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Abstract
Intelligent Tutoring Systems are an educational technology that provides students with a virtual
learning environment, where every action of a student is tracked and recorded as a transaction.
Students deal with math workspaces in these tutoring systems, which have problems, and each
problem further has many steps. Whenever a student solves a step correctly, they learn a
Knowledge Component (KC), and in this paper, we investigate prerequisite relationships
between KCs. We observe Gaussian Graphical Models (GGM) to identify strongly related KCs
and decide the metric of student learning based on the best structure we observe in the GGM. To
determine prerequisite relationships, we use mixed-effects logistic regression and inspect the
statistical significance of the coefficient of the main effect. Based on this approach, we know the
prerequisite relation between KCs among student data on three workspaces.

1. Introduction

Intelligent Tutoring Systems (ITS) are an educational technology that provides students with a
virtual learning environment and logs data of students’ learning experience. Every action a
student makes - from answering a question to requesting hints - would be tracked by the system
and recorded as a transaction. The project aims at making ITS more effective, and the core
problem is to determine whether prerequisite relations among math topics can be detected in log
data. If we can determine mastering a certain math skill is necessary or can facilitate the learning
of another skill, then the tutor system could train students on this prerequisite skill first and yield
a better learning experience.

Some specific questions to be addressed in the paper are:
● How do we determine whether two math skills are related?
● What metrics of learning and performance?
● How do we test whether topic/skill/unit A is prerequisite for B?

2. Data

The data for this study are provided by Carnegie Learning. Four datasets are used in this study.
The first three datasets provide information about a random sample of students’ performance on
three different workspaces in 2019-2020 academic year. The three workspaces are “A:
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Analyzing Models of Two-Step Linear Relationships”, “B: Modeling Two-Step Expressions”,
and “C: Using Scale Factor”. In this study, we assume that the knowledge components in
workspace “A: Analyzing Models of Two-Step Linear Relationships” are prerequisite for
knowledge components in workspace “B: Modeling Two-Step Expressions”. Moreover, we
believe that the “C: Using Scale Factor” workspace should not be a prerequisite of two
workspaces A and B, and comes prior to them in the curriculum. The reader should refer to
Corbett et al., 2000 for details about this prerequisite relationship. The fourth dataset is a larger
dataset which contains a random sample of 500 students’ performance in all Course 2 (Grade 7)
MATHia workspaces in the 2019-2020 academic year.

Dataset # of
Students

# of Unique Knowledge
Components

# of Unique Steps
(Opportunities)

A: Analyzing Models of Two-Step
Linear Relationships

29949 7 7

B: Modeling Two-Step
Expressions

27005 9 9

C: Using Scale Factor 19521 4 29

MATHia Course 2 500 964 117210

Table 1: General Overview of Datasets

Table 1 provides some general information about the number of unique students, the number of
unique knowledge components, and the number of unique steps (opportunities) in each data set.

Variable Name Values Description

Anno.Student.Id Integer anonymous student identifier

Time Timestamp Timestamp in UNIX epoch time

Problem.Name Character Identifier for the problem

Step.Name Character Identifier for the problem-step

Action “Attempt”,”Do
ne”, “Hint

Student’s action for the problem-step. “Attempt” =
student made a problem-solving attempt, “Done” =
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Request”, “Hint
Level Change”

student clicked the “Done” button required to complete
a problem, “Hint Request” = Student requests a hint,
“Hint Level Change” = Student requests a hint at a
“deeper” level

Outcome “OK”,
“ERROR”,
“BUG”,
“INITIAL_HIN
T”,
“HINT_LEVE
L_CHANGE”

“OK” = correct, “ERROR” = error that isn’t
specifically tracked for JIT feedback, “BUG” = error
that is tracked for just-in-time, context-sensitive
feedback, “INITIAL_HINT” = first-level hint is
provided, “HINT_LEVEL_CHANGE” = a “deeper”
level hint is provided

KC..MATHia. Character The skill or knowledge component (KC) tracked by
MATHia for this problem-step

CF (Skill New

p-Known)​

Real Number BKT skill estimate after this action (i.e., semantic
event)

Table 2: Descriptions of Variables in datasets

In Table 2, we provide descriptions of selected variables. Within each dataset, there are multiple
problems. Within each problem, multiple steps (opportunities) are presented to students. A
unique knowledge component is mapped to each step. Readers can refer to Fancsali et al., 2021
for more details about the variable descriptions.

