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Diagnostic classification models (DCM) are frequently promoted by psychometricians
as important modelling alternatives for analyzing response data in situations where
multivariate classifications of respondents are made on the basis of multiple postu-
lated latent skills. In this review paper, a definitional boundary of the space of DCM
is developed, core DCM within this space are reviewed, and their defining features
are compared and contrasted with those of other latent variable models. The models
to which DCM are compared include unrestricted latent class models, multidimen-
sional factor analysis models, and multidimensional item response theory models.
Attention is paid to both statistical considerations of model structure, as well as
substantive considerations of model use.

Key words: review, diagnostic classification models, item response theory, factor analysis,
multidimensional models, latent class models, latent variable models

Correspondence should be addressed to André A. Rupp, Department of Measurement, Statistics,
and Evaluation, University of Maryland, 1230 Benjamin Building, College Park, MD 20742.
E-mail: ruppandr@umd.edu

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 1
5:

14
 2

8 
Fe

br
ua

ry
 2

01
3 



220 RUPP AND TEMPLIN

INTRODUCTION

Over the last 20 years there has been a renewed and widened psychometric interest
in statistical models with latent variables that provide multidimensional classifi-
cations of respondents for the purpose of a fine-grained diagnosis (Winter 2007
special issue of the Journal of Educational Measurement). These models will be
referred to as diagnostic classification models (DCM) in this review paper
(Rupp, Templin, & Henson, 2010). The objective of the following exposition is
to raise awareness about the unique characteristics of DCM vis-à-vis popular
scaling alternatives for contexts that call for the analysis of data from diagnostic
assessments in a certain discipline. It also serves to address the resulting advan-
tages and disadvantages of DCM by focusing on statistical as well as substantive
considerations. The objective is, thus, to provide an overview of these models in
an accessible manner for a wide audience, while sacrificing neither expositional
depth nor clarity.

To achieve this purpose, the paper is organized into five sections as follows.
In the first section, a brief context for the utilization of DCM in educational and
psychological assessment is presented. In the second section, current alternative
labels for DCM are reviewed and a consensual definitional boundary of the space
of DCM is developed. In the third section, DCM are then compared and con-
trasted with other well-known psychometric models such as latent class models
(Haagenars & McCutcheon, 2002), factor analysis (FA) models (McDonald,
1999) and various item response theory (IRT) models (Embretson & Reise,
2000) by drawing on nine statistical and substantive characteristics grounded in
the definition proposed in the second section. In the fourth section, a taxonomy
of the core DCM that are currently advocated and used in the methodological
literature is presented in which the models are organized on the basis of three key
statistical properties. In the fifth section, challenges in estimating DCM and in
assessing goodness-of-fit at the model, item, and respondent level are discussed
in detail. The paper closes with a section that lays out uncharted areas for future
research.

SECTION 1: CONTEXT OF USE

On one end of the application spectrum, DCM can be used to test rather precise
hypotheses about the nature of the response processes that respondents engage in
when they react to assessment or questionnaire items. This context is particularly
representative of current trends in cognitively diagnostic educational assessment
(Leighton & Gierl, 2007; Nichols, Chipman, & Brennan, 1995). If the data-
collection design and the substantive response theory are developed to a suffi-
cient degree, detailed empirical information about the mental components that
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CHARACTERISTICS OF DIAGNOSTIC CLASSIFICATION MODELS 221

are involved in the response processes and the manner in which these compo-
nents interact can be obtained in this case. In an educational assessment context,
it is commonly believed that an identification of these mental components helps
to identify remedial pathways toward mastery on all components that are
instructionally relevant and educationally meaningful to the respondents
(diBello, Roussos, & Stout, 2007).

To illustrate this idea, consider a context where experts in didactics, teachers,
and measurement specialists have collaborated to design a formative diagnostic
assessment of reading comprehension. The purpose of this assessment is to pro-
vide detailed, fine-grained feedback to learners about their mastery of the neces-
sary component skills of reading (e.g., determining word meaning out of context,
comprehending negatively stated information) and to illustrate to the learners the
pathways that they can take to remedy those skills that they have not yet suffi-
ciently mastered. An excellent example of a feedback mechanism for such an
assessment that is given to learners, their teachers, and their parents is the diag-
nostic report card presented in Figure 1 that is taken from the dissertation by
Eunice Jang (2005).

The section of the diagnostic report card that is of most interest for the pur-
pose of this review paper is the skills profile in the lower left-hand corner, which
shows, for an individual learner, the estimated probabilities for having mastered
each of the nine skills measured by the reading assessment. The card in Figure 1
thus shows that Margo has most likely already mastered skills 1 and 2, is most
likely approaching mastery of skill 6, and has almost certainly not yet mastered
the remaining six skills. Note that all of these inferences assume that a probabil-
ity exceeding .5 reliably indicates mastery of a skill. This nine-dimensional skill
profile was estimated using a rather complex DCM, and it is the statistical and
substantive properties of the DCM behind such skill profiles that are the focus of
the following narrative.

At this early juncture it is worth reflecting on what is typically meant by the
term “cognitive response processes” when it is used in educational assessment
contexts that are concerned with applying DCM to data from diagnostic assess-
ments. As discussed, for example, by Rupp (2007) and Mislevy (2007), the con-
notations of the word “cognition” in educational assessment differ from the core
meaning of the word within the discipline of cognitive psychology. Specifically,
when experts in educational measurement propose new DCM and apply them to
data from a diagnostic assessment to show that they are estimable, they typically
draw on theories of response processing that are grounded distinctly in applied
cognitive psychology.

This is partly a result of differing disciplinary traditions and objectives. Cog-
nitive psychology is a diverse field that includes research in perception and atten-
tion, language and communication, the development of expertise, situated and
sociocultural psychology, and neurological bases of cognition (Mislevy, 2008).

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 1
5:

14
 2

8 
Fe

br
ua

ry
 2

01
3 



222

F
IG

U
R

E
 1

Sa
m

pl
e 

re
po

rt
 c

ar
d 

fo
r 

a 
re

ad
in

g 
as

se
ss

m
en

t d
ia

gn
os

in
g 

pr
of

ic
ie

nc
y 

in
 n

in
e 

co
m

po
ne

nt
 s

ki
lls

 (
fr

om
 J

an
g,

 2
00

5)
.

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 1
5:

14
 2

8 
Fe

br
ua

ry
 2

01
3 



223

F
IG

U
R

E
 1

(C
on

ti
nu

ed
)

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 1
5:

14
 2

8 
Fe

br
ua

ry
 2

01
3 



224 RUPP AND TEMPLIN

While most foundational work in cognitive psychology targeted at understanding
human information-processing is dominated by completely randomized experi-
ments in laboratory settings, cognitively diagnostic educational assessment
targeted at explaining performance via information processing is dominated by
observational or quasi-experimental studies in real-life settings. Even though
both fields utilize standardized data-collection instruments, the claims sought to
be validated by each discipline are different in terms of their rhetorical organiza-
tion, complexity, and level of detail. Moreover, while research in applied cogni-
tive psychology informs research and practice in educational assessment, the
opposite flow of information is effectively nonexistent.

Despite their ubiquity in the educational assessment literature, it is important
to realize, however, that DCM can be applied to contexts outside of educational
assessment, because their estimation does not require that the existence of their
constituent latent variables be justified by theories from applied cognitive
psychology. For example, DCM can provide multidimensional classifications of
respondents based on behavioural dispositions in clinical psychology (e.g.,
Templin & Henson, 2006). At a very general level, DCM are suitable whenever
statistically-driven classifications of respondents according to multiple latent
traits are sought.

SECTION 2: DEFINITIONAL BOUNDARIES

Rationale for Approach

There are two essential paths along which a determination of the more exact def-
initional boundaries of DCM for a review paper can proceed. The first path
focuses on the maximum number of connections that a broad class of statistical
models share with one another, as is done, for example, in the comprehensive
review of generalized latent variable models by Skrondal and Rabe-Hesketh
(2004) and the comprehensive review of diagnostic latent variable models by Fu
and Li (2007). This path is maximally inclusive and has the advantage that the
resulting definition encourages readers to explicitly envision new models that fit
this general framework. However, it has the disadvantage that the resulting defi-
nition of a family of models is often too broad to be of much use for practitioners
and applied measurement specialists. These readers typically want to understand
how particular models differ from one another in more detail rather than what the
largest statistically family is that they can be subsumed under.

Therefore, an alternative path focuses on determining definitional boundaries
based on an exhaustive set of defining characteristics or building blocks of exist-
ing models (Rupp, 2002) and restricting oneself to a particular subset of core
models that share common characteristics that are meaningful to practitioners.
This has the decided advantage that a resulting definition allows for a more
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CHARACTERISTICS OF DIAGNOSTIC CLASSIFICATION MODELS 225

detailed discussion of these models and that it provides a clear and manageable
frame of reference for learning about these models. It has the disadvantage that
the definitional boundary is set in a somewhat arbitrary manner, which some
researchers may disagree with. Since this paper is a review paper aimed at a
broad audience of practitioners and measurement specialists, and since a variety
of excellent review papers on latent variable models exist, the second path was
chosen.

