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Abstract

IMPORTANCE The overwhelming majority of fetal and neonatal deaths occur in low- and middle-
income countries. Fetal and neonatal risk assessment tools may be useful to predict the risk of death.

OBJECTIVE To develop risk prediction models for intrapartum stillbirth and neonatal death.

DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Eunice Kennedy
Shriver National Institute of Child Health and Human Development Global Network for Women’s and
Children’s Health Research population-based vital registry, including clinical sites in South Asia (India
and Pakistan), Africa (Democratic Republic of Congo, Zambia, and Kenya), and Latin America
(Guatemala). A total of 502 648 pregnancies were prospectively enrolled in the registry.

EXPOSURES Risk factors were added sequentially into the data set in 4 scenarios: (1) prenatal, (2)
predelivery, (3) delivery and day 1, and (4) postdelivery through day 2.

MAIN OUTCOMES AND MEASURES Data sets were randomly divided into 10 groups of 3 analysis
data sets including training (60%), test (20%), and validation (20%). Conventional and advanced
machine learning modeling techniques were applied to assess predictive abilities using area under
the curve (AUC) for intrapartum stillbirth and neonatal mortality.

RESULTS All prenatal and predelivery models had predictive accuracy for both intrapartum stillbirth
and neonatal mortality with AUC values 0.71 or less. Five of 6 models for neonatal mortality based
on delivery/day 1 and postdelivery/day 2 had increased predictive accuracy with AUC values greater
than 0.80. Birth weight was the most important predictor for neonatal death in both postdelivery
scenarios with independent predictive ability with AUC values of 0.78 and 0.76, respectively. The
addition of 4 other top predictors increased AUC to 0.83 and 0.87 for the postdelivery scenarios,
respectively.

CONCLUSIONS AND RELEVANCE Models based on prenatal or predelivery data had predictive
accuracy for intrapartum stillbirths and neonatal mortality of AUC values 0.71 or less. Models that
incorporated delivery data had good predictive accuracy for risk of neonatal mortality. Birth weight
was the most important predictor for neonatal mortality.
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Key Points
Question Can prenatal and

postdelivery variables accurately predict

the risk of stillbirth and neonatal deaths

in resource-limited settings of low- and

middle-income countries?

Findings Using advanced machine

learning–based modeling techniques on

a large multicountry prospective

maternal and neonatal database, this

cohort study found that the prediction

accuracy of models for risk of stillbirth

and neonatal death using variables

before delivery is low, but the prediction

accuracy for neonatal death can be

improved by including postdelivery

variables. Birth weight was the most

important predictor of neonatal

mortality.

Meaning Models that include

postdelivery variables have good

prediction accuracy for neonatal deaths.
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Introduction

The neonatal period is the period in life with the highest risk for mortality.1 Annually, 2.5 million
neonatal deaths and 2.6 million stillbirths occur globally, of which 1.3 million are intrapartum
stillbirths.2 It is estimated that approximately 98% of all neonatal and perinatal deaths occur in low-
and middle-income countries.3-5 However, almost all the published literature on identifying
predictors of fetal and neonatal mortality and risk scoring tools are based on data from high-income
countries. Data from low- and middle-income countries are limited to small sample size studies that
lack validation with an independent sample. Additionally, machine learning prediction models may
perform better than conventional models when applied to large data sets given their ability to
delineate complex relationships and identify novel interactions between variables.6-11 Although
machine learning–based prediction models are expected to perform better with large data sets, this
hypothesis has not been convincingly tested with a good quality prospectively collected population
database.6-8,11

We aimed to develop a risk assessment tool for intrapartum stillbirth and neonatal mortality
that would include maternal and neonatal variables from a prospective multicountry maternal and
neonatal database. We compared various conventional and advanced machine learning–based,
analytical modeling methods at specific time points to establish individual predictive accuracies of
the models. We tested the hypothesis that intrapartum stillbirth and neonatal mortality risk
prediction models that include antenatal and delivery variables provide a high accuracy. Additionally,
we also tested whether advanced machine learning–based models have higher predictive accuracy
than a conventional logistic regression model.

