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Foundations of Survey Sampling (A Don Quixote Tragedy)*

1. The Rebuttal
1.1 The Aims of Our Papers.

This paper is a reply to the paper ‘“Foundations of
Survey Sampling” by V. P. Godambe which appeared
in the February, 1970, issue of the American Statis-
tician. The latter paper discussed at length certain
aspects of the April, 1968, Symposium on Foundations
of Survey Sampling which was organized by the Uni-
versity of North Carolina at Chapel Hill. Specifically
two of our papers, Hartley and Rao (1967-68) and
Hartley and Rao (1969), were criticized by Dr. Go-
dambe and since his discussion is based on considerable
misunderstanding, it is necessary for us to reply to his
assertions in detail.

Since this paper is a rebuttal, we refer the reader to
the description by Dr. Godambe of what he considered
the “central issue’” of the Symposium. We quote from
his section 5:

“5. With the above background I can describe the ‘central
issue’ (referred to in paragraph 1) in the discussions at the Sym-
posium as follows: If the individual labels are entirely uninforma-
tive about the corresponding variate values, intuitively the sample
mean (2) is the most appropriate point estimate for the popula-
tion mean (1), provided simple random sampling without re-
placement is adopted. Corresponding to this intuitive appropriate-
ness the only formaloptimality property for the sample mean is its
UMV-ness. Even this UM V-ness is not available if the individual
labels are not ignored. This indeed is disturbing. If statistical
theory could not explain such crucial statistical intuition as
above, the theory would be seriously inadequate or unrealistic.
One may try to get out of this disturbing situation by adopting
one of the following two approaches;

(I) by extending the statistical theory with a new model and
corresponding formal criteria of optimality or appropriateness,

(IT) by interpreting survey-sampling in such a way that it
would fit within the framework (model) of the general statistical
theory, referred to in paragraph 5.

The ‘central issue’ in the discussions at the Symposium, I
think, could be expressed as; Whether (I) or (II)?”’ (1970, p. 35).

In paragraph 6. he describes very briefly his and
other statisticians work along the line of what he calls
Approach (I), and then he says, “The opposing view-
point supporting Approach (II) at the Symposium was
primarily based on two very recent works, one by Royall
1967—-68, and the other by Hartley and Rao, 1967-68,
1969,

Since we feel that Dr. Godambe has misunderstood
the aims of our two papers we state these here: In both
papers we were concerned with a new technique for
sample surveys in which the k-vectors of characteristics
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Y. attached to the N units (+ =1, ..., N) of a finite
population are measured on discrete scales comprising
a finite number of T scale vectors y, (¢t =1, ..., T).
In both papers we derived some distributional results
(for certain classes of sample designs and estimators)
resulting from this approach, our first paper (Hartley
and Rao, 1967-68) being predominantly concerned
with the so-called “optimality properties.” Concerning
these, we reiterate certain well-known principles of
statistical theory concerning optimality properties of
estimators. It is recognized that optimality properties
depend (among others) on:

(1) the stochastic procedure supplying the observed
data,

(2) the optimality criterion used,

(3) the class of estimators, i.e. the mathematical func-
tions computed from the observed data admitted
to the “competition for optimality”’,

(4) the parametric ranges for which the optimality
property is claimed.

To illustrate the importance of (3) we should mention
the well-known classical example of BLUE least squares
estimators in which (3) is restricted to the class of
linear unbiassed estimators. An interesting example of
the importance of (4) is afforded by the fact that
“admissibility’” of the so-called Horvitz-Thompson esti-
mator was proved by Godambe and Joshi (1965) for
finite populations whose characteristics (parameters)
may attain the value zero.

However, when the parameters are known to be
strictly positive (which is the case for most populations
oceurring in practice), no such result has been proved.
Indeed, Basu (1969) has shown that the Horvitz-
Thompson estimator will be inadmissible if the param-
eters are known to be restricted to certain positive
intervals.