Review of Existing Labels

There exist a variety of alternative labels for DCM that have been used in the
literature including cognitive diagnosis models or cognitively diagnostic models
(Henson & Douglas, 2005), cognitive psychometric models (Rupp, 2007), multi-
ple classification (latent class) models (Macready & Dayton, 1977; Maris, 1999),
latent response models (Maris, 1995), restricted latent class models (Haertel,
1989), structured located latent class models (Xu & von Davier, 2006, 2008),
and structured IRT models (Rupp & Mislevy, 2007). Each of these labels carries
with it a specific connotation that highlights a particular aspect of these models,
which will be discussed in the following.

The labels cognitive diagnosis models, cognitively diagnostic models, and
cognitive psychometric models refer to the theoretical grounding of the applica-
tion of these models, particularly in educational assessment. They underscore the
belief that any application of these models demands an elaboration of a theory of
response processes that is grounded in cognitive psychology—specifically,
applied cognitive psychology (for a comprehensive review of assessment design
principles in educational assessment grounded in applied cognitive psychology
see Mislevy, 2007). The word psychometric in the latter label further emphasizes
that these models contain latent variables, rather than observed variables, as pre-
dictors. The word diagnostic in the former two labels highlights that the models
are applied to a particular problem that requires a diagnosis of respondents (i.e., a
fine-grained analysis of their strengths and weaknesses in some domain).

In contrast, the label multiple classification (latent class) models denotes the
statistical purpose of these models, which is to develop a multivariate profile of
respondents’ traits that is based on classifying them according to their degree of
mastery or disposition on each of the traits. The remaining four labels similarly
focus on the statistical properties of these models. The term latent response
models denotes the fact that response processes, when modelled with DCM,
are typically decomposed into their constituent elements and that a latent
response for each of the components is explicitly included in the model. In some
models, an individual latent response is deterministic, whereas the overall
response across all components is probabilistic. In other models the individual
latent response is probabilistic, whereas the overall response is deterministic (i.e., the
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226 RUPP AND TEMPLIN

errors in responding are modelled at different levels). However, all models com-
bine or condense these latent responses to predict the probability of an observable
response.

The label restricted latent class models underscores that these models are used
to group respondents into unobserved (i.e., latent) classes. Moreover, it reflects
the fact that there are restrictions on the number of latent classes that are esti-
mated, which in turn lead to restrictions of values for model parameters across
different latent classes. The label structured located latent class models under-
scores that each latent class is represented in a multidimensional latent space via
values on the individual scales that create these classes. As with any latent vari-
able model, the exact location of the scale values is generally arbitrary (e.g., for a
binary latent variable it could be set at −1 and +1, at −2 and +2, or at other values).

Finally, the term structured IRT models most broadly relates these models to
the family of latent variable models, in particular IRT models. Unstructured IRT
models are designed for homogeneous sets of items and respondents and contain
one or more respondent and item parameters, depending on the complexity of the
model and whether it is unidimensional or multidimensional. In contrast,
structured IRT models have additional elements that allow for a representation of
heterogeneity within these models, just like structured located latent class mod-
els. These elements include, but are not limited to, parameters reflecting
observed group membership in a multigroup model, parameters reflecting unob-
served class membership in a mixture model, parameters reflecting different
response strategies, and parameters reflecting testlet dependencies.

Definition

Based on a review of the above labels of DCM, as well as a review of additional
key features of these models in the literature, which are not reflected in their
labels per se, the following definition is put forth for this paper.

Diagnostic classification models (DCM) are probabilistic, confirmatory multidimen-
sional latent-variable models with a simple or complex loading structure. They are suit-
able for modelling observable categorical response variables and contain unobservable
(i.e., latent) categorical predictor variables. The predictor variables are combined in
compensatory and noncompensatory ways to generate latent classes. DCM enable
multiple criterion-referenced interpretations and associated feedback for diagnostic
purposes, which is typically provided at a relatively fine-grain size. This feedback can
be, but does not have to be, based on a theory of response processing grounded in
applied cognitive psychology. Some DCM are further able to handle complex sampling
designs for items and respondents, as well as heterogeneity due to strategy use.

Note that this definition specifically excludes any multidimensional latent
variable model with continuous latent variables as a DCM, which is a deliberate
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CHARACTERISTICS OF DIAGNOSTIC CLASSIFICATION MODELS 227

choice. Many practitioners who read about DCM in the educational assessment
literature in particular are exposed primarily to latent variable models with
discrete latent variables that produce multidimensional classifications. Based on
numerous discussions that the authors have had with colleagues, graduate stu-
dents, and specialists from other disciplines at conferences, in technical advisory
groups, or during joint projects, it seemed most critical to provide a detailed,
accessible review of DCM as defined above.

Several useful reviews that include some or all of the DCM that are discussed
in this review paper and the latent variable frameworks from which they emanate
have appeared in the literature over the years (e.g., DiBello, Roussos, & Stout,
2007; NRC, 2001; Tatsuoka, 2002; Junker, 1999; Fu & Li, 2007; see also
Mislevy, 2007; Nichols, Chipman, & Brennan, 1995; Rupp, 2007; Rupp &
Mislevy, 2007). Hence, readers interested in an overview of a larger class of mul-
tidimensional latent variable models are encouraged to go directly to these
sources or the additional references therein. Readers interested in a more exten-
sive, didactically oriented introduction and discussion of DCM are similarly
encouraged to read the book by Rupp, Templin, and Henson (2010).

SECTION 3: DCM AND OTHER LATENT-VARIABLE MODELS

The definition offered at the end of the previous section can be used as a basis for
comparing DCM with other latent variable models that are probably more famil-
iar to readers. Specifically, the following nine defining characteristics of DCM
will be discussed in turn:

1. their multidimensional nature
2. their confirmatory nature
3. the complexity of their loading structure
4. the types of observed response variables for which they are suitable
5. the types of latent predictor variables they contain
6. the nature of the interactions of the latent predictor variables
7. the criterion-referenced interpretations they allow
8. the diagnostic nature of the interpretations
9. the types of heterogeneity they can model

As far as the word probabilistic  in the definition is concerned, suffice it to say that
the DCM in this review paper are all probabilistic models. Hence, they can be con-
trasted with models representing deterministic Guttman response patterns
(Mokken, 1997) or deterministic knowledge space formulations that do not rely on
latent variables at all (Doignon & Falmagne, 1999; Ünlü, 2006; Schrepp, 2005).

In terms of terminology, the word skill will be used in this review paper to
generically denote the meaning of the discrete latent variables in DCM, even
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228 RUPP AND TEMPLIN

though other labels such as component, characteristic, trait, knowledge, ability,
disposition, or attribute are used in the literature also. In addition, the term diag-
nostic assessment will be used to generically refer to the actual data-collection
instrument whose data are being analyzed with a DCM.

Criterion 1: Their Multidimensional Nature

Just like multidimensional FA models and multidimensional IRT models, DCM
contain multiple latent predictor variables, each indexing one of the postulated
skills for the diagnostic assessment. The number of latent variables depends on
the number of skills that researchers hope to numerically separate in a reliable
manner with the assessment. Just like with other multidimensional models, larger
numbers of skills are more challenging to separate empirically than smaller
number of skills (Haberman, 2008; Sinhary, Haberman, & Puhan, 2007; Yao &
Boughton, 2007; Rupp, 2008a). In addition to simply including multiple latent
variables at the same levels, DCM for hierarchies of latent variables have also
been proposed (de la Torre & Douglas, 2004; von Davier, 2007) similar to hierar-
chical FA models (McDonald, 1999) and hierarchical IRT models (Sheng &
Wikle, 2008).

When DCM are used to model component skills in a response process whose
definition is grounded in applied cognitive psychology, one can argue that they
seek to map a real-life fluid, cognitive response process onto a mathematically-
constructed static multidimensional model. Even though this is, to some degree,
always the case when latent variable models are applied to response data, the
requirements for a highly accurate mapping of the process onto multiple compo-
nent latent variables are perhaps more stringent for those DCM applications.
Furthermore, one can argue that typical multidimensional analyses in FA or IRT
include latent variables that operationalize different constructs or different
aspects of the same construct, but not elementary mental components and their
interaction.

Criterion 2: Their Confirmatory Nature

DCM are confirmatory in nature. This notion, as simple as it may seem, has two
important distinct shades to it. These shades arise from the difference between a
hypothesis-testing perspective in research design, which is confirmatory in nature
by definition, and a statistical modelling perspective, which can involve an
exploratory or a confirmatory statistical model. Specifically, a confirmatory
statistical model is one that contains parameter restrictions compared to its
exploratory counterpart. For example, a multidimensional confirmatory measure-
ment model is one in which certain latent variable loadings are set to “0,” or one
in which certain loadings are (additionally) constrained to be equal, such as in the
true-score equivalence model (McDonald, 1999).
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CHARACTERISTICS OF DIAGNOSTIC CLASSIFICATION MODELS 229

Statistically speaking, the loading structure for a DCM is referred to as its
Q-matrix (Tatsuoka, 1983). It reflects a particular substantive hypothesis about
the response process through the pattern of 0s and 1s that indicates which latent
variables are associated with which items (i.e., which skills are required by which
items). Of course, Q-matrices exist for any confirmatory model, and even for any
exploratory model where they are filled with 1s because all observed variables
are allowed to load on all latent variables. For FA models they are often simply
labelled factor loading matrices and for traditional IRT models they are often not
given a specific name at all. A very informative discussion of how various latent
variable models, including certain DCM, can be compared via their Q-matrices is
given in Hartz (2002).

