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To Weight or not to Weight,
That is the Question

(Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?) Hamlet, Act 3, Scene 1.

T. M. F. SMITH
University of Southampton

SUMMARY

Weighting by the inverse unit selection probabilities is the basis of randomization inference.
; In- 2 model-based framework probability designs are ignorable and so probability weights
have no obvious role. This issue of whether to weight or not is examined by following
Rubin (1983) and conditioning on the selection probabilities. Using results from size biased
sampling it is shown that randomization estimators can be justified.

Keywords: RANDOMIZATION; WEIGHTING; CONDITIONAL INFERENCE; IGNORABLE DESIGNS,
] SIZE-BIASED SAMPLING; REGRESSION; ROBUST ESTIMATICN.

1. INTRODUCTION

isticians frequently seek to protect themselves against outragecus fortune by an act of
domization. In sample surveys this may involve the use of different selection probabilities
different population units and the inverse selection probabilities may then be used as
weights in forming estimates of population totals, These weights are basic to randomization
inference and any method of estimation which fails to use them is treated with great suspicion,

alternative to randomization inference is to assume that the distribution of population values
can be represented by a probability model. A sample selection mechanism using randomization
gan be ignored for model-based inferences and then there is no apparent role for probability
weights. The problem addressed in this paper is whether probability weights have a role in
model-based inference for sample surveys.

2, RANDOMIZATION INFERENCE
:Let I; be an indicator variable for unit {,i=1,..., N, in a finite population, such that

L= 1 ifigs
*T 10 otherwise,

“where s = (ip,..., i} is the set of labels selected by a sampling mechanism, For samples of
 fixed size n we have Yje, i = n and

Pe(l; =1)=m, (2.1)

437
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which is the inclusion probability for the ith unit when randomization is employed. We assu
that 0 < =; < 1 for all <.

A sampling mechanism is a rule for selecting s, a subset of the population units, Let
denote the prior knowledge available to a statistician before drawing the sample and let ¥

denote the NV x p matrix of values of the survey variables of interest. A SEEEm mechanis
of the form

Ty =Y wi¥i/ Y wi, (2.7)

i€s i€s

whichi is now a ratio and is not unbiased. However, Ty, is component-wise unbiased in the

;?.: Tic,wiY; is an unbiased estimator of TMY; and Ee,w; is an unbiased estimator
N, Ty, was suggested by Hajek (1971} as a wo%_Em solution to the Basu elephant problem
‘has the desirable property of being location invariant, which is not true for i,

p(s|X) | ey

for which 0 < m = 3, p(s|X) < I is called strongly ignorable, Rosenbaum and Rubin-
{(1983). Random sampling schemes satisfy this condition, but quota sampling schemes ma
not, see Smith (1983). In practice the observed sample may also be determined by a non-
response selection mechanism which is not under the statistician’s control and may depend on
the survey variables Y. Such a mechanism would not be ignorable, see Little (1982). In this
paper we assume throughout that the selection mechanism is strongly ignorable.

Let & denote the Az } possible samples which might be drawn. The probability distriby-
tion on § determined by p(s|X) is the randomization distribution. From the statistical point
of view it has the interesting property of being completely known; it is not indexed by an;
unknown parameters, nor is it directly related to the survey variables Y. If T is some function
of Y of interest and T, is an estimator of T' then the enly statistical operation of any content
is to take expectations with respect to p{s]X), that is to form

Fxa ple 2. A regression coefficient.
Let

N N
B= MC\: -V - 1)y _(Yu— To)? T(2.8)
i=1 i=1

be the finite population regression coefficient between ¥y and Y. Apparently this is sometimes
of interest. There are many alternative estimators of B, all of which are biased, Applying the
weights w; to each unit i € s gives

Bp(Ty) =Y _ TuplslX). (2.3)
1ES

Since Y can take any values the only useful general constraint is to require that

B I Yow 3, Yo Youwy — 30 Yiwg 30, Yayuy 00
w — Py 5 3 m . u
2w 2, Yaw = (0, Yaws)

E,(f\)=T  for all possible Y, (2.4)

s&ar is the anzlogue of (2.7). In (2.9} a term like ,¥3;Yo;w; is the unbiased estimator of
HSL\? and so (2.9) can be viewed as a function of unbiased estimators of totals 7. So if
n,v is the function of interest A(T',) is the component-wise unbiased estimator. All standard
“sample survey estimators are in this class so randomization inference for sample surveys is
m@q tied to p-unbiasedness. Taylor series expansions give the conditions under which this
4 reasonable approach.

