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A new estimation theory for sample surveys

By H. O. HARTLEY axp J. N. K. RAO
Texas A and M University

SUMMARY

A new estimation theory for sample surveys is proposed, the basic feature of which is a
special parametrization of finite populations based on the assumption that a character at-
tached to the units is measured on a known scale with a finite set of scale points. In the class of
estimators which do not functionally depend on the identification labels preattached to the
units, the following results are proved: (1) For simple or stratified simple random sampling
without replacement, the customary estimators are minimum variance unbiased. (2) For
simple random sampling with replacement, the sample mean based only on the distinct units
in the sample is the maximum-likelihood estimator of the population mean. (3) If a con-
comitant variable with known population mean is also observed, an approximation to the
maximum-likelihood estimator of the population mean is closely related to the customary
regression estimator. (4) If prior information in the form of a prior distribution is available,
Bayes estimators can be derived using the complete likelihood.

1. INTRODUCTION

Historically the development of sample-survey estimation theory has progressed mainly
inductively. Estimators which appeared to be reasonable have been proposed and their
comparative properties carefully examined either by analytic evaluation or data-analysis.
Most of these studies have been concerned with comparisons of variances and biases of the
various estimators. The absence of a basic deductive estimation theory, has recently been
lamented by Godambe (1955, 1965) who considers the sample-theorists’ search for unbiased
minimum variance (U.M.v.) estimators to be a basic ‘fallacy’ and proves that, under certain
assumptions, such estimators do not exist. It is obvious that the question of the existence or
otherwise of U.M.v. estimators depends, among other things, on the class of estimators con-
sidered; Godambe considered a class of estimators which is permitted to depend functionally
on identification labels ¢ = 1,2, ..., N preattached to the N units of the population and
used as observables in the computation of estimators. If preassigned labels are not obser-
vable and are only conceptually attached to the units, then clearly estimators which func-
tionally depend on the labels cannot be implemented.

In the present theory we do not wish to confine the activities of sampling from finite
populations to those with labelled units only as this would exclude many important situa-
tions of finite population sampling. For example, the important area of acceptance sampling
of finite lots of machine parts would be excluded since here the attachment of identifying
labels is often impractical. We consider it therefore of interest to develop an estimation
theory in which estimators are allowed to depend on labels only if these can be regarded as
informative concomitant variables, and in the present paper we confine ourselves to
estimators which do not functionally depend on the labels. Within this class of estimators,
defined below, we shall be able to prove the following results.
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(@) Certain of the estimators in current use and advocated in the literature are indeed
maximum-likelihood estimators and/or U.M.v. estimators.

(b) If suitable prior information is available, Bayesian concepts can be adjoined to our
theory using the complete likelihood. However, since we shall be concerned with a rather
large number of parameters, the computation or graphical representation of the full para-
metric posterior distribution would appear to be difficult. Nevertheless, it is possible to use
point estimation via the Bayes estimator, and thereby obtain simple results for important
parametric functions such as the population mean and variance.

The basic feature of our theory is a special parametrization of finite populations of N units.
Considering first the case where a single characteristic, say, y is attached to the units, we
assume, with essentially no loss of generality, that this characteristic is measured on a known
scale with a finite set of scale points y, (f = 1,2, ...,T). A similar assumption has recently
been made by Kempthorne (1965) for experimental data. Any finite population can then be
completely described by the set of T' non-negative integer parameters

N, being the number of units in the population having the characteristic y, (1)

and satisfying the condition
N t= N . (2)

S0

t

Henceforth, sums and products over ¢ are for 1, ...,T. In certain cases we describe subsets
of the target population each by their separate sets of parameters N, e.g. for stratification.
If k characteristics are attached to the units, i, denotes a k-element vector and 7' the total
number of possible measurement combinations. It is clear that the present parametrization
of a finite population makes no model assumptions whatsoever except that of discrete
scale measurements. Although the number of parameters is very large, our estimation theory
will be predominantly concerned with a few important parameter functions such as the
moments p, = N-1ZN,y;. Moreover, the vast majority of the parameters N, will usually be
estimated as zero ; in fact it will be seen that the number of positive parameter estimates will
be at most equal to the sample size and does not depend on 7' or the non-observed y,.
The task of finite population sampling will consist of

(@) the sample design, i.e. the procedure of drawing a sample consisting of n distinct
units, where n may be fixed or random, and measuring the g, for these units;

(b) the use of measured y, to compute estimators of the population parameters NN, or func-
tions thereof, such as the population mean ¥ = X(N/N)y,.