Another way in which the confirmatory nature of a DCM analysis is visible is
rarely discussed, however, perhaps because it is rather subtle. It refers to the fact
that in applications that seek a close link between the cognitive response process
and the modelling process of the data, the structure of the DCM could, ideally, be
chosen so that it reflects the manner in which the skills interact in the response
process (see criterion 5 below). For example, in order to test a hypothesis that all
postulated skills for an item are actually necessary to respond correctly to an
item, a conjunctive or noncompensatory DCM would be the natural choice,
which would exclude compensatory DCM, as well as traditional multidimen-
sional FA and IRT models as potential scaling options. While this does not make
the DCM automatically confirmatory in a statistical sense, it makes the choice for
the model reflect a confirmatory approach to modelling.

As another example, consider the multicomponent latent trait model (Embretson,
1980; Embretson, Schneider, & Roth, 1986) and its extension to multiple strate-
gies (Embretson, 1985), both essentially noncompensatory, multidimensional
Rasch models. In contrast to the generalized version of the first model (Embretson,
1984, 1997), these models can be used to confirm the hypothesis that the
response process for each item involves all postulated skills, but they are explor-
atory statistical models because they do not place restrictions on model parame-
ters compared to an unrestricted model. Nevertheless, the choice of these models
reflects a belief about the structure of the response process, which gives the
investigation a confirmatory flavour. In contrast, componential IRT models, as
formulated by Hoskens and de Boeck (1995, 2001) and the model family of the
multidimensional random coefficient multinomial logit model (Adams, Wilson, &
Wang, 1997), can be used as confirmatory statistical models. Arguably, confir-
matory models are preferred in statistical theory, because the power to test for
model fit and parameter differences across subgroups is larger than in their
exploratory counterparts.

Similarly, confirmatory FA models are quite commonly used to test substan-
tive hypothesis about how constructs are divided into subconstructs and how con-
structs relate to one another. Confirmatory multidimensional IRT analyses are
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230 RUPP AND TEMPLIN

frequently used for the scaling of large-scale achievement tests such as PISA
(e.g., OECD, 2003) or TIMSS (Mullis, Martin, & Foy, 2005). In practice,
multidimensional IRT analyses are much rarer than multidimensional FAs across
disciplines, however, and it is also not uncommon for them to be exploratory in
nature outside of large-scale testing applications. Consequently, multidimensional
analyses with DCM, which are derivatives of multidimensional IRT models, are
currently even rarer in practice.

Criterion 3: Their Complex Loading Structure

Confirmatory FA and IRT models, in practice, typically possess a simple loading
structure in the specific sense that each item only loads on one dimension (for a
more detailed discussion of the technical definition of simple structure in the
Thurstonian sense, see McDonald, 1999). This reduces the statistical complexity
of the model and is often an artefact of the structure of the assessments to which
these models are applied. For models that have simple structure, one typically
finds that since each item indexes only one dimension, this dimension typically
represents a rather coarsely defined construct such as “proficiency in working
with numbers, equations, and functions” or “ability to verbalize negative emotions.”
Therefore, it is practically sensible and feasible to instruct item developers to
write items that tap only one of such broadly defined dimensions.

In contrast, DCM utilize latent variables that typically operationalize more
narrowly defined constructs—for example, latent skills that are constitutive of a
response process—so that each item typically requires multiple component skills.
This leads to a more complex loading structure that is also known as within-item
multidimensionality (e.g., McDonald, 1999; Wilson, Adams, & Wang, 1997); it
is reflected in multiple “1s” in rows of the Q-matrix. This makes DCM similar in
structure to componential IRT models and other probability matrix decomposi-
tion models (Maris, deBoeck, & van Mechelen, 1996; Meulders, deBoeck, & van
Mechelen, 2003) such as the linear logistic test model for decomposing item
difficulty parameters via multiple latent component variables (Fischer, 1997; see
Adams & Wilson, 1996; Adams, Wilson, & Wang, 1997). Indeed, it is in the sit-
uation when complex loading structures exist and classifications of respondents
are desired that DCM can function up to their theoretical potential best.
Naturally, in applications where DCM have been retrofitted to assessments that
were originally created to represent a rather coarsely defined single construct so
that data could be scaled with a unidimensional measurement model, conver-
gence problems during estimation, as well as poor item, respondent, or model fit,
are common results.

Similarly, when certain DCM are applied to data with a simple loading struc-
ture for which analogous multidimensional FA or IRT models with continuous
latent variables could be fit meaningfully also, the result is often viewed as an
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informational loss, because the multidimensional continua are merely discretized
and split up into adjacent categories. This allows for classification, but reduces
statistical precision. In those cases, traditional multidimensional FA or IRT mod-
els might be much more appealing, unless, of course, the classifications that
result from a DCM analysis are the aspect of the analysis that is desired most.

Criterion 4: The Nature of the Observed Response Variables

There are DCM designed to handle dichotomous and polytomous response data
and some that can handle dichotomous response data only. In this respect, DCM
are similar to traditional IRT models or to FA models that utilize tetrachoric or
polychoric correlation matrices. It should be noted that several alternative
methods for treating polytomous data have been proposed for some DCM. For
example, in the reduced noncompensatory reparameterized unified model
(reduced NC-RUM), one approach utilizes a cumulative score probability formu-
lation and another approach utilizes a binomial model (Bolt & Fu, 2004; Henson,
Templin, & Porch, 2004; Templin, He, Roussos, & Stout, 2003).

Criterion 5: The Nature of the Latent Predictor Variables

Since DCM are restricted latent class models they contain categorical latent vari-
ables that allow for the creation of such classes. Of course, models with discrete
latent variables can be used to approximate models with continuous latent vari-
ables and are, in some cases, statistically equivalent to them (Haertel, 1990). Most
DCM and associated estimation routines allow only for dichotomous latent vari-
ables. A notable exception is the MDLTM software program for the general diag-
nostic model (GDM; von Davier, 2006) and the Arpeggio software program for
the full NC-RUM, both of which also allow for polytomous latent variables
(Templin, Roussos, & Stout, 2003). Hence, classifications of respondents into
multiple performance categories such as “insufficient performance,” “sufficient
performance,” and “outstanding performance” are possible. Thus, while DCM are
conceptually similar to confirmatory multidimensional FA and IRT models, as well
as componential IRT and conjunctive or disjunctive Rasch models, they differ from
them in terms of the measurement scales of the latent variables they contain.

Multidimensional FA models, in particular, often further incorporate hierar-
chical factor structures where a higher-order factor (e.g., general intelligence) is
postulated to account for the covariation of a set of lower-order factors (e.g., crys-
tallized intelligence, fluid intelligence, spatial and verbal reasoning, working-
memory capacity). This idea has also been adapted in applications of Bayesian
inference networks (BIN; Levy & Mislevy, 2004) and has been directly incorpo-
rated into the higher-order DINA (HO-DINA) model (de la Torre & Douglas,
2004). While the higher-order latent variable in the latter model is continuous—just
as in hierarchical FA or IRT models—the lower-order latent variables are
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232 RUPP AND TEMPLIN

categorical, unlike hierarchical FA or IRT models. In BIN, even the higher-order
latent variables are typically categorical so that these models represent a com-
pletely categorical hierarchy of latent variables. At the same time, probabilistic
relationships are not allowed to restrict the conditional probabilities in a tradi-
tional BIN. Consequently, the conditional independence of correctly applying all
required skills for an item given latent class membership, for example, cannot be
modelled (Hartz, 2002).

Criterion 6: The Interaction of the Latent Variables

To understand how the latent responses interact to produce an observed response,
the concept of a condensation rule is critical. A condensation rule prescribes how
the responses to the individual latent variables are combined (i.e., condensed) to
produce an observed response. As stated above under criterion 2, traditional FA
models and IRT models are compensatory latent variable models. This means
substantively that respondents are able to compensate for a deficit on one skill by
a surplus on another skill. In contrast, DCM include both compensatory and non-
compensatory models. The latter are models that reflect the assumption that all
skills have to be mastered for a respondent to produce a correct response. Thus,
the multicomponent trait model and its extension (Embretson, 1991) and non-
compensatory multidimensional IRT models (Bolt & Lall, 2003), which contain
continuous latent variables, are structurally similar to noncompensatory DCM,
even though DCM contain discrete latent variables.

However, currently estimable DCM do not involve interactions between com-
ponents, even though authors such as Maris (1999) discuss this possibility. In con-
trast, componential IRT models explicitly allow for such interactions (Hoskens &
de Boeck, 1995), which links these models to locally dependent conjunctive mea-
surement models (Jannarone, 1997). Maris (1999) further argues that the use of a
condensation function makes DCM different from latent variable models in a “nar-
row” sense, because DCM map the latent responses via a function to the observed
responses, so that a joint probability distribution for all variables does not exist.
Yet, one can construct what this distribution would look like from the general defi-
nition of the latent class model, so this argument is not without contention. Finally,
as discussed by Haertel (1989), DCM are furthermore formally equivalent to latent
distance models (Lazarsfeld & Henry, 1968) if and only if the latent response pat-
terns generated from the latent variables form a latent Guttman scale.

Figure 2 summarizes the key characteristics of DCM vis-à-vis multidimen-
sional FA and multidimensional IRT models. It shows a three-dimensional
compensatory DCM with a complex loading structure and contrasts it with three-
dimensional FA and IRT models with simple structures.

Of course, other comparisons can be easily constructed, but are omitted here for
space reasons. For example, one could compare a compensatory multidimensional
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FIGURE 2 Comparison of a three-dimensional FA and IRT model with a three-dimensional
DCM.

