00 |00 |00 (00|00 |00 (00 |0.0]0.0 |00
3|-36.168981 0.0|00|1.0{00|00|00(00|00|00(...(00 |00 |00 (00|00 |00 (00 |0.0]0.0 |00
4|38.296569 0.0|00|1.0{00|00|00(00|00|00(...(00 |00 |00 (00|00 |00 (00 |0.0]0.0 |00
5 rows x 530 columns

In [7]: # need to rename columns now since numbers confuse pymc3
new_cols = []
for i in range(np.shape(data)[1]):

if i == @:
new_cols.append(“point_diff™)
else:
new_cols.append("p” + str(i-1))
x_df = data.iloc[:20688,]
x_df = data
x_df.columns = new_cols
x_df

out[7]: point_diff (p0 |p1 (p2 [p3 (P4 |[p5 |P6 |PT7 |P8 |...|P519|p520|p521 | p522|p523 |p524 | p525| p526 | p527 | p528
0 -36.458333(1.0{1.0|0.0(0.0|00 (00|00 (00|00 00 |00 (00 |OO (0O |00 |0OO (0O |00 (0O
1 39.062500 (0.0|1.0|00(0.0|00 (00|00 (00O]|0O]|..|00O (0O |0QO (0O (0O (00 (00O |00 |0O (0.0
2 -72.337963(0.0|0.0|1.0(0.0|0.0 (00|00 (00|00]|..|00 (0O |00 (00O (0O (00O |00 |00 |00 (0.0
3 -36.168981(0.0|0.0|1.0(0.0|0.0 {0000 (00|00O]|..|00O (0O |0O (00O (0O (00 (00O |00 (0O (0.0
4 38.296569 (0.0|0.0|1.0(0.0|00 00|00 (00|00]|..|00 (0O |00 (00O (0O (00O |00 |00 |00 (0.0

23885|-52.083333|0.0(00|00(00|-10|00|00 |00O|00O|...|00O (0O |00 |0OO (0O (00O (0O (0O |00 |00

33886 | 36.868159 (0.0|0.0|00(00|10(00|00 (00O|0O|..|00 (0O |00 (00O |00 (00O (00O |00 |0O |00

23887 |60.562016 |0.0(00|00(00(00 |00O|-1.0|00|00]|...|0O0O (0O |00 |0OO (0O (00O (0O (00O |00 |00

33888 |-72.337963|0.0(0.0|00(00|10(00|00 |(00O|0O|..|00 (0O |0OO (00O (OO (00O (00O |00 |0O |00

3388975483092 |00(00|0O0(00|00 |00O|-10|0C0O|00|..|O0O (0QO |00 |0QO (CO (0O (0O [0QO |00 |00

33830 rows x 530 columns

Below we fit the Bayesian model. ONLY run this cell if we do not have a saved trace. If
we have a saved trace, proceed further down and execute the cell to load a saved
trace.

In [68]:

In [9]:

In [61]:

In [27]:

In [18]:

In [77]:

out[77]:

In [82]:

*®
¥

np.array(x df.iloc[:,1:])
np.array(x_df.iloc[:,8])

%_shape = np.shape(x)[1]

with pm.Model() as model:
priors
sigma = pm.HalfCauchy(“"sigma", beta=18) # arbitrarily defined
intercept = pm.Normal("Intercept”, @, sigma=28) # arbitrarily defined
x_prior_means = prior_means # defined above
Xx_prior_sigmas = prior_sd * 5 # defined above
x_prior_means = np.zeros(x_shape) # just testing with mean zero to compare to ridge

x_coeff = pm.Normal("x", mu = x_prior_means, sigma=x_prior_sigmas, shape = x_shape) # original method - no list comprehension

likelihood = pm.Normal("y", mu=intercept + x_coeff.dot(x.T), sigma=sigma, observed=y) # original method - no List comprehension

trace = pm.sample (1608, tune = 1880, cores = 1)

fUsers/reedpeterson/opt/anaconda3/1ib/python3.7/site-packages/pymc3/sampling.py:468: FutureWarning: In an upcoming release, pm.sample wil
1 return an “arviz.InferenceData’ object instead of a "MultiTrace® by default. You can pass return_inferencedata=True or return_inference
data=False to be safe and silence this warning.
FutureWarning,
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Sequential sampling (2 chains in 1 job)
NUTS: [x, Intercept, sigma]

100.00% [2000/2000 13:19<00:00 Sampling chain 0, 0 divergences]
]

fUsers/reedpeterson/opt/anaconda3/1ib/python3.7/site-packages/pymc3/math.py:246: RuntimeWarning: divide by zero encountered in loglp
return np.where(x < @.69314718@5529453, np.log(-np.expml(-x)), np.loglp(-np.exp(-x}))

100.00% [2000/2000 14:20<00:00 Sampling chain 1, 0 divergences]
]

Sampling 2 chains for 1_86@ tune and 1_@@8 draw iterations (2_@88 + 2_08e draws total) took 1668 seconds.

