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On Choosing a Model for Measuring 
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This paper describes an approach to the issue of selecting a measurement model that 

is based on a comprehensive framework for measurement consisting of four conceptual 

building blocks: The construct map, the items design, the outcome space, and the 

measurement model. Starting from this framework of building blocks, the measure-

ment model selected must conform to the constraints imposed by the other three 

components. Specifically, to preserve the interpretability of the construct map, the 

models must preserve the order of items throughout the range of person locations, and 

must do so in a way that is consistent with the interpretational requirements of the 

map. In the case of item response modeling, this translates into selecting models that 

have a constant slope—i.e., they must be from the Rasch family. In the conclusion, 

some next steps in investigating these issues are discussed. 
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The central issue of this paper is the question: What criteria should I use for choos-

ing a measurement model? This is an issue that arises in any field where measurement 

models are to be used to help guide the development of instrumentation. For instance, 

in the context of medical outcomes research, this issue has arisen in the fairly recent 

advent of item response models within that domain (Fisher, 1994; Ludlow & Haley, 

1992)—for example, in a supplement to one of the leading journals in that area, Medical 

Care, several papers were devoted to this development (Cella & Chang, 2000; Hamble-

ton, 2000; Hayes, Morales, & Reise, 2000; McHorney & Cohen, 2000; Ware, Bjorner, & 

Kosinski, 2000). Within those accounts, several described possible choices of item re-

sponse model (Cella & Chang, 2000; Hambleton, 2000; Hayes, Morales, & Reise, 2000), 

and one directly discussed the choice of a measurement model for a particular data set 

(McHorney & Cohen, 2000). To gain the advantages (Hambleton, 2000; Hayes, Morales, 
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& Reise, 2000) of this measurement approach, one must necessarily make a choice of 

measurement models, on some grounds. This paper is a description of one basis for such 

a choice.  

A necessary precursor to answering this question is to decide what are the character-

istics of a “measurement model”, so the discussion will start by addressing that issue 

first. In deciding what should be the characteristics of a measurement model, one comes 

across two broad strategies: The first gives most prominence to the statistical nature of 

the measurement model, while the second gives most prominence to the nature of the 

measurement approach, and the nature of that approach effectively builds constraints 

into the measurement (statistical) model.  

In the sections below, the following are discussed: First, the two approaches men-

tioned above are discussed and exemplified, and the consequences for choosing a meas-

urement model in a dichotomous context are discussed; and, second, some consequences 

of this perspective and some possibilities for future work, are discussed in the conclu-

sion. 

In order to make this discussion reasonably contained, and also to focus on the cru-

cial issues, a particular scope will be adopted throughout. There are many possible is-

sues that one could focus on in a discussion of model choice—the issue that has been 

selected for this paper is the issue of how to score the categories of item responses. This 

issue has been chosen because it is present in almost all measurement applications, but 

it is also an issue that is fairly specific and straightforward to define. The discussion will 

be set in the context of what has been termed item response theory (IRT), or sometimes 

item response modeling, because in that area the issue of response category scoring is 

one that already has a reasonably long history. Thus we need to define strategies that 

respond to the question: What should a measurement model do? 

There is a particular limitation to the discussion in this paper that should be noted 

at the outset: This is not a derivation (Fischer & Molenaar, 1995) of any particular 

measurement model—the aim is to help the researcher choose among competing models 

that are readily available—hence, the discussion is not carried out within a formal 

framework of mathematical theorem and proof. Instead the discussion starts with a re-

searcher’s intuitive idea of what it is that is to be measured, and sets up requirements 

for a measurement model on that basis. Mathematical derivations inevitably come 

around to the necessity to decide whether certain mathematical conditions should be 

insisted upon or not, and these abstractions are often hard to decide upon. The plan 
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here is a different one—to seek instead a conceptual basis for measurement, and to work 

out from there. If one disagrees with that basis, then one would, most likely, end up 

with a different conclusion, ergo, a different model. 