For ».moumnm multiple regression problem with ¥1; regressed on Yo, i =1,..., N, then

weighted estimator is

WE: is to require that estimators be p-unbiased. When T is a total and the estimators are linear
in the indicator variables I;, so that

Musaa\ ), and 7= M%\v (2.5)

§=1

p-unbiasedness leads to

N =1

N N
Ey(T) =Y wg(¥Y)ym =3 g(¥y) foraly,
i=1 By=(Y Tw,Ys) YhwYi, (2.10)

i=1
so that . o

where ¥y, is the n x 1 vector of dependent variables in s, ¥z, is the n x p matrix of
: Eﬁ_m:»noé variables in s, and w, = diag(w;, ¢ € 5) is the n x » matrix with wmav_m weiphts
noss the diagonal. This is the solution obtained by using the s_mﬁgum option in a standaz3
wnwmmo of statistical programs. It should be noted however, that the variance associated 45.5
'(2.10) in packages is usually the weighted least squares variance

the inverse probability weight.

Example 1, The population mean :
Let T =Y = E,Y;/N. An unbiased estimator is

m._: = .Z.MUS,M\: with w; =T w

e V(Ba) = (YT, G%LL%, (2.11)

Which is the well known Horvitz-Thompson estimator. If a computer package is used for data

analysis then the weighted estimator will be ‘and this is not the randomization variance derived from p(s|X), see Rao (1975).



440 T. M. F. Spitlg: G Weight or not to Weight, That is the Question ) 441

3. ALTERNATIVES TO RANDOMIZATION INFERENCE

where § = (g== ) is the unweighted sample covariance matrix of (Xs,Y,), bys =

enaH 822, Sy is the finite population (known) covariance matrix of X, and my, ™, are the
unweighted sample mean vectors of (¥, X), and M, is the finite population mean vector of
X. I Byy is partitioned according to (Y"1, Y 3), then the adjusted regression coefiicient of
#¥1 on Yz becomes

3.1. Ordinary Least Squares (OLS)

If Rubin (1976), Rosenbaum and Rubin (1983), Sugden and Smith (1984) etc., say that random,
sampling is ignorable for inference then why not ignore it? Ignoring sample weights surel;
tmplies using equal weights which in turn implies ordinary least squares as a criterion.fog
Tegression analysis.

The OLS estimator is

Ba=Sryiiy, @)

The properties of (3.5), (3.1) and (2.10) have been compared in a simulation study

y. Holt, Smith and Winter (1980), Smith (1981), under various sampling schemes. For

uhequal probability selection schemes the OLS estimator By, is badly biased, while both B,

and B4 remain approximately unbiased provided the population satisfies the linearity and

lomoscedasticity assumption. Under this assumption B, is generally more efficient than
B.. These results are given in Table 1 for a multivariate normal model.

By = AM\W&H\M“V - YY1,

which is an unweighted alternative to B,, in {2.10). This is frequently chosen for the analysis -
of data from a complex survey as a default option. As we shall see {n Section 3.2 this approach
takes the word ignorable at face value and fails to read the small print.

Social surveys are usually designed to be self-weighting, in which case the OLS esti Means S.D.

is also the component-wise unbiased estimator. Howéver, as stated above, the least squa - < = - = - ~ - ~
variance is not the correct p-variance and clustering in the design can lead to considerabls Uam_mu qmmﬂ wm_\_ WMH mﬁ.ﬂ %no_ mo.Mm WMH B oﬂm:
inflation of the true p-variance relative to the OLS variance, see Kish and Frankel Qoﬂ:. Da 71 | 7 | 9 1 a1 041 ot P
3.2, Adjusted Least Squares (ALS) D3 725 719 722 719 041 043 041 043
A full model of a survey requires the joint distribution of the survey variables Y, the uno_.. W.p Mww “ww WMM MWW NMM MMM muw MMM
variables X and the sample selection variable s, Formally we can write De s | 0 | 1 41 010 044 109
L3y - . . Dy 702 723 719 723 039 043 039 043
Ha ¥, 350) = p(elX) f(Y X3 0)9(X; ), a.ﬁ_ ‘ Dy | 67 | 716 | 71 | 716 036 | 085 | 036 | .085
where A = (8, ¢) is a vector of parameters. The sample data comprise d, = (s,Y,,X), and Dy 673 | 719 | 710 719 035 | 123 | 037 .123

then

Table 1. Biases and standard deviations of estimated regressions.
‘Simulated population, N = 7,037.