With these preliminaries we are able to give more
details about the aims of our first paper (Hartley and
Rao, 1967-68). We were concerned with the derivation
of certain optimality properties for a subset of estimators
(called by us scale load estimators and perhaps al-
ternatively described as estimators not depending on
the indentifying labels) for certain specified sampling
procedures. The optimality properties considered were
UMV-ness and Maximum Likelihood. Briefly, therefore,
we derived optimality properties for a subset of esti-
mators which would presumably be admitted within
the framework of Dr. Godambe’s Approach (I). The
procedure can be attacked on the grounds that the
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subclass of estimators considered by us is irrelevant.
We discuss this point in sections 2-3.

In the second paper, Hartley and Rao (1969), we do
not restrict our estimators to the above subclass but
still use the above technique of discrete scaling (called
by us reparametrization) to derive new results clearly
outlined in the paper. The fact that we do not exclude
the use of identifying labels is perhaps well illustrated
by the fact that Dr. Godambe’s likelihood (Godambe,
1970, equation 6) which he has used for some time and
which he regards as fundamental to his Approach (I)
arises as a special case of our likelihood formula (Hart-
ley and Rao, 1969, equation 39) the special case being
that when all N; =1, where N; is the number of
secondaries in the 7th primary unit. Formula (39) with
its parameter- and variate-ranges duly recognized then
becomes a restatement of the sampling procedure
P(u;...uz) and is identical with Godambe’s (6) as a
restatement of the sampling procedure p(s). However,
our theory restricts the characteristics y; to the scale
points y..

Now it must be obvious to the reader of Dr.
Godambe’s paper that the aims he ascribes to us are
quite different from the above stated aims. Indeed he
quotes us as saying (statement A, p. 37)!

“we confine ourselves to the estimators
A < which do not functionally depend on the
labels”.

Actually our statement is (1967-68, p. 547) :—

“We consider it therefore of interest to de-

velop an estimation theory in which esti-

mators are allowed to depend on labels only

A* J if these can be regarded as informative con-

comitant variables, and in the present paper

we confine ourselves to estimators which do
not functionally depend on the labels”.

The first part of our statement is unfortunately
omitted. Also the following clear statement made on
page 149 of Hartley and Rao (1969) is ignored:

“We consider that identifying labels of pri-
G* < mary units (or all but the last stage units) will
often be available as well as informative’ .

Clearly then the aims attributed to us by Dr.
Godambe differ strikingly from those professed by us
and the fact that the latter were well understood at
the symposium is clear from Dr. G. A. Barnard’s
‘Summing Up’ of the symposium (see particularly page
709) in which the technical content of our paper is
summarized by the sentence, ‘“The treatment of an
observation in terms of scaling points was something
which Fisher did very frequently with good effect (see,

1'We refer to Dr. Godambe’s truncations of our statements
by his letters A, B, D, F while our associated complete statements
are denoted by A*, C=C*, D*, F* with additional quotations
referenced by G*, H*.
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for example, his 1934 RSS paper) ; and it does help to
view samples from this point of view.”

We cannot help feeling that the misunderstanding of
our aims by Dr. Godambe is reminiscent of the knight
Don Quixote who tragically mistakes harmless wind-
mills as hostile knights and launches violent and en-
tirely victorious attacks against them! We now deal
specifically with three of Dr. Godambe’s more im-
portant charges against us.

1.2 The Alleged Contradiction in the Treatment of Simple
Stratified Sampling.

For clarity, we recall that in the literature simple
stratified sampling is described with the help of one
of two concepts leading to an identical specification.
They are:

Si: The strata are regarded as separate populations,
each described by its separate set of parameters, each
sampled independently. Certain parameter functions to
be estimated (such as the total of the original com-
posite population) depend on all the parameters.

Sz: The strata are regarded as “primary units” of a
single population which are all sampled.