Strategy One: Fit the data 

Under the first strategy identified in this paper, labeled “fit the data”, a measure-

ment model is seen as no more than a statistical model (e.g., a multi-level latent vari-

able statistical model) applied in a particular sort of context—a context where one 

wishes to infer something about an individual when one observes a set of responses to 

“items”. This purpose is analogous to the function performed by many statistical mod-

els, so the fact that one is choosing a measurement model carries no particular strictures 

for the statistical model. Hence a measurement model needs to do what statistical mod-

els usually do: “...the successful model is the one ... most consistent with the observa-

tions” (Dwyer, 1983, p. 240). This can be operationalized in a number of ways, by, for 

example, explaining as much of the variance as possible, maximizing the likelihood, 

minimizing a prediction squared error, etc. In the majority of statistical modeling con-

texts there is a set of variables to include in the model that is limited either by the the-

ory under which the study is being conducted, or by the actual availability of data. 

Given these circumstances, the strategy makes good sense—the modeler must make the 

most of what is available, and that corresponds to “fit the data”. A recent description 

of this approach concluded: “the purpose of a theory in this approach is to explain the 

data” (Thissen & Orlando, 2001). 

When the focus is moved specifically to the measurement situation described above, 

this approach will make sense if the items are interpreted as a fixed set of variables that 

the statistical modeler must make the most of. Note that this is contradictory to the 

commonly held idea that the items in a specific instrument are no more than a random 

sample from some universe of items (Guttman, 1944). Nevertheless, there are occasions 

where this situation might arise: such as where a traditional factory-style of item devel-

opment process is in place—the items are developed somewhere outside of the range of 

communication and feedback with the statistical modeler, perhaps by a separate project 

team that does not have any say in the use of the items once they have been field tested 

and analyzed. Consequently, the modeler will seek a measurement model that is as for-

giving as possible, as it would be uneconomical to lose items because of a “mere” model 
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choice. Thus the pressure is to use as complex a model as possible—the items are a con-

stant, and the model must fit itself around them.  

At this point, a reader might say: “No reasonable statistician would argue that a 

measure is better if it arose from a more complex model. Similarly, basics indicate that 

parsimony is a goal.” If this were true, it would seem to negate the need for the current 

paper. However, another reader might say: “In my experience, estimated scores (θ) from 

a one-parameter [i.e., more parsimonious] model correlate about .98 with scores esti-

mated from a two-parameter model [i.e., more complex]; under such circumstances, how 

much is really lost by using a two-parameter model for measuring?” In fact, these 

quotes are from two people who were asked to review this paper (but who will remain 

anonymous)—clearly there is indeed a considerable range of opinion on this matter from 

leading experts in the field. 

Some specific consequences of this pressure towards complex models are:  

(a) measures are considered better if they arise from more complex models using more 

parameters; 

(b) you don’t need to worry about having a substantive basis for the scores of different 

items—just have the data tell you what the scores should be. 

Of course, this strategy does have its problems, problems that arise independently of 

the motivation for choosing it. The chase after more complex models can be a long one. 

In fact, the most complex “model” of the data is the data set itself. Few would accept 

this as a useful model, but it does give one perspective to one of the consequences of an 

unfettered pursuit of a closer and closer fit. Essentially, there needs to be an end-point 

to this strategy, otherwise known as the “stopping rule” problem (Gershenfield, 1998). 

Strategy Two: Develop items that satisfy your standards for 

measurement 

In the second strategy identified in this paper, a measurement model is seen as a sta-

tistical model that is used within a particular measurement framework. That framework 

determines the role of the measurement model, and will also determine, to a certain ex-

tent, its characteristics. There is no universally accepted framework for measurement 

(indeed some might doubt that such a framework is even necessary). This will be dealt 
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with by positing a specific framework that has the virtue of being reasonably straight-

forward to describe, and also capable of serving a wide range of applications. 