This figure shows three models, each with three latent skill variables indicated by circles and 14
observed item variables indicated by rectangles. The two-sided arrows between the latent skill
variables indicate pair-wise correlations, the one-directional arrows from the latent skill variables to
the item variables indicate loadings corresponding to Q-matrix entries of 1, the arrows pointing to the
rectangles in the first model indicate measurement error, the horizontal lines in the rectangles in the
second and third model indicate latent thresholds (i.e., binary observed variables), and the horizontal
lines in the circles in the third model indicate latent thresholds also (i.e., binary latent skill variables).
The position of the horizontal lines is identical for simplicity purposes, but could indicate different
marginal percentages correct for the item variables and different marginal mastery proportions for the
latent skill variables.

Three-dimensional FA Model with Simple Loading Structure 

I9I1 I2 I3 I4 I5 I6 I7 I8 I10 I11 I12 I13 I14

Skill 1 Skill 2 Skill 3

Three-dimensional IRT Model with Simple Loading Structure 

I9I1 I2 I3 I4 I5 I6 I7 I8 I10 I11 I12 I13 I14

Skill 1 Skill 2 Skill 3

I9I1 I2 I3 I4 I5 I6 I7 I8

Three-dimensional DCM with Complex Loading Structure 

I10 I11 I12 I13 I14

Skill 1 Skill 2 Skill 3
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234 RUPP AND TEMPLIN

FA and IRT model with a DCM where all three models would have a complex
loading structure. In that case, the main difference between the FA and IRT
models and the DCM would be that the latter would contain categorical latent
variables, while the former two would contain continuous latent variables. It
should be noted that this juxtaposition is somewhat oversimplified, however,
because models can also differ in more subtle ways (e.g., in terms of the parame-
ter restrictions they include, in terms of their likelihoods, and in terms of the
estimation approaches that are available for them), but it serves as a useful didactic
device.

Criterion 7: The Criterion-Referenced Interpretations They Allow

Broadly speaking, DCM are statistical models that allow for multiple criterion-
referenced interpretations. This broadly contrasts them with multidimensional FA or
IRT models with continuous latent variables, most of which allow for multiple
norm-referenced interpretations. The simplest case for criterion-referenced interpre-
tations is the case of a unidimensional scale that contains one cut-point that divides
the latent continuum into two adjacent categories (e.g., “nonmastery” vs. “mas-
tery,” or “not clinically depressed” vs. “clinically depressed”). However, recent
developments in large-scale, standards-based assessments have seen the emer-
gence of multiple cut points (e.g., “below standard,” “meets standard,” “exceeds
standard”) for scales established via traditional FA or IRT methods (Cizek,
Bunch, & Coons, 2004; Zieky & Perie, 2006). These multiple classifications
along individual dimension can be captured via categorically polytomous latent
variables in DCM (Almond, Yan, & Mislevy, 2007; Templin, Poggio, Irwin, &
Henson, 2007).

Thus, multiple criterion-referenced interpretations are specifically possible in
DCM in two senses. On the one hand, multiple cut-points are numerically estab-
lished for each dimension in DCM that contain polytomous latent variables.
On the other hand, each DCM naturally contains multiple categorical latent
variables representing multiple skills, such that a final classification of respon-
dents leads to an interpretation of this classification with reference to multiple
criteria. Apart from the fact that DCM may, in some cases, be better suited to
handle a complex loading structure than traditional multidimensional FA or
IRT models, it is the direct numerical derivation of the cut-points leading to the
multidimensional classifications that makes these models attractive to users
with diagnostic needs.

Importantly, since interpretations about skill profiles with DCM are typically
made at the level of the individual rather than at an aggregate level, there are
important implications for the data-collection design of studies that seek to apply
DCM to data from diagnostic assessments. For example, in the context of a
standardized large-scale assessment for accountability purposes such as NAEP,
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PISA, TIMMS, or PIRLS, it is often sufficient to have a few hundred students
answer each subset of questions from an item pool in linked booklets to make
reliable inferences about the entire student population at the school, state, or
national level. Notably, this is also a result of the fact that the resulting data
are typically calibrated with separate unidimensional Rasch models for each
subscale or one multidimensional Rasch model (Sheng & Wikle, 2007), which
are rather simple models compared to most DCM. In contrast, it may be neces-
sary to have thousands of students respond to questions on a diagnostic assess-
ment if it is desired to fit a sufficiently flexible DCM to the data so that the
person-level inferences about the multiple skills are substantively meaningful
and reliable.

Criterion 8: The Diagnostic Nature of the Interpretations

As stated above, the prevalent purpose for a DCM analysis—and the multiple,
criterion-referenced interpretations that follow from it—is diagnosis. A diagnos-
tic decision-making process typically consists of first applying a coarser screen-
ing instrument whose objective is the general identification of the particular
problem area that is most crucial for a successful treatment of the individual. A
diagnostic assessment that is fine-tuned to providing more detailed information
in the identified problem area is subsequently administered as a more precise tool
to further investigate the nature of the problem. As a consequence of the diagnos-
tic outcome, suitable remedial interventions are then selected or designed that
can provide the best treatment for an individual with a certain diagnosis. Of
course, the data from the diagnostic assessment would not necessarily have to
be analyzed with a DCM, but diagnostic benefits may arise. This was demon-
strated by Templin and Henson (2006), who applied a DCM to a pathological
gambling inventory, which helped to carve out more complex patient profiles.
These provided additional information, which were hidden by the coarser two-
group classification.

This brief description makes clear that the context for applying a DCM to data
from a diagnostic assessment differs in important ways from that of applying a FA or
IRT model to data from an assessment for placement, admission, or certification
purposes. Consequently, an analysis of data from a diagnostic assessment with a
DCM is meaningful only if their collection and interpretation is embedded within a
comprehensive diagnostic system consisting of repeated cycles of diagnosis, treat-
ment, and evaluation. This crucially requires that the resulting classifications can be
summarized in such a way that treatments can be practically implemented and moni-
tored afterwards, which is different from an accountability purpose where the pre-
dominant function is the rank-ordering of respondents without any direct instructional
implications.
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236 RUPP AND TEMPLIN

Criterion 9: The Types of Heterogeneity They Can Model

DCM are typically utilized for investigating hypotheses about a singular response
process for all respondents. However, they can also be useful for learning about
different response strategies of different groups of respondents for the same set
of tasks, about different response strategies of single individuals across different
tasks, and about different response strategies of single individuals within the
same task, if data can be collected that provide sufficient information about these
cases (NRC, 2001).

As Maris (1999) points out, even a disjunctive model without any additional
parameters can be interpreted as a model capturing multiple strategies for
responding. Typically, however, strategy selection will be explicitly modelled
through separate parameters in a DCM. In the full NC-RUM, for example, an
additional product term, which reflects an interaction between a continuous
latent skill variable and the categorical latent skill variables, provides an indi-
cation about the completeness of the Q-matrix for each item. It also provides an
indication of the degree to which each respondent seems to make use of a strat-
egy for that item that differs from that proposed via the Q-matrix. A different
path was chosen by de la Torre and Douglas (2005), who represent different
solution strategies within a DINA model via different Q-matrices. This is con-
ceptually similar to the approach taken by Embretson (1997, p. 307), where a
weighted mixture of conjunctive Rasch models represents the different solution
strategies.

In addition, in the mixed Rasch model (Rost, 1990) and its adaptation
to cognitive modelling (Bolt, 1999; Mislevy, Wingersky, Irvine, & Dann,
1991), different strategies are reflected in the differing item parameters across the
various latent groups. In the Hybrid model (Gitomer & Yamamoto, 1991) an
additional unidimensional class is utilized for further alternative strategies
akin to the residual term in the NC-RUM. Similarly, Mislevy and Verhelst
(1990) utilize cognitive theories to differentiate between different response
strategies of respondents and model the responses within each of the
strategy classes using different basic IRT models. However, as pointed out
by Hartz (2002), the reduction of the cognitive multidimensionality without
an explicit modelling of the interaction between individual skills in
such models does not lead to a multiple criterion-referenced respondent
classification, because continuous latent variables are utilized in these
approaches.

Heterogeneity can also arise from the fact that respondent populations are
diverse, with the result that different item parameter values hold for different
groups (i.e., item parameters are not invariant across subpopulations), which is a
common path of inquiry in research on bias at the item, testlet, or assessment
level. Other types of heterogeneity arise from a complex sampling and assessment
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design structure for items, which is common in assessments that use multiple
forms. Similarly, a complex sampling structure for respondents (e.g., students
nested in schools that are nested in districts) induces heterogeneity at the respon-
dent level. Both types of heterogeneity are common in national, large-scale
accountability studies such as NAEP and international large-scale accountability
studies such as PISA, TIMMS, or PIRLS. Consequently, some DCM have been
proposed to handle these types of heterogeneity (von Davier, 2006, 2007), even
though the research frontiers leave room for optimization at this point (Gonzales,
2008; von Davier, 2008).

Finally, Sijtsma and Verweij (1999), as well as researchers such as Leighton
(2004), place a strong emphasis on the actual development of the (cognitive)
response theory—and therefore the strategy choices made by individuals—
based on a qualitative investigation via think-aloud protocols to capture differ-
ent types of heterogeneity. Rich information from these studies can then help
triangulate inferences from traditional FA or IRT analyses, as well as infer-
ences from DCM analyses of diagnostic assessment data (Böhme & Rupp,
2008).