The fact that we use notion S; is clear from the
following quotation (Hartley and Rao, 1969, p. 155)
and overlooked by Dr. Godambe. We say:

“Notice that each stratum is described by
H* { its separate set of parameters i.e., we have an
additional subscript i to ¢ndex the strata’.

Ignoring this statement, Dr. Godambe states that in
contradiction to A we compute estimators that do in
fact depend on the labels of the units while we clearly
state that our subscript i is an index to a stratum, i.e.,
of a subpopulation. This fact is also stressed in our
correctly (!) quoted statement C=C*. However, even
if Dr. Godambe argues that we should have used the
concept S, a contradiction can only be construed by
his convenient truncation of our statement: Stratifi-
cation is treated in our second (1969) paper, and in
Dr. Godambe’s truncation A of our statement A*
(quoted from our 196768 paper) he has omitted the
phrase “in this paper” and only goes on to say ‘“‘we
confine ourselves to the estimators which do not func-
tionally depend on the labels.” The fact that label
dependence is considered often appropriate for the
more general estimators of our second paper, is clearly
stated on page 149 (quoted above as G*).

The presumed contradiction is ridiculed by describing
it as a singular failure to achieve the (falsely alleged)
aim of developing a theory exclusively confined to label-
independent estimators.

Dr. Godambe then has second thoughts and admits
that the “contradiction” could have been avoided by
making the statement “the parameters of different
strata will be estimated separately or independently.”
We leave it to the reader to judge whether this differs
at all from the statements that we originally made.



1.3 The Alleged Lack of Clear Definitions.

Dr. Godambe alleges that our concepts are not clearly
defined by the device of ignoring the clear definition
given by us and only quoting an explanatory rider
following the definition. The complete definition (D*)
and rider (D) we give in our paper are as follows
(Hartley and Rao, 1969, p. 148):

“In our previous paper we restricted (a) to
simple random sampling and we confined the
computation of estimators (b) to what we
D* { termed “scale-load” estimators. These were
defined as mathematical functions of the scale
vectors y, and their sample-loads (frequencies)
n¢ = number of units in the sample havingy,”.

“Thus any identifying labels, i, that may
be attached to the units may or may not be
D D* < used for [the] implementation of the sample
design; however, labels are not directly used
in the computation of estimators”.

In detaching the rider (D) from the definition (D*)
the rider is made to appear vague. We adjoined it to
the clear definition of “‘scale-load’” estimators preceeding
it to avoid a possible confusion in that labels may be
used to implement the sample design but should not
occur as functional arguments in the mathematical
functions defining the scale-load estimators.

The lack of clear definition is used as an “elaboration”
of Dr. Godambe’s assertion that our work lacks theo-
retical structure. There are additional recriminations
which we discuss in section 1.4.

1.4 The Alleged Inefficiency in our Treatment of Unequal
Probability Sampling.

By truncating the summary of our short section on
unequal probability sampling with replacement the
aims of this section are distorted. The complete state-
ment F* and Dr. Godambe’s truncation F are shown
below (1969, p. 162) —

“Although only one single method of un-

F equal probability sampling is examined in this

section and although the method examined is

l known not to be particularly efficient, the

F* { discussion clearly indicates the possibility of

deriving concrete likelihoods for other unequal

probability sampling methods with the help
of our technique of parametrization”.

The second (omitted) part of the sentence clearly
indicates our aim, namely to use our approach to derive
concrete likelihoods and distributional properties in the
area of unequal probability sampling. The result re-
ported in Hartley and Rao (1969) is a proof of the
maximum likelihood property of a well-known esti-
mator, by considering a likelihood based on all the
sample draws (leading to not necessarily distinet units).
This estimator has been in use for decades and can be

written in the form :2

<"L> 2 yimi/qs 1)

mN i€s

where' ¢, is the probability of drawing the ¢th unit at
each individual draw and m; is the number of times the