The framework is based on that described by Wilson (Wilson, 2004; Wilson, in 

press). It consists of four building blocks that define the act of measuring: (i) a Con-

struct Map; (ii) an Items Design; (iii) an Outcome Space; and (iv) a Measurement 

Model. In order to make the discussion concrete, a brief description of these building 

blocks for a particular instrument follows. 

The Four Building Blocks 

An instrument is always something secondary: First there is an idea or a concept 

that is the theoretical object of our interest in the respondent—this will be called the 

“construct”. A construct could be a part of a theoretical model of a person’s cognition, 

such as their understanding of a certain set of concepts, or their attitude toward some-

thing, or it could be some other outcome variable such as “need for achievement” or a 

personality variable such as a bipolar diagnosis. It could be a health-related construct 

such as “Quality of Life”, it could be from the domain of educational achievement, or it 

could be a sociological construct such as stratification or migrant assimilation. The type 

of construct that will be described in this paper is one that is particularly suitable for a 

visual representation called a construct map. Its most important features (Masters, Ad-

ams, & Wilson, 1994) are that:  

(a) there is a coherent and substantive definition for the content of the construct; 

(b) there is an idea that the construct is composed of an underlying continuum—in 

other words, the respondents are ordered from greater to less—one can make a com-

parison among the respondents of more, equal, or less;  

(c) this continuum can be “mapped out” in terms of the responses to the items (either 

of individual items or groups of items). 

Note that, in this conception, the ordering of the respondents implies also an ordering 

of the item response features. The content of a construct is usually delimited by the 

intended use of the instrument. A construct can be most readily mapped where the con-

struct has a single underlying continuum—and that implies that for the intended use of 

the instrument the measurer wants to array the respondents from high to low, or strong 

to weak, in some context. Note that this does not imply that this ordering of the re-

spondents is their only relevant feature. Some would see that measurement can only be 

thought of in such a context (Wright, 1977), and there are good reasons for taking such 
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a position, but the arguments involved are not necessary to the development in this pa-

per. Here the argument is that this is a good basis for instrument construction—the ar-

gument in this paper is not carried through to try and show that such an assumption is 

required. 

One example of a construct that may be mapped in this way is the Physical Func-

tioning subscale (PF-10: Raczek et al., 1998) of the SF-36 health survey (Ware & 

Gandek, 1998). This instrument is used to assess generic health status, and the PF-10 

subscale assesses the physical functioning aspect of that. 

For the construct called Physical Functioning (PF-10), an initial idea of the con-

struct can be built up by considering how a person might increase in reported levels of 

physical functioning as they progressed, say, through to recovery from an injury. A 

sketch of the construct map for this case is shown in Figure 1. Note that this depicts an 

idea rather than being a technical representation. Indeed, later this idea will be related 

to a specific technical representation, but for now, just concentrate on the idea. In the 

center of the figure is a line, which represents the underlying continuum. Up the page 

represents increasing propensity to report higher levels of physical functioning; down the 

page, the opposite. On the left side of the continuum is a representation of the locations 

of several persons who are being measured with the PF-10 instrument. Each is seen as 

having a location on the continuum, and other people may be above, below, or be equal 

to that person. Just one person is shown here, but many more could be located on the 

map.  
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Figure 1. Construct map illustrating the interpretation of different item locations with 

respect to a single person. 

On the right side of the continuum is a description of how these people are tending 

to respond to the PF-10 items. The description is in terms of short labels for each of the 

levels of response. Note the sequence of increasing ease of physical functioning is indica-

ted by the order of the generic responses given on the right hand side. This sequence 

ranges from very much more strenuous activities, such as those represented by the label 

“Vigorous Activities” (running, lifting heavy objects, etc.), down to activities that take 

little physical effort for most people, such as bathing and dressing. In between there will 

be responses that indicate more moderate levels of activity. Respondents at about the 

same location as a particular activity will tend to respond positively about 50% of the 

Respondents Responses to Items

(Person is  more than 50%
likely to agree that they
are not limited at all for
this activity.)