Methods

Study Design and Participants
The study was conducted in the Eunice Kennedy Shriver National Institute of Child Health and
Human Development Global Network for Women’s and Children’s Health Research, which includes
clinical sites in resource-limited settings in South Asia (India and Pakistan), Africa (Democratic
Republic of Congo, Zambia, and Kenya), and Latin America (Guatemala). A population-based Global
Network Maternal Newborn Health Registry (GN-MNHR) vital registry was established in 2009.12

Pregnant women and their 502 648 offspring participating in the GN-MNHR database from January
1, 2010, to December 31, 2018, were included. The description of the sites and the cluster settings
has been reported.13 The GN-MNHR database includes data starting with the initial prenatal visit and
up to 42 days after delivery of study participants. The GN-MNHR data processes include close quality
monitoring and quality improvement interventions both at local and central levels to ensure data
completeness and quality.12 The GN-MNHR definitions were used to define variables and outcomes
as reported previously.13 The GN-MNHR database has been reviewed and approved by all sites’ ethics
review committees and the institutional review boards at each US partner university and at the data
coordinating center (RTI International). All women provided written informed consent for
participation in the GN-MNHR database, including data collection and the follow-up visits. The study
is reported as per the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guideline for multivariable prediction modeling reporting.14

The NICHD Global Network Maternal Newborn Health Registry is registered with ClinicalTrials.gov
(NCT01073475).

Outcomes
The outcome variables were intrapartum stillbirth and neonatal mortality. Intrapartum stillbirth was
defined as nonmacerated stillbirth presumably occurring during labor. Neonatal mortality was
defined as death up to 28 days after birth. Potential risk factors (variables) for the outcome were
selected from the database based on the existing literature and relevancy to the outcomes.
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Statistical Analysis
The risk factors were added sequentially into 4 scenario data sets: (1) prenatal (variables until first
prenatal care visit), (2) predelivery (variables until just before delivery), (3) delivery and day 1
(delivery/day 1), and (4) postdelivery through day 2 (postdelivery/day 2). Day 0 was defined as the
calendar day of birth. Day 1 and day 2 were defined as the subsequent calendar days. We evaluated
mortality outcomes using potential risk factor sets with sequentially additional variables to
determine whether additional potential risk factors improved outcome predictive accuracy.15 The
first 2 scenario models (prenatal and predelivery) evaluated the outcome of intrapartum stillbirth and
neonatal mortality. The third scenario model (delivery/day 1) evaluated the outcome of neonatal
mortality on days 2 through 27. The fourth scenario model (postdelivery/day 2) evaluated the
outcome of neonatal mortality on days 3 through 27. The delivery and postdelivery data sets were
censored for deaths occurring prior to grouping time points and missing data so that only surviving
neonates with complete data were included.

To build and validate predictive models, split sampling was used to set aside sections of the data
for uncertainty estimation and model validation of predictive accuracy. The models considered were
logistic regression and 5 machine learning models (SVM [support vector machine with radial basis
function kernel], EN [logistic elastic net], NN [neural network], GBE [gradient boosted ensemble],
and RF [random forest]). Data management was completed using SAS 9.4 software (SAS Institute
Inc), and the model building was completed using the scikit-learn Python module. Graphics were
completed using R 4.0.2 (R Project for Statistical Computing). All models except logistic regression
were tuned using 10-fold cross-validation on training data, and then each tuned model was applied to
the test data for a predictive accuracy assessment. For assessment of the consistency of accuracy,
the tuning was repeated on training plus test data, and tuned models were applied to the validation
data. The predictive accuracy was assessed using the area under the curve (AUC) of the receiver
operating characteristic (ROC) curves. Because the result from any accuracy assessment using
randomly split data is random, the entire analysis was repeated within each of 10 mutually exclusive
data subsets for each scenario. This enabled us to have 10 assessments of accuracy for each model
within each scenario, allowing an assessment of the uncertainty in the estimated accuracy for all
models. Paired t tests were used on these 10 estimates of accuracy to compare models in order to
descriptively assess whether or not the models within a scenario were discernably different in light of
the uncertainty. The process of building and validating the best predictive machine learning model
and using the results to build a modified logistic regression model for mortality risk scoring is
described in the eAppendix in the Supplement.