= log(expenditure on food)

= log(total expenditure)

== log(expenditure in housing)

‘Meen and covariance matrix from Family Expenditure Survey.

Population regression Y1 =174+ 0.71%2

ite population regression Y, = 1.63 4+ 0.72Y2

F(ds3 ) = p(s1X)g(X; ) £,(Y 41X 60), @

where f,(Y,|X:0) = [ f(Y|X;8)dys, and Y; denotes {V; : i & s}. If X is known then
predictive inferences about Y3;¢ € 5, can be made via the conditional distribution HY|X; 3
ignoring the design p(s|X). If X, ¢ € 7 is not known then the design p(s|X) contains
potentially usefull information that will help the satistician to predict X, i € 7 and hence
Y, i € 3, see Scott (1977), Sugden and Smith (1984). : i
From the sample data the parameters @ can be estimated from the conditional distribution ;
fs(Y41X;8), and the parameters ¢ from the marginal distribution 9(X; ). In the regression
problem in Section 2 the parameter of interest was a regression coefficient between ¥ variables
and is thus defined in the marginal distribution of ¥, which is not directly observable from-
the sample data. The problem is how to use the sample data to estimate parameters in the
marginal distribution of Y7
If (X,¥) has a multivariate normat distribution, or equivalently if E(Y'|X) is linear
in X with a constant covariance matrix, where E(.) denotes expectation with respect to the
model, then the adjusted least squares estimators of ity; Byy, the mean vector and covariance
matrix of the marginal distribution of ¥ are _

What happens if the regressions are not linear or the variances are hecteroscedastic?

: H.umm.nnammﬁ and Holmes (1985), Holmes (1987) show that B, is not robust to these changes,

Whereas B, remains approximately unbiased. In Table 2 some results are shown for repeatet

samples from a real finite population, the data being the U, K. Family Expenditure Survey for
977.

3.3. A Compromise Estimator

Nathan and Holt (1980) show that the OLS estimator By is biased in the conditional distriby-
tions given (X, s) while the adjusted estimator B 4 is approximately unbiased provided that .
the model is true. The empirical results in Table 2 suggest that B4 is not robust to departures
m the model assumption but that the p-weighted estimator does have robustmess properties.
r we get the best of both worlds by using a p-weighted version of B,? Nathan and Holt
opose such an estimator and this is the estimator B 4w in Tables 1 and 2. .

From the simulations it appears that B 4 shares the robustness properties of By, When
the simulation results are plotted in bands according to the value of X then it appears that

By =my + by (M, —m,),
and .

ME\ = 8yy + byz (Szo — 824) om.a. , (3:4)
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Means , S.D. )
Design | Bo | Bw | Ba | Baw Bo | Bw | Bs | Baw f(ds; 2) = p(s|X)g(m; 8}, (¥ o [r; 6) (4.2)
Dy T4 | 714 | 715 | 713 047 | 047 | 047 | 047 , _ = p(slm)g(m; ) fs (Y s|mr; 6);
Da Ji4 1 714 q13 713 048 048 047 047 and this has the same form as (3.3) and so p(s|=) can be ignored for inference about 8, ¢,
Da 70U 712 | 694 | 701 0511049 | 050 | 049 or Y. Rubin argues further that frequently it will be simpler to construct f(¥ |;d) than
Dy 693 11 668 708 056 063 055 063 Yi|X;6).
Ds £69 | 706 | 645 703 058 1] 065 | 056 1 066 Gum.ounsmﬁq in social surveys most designs are self-weighting which means that m;(x)
Ds 836 | 699 | 608 691 063 111 063 116 is constant for all i = 1,..., N, In this case  contains no useful information. However, by
Wq .MMW .www MWW .wwm .wwm .Mmm %M .MMM - nu.ﬂmn&:m wTox* = Am.v » where L is the set of higher Jevel labels denoting the stratification
bw ”mum “q 12 ”.‘.S ”.:N “98 ”_um ”o& i .98 : and clustering in the design, and then conditioning on #* leads to stratification models and

multi-level models (components of variance) which are maanumﬁ mw_. modelling Y,

" When the weights in 7 are not all equal then we can distinguish two cases:

) stratification, with ), = £ in stratum &, and not all =, equal;

(i} variable probability sampling with m; # =3, for some i# s..- .