2th unit is drawn (X_m; =m) i =1,2, ..., N. Go-

dambe’s objection to the estimator (1) is that it is
inadmissible (as it depends on the m;) unlike the
Horvitz-Thompson estimator (for this method of sam-
pling) namely:

(%,) Sl - (1= )7] (2)

which is independent of the m;. However, we had al-
ready demonstrated in our (1967-68) paper that, for
simple random sampling with replacement, our ap-
proach, in fact, leads to a maximum likelihood estimator
which is independent of the m;. This result was ob-
tained by considering the scale-load likelihood based
on the n's, where n, is the number of distinct units in
the sample having the scale- point y; It is obvious
that the maximum likelihood estimator for the present
method of unequal probability sampling would also be
independent of the m;, provided the scale-load likelihood
based on the n,'s is considered. In order to distinguish
this latter estimator from (1) above, we took care to
make the following statement (1969, p. 162) :— “Finally
it should be noted that (35) is the likelihood for the
scores which do not necessarily represent counts of
distinct units in the population.®? However, it is possible
to obtain the likelihood of the number of distinct units
in the sample with seale ratio r, which we denote by ;.
...We intend to examine this distribution in more
detail elsewhere”’. Unfortunately, Dr. Godambe has
ignored the above statement and, instead, says ‘“‘the
inefficient estimator (6) [i.e., our (1) above] speaks
by itself about the general H-R approach.”

By contrast to this negative comment on estimator
(1) (which is of course not “our’ estimator) Dr.
Godambe states about the Horvitz-Thompson esti-
mator (2) that it is “always admissible” (page 38).
This latter statement requires clarification. For, as
pointed out earlier, the property of admissibility has
not been proved for the Horvitz-Thompson estimator
if the parameters attached to the units are known to
be strictly positive.

Finally, we turn to Dr. Godambe’s assertion of an
erroneous statement in the truncated F. He says “They
seem to be completely unaware of the fact that it is
not the method of sampling that is inefficient but what
is inefficient is their estimator (16) [i.e., the above (1)];
for with suitable values of selection probabilities g,
i=1,..., N, the method at least theoretically, will

2 Godambe used x instead of y to denote a character of interest.
3 To make our point even clearer we should perhaps have sub-
stituted “sample” for “population’ here.
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not be very objectionable’.* We leave it to the reader
to judge the merits of this statement vis a vis the
following facts: Hanurav (1962, p. 429) states: “Since
there does not exist a design® in which the variance® is
uniformily minimum, the optimal designs are obtained
by minimizing the expected variance under a realistic
super-population set-up. These turn out to be designs
in which the effective sample size is constant for all
samples of the design”. (see also Hanurav (1965, p.
199). Moreover in Godambe’s own (1955) paper (sec-
tion 7) a more general result is proved for a special
case of the above super-population set-up, which pro-
vides a justification for preferring ‘without replacement
sampling’ over ‘sampling with replacement’. Finally
ample evidence for the superiority of estimators in
without-replacement sampling over those in whit-
replacement sampling has already been provided by
J. N. K. Rao (1966) and Ramakrishnan (1969), at
least for the cases of equal probability sampling and
Stevens’ (1958) method of unequal probability sam-

pling.

2. The Relevance of Label-Independent (Scale-Load)
Estimators

2.1 Definitions

If we had been capable of writing papers that (to
use Dr. Godambe’s phrase) do not ‘lack theoretical
structure’ we could have simply stated ““let us consider
the class of label independent estimators which are
defined as follows...,” and left it at that. However,
as applied statisticians we felt compelled to at least
discuss the ‘need’ for, or the ‘relevance’ of, this class
of estimators. Now we have to confess immediately
that the latter two notions depend on nonmathematical
concepts such as the frequencies with which certain
types of populations are ‘encountered in practice’ and
the like. It is apparent that Dr. Godambe is somewhat
allergic to such discussions (as he has every right to
be). We believe that his misunderstanding of our aims
is very strongly related to our raising these points in
our papers and the consequential discussion at the
symposium.