3. Methods
Gaussian Graphical Models

A gaussian graphical model (GGM) is an exploratory analysis tool that provides an easy to grasp
overview of relationships between knowledge components (KCs) from workspaces in an
intelligent tutoring system. The GGM uses correlations between KCs calculated using the Full
Information Maximum Likelihood (FIML) criteria. Using this correlation matrix as an input, the
graphical model comprises KCs depicted by circles and a set of lines that visualize the
relationship between the KCs. The thickness of these lines represents the strength of
relationships and the correlations can be interpreted as partial correlation coefficients. The line
has green color if the correlation is positive and red otherwise. For example, we see in Figure 1,
a thick green line between KC 1 and KC 5. This implies a strong association between these two
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KCs, after eliminating for the effect of other KCs. To further learn about the prerequisite
structure between these KCs, we use mixed-effects logistic regression models. GGM assumes an
underlying multivariate normal distribution for the data, and further details are mentioned in the
Discussion section of this paper.

Initial opportunities

To better understand students’ performance on each knowledge component, for each student, we
used initial opportunities instead of all opportunities to evaluate that student’s understanding of
mathematical concepts. For each knowledge component, students are given multiple
opportunities (steps) until students demonstrate mastery of that mathematical skill. Different
numbers of opportunities are given to each student based on their performance. In order to
prevent smoothing out differences among students, we chose to use initial opportunities which
are better indications of students’ mastery level.

We utilized Gaussian Graphical Models to determine the cutoff point for initial opportunities. We
generated multiple Gaussian Graphical Models using different cutoff points. The number of
opportunities which produces the model with the best structure is selected as our final cutoff
point for initial opportunities.

Mixed Effects Logistic Regression

To better understand the partial correlations between two KCs from the Gaussian Graphical
Model and to quantify the influence one KC has on another, we adopted a mixed effects logistic
regression approach. If there exist some prerequisite relationships between two knowledge
components KC1 and KC2, and we assume KC2 is a prerequisite of KC1, then student who
knows KC2 should have better performance on KC1 than student who does not know KC2. At
the same time, whether a student knows KC1 should not have much effect on student's
performance on KC2.

We used First Attempt of KC 1 as the dependent variable, which is a binary variable that
indicates whether a student answered the step correctly on their first attempt. Predictors include
KC 1 opportunity - the number of times a student has encountered KC 1, whether a student has
mastered KC 2, and an interaction term. Student ID is the random effect term since its variability
cannot be explained by the predictors of the model. The tutor system calculates a score of 0 to 1
to indicate a student's grasp of a certain KC (CF.Skill.New.P.Known), and deems a student has
mastered this KC if the score is above 0.95. Since the opportunity column only exists in a side
dataset which includes 500 students, we used this smaller dataset instead of the complete ones
mentioned in the data section.
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The final model looks like:

glmer(First Attempt of KC1 ~ 1 + KC1 Opportunity + know_KC2 + KC1 Opportunity :
know_KC2 + (1|Anon.Student.Id))

4. Results

Gaussian Graphical Models

The following graphical model (Figure 1) is of success rates of students on initial 2 opportunities
for KCs on the three workspaces: A: Analyzing Models of Two-Step Linear Relationships”, “B:
Modeling Two-Step Expressions”, and “C: Using Scale Factor”.

Figure 1: Gaussian Graphical Model of Success Rates on Initial 2 Opportunities
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KC
Number

KC Workspace

1 define variable-1 B

2 enter given, reading numerals-1 B

3 enter given, reading words-1 B

4 find y, any form-1 B

5 identifying units-1 B

6 interpret scenario with numbers A

7 interpret scenario with words A

8 match _dep expression with description. A

9 match _indep expression with description. A

10 match _intercept expression with description. A

11 match _linear-term expression with description. A

12 match _slope expression with description. A

13 scale-drawings-3-determine unknown measure, complex scale
factor.