; With stratification a predictive inference about NY = &, N aw\a. leads naturatly to sﬁme

involving Ny /ny where n;, is the sample size in stratum k. w=m Hi..mngnmu about ¥ or Sj

do not require these weights, nor do inferences about linear ooBcEwnouw.M__wEi\? when W,

known. These latter inferences are made when data from a survey in one area are nsed
to u.nm&nﬁ the results for a different population in either time or space or both. For example

““surveys on the annoyance due to aircraft noise around London mnm._ﬁnos. have been =mmn.u .8

redict possible annoyance at potential sites for a third London airport and the probability

reights Ny, /np, for Heathrow have no role for such inferences. ) ) .

" 'We consider the case where the weights are a measure of size of a sampling unit. The

prior data X may contain many variables and the resulting summary into :. at best very

crude, However, for inferences about ¥ all that is required is . Before sampling, the joint

istribution of (¥, w) is

Table 2. Biases and standard deviations of estimated regressions.
Real population, N = T,027.
Details as above

Finite population regression ¥i = 1.74 4+ 0.71%3

B aw has better properties than By in the conditional distribution given (X, &), It really does
seem to benefit from both approaches!

Faced with these empirical results which favour p-weighting how should somebody who
believes in models proceed? Brewer (1979}, Little (1983), both advocate estimators based
on modeis which are then protected against model misspecification by choosing the sampling
scheme and estimator to make the estimator approximately p-unbised. The estimator Baw is
chosen in this spirit. DuMouchel and Duncan {1983) have examnined the issue of weighting for
regression analysis in a wider context. They have considered cases where weighting should -
not be used, for example when certain models are strongly believed to be true, and have.
suggested that weighting might be used when B in (2.8) is the parameter of interest, n'
this latter case they advocate testing the difference between By and By and if there is no
difference using By, If a difference is found then they adovocate introducing extra variabl
into the model to explain the difference. In our context they widen the regression to incl
variables in the design set X', In their example this strategy works and conditional on the
variables an unweighted regression explains the data adequately,

F¥,w) = f(Y|=x)g(=), (4.3)
nd after sampling oh 7 the superpopulation distribution is modified to

. fs(¥,w) = f(Y|mw}g, (), (4.4)

, ; i il i ; < 1, imple t all units have a chance of inclugion

The proposals in the previous section for including probability weights into estimation age RW W%_Bm mﬂonm Hmhwm .WA_WW_.% MM._n H_vzw\, am_.m._n..nﬁww_mw%a mEM_“mBEn data for all Y. Now since unit
some extent ad hoc. In Brewer’s approach the design must be shown to be consistent wi > mﬁwvﬂmwmomz._ robability proportional to size =y, g,(#;) is the size biased distribution
the model while in Little’s approach the selection probabilities are stratified after selection. } 15 selected with p Y .
to make the mode] consistent with the desing. DiMouchel and Duncan’s final proposal ; “
condition on the X variable, thus exterding the model beyond the marginal distribution o

In this section we show that probability weights can feature nawrally in model- g
inference by following Rubin (1983) and conditioning on the vector 7 = (7 (x), .. o ()
of inclusion probabilities rather than the whole design set X, The target for inference is still

4. A MODEL-BASED JUSTIFICATION FOR WEIGHTING .

Y

g(m) = F?.&, : O (48)

= N
some property of the marginal distribution of ¥ sech as a predictive inference about P, # - 1 . (4.6)
finite population mean, Rubin showed that the vector 7, the propensity score, is mopu. itk Hr= &t TN
an adequate summary of the prior information X in the sense that o

i a fixed sample size design and then
P(s1X) = p(sim), _

’ i 75) = F{¥i|mi) Nag(m) /n. 47

and that this still enables p(s|X )» of p(slx), to be ignored for model-based inference. He 3 Li¥um) = fXilm) Nmg(m)/

We assume that the sample data comprise independent observations from the size biased

then suggests using the joint distribution of (¥', ) rather than that of (Y, X) for constructing
. distribution (4.5) or (4.7).

the model. Let the data be d, = {s,Y,,n) then
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Size-biased samples have been studied by many authors, for example, Cox (1969), Patil

and Rao (1978), The moments of the sampled distribution are simply related to those of the.
original distribution, for example,

E, Anﬂj\v = \ Y7 EL f(iw)g,(m)dY dr

H.\u\_,%ﬁ\_s.vm?v&%&a
= B(Y").