In order to avoid confusion we should commence
with a definition of identifying labels and ‘scale-load’
estimators: Consider any set of observable attributes
1( 7) attached to the N units of the population (j = 1,
..., N) where j is a non-observable conceptual index of
a unit. If the observable I(j) have the property
1(7) # 1(J) if j # j’ then these attributes may be used

4 Although the latter part of the statement is vague, we inter-
pret it as follows: choose the ¢;’s such that the inclusion proba-
bility for the 7th unit, ;, is proportional to some known size
z:; attached to the 7th unit which is approximately proportional
toys = 1,..., N, (the so-called ‘inclusion probabilities portional
to size (IPPS) designs’).

5 Here Hanurav confines himself to IPPS designs.

6 Variance of the Horvitz-Thompson estimator.
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as ‘identifying labels’. Since the above property of
labels remains invariant with regard to one to one
mappings it is customary to use labels ¢( §) which take
the N integer values ¢ = 1, ..., N. Labels may in cer-
tain cases be used to identify categorical concomitant
variables that can then be attached to the units (e.g.,
the county in which an identified and labelled farm
operator has his headquarters). Such categorical vari-
ables will however not in general be usable as labels
since usually several units fall into the same category.
However, in the special case in which only one unit
falls into each category the categorical variables could
be used as identifying labels of the units. We should
note that in the general case such categorical variables
are often used both, in the design stage (e.g., multi-
stage sampling) as well as in the estimation stage, and
we have in such cases referred to them as ‘primary,
secondary, or all but last stage unit labels’. The word
label per se is therefore reserved for the identifying
label of the last stage unit. Label-independent or scale-
load estimators were defined by us as mathematical
functions which only depend on the sample frequencies
n, with which the tth scale vector y. is attained (¢ = 1,
..., T = Total number of scale vectors). It must be
made clear that since the y; and y. are allowed to be
k-vectors of k attributes it could be argued (and we
have discussed this point) that labels could be adjoined
as the (k + 1)st element of the attribute vector y,.
However, in that case we would have the priori infor-
mation that N, = number of units in the population
having y. is either 0 or 1. In our definition of scale-load
estimators such situations are excluded since it is as-
sumed that no such prior information on our parameters
N, is available, or in other words, it is assumed that
none of the elements of the y; vectors is known to have
the label property defined above.

Strata are regarded as separate populations with
their separate designs and parameters. Historically
speaking, practically all estimators used by practitioners
are scale-load estimators, but we stress again that we
have never recommended their exclusive use. However,
there are many reasons why they are of considerable
relevance and in the subsequent section we consider
one such situation, namely the occurrence of finite
populations with unlabelled units.

2.2 Populations With Unlabelled Units.

Dr. Godambe (1970, p. 34, left lines 2-30) says’:
“I say ‘ignored’ because the process of drawing ‘sta-
tistically’ a random sample from a population consisting
of a fixed number (finiteness is irrelevant) of indi-
viduals involves use of some random number tables
(sic!) which essentially implies that all the individuals
of the population are already labelled in a manner
known to the sampler”.