Results

After the removal of missing data and deaths before grouping time points, the prenatal data set
contained 487 642 neonates, the predelivery data set contained 487 537 neonates, the delivery/day
1 data set contained 469 516 neonates, and the postdelivery/day 2 data set contained 468 356
neonates (Figure 1). The sex distribution of the neonates was 51.6% male and 48.4% female in the
prenatal data set. Baseline maternal and neonatal variables vary slightly for each of the 4 data sets
owing to censoring (Table 1). The sample sizes for each subset before splitting into training, test, and
validation data sets also vary slightly, which reflects variation owing to missing data (eTable 1 in the
Supplement).

Models using either only prenatal or prenatal and predelivery variables had predictive accuracy
for intrapartum stillbirth and neonatal mortality of AUC values 0.71 or less (Figure 2). The analysis of
models for intrapartum stillbirth showed that all prenatal models had AUC values of 0.63 or less and
all predelivery models had AUC values of 0.72 or less (eFigure 1 in the Supplement). Cluster perinatal
mortality was the most important predictor of intrapartum stillbirth in the prenatal data set (AUC,
0.60) and antepartum hemorrhage was the most important predictor in the predelivery data set
(AUC, (0.56) (eTable 2 in the Supplement). Other important predictors of intrapartum stillbirth in the
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prenatal data set were gestational age at enrollment, maternal age, birth order, and parity. Other
important predictors of intrapartum stillbirth in the predelivery data set were cluster perinatal
mortality; gestational age at enrollment; hypertension, severe pre-eclampsia, or eclampsia; and
maternal age.

The predictive models based on the data sets that included delivery/day 1 and postdelivery/day
2 variables had good predictive accuracy for neonatal mortality, with 5 of the 6 models having AUCs
above 0.80. Birth weight was the most important predictor in both the delivery/day 1 and
postdelivery/day 2 scenarios, with independent predictive ability of AUC 0.78 and 0.76, respectively.
The increase in probability of mortality with decreasing in birth weight occurred in both the
delivery/day 1 and postdelivery/day 2 scenarios (Figure 3; eFigure 2 in the Supplement). Bag and
mask resuscitation, gestational age, cluster perinatal mortality rate, and maternal age were the other
top predictors for the delivery/day 1 scenario. Conditions requiring hospitalization, antibiotics,
gestational age, and bag and mask resuscitation were the other top predictors for the
postdelivery/day 2 scenario. The addition of these other top predictors resulted in increases in the
AUCs (0.83 and 0.87 for the delivery/day 1 and postdelivery/day 2 scenarios, respectively) relative to
birth weight alone.

For models assessing the outcomes of stillbirth and neonatal mortality, the pairwise paired t test
showed that there were statistically insignificant differences between AUC values illustrated by
considerable overlap of confidence intervals (Figure 2). However, gradient boosted ensemble and
random forest models were consistently among the best-performing models. Even though the
logistic regression model was not the best-performing model in any scenario, the AUC of the logistic
regression model was not significantly different than the top-performing models.

Figure 1. Participant Flow Diagram

588 272 Pregnancies screened

578 633 Delivered

487 326 Neonates alive on day 2

485 966 Neonates alive on day 3

483 290 Neonates alive on day 6

481 058 Neonates alive on day 28

1360 Deaths occurring on day 2

2676 Deaths occurring on day 3 to day 5

2232 Deaths occurring on day 7 to day 28

9639 Excluded
2543 Ineligible
1085 Did not provide consent
6011 Lost before delivery

91 307 Excluded
45 567 Enrolled after delivery or timing data missing
30 418 Missing primary outcome

24 267 Miscarriage or MTP
 1957 Missing data
9219 Fresh stillbirth
6103 Deaths ≤ 1 d

4194 Macerated stillbirth

The flow diagram denotes the number of participants
for each data set prior to the removal of missing
covariate data. The data sets were censored for both
deaths occurring before the time points and missing
data. Ineligible participants included those who were
enrolled early and later found not to be pregnant and
those who were residing outside the study clusters.