Now since the sample data can be considered as a random sample from f,(¥, )

{ 1 - 1 Yy
me(r) = - .Wm.u\.. = aMU - (4.9)
igs F ica '}

is an unbiased estimator of E(Y"). In particular

Egcnwﬂwmw_

i€x 4

is an unbiased estimator of y, = E(Y). This is the well known Horvitz-Thompson estimator
given by (2.6). ot

For more complex functions of moments such as ratios or regression coefficients comt .
poment-wise unbiased estimation leads to probability weighted estimators similar to (219),
Thus conditioning on = and using results from size-biased sampling Ieads to distribution free
methods of moments estimators identical to the classical p-weighted estimators. Clearly if the
distributions in (4.3) can be specified accurately then more efficiont methods estimation.can -
be employed. In sample surveys the populations are very complex and highly multivaridte .
and can rarely be specified accurately. In such cases a robust estimation procedure is higlily,
desirable and the method of moments estimator leading to the p-weighted estimator for size-
biased sampling must be a serious contendet.

Figure 1. Population and sample regressions

Y =a+ 48X isthe population linear regression.
Y = oy + fi;  1is the sample linear regression.
Y = E(Y|X) is the true (non-linear) population regression.

.?o relevant population model for regression adjustment is the joint distribution of ¥
X, given by
5. THE ADJUSTED LEAST SQUARES ESTIMATOR

In Section 3.2 the ALS estimator was introduced. From the form of the. estimator (34) it
can be seen that it adjusts the unweighted estimator Ty Or syy for lack of balance in the
sample on the prior variables X, Thus fx, is adjusted for the difference between M, and
mg and By, for the difference between Sy, and s,,. These adjustments are exact if ith
regressions are linear and homoscedastic, but as we saw in the simulation study in Table
the results do not appear to be robust to departures from these assumptions. How can
model-based estimators be adjusted to take into account lack of balance in the sample on th
known auxiliary variables X7

If the sample selection probabilities w(x) are related to the size of a particular variab)j
A3, say, then the sample points will mainly occur for large values of X;, In Figure 1 w,
show a non-linear regression between ¥ and X, and the OLS regression and p-weighte
regression fitted to a pps sample. The OLS regression line fits the data points and gives 2
good approximation to the true regression curve B(Y)|X,) for large values of X;. The .
curve gives large weight to the points with small values of X 1 and gives a regression
which approximates the entire curve of E(Y')X1). Clearly it is the latter regression which
required if B(Y|X,) is to be approximated by a linear regression in the sense of Mouch
and Simar (1980). This approximate population regression can then be used for predicti
inferences about unobserved ¥;, . v

FY, Xq) = f(Y]X1)g(Xa). (5.1)

The sampling scheme p(s]X) is based in principle on the complete set of prior <wmmu._mm X,
but if in fact the size measure component is a function only of X, then after sampling we

708, %) = SOV X)) () (62)
here p% = [ m(21)g(X1)dz:1. The linear ALS estimator of gy is then

bu\ = iy + @HH-AEE - s.auv_ ﬁw.mV

a "—1"
= M@_E Mapan . . ) . ) N

Now the components in 3, are the component-wise estimators of £y, and using the

tesults for size-biased sampling .

@u AM\NP Ha v H.\eepqq'm_ﬁw.mwammb%ﬁc_amvwﬁapv&@mﬁ

a.ﬁup.v
= B(Y X1).
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Thus as before & Zig, LEL. §5 an unbiased estimator of E(Y X.1), with similar expressions fi DISCUSSION

the other components,
These results suggest that the adjusted least squares estimator is not the compromis
estimator B 41 proposed by Nathan and Holt (1980) but the modified version given by (5.3)
in which only the slope is subject to p-weighting, The properties of fiy in (5.3) are currently .
. under investigation. :
The overall conclusion is to agree with Rubin (1983) that the selection probabilities,
can play a vseful role in 2 model-based approach to finite population inference and moreover
if a robust approach to inference is employed then the p-weighted estimators which are so

fundamental in randomization inference appear as natural moment estimators using the ideas .
of size-biased sampling. _