With regard to (@), we stress that there are many situations where distinet units can be
sampled without identifying labels being attached to the units. For example, a foreman can
sample distinct machine parts from a bin in accordance with instructions. However, pre-
attached labels, if available, will certainly be helpful in the process of implementing a speci-
fied sampling procedure of distinct units. With regard to (b) we shall only consider estimators
which do not directly depend on the labels and are defined as mathematical functions of the
scale points y, and of the sample frequencies n;, i.e. the number of distinct units in the sample
observed to have the scale point 3, We shall term this restricted class of estimators scale-
load estimators. We consider that the restriction to these estimators will normally result in
no loss of information because

(i) there are many situations in which no labels are attached to the units and
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(ii) in most situations in which labels are attached to the units it is known that they cannot
be informative beyond the design stage (a).

In situations in which it is held that available labels are informative they can be ad-
joined to the scalesy, as a (k+ 1)th vector component. However, in this case difficulties of non-
estimability are usually encountered which we shall not discuss in this paper.

In the present paper, except for §§ 2-3 and 3, we assume that the only prior information
on the N, that is available is given by (2). However, in §2-3 we develop a Bayesian theory
using prior distributions for the parameters and in § 3 we develop a theory of regression-type
estimation assuming that y, has two components, a target variable and a concomitant varia-
able, and that the population mean for the concomitant variable is known.

It will be seen that with our theory every sample design used in (@) requires the derivation
of its appropriate likelihood for the observables, n,. In this paper, the only sampling pro-
cedures considered are simple random sampling with equal probabilities with or without
replacement. Extensions to multi-stage designs, unequal probability sampling, etc., will be
considered in subsequent papers.

2. SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT
2-1. U.M.V. estimators

A random sample of fixed size » is drawn with equal probabilities without replacement.
Let n, denote the number of units having the value y, in the sample. Then clearly the n,’s
are integers with

n >0, XZn,=n. (3)

The likelihood L(M,, ..., Ny) is given by the multidimensional hypergeometric distribution
N\ | (N

LN, ..., Ny) =TI (n,)/(n) (4)

We now give a proof, due to B. K. Kale, that (#,, ..., n,) is complete sufficient for (N, ...,
Ny). Assuming that T' = m gives a complete family, we prove the result by induction. Con-
sider T' = m+ 1 and let E{g(n, ..., M)} = 0 for areal-valued function g for all N;, ..., N, ,
such that N, +... + N, ,, = N. Now, considering N,, ;= 0 and noting that n,,,, < N,,,, we
get g(ny, ..., n,, 0) = 0 for all ny, ..., n, such that n, + ... +n, = n,n; < N;(¢ = 1,...,m) and
N;+...+ N, = N, since we have a complete family for 7' = m. Considering next N,,,, = 1
and using the above argument, we get g(n,, ..., n,,, 1) = 0 for all ny, ..., n,, such that

m+...+n,=n—-1, n,<N;(¢=1,...,m) and N +...+N,=N-1.
Continuing in this way we find that g(n,, ..., n,,, j) = 0 for all n,, ..., n,,,j such that
N+ .0, +5 = n.

Now permuting =, ..., %,,,; the proof is complete, noting that we have a complete family
forT = 2.