502 648/578 633 deliveries had outcome data,
487 642/502 648 deliveries had complete predictor
data for prenatal scenario, 487 537/502 648 deliveries
had complete predictor data for predelivery scenario,
469 516/487 326 neonates alive on day 2 had
complete predictor data for delivery/day 1 scenario,
and 468 356/485 966 neonates alive on day 3 had
complete predictor data for postdelivery/day 2
scenario.
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Table 1. Baseline Maternal and Neonatal Variables

Variable
Prenatal
(n = 487 642)

Predelivery
(n = 487 537)

Delivery/day 1
(n = 469 516)

Postdelivery/day 2
(n = 468 356) Scenario

Continuous variables, mean (SD)

Gestational age at enrollment, wk 20.2 (9.2) 20.2 (9.2) 20.2 (9.3) 20.2 (9.3) Prenatal

Parity, No. 1.8 (2.1) 1.8 (2.1) 1.7 (2.1) 1.7 (2.1) Prenatal

Cluster mortality, ratea 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) Prenatal

Maternal age, y 24.8 (5.3) 24.8 (5.3) 24.8 (5.3) 24.8 (5.3) Prenatal

Gestational age, wk 38.6 (3.5)b 38.6 (3.5)b 38.7 (3.3) 38.7 (3.3) Delivery/day 1

Birth weight, g 2899 (505)c 2899 (505)c 2914 (480) 2916 (478) Delivery/day 1

Categorical variables, No. (%)

Site Prenatal

DRC 31 141 (6.4) 31 138 (6.4) 29 595 (6.3) 29 553 (6.3)

Zambia 60 159 (12.3) 60 157 (12.3) 58 556 (12.5) 58 489 (12.5)

Guatemala 73 901 (15.2) 73 901 (15.2) 72 295 (15.4) 72 119 (15.4)

Belagavi, India 101 385 (20.8) 101 350 (20.8) 97 913 (20.9) 97 671 (20.9)

Pakistan 76 273 (15.6) 76 218 (15.6) 71 102 (15.1) 70 793 (15.1)

Nagpur, India 77 774 (15.9) 77 769 (16.0) 75 612 (16.1) 75 354 (16.1)

Kenya 67 009 (13.7) 67 004 (13.7) 64 443 (13.7) 64 377 (13.7)

Maternal variables

Age (categorical), y Prenatal

<20 63 976 (13.1) 63 963 (13.1) 61 695 (13.1) 61 562 (13.1)

20-35 401 172 (82.3) 401 084 (82.3) 386 461 (82.3) 385 491 (82.3)

>35 22 494 (4.6) 22 490 (4.6) 21 360 (4.5) 21 303 (4.5)

Education (categorical) Prenatal

None 111 608 (22.9) 111 558 (22.9) 105 057 (22.4) 104 716 (22.4)

Primary 143 875 (29.5) 143 853 (29.5) 138 867 (29.6) 138 549 (29.6)

Secondary 197 542 (40.5) 197 510 (40.5) 191 767 (40.8) 191 354 (40.9)

University 34 617 (7.1) 34 616 (7.1) 33 825 (7.2) 33 737 (7.2)

Birth order Prenatal

First 482 984 (99.0) 482 885 (99.0) 465 612 (99.2) 464516 (99.2)

Second 4615 (0.9) 4609 (0.9) 3875 (0.8) 3811 (0.8)

Third 42 (0.0) 42 (0.0) 29 (0.0) 29 (0.0)

Fourth 1 (0.0) 1 (0.0) 0 (0.0) 0 (0.0)