C

14 scale-drawings-3-determine unknown measure, simple scale factor. C

15 scale-drawings-3-enter scale factor units. C

16 scale-drawings-3-enter scale factor value. C

17 write expression, negative intercept-1 B

18 write expression, negative slope-1 B

19 write expression, positive intercept-1 B

20 write expression, positive slope-1 B

Table 3:
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The following graphical model (Figure 2) is of success rates of students on initial 2 opportunities
of intentionally chosen KCs from the Course 2 (Grade 7) MATHia workspaces in the 2019-2020
academic year. The KCs which had similar mathematical meaning were chosen, such that we
would expect prerequisite relationships among them. Also, some KCs were added randomly
which should not be a prerequisite of any other KCs.

Figure 2:

KC Number KC

1 select combine like terms-1

2 combine like terms-1

3 select perform division-1

4 perform division

5 select simplify fractions-1
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6 select apply exponent-1

7 apply exponent-1

8 select perform multiplication-1

9 perform multiplication-1

10 select combine like terms, unary coefficient

11 select combine like terms within parens

12 enter given triangular prism dimension of base

13 enter given prism volume

14 find area of base of triangular prism

15 find prism height

16 work with triangular prism in standard position

17 enter given prism height

18 enter given rectangular prism dimension of base

19 find rectangular prism dimension of base

20 find area of base of rectangular prism

21 work with prism in context

22 find triangular prism dimension of base

23 work with prism out of context

24 enter given pyramid side length of base

25 enter given pyramid height
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26 find area of base of pyramid

27 find pyramid volume

28 work with pyramid in standard position

29 enter given pyramid volume

30 find pyramid height

31 work with pyramid out of context

32 work with pyramid in context

Table 4: Mathematical Interpretations for Knowledge Components

Initial Opportunities

After comparison, the first two initial opportunities gave us the best structured Gaussian
Graphical Model (Figure 1). Therefore, for the rest of the analysis, we are going to use the first
two initial opportunities to evaluate students’ performance. More details about the Gaussian
Graphical Models for different numbers of opportunities are available in Appendix 2.

Mixed Effects Logistic Regression

For simplicity, the glmer method was first applied on data of workspace B: "Modeling Two-Step
Expressions”. Glmer was applied to different pairs of knowledge components, and the model
results were recorded in Table 5. Main effect indicates if knowing kc 2 would influence student's
performance on kc 1, and the interaction term tells us if knowing kc 2 would make learning kc 1
faster. The coefficients in red are not statistically significant (p-value > 0.05).

The results align with what we saw in the Gaussian Graphical Models. For example, there is no
line connecting KC1 and KC18 in Figure 3, and the coefficients of main effect in Table 5 for
them are mostly not significant. It is also interesting to note that the coefficients for interaction
terms are all negative, which means learning a certain KC would have a negative effect on how
fast students learn another KC.
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"Prereq" KC KC Main Effect Opportunity Interaction

1 5 1.21 0.18 -0.13

5 1 2.43 0.34 -0.31

4 5 1.20 0.10 -0.07

5 4 0.50 0.08 -0.04

18 1 1.45 0.63 -0.60

1 18 30.98 28.63 -28.90

18 5 1.20 0.12 -0.08

5 18 4.00 1.99 -1.64

Table 5: Glmer Results

5. Discussion
A limitation of GGM for this project is that the method assumes an underlying multivariate
normal distribution for the data. We applied logit transformation to transform the distribution of
variables (success rate for initial opportunities for each KC). For some KCs, the transformed data
points were normally distributed, but for other KCs, we observed a distribution that had a lot of
data points at the end tails. This is because of observations having actual success rates of either 0
or 1. Before applying logit transformation, all 0s were changed to 0.0001, and all 1s were
changed to 0.9999.