Below we save the trace

with model:
path = pm.save_trace(trace, directory = "main_model_trace")

with model:

results_df = az.summary(trace)

Below we load the saved trace

¥ = np.array(x_df.iloc[:,1:])
y = np.array(x_df.iloc[:,8])

%_shape = np.shape(x)[1]

with pm.Model() as model:
priors
sigma = pm.HalfCauchy("sigma™, beta=18) # arbitrarily defined
intercept = pm.MNormal("Intercept”, @, sigma=28) # arbitrarily defined
x_prior_means = prior_means # defined above
x_prior_sigmas = prior_sd # defined above
¥x_prior_means = np.zeros(x_shape) # just testing with mean zero to compare to ridge

x_coeff = pm.MNormal("x", mu = x_prior_means, sigma=x_prior_sigmas, shape = x_shape) # original method - no List comprehension
likelihood = pm.Normal("y", mu=intercept + x_coeff.dot(x.T), sigma=sigma, observed=y) # original method - no List comprehension

loaded_trace = pm.load_trace("main_model trace")

results_df = az.summary(loaded_trace)

import the player map dictionary to go between index, player id, and name
player_index_map = pd.read_csv("../data/player_index_map.csv")

player_index_map.loc[player_index_map.index == 212]

Unnamed: 0 | player_id | index | player_name

212|212 203496.0 | 212 | Robert Covington

print((results_df.loc[results_df['mean’'] > 3]).sort_values(by=["mean"]))

mean sd hdi_3% hdi 87% mcse mean mcse sd ess _bulk

x[212] 3.822 1.591 a8.876 6.825 a.828 8.822 3279.8
x[412] 3.828 1.848 -B.513 6.528 8.833 g.829 3126.8
x[358] 3.189 2.845 -B8.585 7.196 8.628 8.829 E176.@
x[42] 3.245 1.857 -8.341 6.561 8.831 @.224 3509.8
x[219] 3.222 2,953 -2.285 8.675 8.853 8.a56 3858.8
x[28] 3.838 1.688 0.716 6.035 B.e27 8.822 3312.8
x[81] 3.824 1.831 8.951 7.821 8.626 8.828 4@53.8
%x[335] 4.848 2.848 B8.21° 7.798 8.833 8.828 3833.8
x[129] 4.236 1.7834 B.734 7.451 8.833 8.826 2986.8
x[38] 4,528 1.891 1.322 7.548 8.629 8.a21 34s51.6@
x[425] 4,528 1.557 1.743 7.586 8.624 8.e19 4628.8
x[112] 4.548 1.795 1.284 7.872 a.e27 g.822 42089.8
®[59] 4.682 1.727 1.332 7.828 a.822 g.822 3445.8
x[95] 4.616 2.3@% 8.422 9.81% 8.637 8.832 3856.0
x[386] 5.874 1.798 1.779 §.412 8.826 g.e21 4928.8
x[225] 5.8838 2.164 1.888 9.895 a.838 g.829 3148.8
x[321] 5.124 2.848 1.567 8.878 8.833 8.828 3833.0
x[462] £.217 2.811 1.148 8.8562 8.631 8.a24 4315.8
x[B3] 6.528 1.81a 3.181 9.826 a.828 g.221 4367.8
x[287] 6.798 2.895 2.882 18.288 a8.834 8.825 3949.08
x[252] 7.275 2.1L57 3.320 11.379 B6.837 8.829 3445.08
x[317] 8.3B8 2.411 3.837 12.759 B.638 8.829 4@22.8
sigma 78.113 @.298 77.532 7B8.653 a.8as 8.e83 3888.08

ess_tail r_hat

x[212] 1264.86 1.81
x[412] 1316.8 1.88
x[358] 1556.8 1.88
x[42] 1389.6 1.80
x[219] 1244.8 1.@8@
x[28] 1588.8 1.88
x[81] 1528.2 1.8@
x[335] 1285.8 1.80
x[129] 1279.8 1.08@
x[38] 13%3.8 1.88
x[425] 1232.6 1.80
x[112] 1518.8 1.80
x[59] 14%2.8 1.88
%[25] 1487.8 1.88
x[386] 1287.6 1.80
x[225] 14%8.8 1.@@
x[321] 1411.8 1.88
x[462] 1355.82 1.8@
x[63] 1683.86 1.80
x[287] 1266.8 1.08
x[252] 1474.8 1.88
%[317] 1528.2 1.8@
sigma 1138.8 1.88

Results from using the Ridge-derived priors for mean and sd for each player, running Bayesian
Regression on full season

When we use nested ridge regression to derive prior means and standard deviations for each player, we see the following results for the Bayesian regression model:

« Steph Curry

« Paul Millsap

+ LeBron James

« James Harden

« Gordon Hayward (this one is bizarre - Hayward was not good in 2018-19 or 2017-18 so his prior should not be high and his 2018/19 data should not boost him)
« Al Horford

« Damian Lillard

« IMike Conley

« DelMar DeRozan

« Carmelo Anthony (another bizarre one - Melo was not good)

« Markelle Fultz (ancother bad one - | think we're starting to see that priors are being weighed too heavily due to small standard errors)
« KD

« CP3

« Bradley Beal

« AD

» Andre Drummond

» Brook Lopez

« Giannis

Now - results after we scale up the standard deviations by a factor of 3

« Curry

« Millsap

« Harden

« Dame

« LeBron

« Hayward

« Al Horford

« Giannis

« Rudy Gobert
« Brook Lopez
« Bradley Beal
« Steven Adams
« Luka Doncic
« AD

« Andre Drummond
« PG

« Mike Conley
« CP3

« KD

« Danilo Galinari

When we scale up standard deviations by factor of 5, we see essentially the same results as above

The following cell shows how to get the distribution for a specific player

In this case we get the distribution for Steph Curry (index 317)

In []: import seaborn as sns

with model:
az.plot_trace(trace3)
print(np.shape(trace3['x"]))
print(max(trace3['x"]{:,317]))
sns.distplot(trace['x"][:,317], hist = False)

EE e

In []: with model:

az.plot_trace(trace)