Consequently, the moment estimators m, = n~13,y] are U.M.v. estimators of the y,,
since E(n,/n) = N,/N. In particular, the sample mean % = mj is the v.M.V. estimator of the
population meanY = uj. Further

§* = (n— 1)~ {Zmy; — (Zmyy,)*/m} ’ (8)
isthe U.M.v. estimator of 82 = No?/(N —1). (6)
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We now consider the asymptotic distribution of the maximum-likelihood estimators as
n — 00, N - oo with n/N — A(0 < A < 1), Nj/N — P,and n,/n — p,. The distribution of

nl, ceey nT_l
may be written as

[N W (MIEN e

Now, using the normal approximation to the binomial, it follows that
(mafn— Py, ...;ng_y[n—Pp_y)Jn

has asymptotically a (T'— 1)-variate normal distribution with zero means and variance-
covariance matrix (;;), where a;; = (1—A) Py(1—F,) and a;; = — (1 —A) P, P;. Consequently,
g(myfm, ...,np_y/n) is asymptotically normal where g is totally differentiable (Rao, 1965,
p. 321). In particular, the maximum-likelihood estimators of 4, and o are asymptotically
normal. It is also easily seen that they are asymptotically efficient.

Extension of the above results to stratified simple random sampling without replacement
is straightforward. In particular, the customary estimators are U.M.v., noting that each
stratum is described by its separate set of parameters N,.

2-2. Maximum-likelihood estimators

Since we have already found the U.M.V. estimators, it may be argued that it is of little
value to derive the maximum-likelihood estimators because the maximization of the
likelihood, restricting the parameters NN, to an integral mesh, may not have particular merit
for small samples. We, nevertheless, consider the maximum-likelihood estimation of the
N, for tworeasons. First, if N /n is an integer the maximum-likelihood estimators are identical
to the U.M.v. estimators. Secondly, in those cases where 7' is small and the N, are the para-
meters of interest, say in the estimation of frequency distributions, maximum-likelihood
estimation may have some advantage since it incorporates the information that the NN, are
integral.

Case 1. The expansion factor N [n is an integer. In this case we have
N/n = r = integer. (8)

We have to maximize L(NV,, ..., Ny) given by (4) subject to (1)-(3) and (8). It can be shown
that the solution is given by the maximum-likelihood estimators

Nl=l%rnt (t= 1,...,T); (9)

the proof will be given elsewhere. Consequently, the U.M.v. estimators m, are also the maxi-
mum-likelihood estimators of the u,.

Case 2. The expansion factor N |n is not integral. In this case the maximum-likelihood esti-
mators V,of N, will be found to be rounded up or down versions of the ,as defined by (9)
and will be obtained as follows. First, for all indices ¢ with n, = 0, put N, = 0. For the remain-
ing t, start with any set of N}, say N, such that SN = N. We now obtain a global maxi-
mum N, from N{® by a series of interchanges. Starting with N{ we step from N{i=1 to N®
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by the sth interchange defined as follows. Let 0, denote the t-index for which N#=?/n,is a
maximum and 7; the #-index for which (N~ + 1)/n, is a minimum. Then if

Ni | NG

"oi n‘ri

, (10)

we clearly have 0, + 7, and define

N§D—1 for t=6,
NO={N&V4+1 for t=r1, (11)
NE-D for ¢+ ﬂi,ri.]

If (10) is satisfied then it can be shown that
L(NQ,...,NP) > L(N§-Y,...,N§D), (12)

The process is repeated until for some 7 (10) is not satisfied and then it can be shown that
N{i=D provides a global maximum of the likelihood. Because of (12) the process cannot cycle
and must come to a close as L(MV,, ..., Nyp) is defined only on a finite set. The proof that the
above process leads to a global maximum, and a simplified algorithm based on a particular
choice of the starting set of N, will be given elsewhere.

2-3. Bayesian estimation
We first consider the case when N — oo, Nj/N — P,and n fixed, so that the likelihood is
given by the multinomial distribution

n!
LP,...,P;) = Tin, [Py, (13)
We now assume that prior information on the parameters P,is available in the form of a joint
prior distribution on the F,. If we can assume the conjugate prior distribution

Ly, ..., Pp)oc TP (14)

where the v, (> 0) are constants with Xy, = v (Raiffa & Schlaifer, 1961, p. 47), the joint pos-
terior distribution of the P,for a given set of n, is then given by

¢*(Py, ..., Pp) oc TIPMwt1, (15)