   Easy activities

Harder more vigorous activities

Moderate activities

Direction of
decreasing ease of
physical
functioning.

Direction of
increasing ease
of physical
functioning.

(Person is about 50%
likely to agree that they
are not limited at all for
this activity.)

(Person is  less
than 50% likely to
agree that they are
not limited at all
for this activity.)
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time when asked about the activity; respondents above the location of an activity will 

tend to respond positively more often; respondents below that activity will tend to  

respond positively less frequently. This can be seen as a probabilistic analogue of a 

Guttman scale (Guttman, 1944). Thus, the people highest on the PF construct would 

tend to respond positively to questions that ask about vigorous activities. But for the 

lowest people on the PF construct, just about the opposite would be true—that person 

would tend to respond positively only to questions about activities that indicate a very 

low level of physical functioning. The respondents in between would tend to give an-

swers that were somewhat in between these two extremes. The whole structure is a con-

struct based on the idea of a continuum, and its representation is a construct map. The 

meaning of these locations on the map will be made quite concrete later. 

Next the measurer must think of some way that this theoretical construct could be 

manifested in a real-world situation. For example, the PF-10 items probably began as 

informal questions that a health researcher might ask a patient. Typically, there will be 

more than one real-world manifestation used in the instrument; these parts of the in-

strument are generically called “items,” and the way they are conceptualized will be 

called the items design. Each item will generate a response from the respondent, and 

this will be classified into a category in the outcomes space (Masters & Wilson, 1997). 

These are the second and third building blocks, respectively. The respondent may pro-

duce a “free-response” within a certain mode, such as a short written response, or a per-

formance of some sort. Just as there are many possible ways to create items to match a 

certain construct, there can be many different outcome spaces that correspond to a 

given type of item. One common item format is the “forced choice” item, such as the 

Likert-type item and the multiple choice item from achievement testing. In a forced 

choice format, the items design and the outcome space are confounded by design. The 

items design and outcomes space for the PF-10 are illustrated by showing the PF-10 

items in Figure 2. This step from block one to block two is a very challenging one, and 

one where there is little science available to help. Good item developers tend to act 

more like artists than, say, engineers. And the support provided by measurement is 

typically in hindsight, rather than at the planning and design stage. An important area 

for future work is the construction of useful guidelines or templates that item developers 

can follow to attach items to construct maps. 

The final building block in the design of the instrument is the measurement model. 

The measurement model must provide a principled way to use the information about 
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respondents and responses that is coded in the outcome space to locate the respondents 

and the responses on the construct map. Note that in the discussion above, and in what 

follows, it is assumed that the construct, and hence the instrument, is unidimensional. 

Discussion of a multidimensional context is beyond the scope of this paper, but the be-

ginnings of such a discussion are available elsewhere (Wilson, in press). 

The following items are about activities you might do during a typical day. Does your health now limit 

you in these activities? If so, how much? 

1. Vigorous activities, such as running, lifting heavy objects, participating in strenuous sports (Vigorous 

Activities) 

2. Moderate activities, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf (Mod-

erate Activities) 

3. Lifting or carrying groceries (Lift/Carry) 

4. Climbing several flights of stairs (Several Stairs) 

5. Climbing one flight of stairs (One Flight Stairs) 

6. Bending kneeling, or stooping (Bend/Kneel/Stoop) 

7. Walking more than a mile (Walk More Mile) 

8. Walking several blocks (Walk Several Blocks) 

9. Walking one block (Walk One Block) 

10. Bathing or dressing yourself (Bathing/Dressing) 

 

The responses to all questions are: 

     Yes, limited a lot;      Yes, limited a little;      No, not limited at all. 