≥1 prenatal visit 474 530 (97.4) 474 433 (97.4) 457 467 (97.5) 456 338 (97.5) Predelivery

Antepartum hemorrhage 5625 (1.2) 5621 (1.2) 3856 (0.8) 3797 (0.8) Predelivery

Hypertension 12 798 (2.6) 12 793 (2.6) 11 501 (2.5) 11 407 (2.4) Predelivery

Suspected sepsis 2142 (0.5) 2141 (0.5) 1902 (0.4) 1892 (0.4) Predelivery

Eclampsia 222 (0.0) 222 (0.0) 192 (0.0) 191 (0.0) Predelivery

Antenatal corticosteroids 9228 (2.6) 9227 (2.6) 8544 (2.5) 8463 (2.5) Predelivery

Hospitalization 3790 (0.8) 3790 (0.8) 3502 (0.8) 3492 (0.8) Postdelivery/day 2

Antibiotics 195 383 (48.6) 195 368 (48.6) 187 268 (48.3) 186 604 (48.3) Postdelivery/day 2

Delivery variables

Attendant Predelivery

Physician 177 644 (36.4) 177 605 (36.4) 170 942 (36.4) 170 362 (36.4)

Nurse/midwife 180 191 (37.0) 180 181 (37.0) 174 874 (37.2) 174 562 (37.3)

TBA 105 025 (21.5) 105 016 (21.5) 100 981 (21.5) 100 775 (21.5)

Family/self/other 24 735 (5.1) 24 735 (5.1) 22 719 (4.8) 22 657 (4.8)

Location Predelivery

Hospital 219 777 (45.1) 219 767 (45.1) 211 746 (45.1) 211 101 (45.1)

Clinic/health center 146 058 (30.0) 146 034 (30.0) 141 705 (30.2) 141 417 (30.2)

Home 121 743 (25.0) 121 736 (25.0) 116 065 (24.7) 115 838 (24.7)

(continued)
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The sequential addition of variables was done to identify the individual relative contribution of
each variable to AUC for combined outcomes of intrapartum stillbirth and neonatal mortality based
on validation data set (Table 2) and to develop a risk scoring system for stillbirth and neonatal
mortality. Table 2 lists the changes in AUC as predictors are added to the model using the ordering of
predictor importance (see eAppendix in the Supplement for more details about predictor
importance). A modified logistic regression model based on findings from the best machine learning
model as well as results from a variable selection study using logistic regression and the least absolute
shrinkage and selection operator (LASSO) method for identification of potential interactions was fit
to create a risk scoring system for the delivery/day 1 and postdelivery/day 2 data (eTable 3 in the
Supplement). Using risk scores calculated from this risk scoring system, a logistic regression model
was fit to the total risk scores in order to derive a formula for predicting the probability of mortality
given the calculated risk score. The logistic model for neonatal mortality risk scoring had an AUC
value on validation data equal to 0.809 (97% of the best model) for the delivery/day 1 scenario and
0.845 (97% of the best model) for the postdelivery/day 2 scenario (eTable 4 in the Supplement).

Discussion

This cohort study found that predictive models using only prenatal or prenatal and predelivery
variables had predictive accuracy for intrapartum stillbirth and neonatal mortality of AUC values of
0.71 or less. We identified that a better neonatal mortality risk prediction could be made when
variables obtained immediate postdelivery and up to 2 days after birth were included in the models,
with AUCs increasing up to 0.87. Birth weight was identified as the most important predictor for

Table 1. Baseline Maternal and Neonatal Variables (continued)

Variable
Prenatal
(n = 487 642)

Predelivery
(n = 487 537)

Delivery/day 1
(n = 469 516)

Postdelivery/day 2
(n = 468 356) Scenario

Lie Predelivery

Transverse 306 (0.5) 306 (0.5) 289 (0.5) 286 (0.5)

Oblique 129 (0.2) 129 (0.2) 115 (0.2) 115 (0.2)