Even though the glmer method is a good way to quantify correlations between knowledge
components, it does not infer causal relationships. Time order is a challenge here since it does
not take into account the order of a student learning certain knowledge components. The order of
topics is usually fixed, which makes it harder to test for prerequisites.
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Appendix 1. Gaussian Graphical Models

Data import and data wrangling

mathia <- read.csv(file =
"HCI_Prerequisite_Relations/data_code/data/MATHia_Course_2_(Grade-7)-All_Data_2019-2020/course
2_1920_sample1_500students_datashop.txt", header = TRUE, sep = "\t")

kcs <- unique(mathia$KC.Model.MATHia.)[c(46:56,123:143)]

kcs

##  [1] "select combine like terms-1"

##  [2] "combine like terms-1"

##  [3] "select perform division-1"

##  [4] "perform division"

##  [5] "select simplify fractions-1"

##  [6] "select apply exponent-1"

##  [7] "apply exponent-1"

##  [8] "select perform multiplication-1"

##  [9] "perform multiplication-1"

## [10] "select combine like terms, unary coefficient"

## [11] "select combine like terms within parens"

## [12] "enter given triangular prism dimension of base"

## [13] "enter given prism volume"

## [14] "find area of base of triangular prism"

## [15] "find prism height"
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## [16] "work with triangular prism in standard position"

## [17] "enter given prism height"

## [18] "enter given rectangular prism dimension of base"

## [19] "find rectangular prism dimension of base"

## [20] "find area of base of rectangular prism"

## [21] "work with prism in context"

## [22] "find triangular prism dimension of base"

## [23] "work with prism out of context"

## [24] "enter given pyramid side length of base"

## [25] "enter given pyramid height"

## [26] "find area of base of pyramid"

## [27] "find pyramid volume"

## [28] "work with pyramid in standard position"

## [29] "enter given pyramid volume"

## [30] "find pyramid height"

## [31] "work with pyramid out of context"

## [32] "work with pyramid in context"

new_mathia <- mathia %>%

filter(KC.Model.MATHia. %in% kcs)

new_mathia <- new_mathia %>%

select(Anon.Student.Id, KC.Model.MATHia., Outcome) %>%

group_by(Anon.Student.Id)

new_mathia <- new_mathia %>%

pivot_wider(names_from = KC.Model.MATHia., values_from = Outcome)

revised_mathia <- mathia %>%

filter(KC.Model.MATHia. %in% kcs) %>%
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select(Anon.Student.Id, KC.Model.MATHia., Step.Name, Level..Workspace.Id.) %>%

count(Anon.Student.Id, KC.Model.MATHia., Step.Name, Level..Workspace.Id.)

revised_mathia <- revised_mathia %>%

pivot_wider(names_from = KC.Model.MATHia., values_from = n)

new_revised_mathia <- revised_mathia %>%

select(-Step.Name, -Level..Workspace.Id.) %>%

group_by(Anon.Student.Id) %>%

mutate("select combine like terms-1" = list(`select combine like terms-1`),

"combine like terms-1" = list(`combine like terms-1`),

"select perform division-1" = list(`select perform division-1`),

"perform division" = list(`perform division`),

"select simplify fractions-1" = list(`select simplify fractions-1`),

"select apply exponent-1" = list(`select apply exponent-1`),

"apply exponent-1" = list(`apply exponent-1`),

"select perform multiplication-1" = list(`select perform multiplication-1`),

"perform multiplication-1" = list(`perform multiplication-1`),

"select combine like terms, unary coefficient" = list(`select combine like terms, unary coefficient`),

"select combine like terms within parens" = list(`select combine like terms within parens`),

"enter given triangular prism dimension of base" = list(`enter given triangular prism dimension of
base`),

"enter given prism volume" = list(`enter given prism volume`),

"find area of base of triangular prism" = list(`find area of base of triangular prism`),

"find prism height" = list(`find prism height`),

"work with triangular prism in standard position" = list(`work with triangular prism in standard
position`),
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"enter given prism height" = list(`enter given prism height`),

"enter given rectangular prism dimension of base" = list(`enter given rectangular prism dimension
of base`),