We will assume that these are dichotomously scored: 

  0  Yes, limited a lot;   0  Yes, limited a little;   1  No, not limited at all. 

Figure 2. Items designed for the “Physical Functioning” Instrument—PF-10 (note that 

the phrases in parentheses are labels for the items.). 

Consequences for the measurement model 

The requirements for a measurement model, the last of these 4 building blocks, are: 

1. the measurement model must enable one to interpret the distance between respon-

dent and response on the construct map, 
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2. the measurement model must enable one to interpret distance between different re-

sponses on the construct map, and also the difference between different respondents. 

In order to make sense of these requirements, we must say what does “distance” 

mean? On a geographical map, distance and direction on the map have meaning on the 

surface of the earth: For example, 1 kilometer north might equal 1 centimeter “up” the 

map. On a construct map: distance between respondents and responses will indicate the 

probability of making that response. To express this as an equation, assume that the 

respondent’s position is represented by θ and the item response location is represented 

by δ. Then the probability of the response [Pr(response)] will be given by some function 

(f) of the difference between the respondent and the response: 

 Pr(response) = f(θ -δ). (1) 

That can be interpreted thus: 

(i) zero distance between a person and a response would mean that that person is likely 

to endorse statement with a certain probability (say, .50), 

(ii) respondent above response would indicate a greater probability, 

(iii) respondent below response would indicate a lesser probability, 

and hence we can say that the model must have qualitative features (i) to (iii). How-

ever, these qualitative features are not sufficient to preserve the idea of a “map”. For 

that the requirements (ii) and (iii) would need to be more detailed, giving a specific 

metric form. 

Consider now what that means for interpretations of the construct map itself. Fig-

ure 1 illustrates the situation for a person in the middle of the construct. For this per-

son, items (i.e., shown on the right hand side) that are at a similar level would be ex-

pected to elicit agreement at about a .50 probability, while items that are above, would 

tend to result in a positive response with a lower probability, and the opposite for those 

below. We can also consider distances between item responses. Figure 3 illustrates the 

distance between two item responses, considered by people at different points on the 

scale. 
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Figure 3. Construct map illustrating the interpretation of different item locations with 

respect to two persons. 

 

Note, that the distance between “harder and more vigorous activities” and “moderate 

activities” is the same no matter whether you are looking from the perspective of the 

people lower on the scale, or those higher on the scale. This is so obvious that it seems 

odd even to point it out. But it is fundamentally important to the sorts of interpreta-

tions one can make of the map: the idea of “location” of an item response with respect 

to the location of another item response only makes sense if that relative meaning is 

independent of the location of the respondent involved — i.e., the interpretation of rela-

Respondents Responses to Items

same "distance" no matter
where the respondent is

Easy activities

Harder more vigorous activities

Moderate activities

Direction of
decreasing ease of
physical
functioning.

Direction of
increasing ease
of physical
functioning.
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tive locations needs to be uniform no matter where the respondent is. Another way to 

put this is that meaning is the same no matter where you are on the map (Wright & 

Stone, 1979; Andrich, 1988). This invariance requirement corresponds to the idea that a 

“centimeter represents a kilometer” wherever you are on a geographical map. 

One specific qualitative consequence of this is that the order (on the map) of the 

item responses must remain the same for all respondents, and that the order of the re-

spondents (on the map) must remain the same for all item responses. This is equivalent 

to the requirement of double monotonicity, a concept from the topic of nonparametric 

item response modeling (Mokken, 1997). But recall requirement (2) above—it is stron-

ger, not just order is preserved, but metric properties too. To achieve this in the frame-

work of item response modeling, the item model must have the property that the shape 

of the item characteristic curve (ICC) is the same for all items, such as in Figure 4. The 