Breech 823 (1.3) 823 (1.3) 717 (1.1) 715 (1.1)

Vertex 64 073 (98.1) 64 071 (98.1) 62 169 (98.2) 62 026 (98.2)

Multiple birth 9251 (1.9) 9243 (1.9) 7957 (1.7) 7846 (1.7) Delivery/day 1

Mode Delivery/day 1

Vaginal 413 453 (84.8) 413 364 (84.8) 396 606 (84.7) 396 704 (84.7)

Vaginal, assisted 4753 (1.0) 4750 (1.0) 4311 (0.9) 4284 (0.9)

CD 69 425 (14.2) 69 418 (14.2) 67 599 (14.4) 67 368 (14.4)

Obstructed labor 40 540 (8.3) 40 527 (8.3) 36 938 (7.9) 36 760 (7.9) Delivery/day 1

Neonatal variables

Sex Delivery/day 1

Male 251 197 (51.6) 251 148 (51.6) 241 240 (51.4) 240 561 (51.4)

Female 236 080 (48.4) 236 026 (48.4) 228 240 (48.6) 227 759 (48.6)

Bag and mask resuscitation 19 669 (4.1) 19 649 (4.1) 16 692 (3.6) 16 254 (3.5) Delivery/day 1

Congenital anomalies 1084 (0.5) 1084 (0.5) 677 (0.3) 658 (0.3) Delivery/day 1

Hospitalization 9650 (2.2) 9648 (2.2) 9474 (2.1) 9315 (2.1) Postdelivery/day 2

Antibiotics 20 740 (5.8) 20 736 (5.7) 19 178 (5.5) 18 726 (5.4) Postdelivery/day 2

Cord care 83 172 (77.2) 83 172 (77.2) 81 661 (78.8) 81 416 (78.8) Postdelivery/day 2

Medicinal cord care 52 076 (20.6) 52 076 (20.6) 51 110 (20.9) 50 950 (20.9) Postdelivery/day 2

Abbreviations: CD, cesarean delivery; DRC, Democratic Republic of Congo; TBA,
traditional birth attendant.
a Cluster perinatal mortality is the rate of perinatal mortality within each distinct

geographical area (cluster) of the sites as defined by the Global Network.

b Missing 0.40% of data.
c Missing 1.13% of data.
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neonatal mortality among all variables considered. The contribution of other predictors to the AUC
increase was relatively minor.

Many studies have analyzed variables associated with increased risk for stillbirths or neonatal
mortality, but only 1 study16 used a relatively large group of neonates to develop predictive models.
As found in the current study, low predictive accuracy (AUC = 0.58, 95% CI = 0.56–0.59) using
prenatal variables was reported in a study based on 10 sites from 3 countries in South Asia
(N = 49 632).16 Similar to the findings of the current study, the predictive accuracy of the model
improved when postdelivery variables were included (AUC = 0.83, 95% CI = 0.79–0.86), but only
logistic regression modeling was applied to develop the model, and the results were not validated
with an independent sample. The current results are consistent with the data from a large
prospective neonatal database of participants living in a high-income country, which showed that

Figure 2. Mean (95% CI) for Validation AUC by Scenario for Outcomes
of Intrapartum Stillbirth and Neonatal Mortality

Postdelivery and day 2D

 Delivery and day 1C

PredeliveryB

PrenatalA

0.4 0.6 0.7 0.8 0.9 1.0
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0.5

0.4 0.6 0.7 0.8 0.9 1.0
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0.5

0.4 0.6 0.7 0.8 0.9 1.0

AUC
0.5

0.4 0.6 0.7 0.8 0.9 1.0
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0.5

SVM

EN
NN
LR
GBE
RF

SVM
EN

NN
LR

GBE
RF

SVM

NN

EN
LR

GBE
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SVM

NN
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EN indicates logistic elastic net; GBE, gradient boosted ensemble; NN, neural
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inclusion of delivery variables (especially birth weight) results in better accuracy for predicting
neonatal mortality than models with only prenatal variables.15