7 For the context of this statement refer to Dr. Godambe’s
Section 2.



It would carry us too far afield to discuss here the
concept of ‘randomness’ and we refer to the discussion
by G. A. Barnard (1969) in the ‘Summing Up’ (pp.
707-708 and his references) where Dr. Godambe’s
maxim is rejected outright. However, we would like to
raise the following points concerning the implemen-
tation of Dr. Godambe’s maxim: It is known that all
random number tables are imperfect simulations of
random sequences. Tippett’s (1927) table consists of
central figures of British official statistics, the Fisher
and Yates (1963 but numerous editions) tables consist
of central decimals of a 24 decimal table of logarithms,
the tables by Xendall and Smith (1939) have been
generated by an electro-mechanical mechanism very
similar to devices sometimes used for the drawing of a
‘random sample’ of unlabelled units. More recently, the
‘product residue’ method generating random digits in
high speed computers and the resulting computer out-
puts have no mathematical guarantee of representing
‘random sequences’. Of course, most of these tables
have passed numerous searching ‘tests for randomness’.
If Dr. Godambe recommends the exclusive use of ‘some
random number tables’ to draw samples of labeled
units, the onus of the proof that this is a better simu-
lation of a ‘random sequence’ than the physical proc-
esses and procedures of drawing random samples of
unlabeled units is on Dr. Godambe. Next pre-labeling
the units of an infinite population is an operation that
is essentially impossible to implement and in any case
requires the careful distinetion of the concepts of
‘enumerably infinite’ and ‘non-enumerably infinite’, as
well as a definition of his concept of a ‘fized non-fintte
number of individuals’! (Is this a clear definition?)

However, it is apparent that Dr. Godambe wishes
to exclude all populations of unlabeled units from his
notion of ‘survey populations’ which are later described
by him (see Section 4) as ‘real in the sense that they
consist of a fixed number of real individuals’. We now
show below that this would prevent his theory (but
not ours) to deal with a large family of problems in
the sampling of finite populations. We have to confine
ourselves to mentioning just a few examples.

2.2.1 Acceptance Sampling

The important area of acceptance sampling of finite
lots of mass produced articles such as machine parts
deals with finite populations of unlabeled and unidenti-
fied units. The number of units, always known to be
finite, is often determined by count devices or bulk-
weighing. It is well-known that the attachment of
labels to such units is usually impractical. In many
situations finite lots are stratified by categorical vari-
ables representing production characteristics. An inter-
esting case of unequal probability sampling arises in
the production of textile strands where certain pro-
cedures draw fibers with probabilities proportional to
their length.

2.2.2 Sampling from a Continuum.

In many areas of both industrial and agricultural
activities we are concerned with the sampling of what
is essentially a continuum of ‘size A’ (e.g., a land area
or a volume of a fluid or semi-fluid) in which the con-
tinuum is successfully treated as an atomistic finite
population of N units by specifying units of size A/N.
Once N and A/N have been chosen a procedure of
splitting the population into its N ‘real units’ could
indeed be implemented but the cost of doing this is
usually astronomical. Sampling procedures have there-
fore been devised by which a sample of n ‘reference
points’ in the continuum are selected by a specified
random process and the associated n-sample of units
actually constructed and their characteristics measured.
The N — n remaining units are never constructed let
alone labeled. Particularly simple examples arise in the
sampling of water reservoirs, grain silos, and the like.
A somewhat more involved case is the well-known
situation of ‘area sampling’ in agricultural surveys
using either ‘open’ or ‘closed’ segments as sampling
units. Because of the considerable amount of field work
in delineating such segments by ‘natural boundaries’ it
is imperative to confine this work to the sampled seg-
ments. We do not need to document the world-wide
use of area sampling procedures. For an interesting
instance of unequal probability sampling of an un-
labeled population of farm operators using land acreages
as sizes we refer to our (1969) paper (section 5)
reporting on a method by R. J. Jessen.

2.2.3 Sampling of Wild-Life Populations.

It is well known that with these populations the
number N (abundance) although known to be finite,
is usually not known but is one of the target parameters.
However, the units of the populations are clearly not
found ‘labeled’! Often area-units (which may be labeled)
are used as higher stage units in multistage sampling
procedures. Labels or ‘tags’ are sometimes attached to a
‘first sample’ of animals as with the well known capture-
recapture procedures. Difficult problems of population
coverage invariably arises.