SECTION 4: A TAXONOMY OF CORE DCM

Notation

In this section, an organization of core DCM is presented, both nominally and
analytically, which requires a consistent notation. Respondents (e.g., learners,
patients) are indexed by i  = 1, . . . , I, stimuli (e.g., assessment items, objects
for judgment) are indexed by j  =  1, . . . , J, and component skills (e.g., borrow-
ing numbers, generating synonyms) are indexed by k = 1, . . . , K. Observed
responses of respondent i to item j are denoted Xij, while the latent variable /
skill profile vector of a respondent is denoted ai, such that aik indexes whether
respondent i has mastered skill k (aik  = 1) or not (aik  =  0). The pattern of 0s
and 1s that indicates which skills are required for which items is captured in a
Q-matrix that typically consists of dichotomous entries, such that entry qjk indi-
cates whether item j requires skill k (qjk = 1) or not (qjk = 0). In addition, xij is a
latent response variable defined at the item level that denotes whether respon-
dent i has mastered all necessary skills for item j while zijk is a latent response
variable defined at the item × skill level that denotes whether respondent i has
mastered skill k for item j. Since respondents are grouped by DCM into latent
classes, which are indexed by c  = 1, . . . , C, all DCM treat respondents in the
same latent class as indistinguishable. Thus, at the latent class level, all sub-
scripts i for individual respondents get replaced by subscripts c for the latent
classes.
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238 RUPP AND TEMPLIN

Overview

The DCM that can be subsumed under the definition in section 2 include proba-
bilistic knowledge-space approaches (Ünlü, 2006), the rule-space methodology
(RSM; Tatsuoka, 1983, 1995), the attribute hierarchy method (AHM; Leighton,
Gierl, & Hunka, 2004), the DINA and NIDA models (Junker & Sijtsma, 2001),
the higher-order DINA (HO-DINA) model (de la Torre & Douglas, 2004), the
multi-strategy DINA (MS-DINA) model (de la Torre & Douglas, 2005), the
DINO and NIDO models (Templin, 2006; Templin & Henson, 2006), the full
noncompensatory reparametrized unified model (full NC-RUM)/fusion model
(Roussos et al., in press; Hartz, 2002), the reduced NC-RUM (Templin, 2006),
the compensatory RUM (Templin, 2006), the random effects reparameterized
unified model (RE-RUM; Templin & Henson, 2005), the multiple classification
latent class model (MCLCM; Maris, 1999), the general diagnostic model (GDM;
von Davier, 2005; Xu & von Davier, 2006), the loglinear cognitive diagnosis
model (LCDM); (Henson, Templin, and Willse, 2007), and Bayesian inference
networks (BIN; Yan, Mislevy, & Almond, 1993).

Importantly, the RSM as well as the AHM—which was developed as an
extension of the RSM—are essentially classification algorithms and not unified
statistical models that are completely embedded within a fully probabilistic
framework. For these methods, an estimation of the multidimensional skill pro-
files typically proceeds in several distinct steps rather than in one joint estimation
process. Specifically, the RSM uses a unidimensional IRT model as a starting
point to obtain respondent parameters that are used for later classification. That
classification is done via a Bayes classification rule that utilizes a multidimen-
sional residual function and the Mahalanobis distance measure (Tatsuoka, 1983,
1995). Similarly, the AHM originally used a likelihood-based pattern matching
approach (Leighton, Gierl, & Hunka, 2004) and has recently been extended to
include a neural network approach for classification (Gierl, Cui, & Hunka, in
press). Yet, neither method involves a direct statistical link between the individ-
ual latent responses and the probability of an observed response as represented by
a likelihood function for the complete data that depends on all item parameters
and discrete skill vectors.

Taxonomy

In order to broadly differentiate these core DCM, it is useful to jointly consider three
of their defining characteristics: (1) the measurement scales of the observed response
variables they can model (dichotomous vs. polytomous), (2) the measurement scales
of the latent predictor variables they contain (dichotomous vs. polytomous), and (3)
the manner in which the latent predictor variables are combined (compensatory vs.
non-compensatory manner), which leads to the classification in Table 1.
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TABLE 1
A Taxonomy of DCM

Observed Response 
Variables

Latent Predictor Variables

Dichotomous Polytomous Model Type

Dichotomous RSM Noncompensatory
AHM
DINA
HO-DINA
MS-DINA
NIDA
BIN BIN
MCLCM MCLCM
NC-RUM NC-RUM
RERUM

DINO Compensatory
NIDO
BIN BIN
MCLCM MCLCM
C-RUM C-RUM
GDM GDM
LCDM LCDM

Polytomous RSM Noncompensatory
AHM
BIN BIN
MCLCM MCLCM
NC-RUM NC-RUM

BIN BIN Compensatory
MCLCM MCLCM
C-RUM C-RUM
GDM GDM
LCDM LCDM

Notes. RSM = Rule-space method. AHM = Skill hierarchy method. BIN = Bayesian
inference network. DINA = Deterministic inputs, noisy ‘and’ gate. HO-DINA = Higher-
order DINA. MS-DINA = Multi-strategy DINA. LCDM = Loglinear Cognitive Diagnosis
Model. DINO = Deterministic inputs, noisy ‘or’ gate. NIDA=Noisy inputs, deterministic ‘and’
gate. NIDO = Noisy inputs, deterministic ‘or’ gate. RUM = Reparametrized unified model /
Fusion model. C-RUM = Compensatory RUM. NC-RUM = Non-compensatory RUM.
GDM = General diagnostic model. LCDM = Loglinear cognitive diagnosis model. MCLCM
= Multiple classification latent class model.
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240 RUPP AND TEMPLIN

A few things are noteworthy about Table 1. First, the largest variety of models
is available for dichotomously scored observed response variables; most of these
models utilize dichotomous latent predictor variables also. Second, the C-RUM
and NC-RUM, as well as the LCDM and GDM, appear in several cells of Table 1
showing that they are more flexible DCM because they are parameterized for
dichotomous and polytomous data, as well as dichotomous and polytomous
latent variables. The LCDM and GDM can be viewed more generally as repre-
senting model families consisting of a variety of compensatory DCM that
arise out of restrictions placed on the parameters in the model. Third, the
MCLCM and BIN appear in every cell of the table, because they represent mod-
elling families that are even more flexible, because they can accommodate com-
pensatory as well as noncompensatory interactions between latent variables of
different types.

As stated earlier in the paper, the difference between compensatory and
noncompensatory models reflects how the latent predictor variables are com-
bined across the different skills to produce the observed responses. Recall that
compensatory models allow that a deficit in one skill can be compensated for by
a surplus in another skill, while noncompensatory models require that each skill
is present in order to produce a correct response or the highest graded response.
Recall also that the combination of a set of latent variables is formally known as
a condensation (Maris, 1992, 1995, 1999; Maris, de Boeck, & van Mechelen,
1996), because multiple latent response variables are combined (i.e., condensed)
to generate a single observed response. Condensation rules can be viewed as
elementary building blocks of DCM so that other models could be theoretically
relatively easily constructed. The two most commonly utilized condensation
rules involving products of latent variables are those of conjunction and disjunc-
tion, and they relate to the concept of compensation. Note, however, that other
condensations functions such as a drop-off rule can be flexibly defined to suit the
particularities of the postulated cognitive response process (Maris, 1995); all
three condensation rules are shown in Table 2.

As Table 2 shows, in a conjunctive condensation rule, all required skills need
to be present to produce an observed response, while in a disjunctive condensa-
tion rule, any one required skill needs to be present to produce a maximally cor-
rect observed response. Consequently, a disjunctive condensation rule can be
considered as an extreme case of a compensatory rule—even though it contains a
product and not a sum—because the presence of one skill is able to compensate
for the lack of all other skills. Examples of models with a conjunctive condensa-
tion rule are the DINA and NIDA models, the original MCLCM estimated in
Maris (1999), the full and reduced NC-RUM, as well as the RE-RUM; in con-
trast, the DINO model contains a disjunctive condensation rule. Finally, note
that all DCM technically assume, in the language of Maris, de Boeck, and
van Mechelen (1996), that the items dominate the respondents, which means
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that the condensation rules are formulated with the required skills of the items as
the reference point.

Mathematical Formulas of Core DCM

The most commonly presented DCM in current research and practice that are
arranged nominally in Table 2 are presented analytically in Table A1; the only
exceptions are the HO-DINA and MS-DINA models, as well as BIN. The reason
for this is that a BIN is a general modelling framework for representing different
kinds of latent variable models, rather than a single model, and the HO-DINA
and MS-DINA models were derived from the DINA model, which is included in
the table.

Note specifically that atypical responses for DCM are denoted by parameters
representing slipping processes (i.e., unexpected incorrect responses) and guess-
ing processes (i.e., unexpected correct responses). These parameters are defined
either as sj and gj at the item level—with identity restrictions across skills—as sk
and gk at the skill level—with identity restrictions across items—or as sjk and gjk
at the item × skill level—with separate values for each item and skill. In addition,
new parameters that are related to the above parameters are defined in the GDM
and RUM.