Y. BAYARRI (University of Valencia ) .

For a long time, it has been commonly argued that the inclusion Eocchmmm..a. Hﬁ.:o role
"o play in the Bayesian approach to sample surveys. After the last twWo ..s%._eu meetings a.__m
{tiation seems to be changing. As a matter of fact, Professor wag.: in Smmsn_m 2 mWEUE.
.,mmv showed how the =’s can be useful as a coarse summary of :5. information provided vw
covariates, easing the task of modelling as well. Now, in Valencia 3, Prof. T. M. F. Smith
iises Rubin's proposal for modelling and carries the argument one step ».m_:ron He shows E.us
largely condermed (by Bayesian audiences) classical sm_m.rﬁa mmn__.ﬁsa can m_mo arise
m a model-based approach to sample surveys. Those applied Bayesian statisticians who
nq. use randomization estimators in their applications owe a debt of gratitude to both of
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m.mﬁq_‘v —_ ﬂ.hT_.v . ) C.v
K= ] .
5 This size-biased distribution is just a particular case of what Rao Gomuw called Emw.wxam
i S.m._.&o:h. in which the original density is multiplied by some general En._mE »..::nzou and
ormalized. Professor DeGroot and myself are currently ioﬁn.bm on this topic msn.rmﬁ
fre: dy obtained some preliminary results showing that, in some situations, the experiment
that selects a random sample from the weighted distribution is sufficient, in the w_mo.ﬁ.no:
“‘sense (Blackwell, 1951,1953), for the experiment selecting a random mmav_m from nmw original _
“or unweighted distribution. Then, in these situations, given n.a.“ .o:osw. a wﬁ‘nem:.éoﬁ_ﬁ
ways select the “weighted” experiment cmomcmm. for every %nm_wa problem involving mso
drameter indexing the distribution, and every prior distribution for i, the expected Bayes risk
vould be smaller with the weighted experiment than with the unweighted one.
. Size-biased distributions being particular cases of weighted distributions, it is amﬂﬁm_
to ask what would be the case in this scenario. Needless to say, different answers EE be
obtained depending on the model g{7) we have in mind, In what mozos.w, we will mE,% Fisher
formation for different models g(w) and their size-biased versions g C&. We will denote
...« Eoriginal AN Eeize—binsed the experiments in which a Ennw:. sample is obtained wwcn— the
ariginal density g(n) and its size-biased version g*(), respectively. Also, £, =r & ﬁ-:.anmu
that £ provides greater Fisher information than £, for every <m__._a of the u.ﬁm_:m.ﬁu ooum_.nmnmn
eep will mean equal Fisher information). I(-) and J3(-) will denote Fisher information in
ne observation from g{r) and g*(w) tespectively. . . .
" One difficulty with both Rubin’s pdper and Smith’s paper _.m.Eﬁ they provide no hints
*about what a sensible model g() could be, but  being a ?ocmw_EM. the EH.E.E guess would
be a beta distribution. Also, we don’t expect = to be too big, vamom—ﬁ_& if N (the size of
the finite population) is large, so that, as a first simple model we will consider

Soe,

g1(x|0) = Be(8,6 + k) - @

where k is a constant (presumably related to N}, It is easily found that the size-biased version

f@is
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-3
g (7|8) = Be(f +1,0 + & 148
=B Lot = gy Por0<n <
and also that one observation from (3) provides greater Fisher information than one observatioi 1496 1—xy? 1 ©)
from (2) so that, in this case, : = ¥17 HE? AZ Hv mo_,ﬂmﬂamw. ,

Esivebiased - F Eoriginal; can be shown that, in this case, I(#) > I,(6) for all values of 4, so that
that is, it would be convenient for us to select the «’s with probability proportional to size

4555. thinking about selection probabilities x, we somehow feel that the value 1/N K
some special meaning that should be reflected in g(). The model we will consider next 1§
mixture of Pareto related distributions and has the advantage over (2) of being more spikéd

around 1/N and of being far more easy to handle from a Bayesian point of view, Thus, 16¢8
consider now _

.. Eoriginal ™ F Eaize—biased

the situation is just the opposite to the one encountered before,

- In the two examples just presented, we have selected some distributions g(#) to explain
the behavior of # and assume that the data is a random sample from their size biased versions
i2(x). But zeally we are not very used to thinking about models for the probabilities of
ction 1, 5o that we will deduce the last model to be studied directly from the distribution

- ga(x|0) = Bnf-1N9-1 1 ‘the covariates X. - . . )
for0<r< N - Assume X is 2 univarate positive random variable with density fx(x). As usual, we
= 8(1 — x)P-1 N N 1 ndider X1, ..., X the finite population, to be a random sample from fx. We are assuming
N—-1 for v <7<l that the data we have is a sample from X,,..., X selected with probability proportional to

%wh s, associated with X1,..., Xy there is the comresponding finite population of 7’s :
1o e TN, Whete 7 = X /(30 v Xi) and we select X; with probability ; (notice that
thsre is an slight variation here with Tespect to the paper: these m;’s add to one, while the
ifiés in the paper add to n).

» . . 3 ’ ._mn ;
which is m.amum:w, for 8 > 0, but values of § > 1 seem more sensible in this context (when'
8 < 1,(5)is U shaped). Figure 1 shows the shape adopted by ga(|8) for selected values of 8.