"find rectangular prism dimension of base" = list(`find rectangular prism dimension of base`),

"find area of base of rectangular prism" = list(`find area of base of rectangular prism`),

"work with prism in context" = list(`work with prism in context`),

"find triangular prism dimension of base" = list(`find triangular prism dimension of base`),

"work with prism out of context" = list(`work with prism out of context`),

"enter given pyramid side length of base" = list(`enter given pyramid side length of base`),

"enter given pyramid height" = list(`enter given pyramid height`),

"find area of base of pyramid" = list(`find area of base of pyramid`),

"find pyramid volume" = list(`find pyramid volume`),

"work with pyramid in standard position" = list(`work with pyramid in standard position`),

"enter given pyramid volume" = list(`enter given pyramid volume`),

"find pyramid height" = list(`find pyramid height`),

"work with pyramid out of context" = list(`work with pyramid out of context`),

"work with pyramid in context" = list(`work with pyramid in context`)) %>%

distinct()

opp_mathia <- new_revised_mathia

remove_na <- function(v){

v1 <- v[!is.na(v)]

if (is_empty(v1) == TRUE){

return(0)

}

return(v1)
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}

for (i in colnames(opp_mathia)[-1]){

opp_mathia[[i]] <- lapply(opp_mathia[[i]], remove_na)

}

get_opp_success_rate <- function(v1, v2){

if (v1 == 0 | is.null(v2)==TRUE){

return(0)

}

success <- function(vec){

ret_vec <- length(which(vec %in% "OK"))/length(vec)

return(ret_vec)

}

ret_fin_vec <- c()

v <- v2

for (i in 1:length(v1)){

ret_fin_vec <- c(ret_fin_vec, success(v[1:v1[i]]))

v <- v[-c(1:v1[i])]

}

return(ret_fin_vec)

}

full_mathia <- cbind(opp_mathia, new_mathia)

opp_opp_mathia <- list()

for (j in 2:33){

temp <- full_mathia[,c(j,j+33)]

x <- c(temp[[1]], temp[[2]])

temp_res <- list()
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for (i in 1:489){

temp_res[[i]] <- get_opp_success_rate(x[[i]],x[[i+489]])

}

opp_opp_mathia[[j-1]] <- temp_res

}

tp_opp <- opp_mathia

for (i in 1:32){

tp_opp[[i+1]] <- as.vector(opp_opp_mathia[[i]])

}

Loading packages for GGM

require(tidyverse)

require(qgraph)

require(xtable)

require(dplyr)

require(bootnet)

require(rstudioapi)

Logit and GGM function

logit <- function(v){

if (is.na(v)==TRUE){

return(NA)

}

if (is.nan(v) == TRUE){

return(NA)

}

if (v==1){
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v = 0.9999

}

if (v==0){

v = 0.0001

}

return(log(v/(1-v)))

}

ggm_opp <- tp_opp[,-1]

ggm <- function(dat, num, min_cor = 0.03){
success_initial_opp <- function(v){

if(length(v) >= num){
v1 <- as.numeric(v[1:num])
success <- sum(v1)/num
return(success)

}
else {v1 <- as.numeric(v)}
success <- sum(v1)/length(v1)
return(success)

}
opp_data_success_initial <- dat
for (i in colnames(opp_data_success_initial)){
opp_data_success_initial[[i]] <- lapply(opp_data_success_initial[[i]], success_initial_opp)

}
new_opp_data_success_initial <- opp_data_success_initial
for (i in colnames(new_opp_data_success_initial)){

new_opp_data_success_initial[[i]] <- lapply(new_opp_data_success_initial[[i]], logit)
}
for (i in 1:ncol(new_opp_data_success_initial)){

new_opp_data_success_initial[[i]] <- as.numeric(new_opp_data_success_initial[[i]])
}
new_opp_data_success_initial <- na.omit(new_opp_data_success_initial)
data_success_initial_corr <- psych::corFiml(new_opp_data_success_initial)
qgraph::qgraph(

data_success_initial_corr,
layout = "spring",
graph = "glasso",
labels = TRUE,
legend.cex = 0.30,
tuning = 0.1,
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color = c(1:32),
labels = TRUE,
sampleSize = 489,
minimum = min_cor