We now derive the Bayes estimator. With a quadratic loss function, the estimator which
minimizes the expected loss is given by the posterior expectation of the parameter being
estimated and this is the Bayes estimator. Now, noting that (15) is nothing but a Dirichlet
distribution, we get the Bayes estimator of x4, as

1or ’ M+,
B(s) = ZB(B)y; = =7y
= wm,+ (1 —w) M,, (186)
where the weight wis given by w = ;z—:b-—; (17)

and M, = v1Zpy}. (18)
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In particular, for the estimation of the population mean x;, we have
E'(py) = wmi+ (1 —w) My (19)

which has been used in the past in situations in which = is small and M represents a prior
data sample mean based on a large sample size v of related data from a population whose
mean is not likely to differ to a great deal from ;. We have recently had occasion to examine
the properties of estimators of type (19) bartering bias (w = 0) against variance (w = 1).
In general it should be noted that for the application of (16) we only need to know M, the
prior mean of #,, and v. The expected loss which the decision-maker faces by choosing the
Bayes estimator of y, is given by the posterior variance

V'(ul) = (n+v-+ 1)~ [, + (1 — w) M, — fum] + (1 —w) M}, (20)
The Bayes estimator of o2 = ZFyf — (2F,y,)? is
B'(0%) = (n+v) V'(13). (21)

We next consider the case of finite N. Now Hoadley, in an unpublished paper, has shown
that a convenient prior distribution on the N, is given by the compound multinomial dis-

tribution
n (N +v,—1)!

ANy, ..., Np)oc N, (n,—1)!

(v, > 0). (22)
Using Hoadley’s posterior moments of the N, we obtain the Bayes estimator of 4, as
’ ’ n ’ ’ n 4
WB) = (1- ) B+ o, (23)

where E'(u,) is given by (16). The posterior variance of 4, and the Bayes estimator of o2
are respectively given by ”
1—

WV = (1-5) (145) V0 (24)

d
anNE'(ﬁ) = (1-3) (1-157) B+ mi-mit)+ 5 (1— ) - mi= D, 29

where V'(u,) and E’(02) are given by (20) and (21) respectively. As N — co with » fixed,
(23), (24) and (25) respectively tend to (16), (20) and (21).

3. ESTIMATION WITH CONCOMITANT VARIABLES

We now consider a situation customarily dealt with by ratio or regression method of
estimation in which two variates ¥ and z are attached to each unit and the mean of the
target variate y is to be estimated utilizing the available information about .

As before, we assume that a finite set of 7' distinct, known values y, are feasible for y.
Likewise, we assume that a finite set of I distinct, known values z; are feasible for

(T, < Xy < ... <Xp).

Let N, denote the number of units in the population which have z; and y, attached to them.
We then have

I T
Ny>0 and Y X N,=DN. (26)
i=1t=1



A new estimation theory for sample surveys 553

Henceforth, sums for ¢ and ¢ are over 1, ...,7T and 1, ..., I respectively. A random sample of
size n is drawn with equal probability and without replacement. Denote by n,; the number of
units in the sample which have z; and y, attached to them. Clearly we have

ny =0 and XZn,=n. (27)
The likelihood is given by the multidimensional hypergeometric distribution
N\ | (N
L) = 11 (35) [ (3)- (28)

If (26) is the only information available on the N, the principle of maximum likelihood
leads to the maximization of (28)subject to (26)resulting in maximume-likelihood estimators
as derived in §2-2. The amount of information about the « variable varies from case to case.
However, one of the most frequent situations arising in sample surveys is one in which
only the population mean X, or a total NX, of the x; is known, and this is the case we
consider here. We assume, therefore that the parameters NNy, are known to satisfy

N-IZ3ENyx, = X (29)
and maximize (28) subject to (26) and (29).
We confine ourselves here, however, to the multinomial situation in which N — oo and
Ny/N - P, while n is held fixed. The likelihood (28) is then replaced by

LBy s Prg) = oo I P (30)

Huzt

it
and the restrictions (26) and (29) are replaced by
P,>0, SZP,=1 (31)
and XX Py, = X. (32)
It is easy to see that the complete sufficient statistic does not exist here because the number
of ‘free’ parameters is I7T — 2, whereas the dimensionality of the sufficient statistic
(Mg1 oo py) I8 IT—1.