ICC relates the probability of a person’s response to the location on the scale (θ). Note 

that this graph is presented in a way that is rotated 90 degrees from the standard—this 

is done to make it match the construct map where the θ goes up the page. In this 

Figure, the items will always have the same order in terms of probability no matter 

where the respondent is. For example, at θ=0, the lowest respondent location on the 

map, the items are ordered in difficulty (from highest to lowest) as item 1, item 2 and 

item 3, respectively. Passing up to θ=1.0, and θ=2.2, one can see that the item dif-

ficulty order is identical. At the extremes, these differences will become very small, e-

ventually smaller than any given limit of accuracy—nevertheless, in a mathematical 

sense, they will always be ordered at any finite point on the scale. One can see that, for 

the relative item difficulty order to change, it would be required that these ICCs have 

different shapes. 
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Figure 4. Item characteristic curves—all ICCs have the same shape. 

Let us make this choice concrete by moving into the context of parametric item re-

sponse modeling. Introducing the various item response models is beyond the scope of 

this article, but introductions have been provided elsewhere (e.g., van der Linden & 

Hambleton, 1996). In the context of item response models, the conceptual basis of the 

argument as described above is translated into a different format—it becomes a discus-

sion about parameters within the item response models. Suppose now that the ICCs we 

are discussing are given by a two-parameter logistic function as in equation (2) 

 P(Xi =1 |θ,δi,αi ) =
eα i (θ −δ i )

1+ eα i (θ −δ i )  (2) 

where the θ and δi are as above, and the αi is a slope parameter. In this context, having 

the same shape for all the ICCs implies that the αi are all equal, that is, that we are 

requiring a Rasch model: 

 P(Xi =1 |θ,δi ) =
eθ −δ i

1+ eθ −δ i
 (3) 
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If the αi are not equal, then the item responses will (at least somewhere) swap their 

order. This is illustrated in Figure 5. In this Figure, consider three persons at different 

locations on the scale: At -3.0, the order of the items is (1, 3, 2) (from hardest to easi-

est); at 0, the order of the items is (1, 2, 3); at 4.0, the order of the items is (2, 1, 3). 

Note that the argument below, and the following discussion, do not require that the 

function be the logistic one shown in equations 2 and 3 — any suitably shaped function, 

such as a normal cumulative distribution function, could equally well be used in the 

argument. Thus, the argument is quite general, but I shall keep it in the logistic family 

of functions, as that is what is most commonly used in item response modeling. The 

consequences of such differences in the shapes of the ICCs is that no equivalent of Fig-

ure 5 can be drawn without a very complicated set of rules for interpreting the “loca-

tions.” To see this, note that for a person at 0, the item order was (1, 2, 3), but as we 

move to -3.0, the order has changed to (1, 3, 2)—so that items 2 and 3 have switched 

their order as the person locations have changed. Thus, the relationship between the 

items is no longer invariant for people at different locations. For a geographical map, 

this would be like saying that when you move from, say Rome to Naples, the latitudes 

of other places appear to change—Corsica moves south of Sardinia, say. This would 

make it impossible to construct a geographical map as we understand it—effectively, 

“locations” no longer are consistently meaningful. In the same way, the idea of a con-

struct map would no longer be tenable—each possible person location would possibly 

give a different ordering of the items, and hence the interpretation outlined above would 

not be useful. 
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Figure 5. Item characteristic curves—ICCs have different shapes. 

Discussion 

If an item set really did have characteristics like those in Figure 5, what could one do 

to overcome the problem of this lack of invariance? Some possible strategies that one 

could consider are given below. 

(a) One could develop a more complex construct interpretation where the underlying 

theory is consistent with (in fact predicts that) the order of the items should change for 

people at different points of the construct. If one could not find a set of items that had 

the construct map property, then this would be the clear next choice. But, if one could 

find an acceptable set of items with the construct map property, then it would seem to 

be odd to not use them, and thus preserve the ease of interpretation. This is a rather 

uncommon approach, mainly because it involves making interpretations that are quite 

complex, more complex than are usually entertained in psychometric contexts. One ex-

ample is Yen’s interpretation of differences in slopes as evidence of “increasing cognitive 

complexity” (Yen, 1985). Another is Wilson’s extension of Rasch modeling to incorpo-
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rate elements of Piagetian stages (the “saltus” model: Wilson, 1989; Wilson & Draney, 