3. The Uninformativeness of Randomly Attached Labels

In the previous section we discussed important situ-
ations in which label-independent estimators are not
only relevant but vitally needed since labels are simply
not available. We now turn to a class of situations in
which the units of a population are labeled but labels
are uninformative in the sense specified below. This
situation arises when labels are randomly attached to
units and it would certainly not appear to be surprising
that such labels are uninformative. We confine our-
selves here to the simplest case of ‘random labeling’
for which the mathematical definitions and concepts
are as follows:

3.1 The Two-Step Stochastic Process.
Step 1. Random Labeling of Units: The N units of a
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population are conceptually identified by a non-observ-
able index j (j =1, ..., N). Before the sampling Step
2 commences, and unknown to the sampler, labels
7=1,...,N are attached to the units by choosing
one of the N! permutations 7( j) with equal probabilities
1/NL

Step 2. The Sample Selection: Given the set of N
labeled units (z = 1, ..., N) a sample of fixed size n
is drawn by what is called a ‘size determined’ design
(see below).

3.2 The Characteristics Attached to the Units

We assume that N scalar® ‘target attributes’ vy,
(j=1,...,N) and N scalar® ‘size attributes’ x,/ are
attached to the units as the elements of the two
N-vectors y’ and x’.

3.3 The ‘Size Determined’ Sample Design.

One sample, s, out of the total number of possible S
samples, comprising labels ¢ € s is drawn by a process
such that Pr(s) = p[x(s)] is a symmetric function of
the numerical values z;: 7 € s.

3.4 The Probability Distribution of the Stochastic
Variables.

The stochastic variables of the two-step process are:
(a) the N! permutations ¢( j); (b) the set of sample
labels s; (¢) the attributes y;, x; found attached to the
unit labeled ¢; (d) the ‘variate transformations’

* *
Yi© = Yi), Ti" = Tih),

that is the variate values y and z attached to the unit
with index j through the permutation 7(j) and the
sample draw 7 € s.

Since the y;* z;* are unique functions of the y;, z;
and of 7(j) and since 7(j) represents a one-to-one
mapping, the probability distribution can be formulated
in terms of the variables 7( j), ¢ € s and y;*, ;¥ and
is given by:

PI’{%(]), 8, yf*y xi* | y/, X/, p}

plz(s)] i y* = ¥, 2% = T,
1 for all 7 € s and for all y’,
Yy

0

X/ iIl RgN.

Otherwise.
where in (3) the factor 1/N! represents the Step 1
(marginal) probability of the variable 7( j) and the
second factor represents the conditional probability of
s, ¥;¥, z;*, given 7(7) and uses notation analogous to
Godambe’s (1970, equation 6).

(3)

3.5 The Likelihood Given the Data.

The observable data are the set (s, y; = y's, z; = 2/;:
7 € 8) and hence using (3), the likelihood, given the
data, is given by:

8 Generalizations to vector attributes are obvious.

26  The American Statistician, February 1971

L(S, Yiy T4t 1€s l yjly xi,)

(p[x(s)] if y*;00 = ¥, @50 = @5

_ 1 for all 7 € s and for all
NG y’, x" in Roy. (4)
Otherwise.

where j(i) is the mapping inverse to 7(j) and ;s
extends over all N! permutations.

Clearly the likelihood (4) is completely determined
by a specification of the observed numerical values
y: = y's, T, = 2’4, irrespective of the set of observed
labels s. This means that the information contained
in s does not contribute anything to the information
already contained in the observed numerical values of
y; and z;. In this sense labels are uninformative. In the
special case where the sizes, z;, have the label property
(i.e., no two units have the same size) the above state-
ment is of course trivially correct since it states that
the information contained in labels does not contribute
anything to the information already contained in the
y: and the sizes z; which already have the label property.
If no sizes are available the above proof that observed
labels are uninformative is maintained by the use of a
constant set of z.