)
}

Gaussian Graphical Models

In the following plots, for the sake of easier visual comparison, we only show partial correlations
that are larger than 0.15.

ggm(dat = ggm_opp,num = 2, min_cor = 0.15)

ggm(dat = ggm_opp,num = 3, min_cor = 0.15)
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ggm(dat = ggm_opp,num = 4, min_cor = 0.15)

ggm(dat = ggm_opp,num = 5, min_cor = 0.15)
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Appendix 2. Initial Opportunities

Read data and load required packages.
require(tidyverse)

require(qgraph)

require(xtable)

require(dplyr)

require(bootnet)

require(rstudioapi)

load("ggm_function.RData")

ggm_opp <- tp_opp[-1]

Apply logit transformation to transform the success rate for initial opportunities for each KC. All
0s were changed to 0.0001, and all 1s were changed to 0.9999.

21



logit <- function(v){

if (is.na(v)==TRUE){

return(NA)

}

if (is.nan(v) == TRUE){

return(NA)

}

if (v==1){

v = 0.9999

}

if (v==0){

v = 0.0001

}

return(log(v/(1-v)))

}

Use Gaussian Graphical Model to generate the plot.

ggm <- function(dat, num, min_cor){

success_initial_opp <- function(v){

if(length(v) >= num){

v1 <- as.numeric(v[1:num])

success <- sum(v1)/num

return(success)

}

else {v1 <- as.numeric(v)}

success <- sum(v1)/length(v1)
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return(success)

}

opp_data_success_initial <- dat

for (i in colnames(opp_data_success_initial)){

opp_data_success_initial[[i]] <- lapply(opp_data_success_initial[[i]], success_initial_opp)

}

new_opp_data_success_initial <- opp_data_success_initial

for (i in colnames(new_opp_data_success_initial)){

new_opp_data_success_initial[[i]] <- lapply(new_opp_data_success_initial[[i]], logit)

}

for (i in 1:ncol(new_opp_data_success_initial)){

new_opp_data_success_initial[[i]] <- as.numeric(new_opp_data_success_initial[[i]])

}

new_opp_data_success_initial <- na.omit(new_opp_data_success_initial)

data_success_initial_corr <- psych::corFiml(new_opp_data_success_initial)

group_items <- list(

`Analyzing Models of Two-Step Linear Relationships` = c(6:12),

`Modeling Two-Step Expressions` = c(1:5,17:20),

`Using Scale Factor 2019-2020` = c(13:16)

)

qgraph::qgraph(

data_success_initial_corr,

layout = "spring",

graph = "glasso",

labels = TRUE,

legend.cex = 0.32,
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tuning = 0.1,

color = c("light blue", "light yellow", "light green"),

groups = group_items,

labels = TRUE,

sampleSize = 10761,

minimum = min_cor

)

}

Generate Gaussian Graphical Models for different numbers of initial opportunities:

In the following plots, for the sake of easier visual comparison, we only show partial correlations
that are larger than 0.05.

When the number of initial opportunities is 1:
ggm(dat = ggm_opp,num = 1,min_cor = 0.05)

When the number of initial opportunities is 2:
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ggm(dat = ggm_opp,num = 2,min_cor = 0.05)

When the number of initial opportunities is 3
ggm(dat = ggm_opp,num = 3,min_cor = 0.05)
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When the number of initial opportunities is 4
ggm(dat = ggm_opp,num = 4,min_cor = 0.05)
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When the number of initial opportunities is 5
ggm(dat = ggm_opp,num = 5,min_cor = 0.05)
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When the number of initial opportunities is 6
ggm(dat = ggm_opp,num = 6,min_cor = 0.05)

When the number of initial opportunities is 7
ggm(dat = ggm_opp,num = 7,min_cor = 0.05)
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As we can see, when the number of initial opportunities is 2, the partial correlations between
workspace A and workspace B are the strongest. There are more lines between those two
workspaces. Therefore, we chose 2 as our final cutoff point for initial opportunities.