Some of the important predictors in the current study have been reported to be associated with
an increased risk for neonatal mortality in simple association analyses. In a pooled analysis of data
from low- and middle-income countries, small for gestational age and prematurity were found to be
associated with increased risk of neonatal mortality in association (bivariate) analysis, although birth
weight was not specifically analyzed.17 Inferences from pooled analyses can raise questions of quality,
accuracy, and generalizability.18 Additionally, vital registries from low- and middle-income countries
are of questionable accuracy.19 The novel finding of the current study that birth weight is the most
important variable for predicting the risk of neonatal mortality provides the strongest evidence
based on a high-quality large prospective population-based database from resource-limited settings.
To our knowledge, the current study is the largest study that uses a quantitative approach for risk
prediction of stillbirth and neonatal mortality of data from low- and middle-income countries. This
study identifies the contribution of birth weight as a continuous variable to arrive at its independent
predictive ability for risk of neonatal mortality. In studies of association with increased risk of
all-cause stillbirth or neonatal mortality, many variables have been identified, but these analyses
were limited to descriptive analyses. Intrapartum stillbirth and early neonatal mortality have
overlapping causes (in contrast to early stillbirth20), so we have included only intrapartum stillbirth
in the present study. Adjusted analysis based on an earlier cohort of the GN-MNHR database
indicated associations between maternal age younger than 20 or older than 35 years, lower maternal
education, 0 parity or 3 parity greater than 3, and no prenatal care with all-cause stillbirth.21,22 Using
other databases, other factors associated with all-cause stillbirth were poverty, parity of 5 or more,
prematurity, low birth weight, and previous stillbirth.20 Factors associated with neonatal mortality
also included maternal age, education, parity, multiple gestations, birth order, suspected maternal
sepsis, antepartum hemorrhage, eclampsia, and obstructed labor.23-25 Also, in a large pooled analysis
of cross-sectional data from 57 low- and middle-income countries (N = 464 728), antenatal care was
associated with decrease in neonatal mortality in univariate analyses.26

In large modeling studies from high-income countries of extremely preterm15,27 or less than
2000 g neonates28 admitted to neonatal intensive care units, birth weight was among the most
important common factors associated with hospital mortality. With the model derived from a high-
income country, birth weight was also found to be a factors associated with hospital mortality when it
was applied to a sample of 550 neonates from a single center in The Gambia.28 In another study from
a developed country database of extreme preterm neonates, birth weight and gestational age were
found to be equally associated with 2-year mortality.29 Gestational age was also among the top
factors associated with mortality in the earlier developed country database studies.15,27 However, in
the current study, birth weight was found to be a better predictor of neonatal mortality than

Figure 3. Probability of Mortality as a Function of Birth Weight, Delivery/Day 1 Scenario
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gestational age. This could be related to estimation errors of gestational age based on the last
menstrual period and limited availability of first-trimester ultrasonography-based dating
confirmation.30 Small for gestational age (not specifically birth weight) has been associated with
higher risk of perinatal and neonatal mortality and morbidity in data from high-income countries in
bivariate analysis.31 Similar to the current study, neonatal sex, resuscitation, and antenatal
corticosteroids have been factors associated with neonatal mortality in data from high-income
countries.32-34

Limitations
This study used an established database with data that are population-based and prospectively
collected with multiple quality assurance checks. The study was hypothesis-driven with only
prespecified analyses performed. This large sample size study was adequately powered for
prediction of the risk for intrapartum stillbirth and neonatal mortality in the represented resource-
limited settings in low- and middle-income countries. Because of the large sample size, we were able
to evaluate rigorously the machine learning predictive models. Predictive accuracy was assessed on

Table 2. Top Predictors by Scenario (Intrapartum Stillbirth and Neonatal Mortality Outcome)a