Denote by (Pf, ..., P}, ..., P¥p) a point within the closed space defined by (31) and (32) at
which L(P,y, ..., P;y) has a global maximum. Assume further that we have a sample with at
least two observed z; values, i.e. n;, > 0 for some ¢ and at least two ¢-values, then no Pj; can
be equal to one as otherwise all other Pj; would be zero and L(Pj, ..., Pir) = 0. Wenow show
that if a particular n,; = 0, then we must have P}; = 0 unless j = 1,i.e. ; = #; = 5, or
j =1I,ie.w; = & = X,y For suppose P}; > Owitha, < #; < @7; then it is always possible to
find a pair (x;, z,) such that 2, < 7, < 7, (33)
and Ny + Wyppr > 0 (34)
so that we can change the three P*-values by

Pji+0;, Piy+6, P+, (35)

satisfying (32) and (33) and increasing L(Pfi, ..., Pfy). The increments d; and &, need only
be defined in terms of §, > 0 by
X — %,

8 =—8, 2" 5 =g
" a0, — a; wk—w

(36)
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where, because of &, > 0 and (33), §; < 0 and &, > 0 and hence L(P, ..., Pf7) increases
because of (34). This contradicts the assumption that L(Pj, ..., Piy) was a global maximum.
By a similar argument it follows that, if there is at least one ny, or n;, greater than zero,
then for all (1,#’) with n,, = 0 we must have P}, = 0 and for all (Z,¢') with n;, = 0 we must
have P¥, = 0. Further if all n,, = nj, = 0, there is at most one Pj; > 0 or at most one P, > 0.
This means that the search for a global maximum of L(P,, ..., ;) can be confined to the
following three cases: (&) For all (i, ) with ny, = 0 we can fix P}; = 0 except for one pair (1, t)
for which P§, = P* > 0; (b) for all (¢,¢) with n, = 0 we can fix P}, = 0 except for one pair
(I,t) for which P§, = P** > 0; (c) for all (z,¢) with n; = 0 we can fix P} = 0.
We now derive the Lagrangian necessary conditions for the cases (@), (b) and (c). For

case (@) the Lagrangian equations are

Pi(A+x;) = pmy for my > 0, (37)

A4z, =0 for ny=0. (38)
Using (31) and (32) we obtain
% _ Ty (X - —)

% = =) for mny >0, (39)
. _1_ ny(X —x;) .
P 1 ZZ_—n(xi—xl) (¢%1), (40)
which yields a contradiction unless P* < 1, i.e.
ny(X — ;) .
ST <1l (@£ 1) 41
ey <1 @D (41)

It will be seen below that the necessary condition (41) for a global maximum of type ()
to occur is usually violated for moderate n and, therefore, we do not pursue this case further.
Similarly the necessary condition for a global maximum of type (b) to occur is

ng(xy—X)
n(@y — ;)
The condition (42) will be usually violated for moderate n and, therefore, we do not pursue

case (b) any further.
For case (c¢) the Lagrangian equations are

») <1 G=+1I). (42)

PiA+x,) = pny for ny>0 (43)
and hence, summing over ¢ and ¢, A+X = np, (44)
. . Mg x;— X\
from which we obtain P} = 1+%5=2) (45)
n np
Summing (45) over s and ¢ we get
Mg 24 X -
=EET(14-2) (46)
ni

which has to be solved for nu.
It will be seen now that (46) has a finite solution nu if (41) and/or (42) are violated; however,
the solution is not a global maximum unless both (41) and (42) are violated. Writing

fow = 222 (14522 (47)
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it is seen that f(X — ;) is the left-hand side of (41) so that a violation of (41) implies
fE—2) > 1.
On the other hand, since f(0) < 1 it follows that there is a root nu of (47) with
0<np<X—um. (48)
Similarly, it is seen that there is a root nu of (47) with

X—a,<nu<0 (49)
if (42) is violated.