Appendix 3. Mixed Effects Logistic Regression
Initial Data Processing
library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --

## v ggplot2 3.3.3 v purrr   0.3.4

## v tibble  3.0.4 v dplyr   1.0.2

## v tidyr   1.1.2 v stringr 1.4.0

## v readr   1.4.0 v forcats 0.5.0

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --

## x dplyr::filter() masks stats::filter()

## x dplyr::lag() masks stats::lag()
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library(ggplot2)

library(lme4)

## Loading required package: Matrix

##

## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':

##

## expand, pack, unpack

Read in workspace B data.

b = read.delim("b.txt", header = T)

Only keep records where KC is not null

b$KC.Model.MATHia. = ifelse(b$KC.Model.MATHia. == "", NA, b$KC.Model.MATHia.)

b = b[!is.na(b$KC.Model.MATHia.),]

Get rid of unneccessary columns

b_clean = b[, c(1, 3, 5, 6, 8, 10, 11, 12, 13, 17)]

Read in workspace B step rollup data, keep records where KC is not null

b_student = read.delim("b_student.txt", header = T)

b_student$KC..MATHia. = ifelse(b_student$KC..MATHia. == "",

NA, b_student$KC..MATHia.)

b_student = b_student[!is.na(b_student$KC..MATHia.),]

Get rid of unneccessary columns and recode first attempt column

b_student_clean = b_student[, c(3, 4, 5, 7, 8, 15, 20, 21)]

b_student_clean$First.Attempt = ifelse(b_student_clean$First.Attempt ==

"correct", 1, 0)

Modeling
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There are 9 unique KCs in workspace B

unique(b_student_clean$KC..MATHia.)

## [1] "identifying units-1"

## [2] "enter given, reading numerals-1"

## [3] "define variable-1"

## [4] "find y, any form-1"

## [5] "write expression, positive intercept-1"

## [6] "enter given, reading words-1"

## [7] "write expression, negative slope-1"

## [8] "write expression, positive slope-1"

## [9] "write expression, negative intercept-1"

Merge two datasets and add indicators of whether student has mastered KC1 and KC2

kc.1 = "identifying units-1"

kc.2 = "write expression, negative slope-1"

count = 0

count.1 = 0

df_all = NA

for (id in unique(b_student_clean$Anon.Student.Id)){

temp.1 = b_clean[which(b_clean$Anon.Student.Id == id &

b_clean$KC.Model.MATHia.%in% c(kc.1, kc.2) &

b_clean$Attempt.At.Step == 1), ]

temp.1 = unique(temp.1)

temp.1 = temp.1[order(temp.1$Time), ]
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temp.1 = unique(temp.1[, -2])

temp.2 = b_student_clean[which(b_student_clean$Anon.Student.Id == id &

b_student_clean$KC..MATHia. %in% c(kc.1, kc.2)), ]

if (nrow(temp.1) != nrow(temp.2)){

count = count + 1

next

}

temp.2$CF = temp.1$CF..Skill.New.p.Known.

df = temp.2[, c(1, 6, 7, 8, 9)]

df$CF.ind = ifelse(df$CF > 0.95, 1, 0)

if (length(which(df$KC..MATHia. == kc.2 & df$CF.ind == 1)) == 0){

count.1 = count.1 + 1

next

}

if (length(which(df$KC..MATHia. == kc.1 & df$CF.ind == 1)) == 0){

count.1 = count.1 + 1

next

}

if (which(df$KC..MATHia. == kc.2 & df$CF.ind == 1)[1]-1 == 0){

df$know_kc2 = rep(1, nrow(df)+1-which(df$KC..MATHia. == kc.2 & df$CF.ind == 1)[1])
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}

else{

df$know_kc2 = c(rep(0, which(df$KC..MATHia. == kc.2 & df$CF.ind == 1)[1]-1),

rep(1, nrow(df)+1-which(df$KC..MATHia. == kc.2 & df$CF.ind == 1)[1]))