TABLE 2
Three Common Condensation Rules

Label Rule Types

Conjunctive Noncompensatory

Disjunctive Compensatory

Drop-off Noncompensatory

Note. The parameter zijk denotes a latent response.
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A closer inspection of the formulas for the DCM in Table A1 shows that the
DINA and DINO models both model slipping and guessing processes at the
item level with equality restrictions across skills. Consequently, the latent
response variable is defined at the item level and only one slipping and guess-
ing parameter is estimated for each item. In contrast, the NIDA and NIDO
models both model slipping and guessing processes at the skill level with
equality restrictions across the items. Consequently, the latent response vari-
able is defined at the latent skill level and only one slipping and guessing
parameter is estimated for each skill. The MCLCM, C-RUM, full and reduced
NC-RUM, RE-RUM, and GDM can model slipping and guessing processes at
the skill level without equality restrictions across items. Consequently, the
latent response variable is defined separately for each skill and each item so
that one latent response parameter can be estimated for each entry of 1 in the
Q-matrix. Except for the MCLCM, these parameters are technically not identi-
cal to slipping and guessing parameters, but can be related to them.

Sometimes, formulas for different DCM may appear to be identical at first
sight, but are slightly different upon closer inspection. For example, Table 3
shows the kernels for the NIDO, C-RUM, and GDM models, which are all

TABLE 3
Comparison of Formulas for Three Compensatory DCM
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compensatory models that are constructed by summing across individual
component skills.

A closer look at the kernels reveals that they combine the constituent parameters
in different ways despite structural similarities. For example, the NIDO model
weighs the entire expression in the parenthesis by the score assigned to a category,
whereas the GDM only weights a part of the expression by the score. Similarly, both
the C-RUM and the GDM provide a baseline probability reflected by the intercept
before the sum. Yet, in the C-RUM, this value is independent of the score for a
response category, whereas it depends on the score category in the GDM. In fact,
what this shows is that there are relationships between some DCM that can be
exploited to define families of DCM, so that some models can actually be expressed
by placing restrictions on parameters in more general models. Moreover, through the
choice of DCM and the skill specifications in the Q-matrix, different equality con-
straints are imposed on model parameters across latent classes for different DCM.

DCM as Constrained Latent Class Models

An alternative approach to investigate the relationship between different DCM is
to explicitly focus on their resemblance within the family of latent class models.
Letting hc denote the proportion of respondents within each latent class—also
called the mixing proportion/mixing parameter of the model—a general latent
class model for dichotomous responses can be represented as follows:

In this representation, which is a product over J Bernoulli random variables for
the J items that is summed over all C latent classes, the product portion can be
regarded as the measurement component of the model, whereas the summation
portion with the mixing proportions can be regarded as the structural component
of the model. Utilizing this representation, one can view the different DCM
coarsely as providing different parameterizations of the response probabilities

  in the measurement component of the model.
For example, in the DINA model

while in the reduced NC-RUM
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Comparing these formulas to the ones in Table A1, one notices that the subscript i
for an individual respondent is replaced here with the subscript c for a latent class,
because all DCM effectively group a large number of I respondents indexed by i =
1, . . . I into a smaller set of C latent classes indexed by c = 1, . . . ,C. In each latent
class, respondents are then statistically exchangeable, because they possess the same
skill mastery pattern and, thus, they all have the same probability of correct response
to an individual item. This reduction is formally represented through the mixing
proportion parameter via  where and

. Thus, the mixing proportion for an individual latent class c
is the proportion of respondents in the population of interest with latent skill vector .

Families of DCM

As Henson, Templin, and Willse (2007) and von Davier (2005) have shown,
many of the core DCM reviewed in this paper, as well as novel models that lie
in-between these models, can be represented via more general model families.
Specific DCM are obtained as special cases within the more general model fami-
lies by placing restrictions on model parameters. Despite their generality, these
model families do not automatically subsume every last DCM that is currently
available, but they generally subsume a large number of them. Thus, they hold
great potential for unifying the estimation of several DCM, thereby allowing
different DCM to be used for different items on the same diagnostic assessment.

SECTION 5: MODEL ESTIMATION AND FIT FOR DCM

Even though the mathematical formulas for core DCM that have recently
appeared in the literature were presented in Table A1, such a presentation is
incomplete without discussing their estimability with software programs or spe-
cially written code. Crucial issues in model estimation for DCM concern

1. their identifiability
2. the parametrization of the latent skill space
3. the availability of estimation software
4. challenges in obtaining convergence with the software
5. the ability of the software to handle complex data structures
6. the ability of the software to provide indices of global and local model misfit

Each of these issues will now be discussed in turn.

Model Identifiability

Model estimation first and foremost requires that DCM be identified, which
means that every parameter can be estimated by a unique value. For example, the

hc i cP= =( )a a ai i i iK= ( , , )1 2a a a . . . ,
ac c c cK= ( , , )1 2a a a . . . ,

ac
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extensive research conducted by Hartz (2002) on the full NC-RUM was neces-
sary, because the original unified model (DiBello, Stout, & Roussos, 1995) on
which it was based was not identified, even though it possessed immense theoretical
appeal. Therefore, Hartz (2002) reparameterized the model by combining and
redefining parameters and developed extensive Bayesian estimation routines to
estimate its reparameterized version.

An additional problem may arise whenever identifiability can be ensured
through parameter restrictions, but they are not commensurate with the cognitive
theory about the response processes. For example, Maris (1999) showed how,
depending on the condensation function used in the DCM, it was necessary to
either restrict all slipping or guessing parameters to 0 or 1 for all items in models
involving more than two skills. Such restrictions imply substantively that
slipping or guessing processes may never or always occur for all items, which
may be difficult to reconcile with a theory of response processing.

Therefore, identifiability of a model should be carefully considered when
novel models are proposed. For example, Fu and Li (2007) developed a very gen-
eral measurement model that arises from combining numerous defining features
of existing models in various combinations. The authors carefully acknowledge
that not all models that can be derived from this general model will be identified,
estimable with real data sets, or even theoretically desirable (for a similar argu-
ment in traditional latent variable modeling see Rupp 2002).

Similarly, the generality of the MCLCM family has been extensively dis-
cussed by Maris (1999), who formally introduced it, but provided only one
numerical example for dichotomous latent and observed variables. Some exten-
sions were subsequently programmed in Pascal, as well as a specialized program-
ming language (Maris, 2005, personal communication), but they cover far fewer
models than the theoretical realm of possibilities allows for. Consequently, as
measured by the number of publications that reference the MCLCM framework,
there has been little interest in applying MCLCMs, even in psychologically-
oriented disciplines.

Parameterization of the Latent Skill Space

Due to the multidimensional nature of DCM, the number of parameters that are
needed to estimate the skill profiles for all respondents can explode very quickly,
making alternative parameterizations of the latent skills space vis-à-vis the satu-
rated parameterization necessary.

Saturated parameterization

Under a saturated parameterization the mixing proportions for all possible 2k

latent classes are estimated for each respondent, except for one proportion due to
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the summation constraint ; this amounts to estimating a very large num-

ber of parameters for most models. 
The primary advantage of the saturated parameterization is that it allows one

to detect logical skill hierarchies, which postulate that certain skills must be
mastered before others (Leighton, Gierl, & Hunka, 2004; Tatsuoka, 1995). Under
the saturated parameterization, such hierarchies are detectable by examining
whether the postulated skill hierarchies are reflected in the skill pattern distribu-
tions, because patterns with nonadmissable skill combinations should have
mixture proportions of zero in the population.

Even though such hierarchies may not be detectable when alternative parame-
terizations of the skills space are used, alternative parameterizations may be nec-
essary to reduce the number of model parameters that need to be estimated. These
parameterizations include: (a) a general loglinear model (Henson & Templin,
2005; Xu & von Davier, 2007), (b) a general tetrachoric model (Hartz, 2002), and
a structured tetrachoric model (Templin et al., 2007; Templin & Henson, in press).

Loglinear parameterization

Under a loglinear parameterization of the skills space, the skill associations
are modelled using a loglinear model that contains main effects and interactions
up to a degree that remains estimable with current estimation routines. Further-
more, the model needs to be chosen to yield a sufficiently parsimonious represen-
tation for the unbiased and precise estimation of model parameters. For example,
Henson and Templin (2005) proposed a general loglinear model that contains
main effects associated with each latent skill variable, as well as all possible
interactions between the latent skill variables. Formally,

where the subscripts of l refer to the level of the interaction term, and sum-to-
zero constraints are placed on the l parameters for model identifiably. This repre-
sentation shows that the model contains one intercept, one set of main effect
terms, one set of product terms reflecting the interactions of the latent skill vari-
ables with themselves, and multiple sets of product terms reflecting the higher-
order interactions of the latent skill variables with each other. With all main and
interaction effect terms included, this general loglinear model is identical to the
saturated model described in the preceding subsection, but by leaving terms out
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of the model the complexity of the parameterization can be significantly reduced.
Deciding on which interaction effect terms to leave out depends on how much
information about the latent skill space is desired.

For example, Xu and von Davier (2007) present a reduced version of this model that
contains all main effects and all two-way interaction terms, but only one three-way
interaction term representing the cube of each latent skill variable, because they want to
capture only up to the first three moments of each latent skill variable:

In a simulation study and real-data application to language-test data with the
GDM, the authors show that their reduced loglinear parameterization leads to
almost identical parameters as the more complex saturated specification, but
results in a reduction of the number of parameters to be estimated. Specifically,

only parameters need to be estimated when all three moments are

identified, which is the case when polytomous latent skill variables are used, and

only parameters need to be estimated when the latent skill variables

are dichotomous, because neither quadratic nor cubic terms (i.e., neither

nor ) are identified.