Notice that the mode of this distribution (for & > 1) is precisely 1/ and that greater values
of & correspond to distributions which are more and more spiked around their modes. More | *If we want to model the behavior of « instead of the behavior of X, then we assume that
general mixtures of this type of Pareto related distribution were studied in Bayarri (1984), . 4 sample is going to be drawn from =y, ...,y with probability proportional to size, that is,
and a v.muso&ma mixture, which is a two parameter generalization of (5), was used in w&.wﬁ.. i 15 selected with probability ;. In this process, the distribution of data, ¢, () in the paper,
(1585) in a Bayesian goodness-of-fit context; there it was called the alpha distribution, a n; ‘

due to Bernardo (1982) who apparently first introduced it. ,

e
=y
S

(x) = N [ tfx(nt)ay[(1 - myel,

9, :q_ ® Vihere Y represents the sum of N — 1 ii.d. random variables from fx, and gy its density.
ST i Let's take an example. Again, for a positive random variable it would be natural to try
I 4 gamma distribution, that is, fx (z) = Ga(w, 8). Then it is found that
41 | g:() = Be{a+1,(N — 1)a}. (8)
g i - One interesting fact about (8) is that this beta distribution is just the size-biased version
3t ofithe Be{e, (N — 1)} distribution. So that in general, let’s assume that
G
I v h_mﬁuﬂv = .w«._”Q. #Q”T AOV
2 where & is a constant. Notice that, if k = N — 1 as in the gamma example, E(7) = 1/N so
! that 1/ is again regarded as a special value in the distribution of #. As we have already
said, gi(#) = Be(a + 1, ak) and in this case it is found that I(a) = Ij(a) for all o, sp that
1 e .
[ 1... .mmmumlvmwumn B No..._ﬁﬂw_
and both experiments are totally equivalent with regard to this criterion,

™
0.2 0.4 0.6 g.8 1 We have thus encountered three situations in which the behaviour of Fisher information

“i§-different. Of course, all the examples refer solely to the X part of the model, without
eferring to the possible effects of weighting in the marginal distribution of Y. However, in
qur opinion the general conclusion to be drawn is that, even if Professor Smith has shown
s how the #°s can enter the picture, there is not yet a clear answer to the question posed.

Flgure 1. The density ga(x|f) for N =4 and 6 = 1,1.4,2,3,4.5

The size-biased version of (5) is found to be
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Indeed, it is not surprising for a Bayesian to conclude that whether to weight or not to weigh
will depend on the particular decision problem at hand. .

I wouldn’t like to finish without asking Professor Smith a couple of questions: We hay
just seen the weighted estimators appearing as a result of both modeiling 7 (instead of X)) and
using the method of moments for estimation. Rubin (1985) already cautioned us that 7 can ba
“too coarse a summary” of the information provided by X, so that my first question refers
whether this type of modelling is the only way to make the ='s play a role in 2 model-bas
approach to sample surveys. Also, it is well known that the method of moments can exhibii
number of undesirable features; Has Professor Smith tried a Bayesian or at least a likelihood
approach to estimation?, I am looking forward to seeing some results in this direction, but.in
turn, it would imply selecting suitable f(Y |} and g(x). How would Professor Smith select
these models?. B

The second question relates to robustness: Has Professor Smith studied the issue of
whether modelling f(V|r) and g{r) produces more robust inferential results than modelling
F(Y|X) and g{X)?. If so, it could be another reason for using the former alternative and far
weighting, thus helping to answer the question raised in the title of the paper.

R. A, SUGDEN (Goldsmiths' College, London )

Smith gives some answers and suggests new approaches to the vexed question for a Bayesi
What is the role of the design in survey sampling inference?

Contrary to the impression possibly given in Section 3.1,, it is important to realise ths
inferences can depend on the design even in the ignorable case, For example under a normal
error regression through the origin on a single “size” variable with error variance w_.ovo&o:.&
to squared size and a probability proportional to size design, it is easy to show, through the
likelihood (4.1), that the Bayes posterior mean of the population total is Jjust the Horvil
Thompson design-unbiased estimator (4.9) but with an additional term Tepresenting a sum
“residuals”.