1997). In order to make the 2PL model admissible, the invariance principle behind the 

construct map would need to be modified into something more complex. For example, 

the requirement that the distance between any two persons looks the same for all items 

could be replaced by a more complex requirement that the ratio of these distances be a 

constant for any pair of items (but different across different pairs). This is a require-

ment that the 2PL model would satisfy. It is not clear how this property would lead to 

useful interpretations, but indeed it is an invariance property, and thus could be helpful. 

This approach could be called “make your construct more complex”. 

(b) One could pretend this issue does not matter and find ways to display something 

that looks the same. An example of this is given by the usage of the “Response Prob-

ability 80” (RP-80) convention (Kolstad et al., 1998). Under this convention, one uses 

the locations at which a person has a probability of responding of .80. This approach 

simply ignores the inconsistency with the ordering at other criterion levels of probabil-

ity. This could be called “hiding behind the statistical complexity”. 

(c) One could ignore the issue of substantive interpretability of the item parameters. 

That is, the item parameters and their attendant probability interpretations are ignored 

in terms of internal construct validity—they are simply allowed to be whatever they 

turn out to be. This is inconsistent with prominent measurement theories, and also with 

current testing standards (AERA/APA/NCME, 1999), yet is probably the most com-

mon occurrence. This could be called “let the data tell you what the weights should 

be”. 

(d) Lastly, one could work to improve the item set so that the ICCs do not cross (e.g., 

the Rasch model does hold). This can be seen to make sense in terms of the relative 

rarity of items and constructs, after all, there are many more items than sound con-

structs. This could be called “make items to fit the construct”. 

It should be clear that, given that one is working in a “construct map” framework, 

(d) is the only viable alternative. It may be the case that a measurement model is being 

used without such a framework. Perhaps there is no framework, and one is simply try-

ing to scale all of a certain set of items together, or perhaps one has a different frame-

work. Then the arguments above not necessarily hold. In case (d) above, one needs to 

take care that indeed the items do represent a reasonable approximation to the ideal 

where all have the same shape. Fortunately, item fit statistics have been developed that 

are directly sensitive to the issue of “equal slopes”. There are global tests (Andersen, 
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1973) as well as tests that are diagnostic for each item (Wright & Masters, 1982; 

Wright & Stone, 1979). 

Thus, the consequences for the measurement model are that the estimation of pa-

rameters of best-fit needs to be done under the set of constraints implicit in equation 

(3), or an equivalent. It doesn’t matter that you might get better fit by estimating sepa-

rate αis, those models would not be admissible to as part of the family of models that 

affords a construct map interpretation. This sort of position is not at all inconsistent 

with good statistical modeling practice. Consider the following quotation from Annette 

Dobson’s monograph on statistical modeling: 

“A criterion for a good model is one which ‘explains’ a large proportion of this vari-

ability… In practice this has to be balanced against other criteria such as simplicity. 

Occam’s Razor suggests that a parsimonious model which describes the data ade-

quately may be preferable to a complicated one which leaves little of the variability 

‘unexplained’.” (Dobson, 1983, p. 8) 

In fact, the first strategy described by Dobson is really only a partial strategy—one 

always must consider the need for parsimony, as well as the need to base a statistical 

model on the interpretational context, which will determine that some models are ad-

missible, and others are not. 