It can be shown that the probability that (41) is satisfied can be approximated by the
normal tail area beyond z, = CV(1)/n where CV(1)is the coefficient of variation of the z; — ;.
The probability that (42) is satisfied can be approximated by the normal tail area beyond
z; = OV (I)4Jn, where CV(I) is the coefficient of variation of the x; —x;. Since these proba-
bilities are negligible for moderate » and not too small CV(1) and CV(I), the conditions (41)
and (42) will usually be violated. As an example, consider data of n = 49 cities drawn from a
population of N = 196 cities by Cochran (1963, p. 156). Choosing 2, = 0, we obtain for the
right-hand side of (41) the value 3-09 > 1.

We do not, in this paper, investigate the properties of the maximum-likelihood estimator
of Y resulting from (45) and (46), namely

(50)

i ~ . —X\1
Y =38P,y = ZZ%% (1 4 X) .

nj

It is worth noting, however, that if all observed y, = % (50) yields ¥ = % in analogy to the
customary regression estimator.

We now develop an approximation to (50) valid for moderately large ». In most practical
situations of z-distributions and samples it will be possible to solve (46) by a value ny such
that (x;—X)/(ng) < 1 for all feasible z;, so that the solution can be obtained by expanding
(46) to first three terms. Hence we obtain

1 n@z-X)

LI ) 51
np Zxny (v —X)? 51

where T = n—1XZn,x; is the sample mean. Using (51) and expanding (45) to the first three
terms, we obtain

P R s 2
o TEng(w;—X)?  {ZEngle;— X)?P

From (52), an approximation to l_A’ = X2 P,,y,is given by

Y =7 +by(X —7) +by(X -2, (53)
where § = n~1XZn,, ¥, is the sample mean,
= ZEny Yy “_X ) (54)
ZEny(x; —X)?
—X)2

and _ nZEngyw;—X) (55)

i {EZnyla;— X2
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If all observed y, = ¥, (53) reduces to Y = 7. The contributions from the last term on the
right-hand side of (53) will usually be small compared to the other terms for moderately
large 7, so that a further approximation to Y is

Y = 5+b,(X-7%). (56)

Although (54) differs slightly from the customary definition of the sample regression co-
efficient, the above development clearly shows that, at least in large samples, the customary
regression estimator is essentially the maximum-likelihood estimator.

4. SIMPLE RANDOM SAMPLING WITH REPLACEMENT

Although this method is seldom used in practice, we nevertheless consider it here in view
of the considerable attention it has received in recent years (e.g. Basu, 1958; Des Raj &
Khamis, 1958; Pathak, 1962; Godambe, 1965) and to show that identifying labels are not
informative beyond the design stage. Basu (1958) has shown that the sample mean based
only on the distinct units in the sample is uniformly better than the customary sample mean
based on all sample draws. Godambe (1965) has used Basu’s result to emphasize the concept
of identifiability of units in sample surveys.

A random sample of fixed size m is drawn with equal probability and with replacement.
Let n denote the number of distinet units in the sample and n, the number of distinet units
having the value ¥, in the sample. Then clearly

nt > O, Z’Ibl =N. (57)

For fixed n, the conditional likelihood is given by the multidimensional hypergeometric
distribution. Consequently the total likelihood is
()
W

N b

n
where the probability P(n) is a function only of m and N. Clearly (n,, ..., ny) is sufficient for
(V35 .-, Np_y), but not complete sufficient, so that no v.M.v. estimator exists.

For the case of integral N/n, it follows from §2-2 and (58) that the maximum-likelihood
estimator of V,is given by

L(N,, ..., Ny) = P(n) (58)

8=, (59)

and, hence, that of x, is m, = w1 Zny;. (60)

In particular, the maximum-likelihood estimator of Y is identical to Basu’s estimator. If
N = ¢ xleast common multipleof 1, 2, ..., m, where ¢ is an integer, then N /n is an integer for
any n with 1 < n < m and the estimators (59) and (60) are all maximum-likelihood estima-
tors for any sampling outcome.

With the compound multinomial prior distribution (22), the Bayes estimator of x,, the
posterior variance of %, and the Bayes estimator of o2 are respectively given by (23), (24) and
(25), where n now denotes the number of distinct units in the simple random sample drawn
with replacement and the #, are given by (57).
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