As shown in Sugden and Smith (1984), the design is no longer ignorable when not all
the inclusion probabilities are observed. However, some aspects of ignorable inference may ot . M
be preserved e.g. in the above the posterior mean depends only on the inclusion uBuuaEmm ; u&.ﬂn& M. L. (1984). Conraste Bayesiano de Modelos Probabilisticos. Ph. D. Thesis. University of
of sample units so is unaltered, SR encia. . - ; : ;

All statemnents about ignorability (or not) have been made by authors assuming the mode] ... wﬁﬁamw. Mmmm waww. Mwwg$ de modelos probebilisticos desde una perspeciiva Bayesiana. Trabgjos
is correct, A Bayesian who lacks confidence in his model must seek model elaboration —ses- ‘w_wnmmiem. D nm.,nmu:.. noEw.mmmou of experiments. Proceedings of the Second Berkeley Symposium on
Royall and Pfeffermann (1982)— or adopt a distribution free approach such as the method " Mathematical Statistics and Probability, 93-102. Berkeley, CA: University of Califorria Press.
of moments that Smith suggests. In the former case ignorability may no longer hold unless Blackwell, D, (1953). Equivalent comparison of experiments. Ann. Math. Statist. 24, 265-272.
sufficient design information is available. An alternative to the latter is some form of non:

a0, C. R. (1965). On discrete distributions arising out of methods of smnm.nm_EEnE. .anh.n& .E&
parametric maximum likelthood estimation of the finite population distribution function, see. ... Contagious Discrete Disiributions, (G. P. Patil, ed.), 320-333. Calcutta: Statistical Publishing Society.

Vardi (1982). A problem with the method of moments here is that it essentially amounts ta . Royall, m_ﬂu. :wh and Mwmnwaﬁ&iwwmw. mw mmﬂwwwwuman& samples and robust Bayesian inference in fnite
s : : : : ’ Opu: 1 samy 9 (] “
imposing {component-wise) design unbiasedness. dﬁmrﬂ\. (1982). %uuwuanﬁo estimation in the presence of length bias. Ann. Statist. 10, 616-620.

Hdequate summary of X for inference on Y. He shows further that under certain conditions the
ector # of inclusion probabilities will provide such an adequate summary of X. Inferences
an then be made conditional on = and as such they will depend on . Dr. Sugden makes
this point in his discussion but his phrasing is misleading mm..uom the inference does not %cmn:g
“on the sampling mechanism p(s|=) but only on the units in the sample and their inclusion
ilities 7.
& mﬁno_uw.ﬂ_w_wcnﬂgnon was to consider how the information in Hsmmrm be used for F».whn:om
i bout Y. The complexity of most survey populations means that precise models are m&.nmc:
. specify and even harder to justify and so I did not attempt to model m..?.v.m_o:m the lines
“sngegested by Dr. Bayarri. Instead I adopted one form of Eon&.?om estimation, namely the
methods of moments estimators, because it gave the traditional ._._‘-ia_mEm.a mwnawﬂoa.
As both Dr. Sugden and Dr. Bayari point out other methods of estimation ooEm. have
een considered. These would lead to different estimators and to comparisons of mmmoﬁn.nw.
Which one to choose will depend on the strenght of one’s prior belief about the underlying
" data structure, In some further sets of simulation resulis based on real dataz we have ﬁoﬁ_.n :
cases where the w-weighted estimator is inefficient ==nou&=o=m.=w {over all samples) and is
appalling conditionally (given the sample). Thus as Dr. Bayarri concludes from _,_m._. Bwnﬂm
there are some cases when w-weights are good and some when they are not. d_whm is still no
simple answer to the question of whether to use T-weights or not. So a.ﬁ .w.mwmm_m_, who says
that using w-weights is always wrong is wrong and the traditional statistician who says that
w-weights should always be vsed is equally wrong. o
In the absence of precise models we still need a robust procedure. My own belief is
" that stratification after selection on X (or 7) is the best general purpose Gcaﬂ. procedure for
_ survey inference. This employs the #-weights indirecdy through the stratification rather than
directly through the weighting.
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REPLY TO THE DISCUSSION

Dr. Bayarri makes many interesting points which take the discussion far beyond my modest
aims. I was concemned only with the problem of inference after a sample has been selected
using a randomized design with unequal selection probabilities. The dilemma for a Bayesian
is that if the design variable X is known for all units in the population then any desigti-of
the form p(s|z) contains less information than X itself and so can be ignored for inference;
But sample designs are constructed by knowledgeable statisticians so surely they must contaln
useful information and as such should not be ignored. The resolution of the dilemma:is
found by constructing an appropriate conditional inference, Rubin’s contribution is to:show:
that frequently there will exist a reduction of the design (prior) information X which is an