Rank Predictor AUC AUC increase

Delivery/day 1

1 Birth weight 0.776 NA

2 Bag and mask resuscitation 0.814 +0.039

3 Gestational age 0.817 +0.003

4 Cluster perinatal mortality 0.816 −0.001

5 Maternal age 0.820 +0.004

6 Parity 0.822 +0.002

7 Gestational age at enrollment 0.822 0

8 Antepartum hemorrhage 0.823 +0.001

9 Multiple birth 0.824 +0.001

10 Hypertension/severe pre-eclampsia/eclampsiab 0.822 −0.002

11 Antenatal corticosteroids 0.823 +0.001

12 Birth order 0.822 −0.001

13 Suspected maternal sepsisc 0.823 +0.001

14 Neonatal sex 0.827 +0.004

15 Obstructed labor 0.829 +0.002

Postdelivery/day 2

1 Birth weight 0.763 NA

2 Neonatal hospitalization 0.813 +0.050

3 Neonatal antibiotics 0.845 +0.032

4 Gestational age 0.842 −0.003

5 Bag and mask resuscitation 0.852 +0.010

6 Cluster perinatal mortality 0.865 +0.013

7 Gestational age at enrollment 0.867 +0.002

8 Maternal age 0.870 +0.003

9 Parity 0.870 0

10 Multiple birth 0.870 0

11 Antenatal corticosteroids 0.871 +0.001

12 Maternal education: none 0.871 0

13 Hospital delivery 0.872 +0.001

14 Maternal antibiotics 0.871 −0.0001

15 Delivery by physician 0.872 +0.001

Abbreviations: AUC, area under the curve; NA, not
applicable.
a Predictors are added consecutively using gradient

boosted ensemble model; then AUC calculated. The
order used in this table was the order of importance
assigned by the predictive model assessment of
important predictors.

b Hypertensive disease/severe pre-eclampsia/
eclampsia defined as blood pressure >140/90 mm
Hg, proteinuria, and seizures.

c Suspected maternal sepsis defined as fever with
pelvic pain and abnormal vaginal discharge (foul
smelling or presence of pus).
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test and validation data sets to check for consistency in predictive accuracy estimates, and the
modeling building process was completed 10 times to quantify uncertainty in predicted model
accuracy. Although generalizability of the results could be questioned, the results are likely to be
pertinent to many communities in resource-limited regions similar to those of the study settings.
There is a possibility of potential confounders like health status, availability of care, interventions,
and health policy that were not captured. Nonetheless, as the study results are based on a large
number of participants over 9 years, the potential impact of confounders on the study result should
be low. Additionally, the use of the database did not include high-definition data, including
stratification of individual risk factors as per illness severity, extensive laboratory test results, or
details of treatments received and clinical response. As the risk score is intended to be useful for all
health care professionals, adding more complexity to the scoring method by including variables that
need a higher level of training and resources might have reduced the ease of application and usability
of the score. However, incorporating additional variables could have improved the predictive
accuracy, especially for the prenatal models. The gestational age variable would be prone to
estimation errors depending on the mother’s accounting of the last menstrual period and the
availability of more accurate assessments such as first-trimester ultrasonography. Intrapartum and
antepartum stillbirth differentiation can be associated with identification errors, but training of the
health care professionals and several quality checks were made to minimize this error.

Conclusions

In the current study, prediction of the risk of intrapartum stillbirth alone or in combination with
neonatal mortality based on prenatal or predelivery data had predictive accuracy of AUC values of
only 0.72 or less. The best risk prediction for neonatal death was only achieved after including
delivery and early neonatal variables, which can be used to identify neonates at the highest risk for
mortality who may need specialized care. Birth weight was by far the most important predictor for
neonatal mortality, while the contribution of other variables was relatively minor. Mortality risk–
based triage and referral could be tested as a strategy to reduce the burden of neonatal deaths in
resource-limited settings. Given these findings, prenatal and predelivery data are not sufficient to
develop strategies to identify those who are at a high risk of perinatal mortality and require advanced
care at birth and referral. Birth weight could be prioritized in the identification of neonates at risk for
dying. Predelivery estimation of birth weight could be evaluated as a strategy for predelivery triage
and referral.
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