Of course, in carrying out strategy (d) above, it is very important that the constraint 

of equal αi be reasonably well reflected in the data. That is why we need to test that 

particular fit aspect: using techniques that investigate item fit such as the weighted and 

unweighted fit indices (Wright & Masters, 1982), and fitting all-but-one αi constrained 

models. These techniques pinpoint problem items, and can be helpful in diagnosing the 

causes of these problems, thus making it easier to come up with replacement items that 

do not have the same problems. One might argue that this results in a relatively low 

quality final item set, as it tends to lead one to seek alternatives to items with the high-

est slope parameters, which are commonly interpreted as the “best”. But in fact this is 

simply a poor strategy—a better strategy is to seek alternatives to items with shallow 

slopes—this alternative strategy can keep the items with the steepest slope in the item 

set. Some would argue that any usage of the fit statistics to select the item set is a 

threat to validity. This is in direct contradiction with the standard procedures for de-

veloping instruments (AERA/APA/NCME, 1999), which insist that item analysis be 

used for deleting problem items. In the situation being described here, where the inter-

pretability of the instrument is seen as being dependent on the integrity of the construct 
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map, it makes every sense to treat items that threaten that integrity as problematic—

items with extremely different slopes will threaten the validity of the interpretation, and 

hence are problem items. 

In review, the old question: “Should you ‘make the model fit the data’ or ‘the data fit 

the model’?”, is recast as a question of what are the a priori interpretational constraints 

that must be imposed on the model to have it make sense in the way that you want it 

to. This has been an issue that has been debated in the mainstream statistics literature. 

For example, consider what Gershenfeld had to say:  

“...the two central tasks are always choosing the functional form of the model and 

using the data to determine the adjustable parameters of the model.” (Gershenfield, 

1998, p. 113) 

What we have been concentrating on in this paper is the former—the functional form 

of the model. Gershenfeld continues: 

“Decreasing one kind of error is likely to increase the other kind. This is called a 

bias/variance tradeoff—if you want less bias in the estimate of a model parameter, 

it usually costs you some variance. A more flexible model that can better represent 

the data may also more easily led astray by noise in the data.” (Gershenfield, 1998, 

p. 113) 

Thus the question becomes, should one make the model with constrained scores fit 

the data, or should one make the model with unconstrained scores fit the data? In other 

words: Should you make the items fit the construct or the construct fit the items. 

Following the discussion above, if one wants to preserve the meaningfulness of the 

distance in a construct map, then you have no option but to seek item sets that fit the 

constrained model. In practice, within the item response modeling area, this becomes a 

strategy of finding ways to use the Rasch family of models to deal with the many com-

plexities of measurement situations. In theory, non-parametric models may also be used, 

but there are limits to what you can achieve with those models. 

Further directions that this line of research can take include the following. First, the 

extension of this argument to polytomous items is fairly straightforward, but, as is the 

case with respect to other aspects, the extension is not without its complexities. Gener-

ally, polytomous models that fall within the Rasch family, such as the partial credit 

model and the rating scale model (Wright & Masters, 1982) do indeed conform with the 

construct map logic displayed here, while models that involve a slope (α) parameter in 
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some form, such as the graded response model (Samejima, 1969) and the generalized 

partial credit model (Muraki, 1992) do not. This will be examined in a companion paper 

devoted to just this topic (Wilson, 2001). There are a number of ancillary issues that 

arise in the polytomous case, such as what to do about items with differing numbers of 

categories. Again, these issues are beyond the scope of the current paper. A second set 

of issues that deserves a similar analysis is the use of a linear model on the item pa-

rameters (Fischer, 1973)—also called “facets” models (Linacre, 1989)—the question is 

whether a similar invariance is needed across these facets. Third, there are some cases 

where a strong model exists that determines the scores. For example, Draney, Pirolli, 

and Wilson (1995) showed that a power law of learning corresponds to a logistic model 

of errors that looks like: 

 
Pr(X jkt =1 |θi ,δ j ,τ k ,γ) =

exp(θi +δ j + τ k −γ log(t))
1+ exp(θi +δ j + τ k −γ log(t))  (5) 

where t is the number of attempts. Thus, the score for the γ (rate of learning) facet is 

log(t). Clearly, this model is within the Rasch family, yet it involves effects that are not 

easily related to the arguments above. 
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