}

if (which(df$KC..MATHia. == kc.1 & df$CF.ind == 1)[1]-1 == 0){

df$know_kc1 = rep(1, nrow(df)+1-which(df$KC..MATHia. == kc.1 & df$CF.ind == 1)[1])

}

else{

df$know_kc1 = c(rep(0, which(df$KC..MATHia. == kc.1 & df$CF.ind == 1)[1]-1),

rep(1, nrow(df)+1-which(df$KC..MATHia. == kc.1 & df$CF.ind == 1)[1]))

}

if (is.na(df_all)){

df_all = df

}

else{

df_all = rbind(df_all, df)

}

}

Run Glmer on KC1 and KC2

df.kc1 = df_all[which(df_all$KC..MATHia. == kc.1), ]

fit.7 = glmer(First.Attempt ~ 1 + Opportunity..MATHia. +
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Opportunity..MATHia. : know_kc2 + know_kc2 + (1|Anon.Student.Id),

data = df.kc1, family = "binomial")

df.kc2 = df_all[which(df_all$KC..MATHia. == kc.2), ]

fit.8 = glmer(First.Attempt ~ 1 + Opportunity..MATHia. +

Opportunity..MATHia. : know_kc1 + know_kc1 + (1|Anon.Student.Id),

data = df.kc2, family = "binomial")

summary(fit.7)

## Generalized linear mixed model fit by maximum likelihood (Laplace

##   Approximation) [glmerMod]

##  Family: binomial  ( logit )

## Formula:

## First.Attempt ~ 1 + Opportunity..MATHia. + Opportunity..MATHia.:know_kc2 +

## know_kc2 + (1 | Anon.Student.Id)

## Data: df.kc1

##

## AIC BIC   logLik deviance df.resid

## 469.2 489.3   -229.6 459.2 402

##

## Scaled residuals:

## Min 1Q  Median 3Q Max

## -4.4113 -0.8943  0.4520  0.6388  1.3639

##

## Random effects:
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##  Groups Name Variance Std.Dev.

##  Anon.Student.Id (Intercept) 0.3837   0.6194

## Number of obs: 407, groups:  Anon.Student.Id, 31

##

## Fixed effects:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.29375 0.26232  -1.120 0.2628

## Opportunity..MATHia. 0.188660.03856   4.893 9.92e-07 ***

## know_kc2 0.609730.69012   0.884 0.3770

## Opportunity..MATHia.:know_kc2 -0.10467 0.05234 -2.000   0.0455 *

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Correlation of Fixed Effects:

## (Intr) Op..MATH. knw_k2

## Oppr..MATH. -0.740

## know_kc2 -0.267  0.163

## O..MATH.:_2  0.487 -0.584 -0.799

summary(fit.8)

## Generalized linear mixed model fit by maximum likelihood (Laplace

##   Approximation) [glmerMod]

##  Family: binomial  ( logit )

## Formula:

## First.Attempt ~ 1 + Opportunity..MATHia. + Opportunity..MATHia.:know_kc1 +

## know_kc1 + (1 | Anon.Student.Id)

## Data: df.kc2
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##

## AIC BIC   logLik deviance df.resid

## 101.7 113.5 -45.8 91.7 74

##

## Scaled residuals:

## Min 1Q  Median 3Q Max

## -1.9618 -0.9060  0.3901  0.6027  1.2727

##

## Random effects:

##  Groups Name Variance Std.Dev.

##  Anon.Student.Id (Intercept) 1.042 1.021

## Number of obs: 79, groups:  Anon.Student.Id, 31

##

## Fixed effects:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.1301 1.5395  -0.085 0.933

## Opportunity..MATHia. 0.4384 1.2311   0.356 0.722

## know_kc1 1.8751 1.6920   1.108 0.268

## Opportunity..MATHia.:know_kc1  -0.4384 1.2116 -0.362 0.717

##

## Correlation of Fixed Effects:

## (Intr) Op..MATH. knw_k1

## Oppr..MATH. -0.931

## know_kc1 -0.902  0.855

## O..MATH.:_1  0.929 -0.975 -0.898
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