Tetrachoric parameterization

Under the tetrachoric parameterization of the structural part of the latent class
model, the discrete latent skill variables ack for a given latent class c are related to
underlying continuous skill variables via latent threshold parameters tk such
that

In other words, the discrete latent skill variable is 1 if the value on the underlying
continuous latent skill variable exceeds its threshold; otherwise, the value is 0.
Consequently, a multivariate normal distribution with a zero mean vector and a
tetrachoric correlation matrix Ξ that contains the correlations between the under-
lying latent continuous skill variables can be used to estimate the latent threshold
parameters (Hartz, 2002; Templin and Henson, 2006, Henson & Templin, 2007).
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Consequently, the mixture proportion of the model can be represented as

where

In other words, the mixture proportion is a multidimensional integral with dimen-
sional lower and upper bounds of − ¥ and tk, respectively, for skills that have not
been mastered and with lower and upper bounds of tk and ¥, respectively, for

skills that have been mastered. In this model, only  parameters need to

be estimated, which are K threshold parameters and  tetrachoric correlations.

Constrained tetrachoric parameterization

The fourth parameterization for the structural part of the latent class model, the
constrained tetrachoric parameterization, builds on the previous unconstrained
tetrachoric parameterization and imposes a hierarchical factor structure upon the
tetrachoric correlation matrix Ξ. Formally,   where   is
the patterned loading matrix containing the loadings of the F hierarchical latent
factors onto the K latent skill variables, which are treated as indicators,

  is the matrix of the higher-order correlations of the F latent factors, and
  is the diagonal matrix of the of the F latent factors.

That is, even though the idea is the same as a linear decomposition of a tet-
rachoric correlation matrix for discrete indicator variables in traditional FA
(McDonald, 1999), the indicator variables in this context are not observed but
latent. As a result of this parameterization, the number of parameters that
needs to be estimated is further reduced from the unstructured tetrachoric
parameterization. For example, for a higher-order model with one factor, the

number of parameters to be estimated is reduced from  to 2K, which

are one loading lk and one threshold parameter tk for each latent skill vari-
able (Templin, Henson, Templin, & Roussos, 2008).
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Using real data on pathological gambling, Templin and Henson (2006)
used the DINO model for the measurement component of the latent class
model and estimated a constrained log-linear model with three higher-order
factors for the structural component of the latent class model. The number of
estimated parameters for the 10 latent skill variables included a total of 33
parameters (i.e., 15 factor loadings, 15 factor thresholds, and 3 higher-order
inter-factor correlations), which was much smaller than either 55 parameters
(i.e., 10 thresholds and 45 tetrachoric correlations) under the unstructured tet-
rachoric parameterization or 210 – 1  =  1023 parameters under a saturated
parameterization.

In sum, the general loglinear, general tetrachoric, and structured tetrachoric
parameterizations of the structural part of the latent class models are used to
reduce the number of the parameters for the skills space vis-à-vis the saturated
model. The primary motivation for this is to make the estimation computationally
feasible, especially for data structures that contain a large number of skills. To
illustrate this reduction, Table 4 shows the number of parameters that need to be
estimated under the different parameterizations for dichotomous items generally
and for assessments with 4, 8, and 12 skills specifically.

Table 4 shows specifically that a reduced loglinear and unconstrained
tetrachoric parameterization lead to very similar reductions of the number of
parameters to be estimated, while a structured tetrachoric parameterization
reduces this number significantly.

Availability of Estimation Routines or Software Programs

As already alluded to, model estimation also requires that appropriate software
programs or estimation routines be available. In comparison with many excellent

TABLE 4
Number of Parameters under Different Skill Space Parameterizations

Model description # Parameters for sample tests

Parametrization # of Parameters 4 skills 8 skills 12 skills

Saturated model (general or loglinear) 2K – 1 15 255 4095

Loglinear model (reduced form) 11 37 145

Tetrachoric model (unconstrained) 10 36 144

Tetrachoric model (constrained 
one-factor model)

2K 8 16 24
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250 RUPP AND TEMPLIN

software programs that are at an analyst’s disposal for traditional latent variable
models, only a few programs are easily accessible and well documented for
DCM. Table 5 lists the most important currently available options.

Notably, not included in Table 5 are programs for estimating BIN, because there
are numerous programs available on the market. These include freeware programs
such as Winbugs (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml),
MSBNx (http://research.microsoft.com/adapt/MSBNx), and Genie (http://genie.
sis.pitt.edu); commercial programs such as Hugin (http://www.hugin.com), Netica
(http://www.norsys.com), and ERGO (http://www.noeticsystems.com), as well as
programs with a research license such as StatShop (ralmond@ets.org).

Applications for BIN are becoming more popular (Almond, Williamson,
Mislevy, & Yan, in press; Pourret, Naïm, & Marcot, 2008), but they may be
accompanied by substantial estimation challenges that may require estimation
approaches that are specifically tailored to a particular application (Levy &
Mislevy, 2004). Moreover, they may also require prohibitively large sample
sizes for reliable parameter estimation if prior distributions, which are nor-
mally provided by expert committees, need to be empirically estimated and if
statistical tests for the omission of paths and effects need to be reliably
conducted.

While the existence of routines in programming languages such as R
(www.r-project.org) and Ox (www.doornik.com/products.html), and the avail-
ability of the freeware interface for Mplus (Muthén & Muthén, 2006) as listed in
Table 5 are laudable, application problems may equally remain. For example, the
routines in R and Ox are not yet accompanied by user-friendly manuals and
graphical user interfaces that make them attractive for people with less experi-
ence in estimation and programming. In contrast, the DCM interface for Mplus

TABLE 5
Software for Estimating DCM

Software Type of software(Contact) Estimated models

Arpeggio Commercial(www.assess.com) Full NC-RUM, reduced NC-RUM
DCM Freeware (requires the commercial version 

of Mplus)(jtemplin@uga.edu)
DINA, NIDA, DINO, NIDO, reduced 

NC-RUM, C-RUM
DCM in R Freeware (requires freeware R)

(alexander.robitzsch@iqb.hu-berlin.de)
DINA, DINO

DINA in Ox Freeware (requires freeware Ox) 
(j.delatorre@rutgers.edu)

DINA, HO-DINA, MS-DINA, G-DINA

LCDM Freeware (requires the commercial version 
of Mplus)(jtemplin@uga.edu)

LCDM family

MDLTM Research license(mvondavier@ets.org) GDM family
BUGLIB Research license(tatsuoka@prodigy.net) RSM
AHM Research license(mark.gierl@ualberta.edu) AHM
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has a short but concise user manual. Other programs such as BUGLIB or
MDLTM are currently only available as research licenses to researchers upon
request; BUGLIB, furthermore, requires a licensing fee to be paid. The Arpeggio
program for estimating the full NC-RUM has recently been made available
commercially, and other research-only programs will hopefully make this step
also, so that publication restrictions of research licenses will become obsolete in
the future.

Challenges in Achieving Convergence

Even if estimation routines or software packages are available, DCM are identified,
and suitable data have been collected, the estimation of DCM can be rather
involved, especially as the complexity of the DCM and the test structure increases.
On the one hand, DCM such as the DINA and DINO models or the Rasch-type
GDM are relatively simple to estimate due to their equality restrictions of item
parameters, such that convergence can often be obtained for sample sizes consisting
of a few hundred respondents, especially when tests are of moderate length (e.g., 20
or 40 items) and the number of involved skills is moderate also (e.g., 4 or 6).

On the other hand, test data that researchers want to analyze with more complex
models, such as the full NC-RUM or a complex BIN, require much larger sample sizes
and number of items, because higher-dimensional latent skill spaces that are defined by
items that have within-item multidimensionality require large a number of items for
each skill. Of course, this curse of dimensionality is familiar to researchers working
with traditional multidimensional FA and IRT models that contain simple structures,
where it is equally unreasonable to expect reliable score estimation with only few pieces
of information for each dimension (Rupp, 2008a). In contrast, a purely computational
method such as the RSM or the AHM can handle a larger number of skills than a fully
parameterized statistical model such as the full NC-RUM, but the drawbacks are that it
provides less statistical power to assess model fit and provides few inferential statistics.

The speed of convergence of an estimation routine is also related to the esti-
mation algorithm or approach that is used. For example, since the DINA routines
in Ox and R (de la Torre, in press), as well as the GDM code in MDLTM (von
Davier, 2006) use an EM-algorithm, convergence can often be achieved within
seconds or minutes. In contrast, the full NC-RUM and BIN are estimated within
a fully Bayesian framework (Gelman, Carlin, Stern, & Rubin, 1995; Kim & Bolt,
2007; Lynch, 2007; Rupp, Dey, & Zumbo, 2004), and analyses can take several
hours or even days until convergence is achieved. Moreover, interpreting conver-
gence of the estimation routines requires advanced knowledge of Bayesian esti-
mation theory, which involves concepts such as autocorrelation, burn-in periods,
as well as proposal and stationary distributions (Sinharay, 2003, 2004). Similarly,
the routines in Mplus that are activated by the free DCM interface (Templin,
2006) utilize a combination of EM and Quasi-Newton optimization approaches
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that are currently much too slow to be of practical use for analyses with large
data sets. Recently genetic algorithms have been proposed as flexible alternatives
(van der Maas, Raijmakers, & Visser, 2005), which appear to be a promising
alternative to these traditional estimation frameworks and approaches.