Concerning the concept of ‘size determined’ designs
most survey designs fall into this category including
all equal probability designs and all unequal prob-
ability ‘draw by draw’ designs. For brevity sake we
do not enter here into a discussion of labeled popu-
lations in which it would be reasonable to make the
assumption of a Step 1 random labeling, but it does
seem to be often a reasonable assumption for the labels
attached to the last stage units. Generalizations to re-
stricted randomization of labeled units are clearly
feasible (see C. R. Rao, 1970).
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Mathematical Sciences and Social Sciences: Excerpts from the
Report of a Panel of the Behavioral and Social Sciences Survey”

Many problems in the behavioral and social sciences re-
quire mathematies, statistics, or computation for their
solution. More and more frequently, social scientists are
using methods and techniques from the mathematical
sciences. Further, there is true interaction between the
mathematical and the social sciences, for problems
arising in the social sciences have motivated new
theories and approaches in the mathematical sciences.

This interaction has a long record. Without trying to
go back to its earliest history, a few examples are worth
citing here. In the nineteenth century the psychologist
G. T. Fechner was led to a variety of statistical problems
through his early psychophysical investigations. Since
at least the turn of the eentury, physical anthropology
has both required results of, and made contributions to,
the study of multivariate statistical methods as applied
to body and skeleton measurements. Mathematics,
more narrowly interpreted, has been an essential tool of
economics at least since its use by Cournot and Léon
Walras about one hundred years ago. Computation has
become increasingly important to the social sciences
with the advent of modern high-speed computing
equipment, and computations are now routinely made
that would have been impractical fantasies a few years
ago. Two examples are input-output analysis in

* These selections are reprinted (with minor changes) by per-
mission of the publisher from Mathematical Sciences and Social
Sciences, edited by William H. Kruskal (copyright by Prentice-
Hall, Inc., published in November 1970). This article appeared
in the September 1970 issue of “Items” (Vol. 24, No. 3), pub-
lished by the Social Science Research Council and reprinted
here by permission. The Behavioral and Social Sciences Survey
was jointly sponsored by the National Academy of Sciences—
National Research Council and the Social Science Research
Council and conducted by a central planning committee whose
members were chairmen and cochairmen of panels in various
social science fields. Mr. Kruskal was chairman of the Mathe-
matical Sciences Panel; its other members were John P. Gilbert,
Leo Katz, R. Duncan Luce, Alex Orden, and I. Richard Savage.
Frederick Mosteller was an active participant in its work and a
contributor to its report.

selected by WILLIAM H. KRUSKAL

economics and the computations of quantitative
linguistics. Geography has always had close connection
with the making of maps, and cartography, in turn, has
required mathematics, statistics, and computation in
substantial ways.

The Mathematical Sciences Panel was established
because of the close connections between the mathe-
matical sciences and the social sciences. This panel
report deals with germane problems of statistics,
mathematics, and computation. We do not discuss
relatively technical issues, important as they are, such
as difficulties in carrying out true experiments for
many social science problems.

The introductory material of the panel report next presents
an outline of its contents, suggests other sources of information,
and thanks the many mathematical and social scientists who
helped in the report’s preparation.

Chapter 1 then illustrates how the mathematical sciences inter-
act with the social sciences in one interesting context. An extract
from Chapter 1 follows.

The Mathematical Sciences at Work with the Social
Sciences: Learning with Irregular Rewards

Conventional wisdom suggests that learning anything
is best done if the learner is regularly and consistently
rewarded for success, but not rewarded for failure. In-
deed, much attention, both experimental and theoreti-
cal, has been given to learning situations with regular
rewards. On the other hand, our lives have many aspects
in which rewards are irregular, and in this chapter we
discuss some ways in which the mathematical sciences
help the social sciences to study learning with irregular
rewards.

Two-Choice Experiments. Paychecks come at regular
intervals for most of us, but other kinds of encourage-
ment—being told that a job is well done, the joy of
successfully finishing a long task, or seeing a child we
have helped perform well—come at irregular intervals.
Although some find these intervals too long, the ir-
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