Ability of Software to Handle Complex Data Structures

In many testing situations, diagnostic assessments contain testlets. These testlets
induce method effects leading to correlated errors that can be viewed as undesirable
multidimensionality of the instrument (Bradlow, Wainer, & Wang, 1999;
Wainer, Bradlow, & Wang, 2007). To our knowledge, the impact of the magni-
tude of the error correlations within a testlet on the bias and precision of parameter
estimates, as well as on the classification accuracy in DCM, has not been studied,
even though it is known that it can lead to an underestimation of the standard
error in unidimensional IRT models (Wainer et al., 2006).

Additional complexities may arise if the data have a complex sampling struc-
ture such that, for example, students are nested within schools that are, perhaps,
nested within different provinces or states. It is always important to check
whether the algorithm can handle data that are missing either by design, or data
that are missing at random. While data from large-scale accountability studies
such as NAEP have been analyzed with the GDM (von Davier, 2005; Xu & von
Davier, 2008), these estimations have thus far not proceeded within a hierarchical
framework. However, recently, data from the TOEFL assessment have been ana-
lyzed successfully with the GDM (von Davier, 2007), but little information about
the impact of nonzero, intraclass correlations on the bias and precision of item or
skill parameter estimates, as well as the classification accuracy for respondents,
is currently publicly available.

From an assessment design-perspective, it is important to realize that not all
latent classes that are generated by the latent predictor variables in a DCM may
be statistically distinguishable if the assessment design does not contain items
tapping all potential skill combinations. This is a problem that arises more fre-
quently in DCM than in simpler latent class models (Haertel, 1989; Rupp &
Templin, 2008). Specifically, if there are 2K possible skill patterns, and all of
these latent classes are truly occupied with respondents in the population (i.e., if
there are no skill hierarchies in the population), then a test needs to consist of
items that tap all 2K – 1 skill requirements to accurately classify respondents into
these classes.

Model Fit

Just as with any other latent variable or statistical model, an important aspect of
data analysis with a DCM, which is a prerequisite for the interpretation of model
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parameters, is the assessment of the fit between the postulated model and the data
structure. Crucial considerations in model misfit concern the types of misfit that
are possible, as well as the development of different fit statistics that can detect
each of these.

Types of misfit

Misfit could be due to the selected model structure (e.g., a noncompensatory
combination of latent variables was fit, whereas a compensatory combination led
to the generation of the data), the postulated loading structure within the selected
model structure (e.g., certain skills are missing from the Q-matrix or certain load-
ing specifications are not supported by the data), misspecified constraints of
model parameters (e.g., some slope parameters were restricted to be equal across
items with similar stimulus material, but this equality is not empirically sup-
ported), or the fact that the population of respondents is not homogeneous (e.g., a
mixture of two subpopulations exists in the data that is reflected in different item
parameters across these subpopulations). Of course, the fit of a DCM to data will
never be perfect, but hopefully it supports the postulated hypothesis inherent in
the model choice and Q-matrix for a given population to a sufficient degree.

Assessment of misfit via fit statistics

The assessment of the degree of model misfit can take the different foci of
model fit, item fit, and respondent fit. A variety of global model-fit statistics exist
for factor-analytic models (Hu & Bentler, 1999), which can be classified coarsely
according to whether they allow for the assessment of absolute model fit, or rela-
tive model fit for nested models. While these indices are not directly applicable
to DCM, information indices for relative model fit such as Akaike’s information
criterion or a corrected Bayesian information criterion can be used to compare
models that are not nested, both within factor-analytic frameworks and for DCM
(von Davier, 2005).

Moreover, a slew of indices emanating from nonparametric and parametric
frameworks within IRT has been proposed for item fit (Orlando & Thissen,
2000) and person fit (Meijer & Sijtsma, 2001) in the second half of the last cen-
tury and has recently been adapted to the realm of DCM (Sinharay & Almond,
2007). Many of the popular indices that are available for these models are based
on normalized squared residuals that follow either c2 or standard normal distribu-
tions within frequentist or Bayesian estimation frameworks.

Rupp and Templin (2008) and Rupp (2008b), following other research on
DCM model robustness, investigated the sensitivity of item parameters and clas-
sification accuracy in the DINA model to misspecification in the Q-matrix,
which was further formalized into an item-fit index by de la Torre (2007). Simi-
larly, Liu and Douglas (2007) proposed a likelihood-ratio for the DINA model
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that compares the baseline model with a model that includes separate parameters
that model the propensity of a respondent to respond aberrantly.

Hartz (2002), in collaboration with Louis Roussos, proposed item-fit and
respondent-fit statistics for the full NC-RUM based on extensive simulation work.
Put simply, the item mastery statistics compare the observed item scores for
respondents that have either mastered many skills relevant for an item with those
who have mastered very few; the differences are then plotted graphically. The
respondent mastery statistics compare the observed total scores for groups of items
for which the respondents have either mastered many skills or very few; a statistical
significance test is then conducted on the differences between the groups.

The most influential state-of-the-art approach that has been developed and
refined in recent years, however, is posterior predictive model checking (PPMC;
Levy, Mislevy, & Sinharay, 2006, 2007; Sinharay, 2005; Sinharay, Johnson, &
Stern, 2006). In PPMC, the posterior predictive distribution based on the data
(i.e., the distribution of new data predicted from the model under a Bayesian
framework) is used to simulate a large number of data sets and a test statistic of
interest is computed for each data set. The observed value of the test statistic
from the sample data is then compared to the empirical sampling distribution, so
that critical values and credible intervals can be computed. Based on these values
it is decided whether the observed value of the statistic is unlikely or not and,
thus, whether there is evidence for item or respondent misfit.

The first advantage of PPMC is that the uncertainty in the parameter estimates
from the model calibration is taken into account in the computation of the
empirical sampling distribution through the posterior predictive distribution. The
second advantage is that it is a general approach and can be applied to almost any
statistical model, including DCM, such as the DINA and HO-DINA (de la Torre &
Douglas, 2004), the NC-RUM (Henson, Templin, & Willse 2007), and BIN
(Sinharay, 2004). The third advantage is that it forces analysts to be judicious
about the selection of existing fit statistics or the definition of new fit statistics to
match a fit statistic to the specific source of misfit, because research studies with
PPMC have effectively demonstrated how a comprehensive assessment of fit
requires a careful synthesis of information from multiple statistics.

FINAL OUTLOOK

Before closing this paper, a few words about research areas where relatively little
empirical research has so far been conducted for DCM should be said. It was
already addressed earlier how relatively little is known about parameter bias and
precision of item parameters as well as classification accuracy for respondents
under complex sampling designs, different types of missing data, and testlet
effects. Specifically, little research has investigated item bias (e.g., differential item
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or bundle functioning) within the family of DCM, even though Xu and von Davier
(2007) estimate various models for observed groupings of sex and ethnicity.

An important extension of DCM concerns the explicit modelling of longitu-
dinal trends. As Fu and Li (2007) discuss, several latent variable models have
been proposed that can be used for this purpose; not all models that are reviewed
in this paper are formally suited for the modelling of longitudinal data. Related
to this is the issue of cross-validation, which has received little attention by
researchers so far. One notable exception is the paper by Anozie and Junker
(2007), who compute the test-retest reliability of the skill classifications based
on a repeated calibration of student response data with the DINA model within
the context of an online tutoring system. Similarly, Kunina, Rupp, and Wilhelm
(2008) have empirically compared the skill profiles from a multidimensional
Rasch model with those from a discrete DCM approximation to it and cross-
validated them with school grades. Given that cross-validation is so frequently
addressed in multivariate statistical analysis, that the complexity of some DCM
is so often high, and that many practitioners doubt their practical benefit in com-
parison to traditional multivariate latent variable models or multivariate cluster-
ing algorithms, it seems indispensable that more empirical research is published
that focuses on the temporal stability of classification results developed from
DCM.

CONCLUSION

This review paper has presented a comprehensive review of the current state-of-
the-art of DCM from the perspective of defining, estimating, and applying them
to data from diagnostic assessments. DCM are multidimensional confirmatory
models which contain categorical latent variables that create multiple latent
classes. They are developed to classify respondents based on discrete response
data from diagnostic assessments. It was shown how DCM share various charac-
teristics with latent class models, multidimensional FA models, multidimensional
IRT models, and loglinear models. Despite their theoretical potential, it was
noted how applications of DCM across disciplines have been sparse, which is
partly a result of the stringent demands on the response theories from applied
cognitive psychology and related disciplines. It is also a result of the lack of data
from appropriate research designs matched to these hypotheses, as well as a lack
of attractive software programs needed to calibrate such data.

The field of measurement specialists interested in DCM is thus called upon to
communicate the complexity and resource demands of these models in a clear
and nuanced manner to anyone interested in working with these models. It is key
that practitioners develop a realistic picture of the balance between the theoretical
possibilities of DCM and the practical limitations regarding their implementation,
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especially considering that alternative multidimensional scaling alternatives with
larger research bases are available to them.

There are numerous understandable reservations that specialists have toward
these models. Therefore, it is advisable to take these reservations seriously and to
consider each of their aspects carefully. As a consequence, the enthusiasm that
measurement experts have for DCM might be somewhat dampened by the real-
life constraints of their application contexts. At the same time, it will, most
likely, also generate a healthy dose of optimism that can help practitioners realize
the additional benefits that a formative diagnostic assessment, which is carefully
designed and subsequently calibrated with a DCM, can have for their particular
assessment context. It is hoped that such a balanced perspective will lead to more
insightful illustrations of the potential and realized power of DCM vis-à-vis
different scaling alternatives.
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